1
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Robinson KE, Moniz HA, Stokes AN, Feldman CR. Where Does All the Poison Go? Investigating Toxicokinetics of Newt (Taricha) Tetrodotoxin (TTX) in Garter Snakes (Thamnophis). J Chem Ecol 2024; 50:489-502. [PMID: 38842636 DOI: 10.1007/s10886-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Animals that consume toxic diets provide models for understanding the molecular and physiological adaptations to ecological challenges. Garter snakes (Thamnophis) in western North America prey on Pacific newts (Taricha), which employ tetrodotoxin (TTX) as an antipredator defense. These snakes possess mutations in voltage-gated sodium channels (Nav), the molecular targets of TTX, that decrease the binding ability of TTX to sodium channels (target-site resistance). However, genetic variation at these loci that cannot explain all the phenotypic variation in TTX resistance in Thamnophis. We explored a separate means of resistance, toxin metabolism, to determine if TTX-resistant snakes either rapidly remove TTX or sequester TTX. We examined the metabolism and distribution of TTX in the body (toxicokinetics), to determine differences between TTX-resistant and TTX-sensitive snakes in the rates at which TTX is eliminated from organs and the whole body (using TTX half-life as our metric). We assayed TTX half-life in snakes from TTX-resistant and TTX-sensitive populations of three garter snake species with a coevolutionary history with newts (T. atratus, T. couchii, T. sirtalis), as well as two non-resistant "outgroup" species (T. elegans, Pituophis catenifer) that seldom (if ever) engage newts. We found TTX half-life varied across species, populations, and tissues. Interestingly, TTX half-life was shortest in T. elegans and P. catenifer compared to all other snakes. Furthermore, TTX-resistant populations of T. couchii and T. sirtalis eliminated TTX faster (shorter TTX half-life) than their TTX-sensitive counterparts, while populations of TTX-resistant and TTX-sensitive T. atratus showed no difference rates of TTX removal (same TTX half-life). The ability to rapidly eliminate TTX may have permitted increased prey consumption, which may have promoted the evolution of additional resistance mechanisms. Finally, snakes still retain substantial amounts of TTX, and we projected that snakes could be dangerous to their own predators days to weeks following the ingestion of a single newt. Thus, aspects of toxin metabolism may have been key in driving predator-prey relationships, and important in determining other ecological interactions.
Collapse
Affiliation(s)
- Kelly E Robinson
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.
| | - Haley A Moniz
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Amber N Stokes
- Department of Biology, California State University Bakersfield, Bakersfield, CA, USA
| | - Chris R Feldman
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
4
|
Schneider A, Hage A, Stein ICAP, Kriedemann N, Zweigerdt R, Leffler A. A Possible Role of Tetrodotoxin-Sensitive Na + Channels for Oxidation-Induced Late Na + Currents in Cardiomyocytes. Int J Mol Sci 2024; 25:6596. [PMID: 38928302 PMCID: PMC11203718 DOI: 10.3390/ijms25126596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| | - Axel Hage
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| | | | - Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| |
Collapse
|
5
|
Zou X, Zhang Z, Lu H, Zhao W, Pan L, Chen Y. Functional effects of drugs and toxins interacting with Na V1.4. Front Pharmacol 2024; 15:1378315. [PMID: 38725668 PMCID: PMC11079311 DOI: 10.3389/fphar.2024.1378315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
NaV1.4 is a voltage-gated sodium channel subtype that is predominantly expressed in skeletal muscle cells. It is essential for producing action potentials and stimulating muscle contraction, and mutations in NaV1.4 can cause various muscle disorders. The discovery of the cryo-EM structure of NaV1.4 in complex with β1 has opened new possibilities for designing drugs and toxins that target NaV1.4. In this review, we summarize the current understanding of channelopathies, the binding sites and functions of chemicals including medicine and toxins that interact with NaV1.4. These substances could be considered novel candidate compounds or tools to develop more potent and selective drugs targeting NaV1.4. Therefore, studying NaV1.4 pharmacology is both theoretically and practically meaningful.
Collapse
Affiliation(s)
- Xinyi Zou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hui Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lanying Pan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuan Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
6
|
Dzhumaniiazova I, Vornanen M, Pustovit OB, Voronkov YI, Abramochkin DV. Effects of Tetrodotoxin and Ranolazine on the Late INa of Zebrafish Ventricular Myocytes. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. Proc Natl Acad Sci U S A 2022; 119:e2210114119. [PMID: 36279441 PMCID: PMC9636910 DOI: 10.1073/pnas.2210114119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX "recognition code" enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ∼140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins.
Collapse
|
8
|
Martinez‐Hernandez E, Blatter LA, Kanaporis G. L-type Ca 2+ channel recovery from inactivation in rabbit atrial myocytes. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2022; 10:e15222. [PMID: 35274829 PMCID: PMC8915713 DOI: 10.14814/phy2.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Adaptation of the myocardium to varying workloads critically depends on the recovery from inactivation (RFI) of L-type Ca2+ channels (LCCs) which provide the trigger for cardiac contraction. The goal of the present study was a comprehensive investigation of LCC RFI in atrial myocytes. The study was performed on voltage-clamped rabbit atrial myocytes using a double pulse protocol with variable diastolic intervals in cells held at physiological holding potentials, with intact intracellular Ca2+ release, and preserved Na+ current and Na+ /Ca2+ exchanger (NCX) activity. We demonstrate that the kinetics of RFI of LCCs are co-regulated by several factors including resting membrane potential, [Ca2+ ]i , Na+ influx, and activity of CaMKII. In addition, activation of CaMKII resulted in increased ICa amplitude at higher pacing rates. Pharmacological inhibition of NCX failed to have any significant effect on RFI, indicating that impaired removal of Ca2+ by NCX has little effect on LCC recovery. Finally, RFI of intracellular Ca2+ release was substantially slower than LCC RFI, suggesting that inactivation kinetics of LCC do not significantly contribute to the beat-to-beat refractoriness of SR Ca2+ release. The study demonstrates that CaMKII and intracellular Ca2+ dynamics play a central role in modulation of LCC activity in atrial myocytes during increased workloads that could have important consequences under pathological conditions such as atrial fibrillations, where Ca2+ cycling and CaMKII activity are altered.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - Giedrius Kanaporis
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
9
|
Danis T, Papadogiannis V, Tsakogiannis A, Kristoffersen JB, Golani D, Tsaparis D, Sterioti A, Kasapidis P, Kotoulas G, Magoulas A, Tsigenopoulos CS, Manousaki T. Genome Analysis of Lagocephalus sceleratus: Unraveling the Genomic Landscape of a Successful Invader. Front Genet 2021; 12:790850. [PMID: 34956332 PMCID: PMC8692874 DOI: 10.3389/fgene.2021.790850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The Tetraodontidae family encompasses several species which attract scientific interest in terms of their ecology and evolution. The silver-cheeked toadfish (Lagocephalus sceleratus) is a well-known “invasive sprinter” that has invaded and spread, in less than a decade, throughout the Eastern and part of the Western Mediterranean Sea from the Red Sea through the Suez Canal. In this study, we built and analysed the first near-chromosome level genome assembly of L. sceleratus and explored its evolutionary landscape. Through a phylogenomic analysis, we positioned L. sceleratus closer to T. nigroviridis, compared to other members of the family, while gene family evolution analysis revealed that genes associated with the immune response have experienced rapid expansion, providing a genetic basis for studying how L. sceleratus is able to achieve highly successful colonisation. Moreover, we found that voltage-gated sodium channel (NaV 1.4) mutations previously connected to tetrodotoxin resistance in other pufferfishes are not found in L. sceleratus, highlighting the complex evolution of this trait. The high-quality genome assembly built here is expected to set the ground for future studies on the species biology.
Collapse
Affiliation(s)
- Theodoros Danis
- School of Medicine, University of Crete, Heraklion, Greece.,Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Vasileios Papadogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Jon B Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Daniel Golani
- Department of Ecology, Evolution and Behavior and the National Natural History Collections, The Hebrew University, Jerusalem, Israel
| | - Dimitris Tsaparis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Aspasia Sterioti
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Panagiotis Kasapidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Costas S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
10
|
Peters CH, Watkins AR, Poirier OL, Ruben PC. E1784K, the most common Brugada syndrome and long-QT syndrome type 3 mutant, disrupts sodium channel inactivation through two separate mechanisms. J Gen Physiol 2021; 152:151877. [PMID: 32569350 PMCID: PMC7478868 DOI: 10.1085/jgp.202012595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Inheritable and de novo variants in the cardiac voltage-gated sodium channel, Nav1.5, are responsible for both long-QT syndrome type 3 (LQT3) and Brugada syndrome type 1 (BrS1). Interestingly, a subset of Nav1.5 variants can cause both LQT3 and BrS1. Many of these variants are found in channel structures that form the channel fast inactivation machinery, altering the rate, voltage dependence, and completeness of the fast inactivation process. We used a series of mutants at position 1784 to show that the most common inheritable Nav1.5 variant, E1784K, alters fast inactivation through two separable mechanisms: (1) a charge-dependent interaction that increases the noninactivating current characteristic of E1784K; and (2) a hyperpolarized voltage dependence and accelerated rate of fast inactivation that decreases the peak sodium current. Using a homology model built on the NavPaS structure, we find that the charge-dependent interaction is between E1784 and K1493 in the DIII-DIV linker of the channel, five residues downstream of the putative inactivation gate. This interaction can be disrupted by a positive charge at position 1784 and rescued with the K1493E/E1784K double mutant that abolishes the noninactivating current. However, the double mutant does not restore either the voltage dependence or rates of fast inactivation. Conversely, a mutant at the bottom of DIVS4, K1641D, causes a hyperpolarizing shift in the voltage dependence of fast inactivation and accelerates the rate of fast inactivation without causing an increase in noninactivating current. These findings provide novel mechanistic insights into how the most common inheritable arrhythmogenic mixed syndrome variant, E1784K, simultaneously decreases transient sodium currents and increases noninactivating currents, leading to both BrS1 and LQT3.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Abeline R Watkins
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Olivia L Poirier
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Bucciarelli GM, Lechner M, Fontes A, Kats LB, Eisthen HL, Shaffer HB. From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic. Toxins (Basel) 2021; 13:toxins13080517. [PMID: 34437388 PMCID: PMC8402337 DOI: 10.3390/toxins13080517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that was first identified in pufferfish but has since been isolated from an array of taxa that host TTX-producing bacteria. However, determining its origin, ecosystem roles, and biomedical applications has challenged researchers for decades. Recognized as a poison and for its lethal effects on humans when ingested, TTX is primarily a powerful sodium channel inhibitor that targets voltage-gated sodium channels, including six of the nine mammalian isoforms. Although lethal doses for humans range from 1.5-2.0 mg TTX (blood level 9 ng/mL), when it is administered at levels far below LD50, TTX exhibits therapeutic properties, especially to treat cancer-related pain, neuropathic pain, and visceral pain. Furthermore, TTX can potentially treat a variety of medical ailments, including heroin and cocaine withdrawal symptoms, spinal cord injuries, brain trauma, and some kinds of tumors. Here, we (i) describe the perplexing evolution and ecology of tetrodotoxin, (ii) review its mechanisms and modes of action, and (iii) offer an overview of the numerous ways it may be applied as a therapeutic. There is much to be explored in these three areas, and we offer ideas for future research that combine evolutionary biology with therapeutics. The TTX system holds great promise as a therapeutic and understanding the origin and chemical ecology of TTX as a poison will only improve its general benefit to humanity.
Collapse
Affiliation(s)
- Gary M. Bucciarelli
- Department of Ecology and Evolutionary Biology & UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA; (M.L.); (H.B.S.)
- Correspondence:
| | - Maren Lechner
- Department of Ecology and Evolutionary Biology & UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA; (M.L.); (H.B.S.)
| | - Audrey Fontes
- Natural Science Division, Pepperdine University, Malibu, CA 90263, USA; (A.F.); (L.B.K.)
| | - Lee B. Kats
- Natural Science Division, Pepperdine University, Malibu, CA 90263, USA; (A.F.); (L.B.K.)
| | - Heather L. Eisthen
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
| | - H. Bradley Shaffer
- Department of Ecology and Evolutionary Biology & UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA; (M.L.); (H.B.S.)
| |
Collapse
|
12
|
Abrams J, Roybal D, Chakouri N, Katchman AN, Weinberg R, Yang L, Chen BX, Zakharov SI, Hennessey JA, Avula UMR, Diaz J, Wang C, Wan EY, Pitt GS, Ben-Johny M, Marx SO. Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding-deficient channels. JCI Insight 2020; 5:141736. [PMID: 32870823 PMCID: PMC7566708 DOI: 10.1172/jci.insight.141736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
The Ca2+-binding protein calmodulin has emerged as a pivotal player in tuning Na+ channel function, although its impact in vivo remains to be resolved. Here, we identify the role of calmodulin and the NaV1.5 interactome in regulating late Na+ current in cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA). The mutations rendered the channels incapable of binding calmodulin to the C-terminus. The IQ/AA transgenic mice exhibited normal ventricular repolarization without arrhythmias and an absence of increased late Na+ current. In comparison, transgenic mice expressing a lidocaine-resistant (F1759A) human NaV1.5 demonstrated increased late Na+ current and prolonged repolarization in cardiomyocytes, with spontaneous arrhythmias. To determine regulatory factors that prevent late Na+ current for the IQ/AA mutant channel, we considered fibroblast growth factor homologous factors (FHFs), which are within the NaV1.5 proteomic subdomain shown by proximity labeling in transgenic mice expressing NaV1.5 conjugated to ascorbate peroxidase. We found that FGF13 diminished late current of the IQ/AA but not F1759A mutant cardiomyocytes, suggesting that endogenous FHFs may serve to prevent late Na+ current in mouse cardiomyocytes. Leveraging endogenous mechanisms may furnish an alternative avenue for developing novel pharmacology that selectively blunts late Na+ current.
Collapse
Affiliation(s)
| | | | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Lin Yang
- Division of Cardiology, Department of Medicine
| | | | | | | | | | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Chaojian Wang
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine
- Department of Pharmacology, and
| |
Collapse
|
13
|
Pajouhesh H, Beckley JT, Delwig A, Hajare HS, Luu G, Monteleone D, Zhou X, Ligutti J, Amagasu S, Moyer BD, Yeomans DC, Du Bois J, Mulcahy JV. Discovery of a selective, state-independent inhibitor of Na V1.7 by modification of guanidinium toxins. Sci Rep 2020; 10:14791. [PMID: 32908170 PMCID: PMC7481244 DOI: 10.1038/s41598-020-71135-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.
Collapse
Affiliation(s)
- H Pajouhesh
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J T Beckley
- SiteOne Therapeutics, Bozeman, MT, 59715, USA
| | - A Delwig
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - H S Hajare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - G Luu
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - D Monteleone
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - X Zhou
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J Ligutti
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - S Amagasu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - J V Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Denomme N, Lukowski AL, Hull JM, Jameson MB, Bouza AA, Narayan ARH, Isom LL. The voltage-gated sodium channel inhibitor, 4,9-anhydrotetrodotoxin, blocks human Na v1.1 in addition to Na v1.6. Neurosci Lett 2020; 724:134853. [PMID: 32114117 PMCID: PMC7096269 DOI: 10.1016/j.neulet.2020.134853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in neurons. The human genome includes ten human VGSC α-subunit genes, SCN(X)A, encoding Nav1.1-1.9 plus Nax. To understand the unique role that each VGSC plays in normal and pathophysiological function in neural networks, compounds with high affinity and selectivity for specific VGSC subtypes are required. Toward that goal, a structural analog of the VGSC pore blocker tetrodotoxin, 4,9-anhydrotetrodotoxin (4,9-ah-TTX), has been reported to be more selective in blocking Na+ current mediated by Nav1.6 than other TTX-sensitive VGSCs, including Nav1.2, Nav1.3, Nav1.4, and Nav1.7. While SCN1A, encoding Nav1.1, has been implicated in several neurological diseases, the effects of 4,9-ah-TTX on Nav1.1-mediated Na+ current have not been tested. Here, we compared the binding of 4,9-ah-TTX for human and mouse brain preparations, and the effects of 4,9-ah-TTX on human Nav1.1-, Nav1.3- and Nav1.6-mediated Na+ currents using the whole-cell patch clamp technique in heterologous cells. We show that, while 4,9-ah-TTX administration results in significant blockade of Nav1.6-mediated Na+ current in the nanomolar range, it also has significant effects on Nav1.1-mediated Na+ current. Thus, 4,9-ah-TTX is not a useful tool in identifying Nav1.6-specific effects in human brain networks.
Collapse
Affiliation(s)
- Nicholas Denomme
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - April L Lukowski
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Jacob M Hull
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Margaret B Jameson
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Molecular and Cellular Pharmacology Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 United States
| | - Alexandra A Bouza
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Alison R H Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109 United States; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109 United States; Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109 United States.
| |
Collapse
|
15
|
Vaelli PM, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. eLife 2020; 9:e53898. [PMID: 32254021 PMCID: PMC7138609 DOI: 10.7554/elife.53898] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rough-skinned newts (Taricha granulosa) use tetrodotoxin (TTX) to block voltage-gated sodium (Nav) channels as a chemical defense against predation. Interestingly, newts exhibit extreme population-level variation in toxicity attributed to a coevolutionary arms race with TTX-resistant predatory snakes, but the source of TTX in newts is unknown. Here, we investigated whether symbiotic bacteria isolated from toxic newts could produce TTX. We characterized the skin-associated microbiota from a toxic and non-toxic population of newts and established pure cultures of isolated bacterial symbionts from toxic newts. We then screened bacterial culture media for TTX using LC-MS/MS and identified TTX-producing bacterial strains from four genera, including Aeromonas, Pseudomonas, Shewanella, and Sphingopyxis. Additionally, we sequenced the Nav channel gene family in toxic newts and found that newts expressed Nav channels with modified TTX binding sites, conferring extreme physiological resistance to TTX. This study highlights the complex interactions among adaptive physiology, animal-bacterial symbiosis, and ecological context.
Collapse
Affiliation(s)
- Patric M Vaelli
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State UniversityDetroitUnited States
| | - Janet E Williams
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Animal and Veterinary Science, University of IdahoMoscowUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
| | | | - James A Foster
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
- Department of Biological Sciences, University of IdahoMoscowUnited States
| | - Heather L Eisthen
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
16
|
Adachi K, Yamada T, Ishizuka H, Oki M, Tsunogae S, Shimada N, Chiba O, Orihara T, Hidaka M, Hirokawa T, Odagi M, Konoki K, Yotsu‐Yamashita M, Nagasawa K. Synthesis of C12‐Keto Saxitoxin Derivatives with Unusual Inhibitory Activity Against Voltage‐Gated Sodium Channels. Chemistry 2020; 26:2025-2033. [DOI: 10.1002/chem.201904184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kanna Adachi
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Tomoshi Yamada
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Hayate Ishizuka
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Mana Oki
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Shunsuke Tsunogae
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Noriko Shimada
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Osamu Chiba
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Tatsuya Orihara
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Masafumi Hidaka
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8575 Japan
- Division of Biomedical Science University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8575 Japan
- Molecular Profiling Research Center for Drug Discovery National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ward Tokyo 135-0064 Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Keiichi Konoki
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Mari Yotsu‐Yamashita
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| |
Collapse
|
17
|
Synthetic Approaches to Zetekitoxin AB, a Potent Voltage-Gated Sodium Channel Inhibitor. Mar Drugs 2019; 18:md18010024. [PMID: 31888062 PMCID: PMC7024329 DOI: 10.3390/md18010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are membrane proteins that are involved in the generation and propagation of action potentials in neurons. Recently, the structure of a complex made of a tetrodotoxin-sensitive (TTX-s) NaV subtype with saxitoxin (STX), a shellfish toxin, was determined. STX potently inhibits TTX-s NaV, and is used as a biological tool to investigate the function of NaVs. More than 50 analogs of STX have been isolated from nature. Among them, zetekitoxin AB (ZTX) has a distinctive chemical structure, and is the most potent inhibitor of NaVs, including tetrodotoxin-resistant (TTX-r) NaV. Despite intensive synthetic studies, total synthesis of ZTX has not yet been achieved. Here, we review recent efforts directed toward the total synthesis of ZTX, including syntheses of 11-saxitoxinethanoic acid (SEA), which is considered a useful synthetic model for ZTX, since it contains a key carbon-carbon bond at the C11 position.
Collapse
|
18
|
Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Bois JD, Hunter JC. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na V1.7. J Med Chem 2019; 62:8695-8710. [PMID: 31012583 PMCID: PMC6786914 DOI: 10.1021/acs.jmedchem.8b01906] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.
Collapse
Affiliation(s)
- John V. Mulcahy
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Hassan Pajouhesh
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Jacob T. Beckley
- SiteOne Therapeutics, 351 Evergreen Drive, Suite B1, Bozeman, MT 59715
| | - Anton Delwig
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - J. Du Bois
- Stanford University, Lokey Chemistry and Biology, 337 Campus Drive, Stanford, CA 94305
| | - John C. Hunter
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| |
Collapse
|
19
|
Yen TJ, Lolicato M, Thomas-Tran R, Du Bois J, Minor DL. Structure of the saxiphilin:saxitoxin (STX) complex reveals a convergent molecular recognition strategy for paralytic toxins. SCIENCE ADVANCES 2019; 5:eaax2650. [PMID: 31223657 PMCID: PMC6584486 DOI: 10.1126/sciadv.aax2650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/13/2023]
Abstract
Dinoflagelates and cyanobacteria produce saxitoxin (STX), a lethal bis-guanidinium neurotoxin causing paralytic shellfish poisoning. A number of metazoans have soluble STX-binding proteins that may prevent STX intoxication. However, their STX molecular recognition mechanisms remain unknown. Here, we present structures of saxiphilin (Sxph), a bullfrog high-affinity STX-binding protein, alone and bound to STX. The structures reveal a novel high-affinity STX-binding site built from a "proto-pocket" on a transferrin scaffold that also bears thyroglobulin domain protease inhibitor repeats. Comparison of Sxph and voltage-gated sodium channel STX-binding sites reveals a convergent toxin recognition strategy comprising a largely rigid binding site where acidic side chains and a cation-π interaction engage STX. These studies reveal molecular rules for STX recognition, outline how a toxin-binding site can be built on a naïve scaffold, and open a path to developing protein sensors for environmental STX monitoring and new biologics for STX intoxication mitigation.
Collapse
Affiliation(s)
- Tien-Jui Yen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
20
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
21
|
Whitelaw BL, Cooke IR, Finn J, Zenger K, Strugnell JM. The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:114-122. [PMID: 30472480 DOI: 10.1016/j.aquatox.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Tetrodotoxin is a potent non-proteinaceous neurotoxin, which is commonly found in the marine environment. Synthesised by bacteria, tetrodotoxin has been isolated from the tissues of several genera including pufferfish, salamanders and octopus. Believed to provide a defensive function, the independent evolution of tetrodotoxin sequestration is poorly understood in most species. Two mechanisms of tetrodotoxin resistance have been identified to date, tetrodotoxin binding proteins in the circulatory system and mutations to voltage gated sodium channels, the binding target of tetrodotoxin with the former potentially succeeding the latter in evolutionary time. This review focuses on the evolution of tetrodotoxin acquisition, in particular how it may have occurred within the blue-ringed octopus genus (Hapalochlaena) and the subsequent impact on venom evolution.
Collapse
Affiliation(s)
- Brooke L Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Ira R Cooke
- College of Public Health, Medical and Vet Sciences, James Cook University, Townsville, Queensland, 4811, Australia; La Trobe Institute of Molecular Science, La Trobe University, Melbourne, 3086, Vic. Australia
| | - Julian Finn
- Sciences, Museum Victoria, Carlton, Victoria 3053, Australia
| | - Kyall Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
| | - J M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia; Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, 3086, Vic. Australia
| |
Collapse
|
22
|
Perry BW, Card DC, McGlothlin JW, Pasquesi GIM, Adams RH, Schield DR, Hales NR, Corbin AB, Demuth JP, Hoffmann FG, Vandewege MW, Schott RK, Bhattacharyya N, Chang BSW, Casewell NR, Whiteley G, Reyes-Velasco J, Mackessy SP, Gamble T, Storey KB, Biggar KK, Passow CN, Kuo CH, McGaugh SE, Bronikowski AM, de Koning APJ, Edwards SV, Pfrender ME, Minx P, Brodie ED, Brodie ED, Warren WC, Castoe TA. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biol Evol 2018; 10:2110-2129. [PMID: 30060036 PMCID: PMC6110522 DOI: 10.1093/gbe/evy157] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, Arlington
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Nihar Bhattacharyya
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, Arlington.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - A P Jason de Koning
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Patrick Minx
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | | | | | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington
| |
Collapse
|
23
|
Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, King GF, Yan N. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 2018; 362:science.aau2596. [DOI: 10.1126/science.aau2596] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Animal toxins that modulate the activity of voltage-gated sodium (Nav) channels are broadly divided into two categories—pore blockers and gating modifiers. The pore blockers tetrodotoxin (TTX) and saxitoxin (STX) are responsible for puffer fish and shellfish poisoning in humans, respectively. Here, we present structures of the insect Navchannel NavPaS bound to a gating modifier toxin Dc1a at 2.8 angstrom-resolution and in the presence of TTX or STX at 2.6-Å and 3.2-Å resolution, respectively. Dc1a inserts into the cleft between VSDIIand the pore of NavPaS, making key contacts with both domains. The structures with bound TTX or STX reveal the molecular details for the specific blockade of Na+access to the selectivity filter from the extracellular side by these guanidinium toxins. The structures shed light on structure-based development of Navchannel drugs.
Collapse
|
24
|
Edokobi N, Isom LL. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology. Front Physiol 2018; 9:351. [PMID: 29740331 PMCID: PMC5924814 DOI: 10.3389/fphys.2018.00351] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs). Voltage-gated sodium channels (NaVs) are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Haverinen J, Hassinen M, Korajoki H, Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:59-68. [PMID: 29655910 DOI: 10.1016/j.pbiomolbio.2018.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Na+ channel α-subunit composition of the zebrafish heart and electrophysiological properties of Na+ current (INa) of zebrafish ventricular myocytes were examined. Eight Na+ channel α-subunits were expressed in both atrium and ventricle of the zebrafish heart. Nav1.5Lb, an orthologue to the human Nav1.5, was clearly the predominant isoform in both chambers representing 65.2 ± 4.1% and 83.1 ± 2.1% of all Na+ channel transcripts in atrium and ventricle, respectively. Nav1.4b, an orthologue to human Nav1.4, formed 34.1 ± 4.1 and 16.2 ± 2.0% of the Na+ channel transcripts in atrium and ventricle, respectively. The density of INa and the rate of action potential upstroke in zebrafish ventricular myocytes at 28 °C were similar to those of human ventricles at the comparable temperature. Na+ channel isoforms and the main electrophysiological characteristics of the INa are largely similar in zebrafish and human hearts indicating evolutionary conservation of Na+ channel composition and function. The zebrafish INa differs from the human cardiac INa in terms of higher tetrodotoxin sensitivity (IC50-value = 5.3 ± 0.1 nM) and slower inactivation kinetics. The zebrafish INa was inhibited with tricaine (MS-222) with an IC50-value of 1.2 ± 0.18 mM (336 mg l-1), suggesting some care in the use of MS-222 as an anesthetic.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Finland
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Finland
| | - Hanna Korajoki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
26
|
Abstract
Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.
Collapse
Affiliation(s)
- M E O'Leary
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - M Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
27
|
Tsukamoto T, Chiba Y, Wakamori M, Yamada T, Tsunogae S, Cho Y, Sakakibara R, Imazu T, Tokoro S, Satake Y, Adachi M, Nishikawa T, Yotsu-Yamashita M, Konoki K. Differential binding of tetrodotoxin and its derivatives to voltage-sensitive sodium channel subtypes (Na v 1.1 to Na v 1.7). Br J Pharmacol 2017; 174:3881-3892. [PMID: 28832970 DOI: 10.1111/bph.13985] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The development of subtype-selective ligands to inhibit voltage-sensitive sodium channels (VSSCs) has been attempted with the aim of developing therapeutic compounds. Tetrodotoxin (TTX) is a toxin from pufferfish that strongly inhibits VSSCs. Many TTX analogues have been identified from marine and terrestrial sources, although their specificity for particular VSSC subtypes has not been investigated. Herein, we describe the binding of 11 TTX analogues to human VSSC subtypes Nav 1.1-Nav 1.7. EXPERIMENTAL APPROACH Each VSSC subtype was transiently expressed in HEK293T cells. The inhibitory effects of TTX analogues on each subtype were assessed using whole-cell patch-clamp recordings. KEY RESULTS The inhibitory effects of TTX on Nav 1.1-Nav 1.7 were observed in accordance with those reported in the literature; however, the 5-deoxy-10,7-lactone-type analogues and 4,9-anhydro-type analogues did not cause inhibition. Chiriquitoxin showed less binding to Nav 1.7 compared to the other TTX-sensitive subtypes. Two amino acid residues in the TTX binding site of Nav 1.7, Thr1425 and Ile1426 were mutated to Met and Asp, respectively, because these residues were found at the same positions in other subtypes. The two mutants, Nav 1.7 T1425M and Nav 1.7 I1426D, had a 16-fold and 5-fold increase in binding affinity for chiriquitoxin, respectively. CONCLUSIONS AND IMPLICATIONS The reduced binding of chiriquitoxin to Nav 1.7 was attributed to its C11-OH and/or C12-NH2 , based on reported models for the TTX-VSSC complex. Chiriquitoxin is a useful tool for probing the configuration of the TTX binding site until a crystal structure for the mammalian VSSC is solved.
Collapse
Affiliation(s)
- Tadaaki Tsukamoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yukie Chiba
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Minoru Wakamori
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tomoshi Yamada
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shunsuke Tsunogae
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ryo Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Imazu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shouta Tokoro
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiki Satake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masaatsu Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Peters CH, Yu A, Zhu W, Silva JR, Ruben PC. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation. PLoS One 2017; 12:e0184605. [PMID: 28898267 PMCID: PMC5595308 DOI: 10.1371/journal.pone.0184605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alec Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
29
|
Exploring cation-π interaction in half sandwiches and sandwiches with X X triple bonds (X C, Si and Ge): A DFT study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Veeraraghavan R, Györke S, Radwański PB. Neuronal sodium channels: emerging components of the nano-machinery of cardiac calcium cycling. J Physiol 2017; 595:3823-3834. [PMID: 28195313 DOI: 10.1113/jp273058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
Excitation-contraction coupling is the bridge between cardiac electrical activation and mechanical contraction. It is driven by the influx of Ca2+ across the sarcolemma triggering Ca2+ release from the sarcoplasmic reticulum (SR) - a process termed Ca2+ -induced Ca2+ release (CICR) - followed by re-sequestration of Ca2+ into the SR. The Na+ /Ca2+ exchanger inextricably couples the cycling of Ca2+ and Na+ in cardiac myocytes. Thus, influx of Na+ via voltage-gated Na+ channels (NaV ) has emerged as an important regulator of CICR both in health and in disease. Recent insights into the subcellular distribution of cardiac and neuronal NaV isoforms and their ultrastructural milieu have important implications for the roles of these channels in mediating Ca2+ -driven arrhythmias. This review will discuss functional insights into the role of neuronal NaV isoforms vis-à-vis cardiac NaV s in triggering such arrhythmias and their potential as therapeutic targets in the context of the aforementioned structural observations.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Yan H, Wang C, Marx SO, Pitt GS. Calmodulin limits pathogenic Na+ channel persistent current. J Gen Physiol 2017; 149:277-293. [PMID: 28087622 PMCID: PMC5299624 DOI: 10.1085/jgp.201611721] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanisms controlling “persistent” current through voltage-gated Na+ channels are poorly understood. Yan et al. show that apocalmodulin binding to the intracellular C-terminal domain limits persistent Na+ flux and accelerates inactivation across the voltage-gated Na+ channel family. Increased “persistent” current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD–CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)–like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.
Collapse
Affiliation(s)
- Haidun Yan
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
32
|
Dechraoui Bottein MY, Clausing RJ. Receptor-Binding Assay for the Analysis of Marine Toxins. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Sheets MF, Fozzard HA, Hanck DA. Important Role of Asparagines in Coupling the Pore and Votage-Sensor Domain in Voltage-Gated Sodium Channels. Biophys J 2016; 109:2277-86. [PMID: 26636939 DOI: 10.1016/j.bpj.2015.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated sodium (NaV) channels contain an α-subunit incorporating the channel's pore and gating machinery composed of four homologous domains (DI-DIV), with a pore domain formed by the S5 and S6 segments and a voltage-sensor domain formed by the S1-S4 segments. During a membrane depolarization movement, the S4s in the voltage-sensor domains exert downstream effects on the S6 segments to control ionic conductance through the pore domain. We used lidocaine, a local anesthetic and antiarrhythmic drug, to probe the role of conserved Asn residues in the S6s of DIII and DIV in NaV1.5 and NaV1.4. Previous studies have shown that lidocaine binding to the pore domain causes a decrease in the maximum gating (Qmax) charge of ∼38%, and three-fourths of this decrease results from the complete stabilization of DIII-S4 (contributing a 30% reduction in Qmax) and one-fourth is due to partial stabilization of DIV-S4 (a reduction of 8-10%). Even though substitutions for the Asn in DIV-S6 in NaV1.5, N1764A and N1764C, produce little ionic current in transfected mammalian cells, they both express robust gating currents. Anthopleurin-A toxin, which inhibits movement of DIV-S4, still reduced Qmax by nearly 30%, a value similar to that observed in wild-type channels, in both N1764A and N1764C. By applying lidocaine and measuring the gating currents, we demonstrated that Asn residues in the S6s of DIII and DIV are important for coupling their pore domains to their voltage-sensor domains, and that Ala and Cys substitutions for Asn in both S6s result in uncoupling of the pore domains from their voltage-sensor domains. Similar observations were made for NaV1.4, although substitutions for Asn in DIII-S6 showed somewhat less uncoupling.
Collapse
Affiliation(s)
- Michael F Sheets
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, Utah.
| | | | | |
Collapse
|
34
|
Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U. Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep 2016; 4:4/2/e12681. [PMID: 26811054 PMCID: PMC4760386 DOI: 10.14814/phy2.12681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The contribution of human atrial fibroblasts to cardiac physiology and pathophysiology is poorly understood. Fibroblasts may contribute to arrhythmogenesis through fibrosis, or by directly altering electrical activity in cardiomyocytes. The objective of our study was to uncover phenotypic differences between cells from patients in sinus rhythm (SR) and chronic atrial fibrillation (AF), with special emphasis on electrophysiological properties. We isolated fibroblasts from human right atrial tissue for patch-clamp experiments, proliferation, migration, and differentiation assays, and gene expression profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This was associated with a higher number of AF fibroblasts expressing functional Nav1.5 channels. Strikingly Na(+) currents were considerably larger in AF cells. Blocking Na(+) channels in culture with tetrodotoxin did not affect proliferation, migration, or differentiation in neither SR nor AF cells. While freshly isolated fibroblasts showed mostly weak rectifier currents, fibroblasts in culture developed outward rectifier K(+) currents of similar amplitude between the SR and AF groups. Adding the K(+) channel blockers tetraethylammonium and 4-aminopyridin in culture reduced current amplitude and inhibited proliferation in the SR group only. Analysis of gene expression revealed significant differences between SR and AF in genes encoding for ion channels, collagen, growth factors, connexins, and cadherins. In conclusion, this study shows that under AF conditions atrial fibroblasts undergo phenotypic changes that are revealed in culture. Future experiments should be performed in situ to understand the nature of those changes and whether they affect cardiac electrical activity.
Collapse
Affiliation(s)
- Claire Poulet
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Stephan Künzel
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Edgar Büttner
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Diana Lindner
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
35
|
Adams NG, Robertson A, Grattan LM, Pendleton S, Roberts S, Tracy JK, Trainer VL. Assessment of sodium channel mutations in Makah Tribal members of the U.S. Pacific Northwest as a potential mechanism of resistance to paralytic shellfish poisoning. HARMFUL ALGAE 2016; 57:26-34. [PMID: 27616973 PMCID: PMC5015773 DOI: 10.1016/j.hal.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, we aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah Tribal members to saxitoxin is not a function of Nav1.4 modification but may be due to mutations in neuronal or cardiac sodium channels or some other mechanism unrelated to sodium channel function.
Collapse
Affiliation(s)
- Nicolaus G Adams
- Marine Biotoxins Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112 United States
| | - Alison Robertson
- Department of Marine Sciences, University of South Alabama, 5871 University Boulevard North, Mobile, Alabama 36688 United States; Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, Alabama 36528 United States
| | - Lynn M Grattan
- Department of Neurology, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, Maryland 21201, United States
| | - Steve Pendleton
- Makah Tribe, Environmental Health Division, P.O. Box 115, Neah Bay, Washington 98357, United States
| | - Sparkle Roberts
- Department of Neurology, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, Maryland 21201, United States
| | - J Kathleen Tracy
- Department of Neurology, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, Maryland 21201, United States
| | - Vera L Trainer
- Marine Biotoxins Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112 United States
| |
Collapse
|
36
|
Radwański PB, Ho HT, Veeraraghavan R, Brunello L, Liu B, Belevych AE, Unudurthi SD, Makara MA, Priori SG, Volpe P, Armoundas AA, Dillmann WH, Knollmann BC, Mohler PJ, Hund TJ, Györke S. Neuronal Na + Channels Are Integral Components of Pro-arrhythmic Na +/Ca 2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-adrenergic Stimulation. JACC Basic Transl Sci 2016; 1:251-266. [PMID: 27747307 PMCID: PMC5065245 DOI: 10.1016/j.jacbts.2016.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cardiac arrhythmias are a leading cause of death in the US. Vast majority of these arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with increased levels of circulating catecholamines and involve abnormal impulse formation secondary to aberrant Ca2+ and Na+ handling. However, the mechanistic link between β-AR stimulation and the subcellular/molecular arrhythmogenic trigger(s) remains elusive. METHODS AND RESULTS We performed functional and structural studies to assess Ca2+ and Na+ signaling in ventricular myocyte as well as surface electrocardiograms in mouse models of cardiac calsequestrin (CASQ2)-associated CPVT. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) that colocalize with RyR2 and Na+/Ca2+ exchanger (NCX) are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for the arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR-mediated activation of CAMKII subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. CONCLUSION These data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and Nav1.6 in particular can serve as a potential antiarrhythmic therapy.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US ; Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, US
| | - Hsiang-Ting Ho
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Rengasayee Veeraraghavan
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, VA, USA
| | - Lucia Brunello
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Bin Liu
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Andriy E Belevych
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Sathya D Unudurthi
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Michael A Makara
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Silvia G Priori
- Division of Cardiology and Molecular Cardiology, Maugeri Foundation-University of Pavia, Pavia, Italy
| | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, VA, USA
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA ; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| |
Collapse
|
37
|
He X, Liu YL, Conklin A, Westrick J, Weavers LK, Dionysiou DD, Lenhart JJ, Mouser PJ, Szlag D, Walker HW. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. HARMFUL ALGAE 2016; 54:174-193. [PMID: 28073475 DOI: 10.1016/j.hal.2016.01.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators.
Collapse
Affiliation(s)
- Xuexiang He
- Southern Nevada Water Authority, PO Box 99954, Las Vegas, NV 89193, USA
| | - Yen-Ling Liu
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Conklin
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Judy Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Linda K Weavers
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John J Lenhart
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Paula J Mouser
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Szlag
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Harold W Walker
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
38
|
α1-Syntrophin Variant Identified in Drug-Induced Long QT Syndrome Increases Late Sodium Current. PLoS One 2016; 11:e0152355. [PMID: 27028743 PMCID: PMC4814026 DOI: 10.1371/journal.pone.0152355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Drug-induced long-QT syndrome (diLQTS) is often due to drug block of IKr, especially in genetically susceptible patients with subclinical mutations in the IKr-encoding KCHN2. Few variants in the cardiac NaV1.5 Na+ channel complex have been associated with diLQTS. We tested whether a novel SNTA1 (α1-syntrophin) variant (p.E409Q) found in a patient with diLQTS increases late sodium current (INa-L), thereby providing a disease mechanism. Electrophysiological studies were performed in HEK293T cells co-expressing human NaV1.5/nNOS/PMCA4b with either wild type (WT) or SNTA1 variants (A390V-previously reported in congenital LQTS; and E409Q); and in adult rat ventricular cardiomyocytes infected with SNTA1 expressing adenoviruses (WT or one of the two SNTA1 variants). In HEK293T cells and in cardiomyocytes, there was no significant difference in the peak INa densities among the SNTA1 WT and variants. However, both variants increased INa-L (% of peak current) in HEK293T cells (0.58±0.10 in WT vs. 0.90±0.11 in A390V, p = 0.048; vs. 0.88±0.07 in E409Q, p = 0.023). In cardiomyocytes, INa-L was significantly increased by E409Q, but not by A390V compared to WT (0.49±0.14 in WT vs.0.94±0.23 in A390V, p = 0.099; vs. 1.12±0.24 in E409Q, p = 0.019). We demonstrated that a novel SNTA1 variant is likely causative for diLQTS by augmenting INa-L. These data suggest that variants within the NaV1.5-interacting α1-syntrophin are a potential mechanism for diLQTS, thereby expanding the concept that variants within congenital LQTS loci can cause diLQTS.
Collapse
|
39
|
Liu XP, Wooltorton JRA, Gaboyard-Niay S, Yang FC, Lysakowski A, Eatock RA. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents. J Neurophysiol 2016; 115:2536-55. [PMID: 26936982 DOI: 10.1152/jn.00902.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 01/02/2023] Open
Abstract
Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Speech and Hearing Bioscience and Technology Program, Harvard-Massachusetts Institute of Technology Health Sciences and Technology Program, Cambridge, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | | | - Sophie Gaboyard-Niay
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Anne Eatock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Wang HG, Zhu W, Kanter RJ, Silva JR, Honeywell C, Gow RM, Pitt GS. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. J Mol Cell Cardiol 2016; 92:52-62. [PMID: 26801742 PMCID: PMC4789166 DOI: 10.1016/j.yjmcc.2016.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. METHODS AND RESULTS We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. CONCLUSIONS The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism.
Collapse
Affiliation(s)
- Hong-Gang Wang
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States; Ion Channel Research Unit, Duke University Medical Center, Durham, NC, United States
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Ronald J Kanter
- Division of Cardiology, Nicklaus Children's Hospital, Miami, FL, United States
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Christina Honeywell
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Robert M Gow
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Geoffrey S Pitt
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States; Ion Channel Research Unit, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
41
|
Testai E, Scardala S, Vichi S, Buratti FM, Funari E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol 2016; 46:385-419. [PMID: 26923223 DOI: 10.3109/10408444.2015.1137865] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyanobacteria are ubiquitous photosynthetic micro-organisms forming blooms and scums in surface water; among them some species can produce cyanotoxins giving rise to some concern for human health and animal life. To date, more than 65 cyanobacterial neurotoxins have been described, of which the most studied are the groups of anatoxins and saxitoxins (STXs), comprising many different variants. In freshwaters, the hepatotoxic microcystins represent the most frequently detected cyanotoxin: on this basis, it could appear that neurotoxins are less relevant, but the low frequency of detection may partially reflect an a priori choice of target analytes, the low method sensitivity and the lack of certified standards. Cyanobacterial neurotoxins target cholinergic synapses or voltage-gated ion channels, blocking skeletal and respiratory muscles, thus leading to death by respiratory failure. This review reports and analyzes the available literature data on environmental occurrence of cyanobacterial neurotoxic alkaloids, namely anatoxins and STXs, their biosynthesis, toxicology and epidemiology, derivation of guidance values and action limits. These data are used as the basis to assess the risk posed to human health, identify critical exposure scenarios and highlight the major data gaps and research needs.
Collapse
Affiliation(s)
- Emanuela Testai
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Simona Scardala
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Susanna Vichi
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Franca M Buratti
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Enzo Funari
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
42
|
Convergent Evolution of Tetrodotoxin-Resistant Sodium Channels in Predators and Prey. CURRENT TOPICS IN MEMBRANES 2016; 78:87-113. [DOI: 10.1016/bs.ctm.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Tse G, Yeo JM. Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. IJC HEART & VASCULATURE 2015; 9:75-82. [PMID: 26839915 PMCID: PMC4695916 DOI: 10.1016/j.ijcha.2015.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 01/12/2023]
Abstract
Ventricular arrhythmias arise from disruptions in the normal orderly sequence of electrical activation and recovery of the heart. They can be categorized into disorders affecting predominantly cellular depolarization or repolarization, or those involving action potential (AP) conduction. This article briefly discusses the factors causing conduction abnormalities in the form of unidirectional conduction block and reduced conduction velocity (CV). It then examines the roles that sodium channels and gap junctions play in AP conduction. Finally, it synthesizes experimental results to illustrate molecular mechanisms of how abnormalities in these proteins contribute to such conduction abnormalities and hence ventricular arrhythmogenesis, in acquired pathologies such as acute ischaemia and heart failure, as well as inherited arrhythmic syndromes.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
44
|
Varga Z, Zhu W, Schubert AR, Pardieck JL, Krumholz A, Hsu EJ, Zaydman MA, Cui J, Silva JR. Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations. Circ Arrhythm Electrophysiol 2015; 8:1228-39. [PMID: 26283144 DOI: 10.1161/circep.115.003155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/26/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dysregulation of voltage-gated cardiac Na(+) channels (NaV1.5) by inherited mutations, disease-linked remodeling, and drugs causes arrhythmias. The molecular mechanisms whereby the NaV1.5 voltage-sensing domains (VSDs) are perturbed to pathologically or therapeutically modulate Na(+) current (INa) have not been specified. Our aim was to correlate INa kinetics with conformational changes within the 4 (DI-DIV) VSDs to define molecular mechanisms of NaV1.5 modulation. METHOD AND RESULTS Four NaV1.5 constructs were created to track the voltage-dependent kinetics of conformational changes within each VSD, using voltage-clamp fluorometry. Each VSD displayed unique kinetics, consistent with distinct roles in determining INa. In particular, DIII-VSD deactivation kinetics were modulated by depolarizing pulses with durations in the intermediate time domain that modulates late INa. We then used the DII-VSD construct to probe the molecular pathology of 2 Brugada syndrome mutations (A735V and G752R). A735V shifted DII-VSD voltage dependence to depolarized potentials, whereas G752R significantly slowed DII-VSD kinetics. Both mutations slowed INa activation, although DII-VSD activation occurred at higher potentials (A735V) or at later times (G752R) than ionic current activation, indicating that the DII-VSD allosterically regulates the rate of INa activation and myocyte excitability. CONCLUSIONS Our results reveal novel mechanisms whereby the NaV1.5 VSDs regulate channel activation and inactivation. The ability to distinguish distinct molecular mechanisms of proximal Brugada syndrome mutations demonstrates the potential of these methods to reveal how inherited mutations, post-translational modifications, and antiarrhythmic drugs alter NaV1.5 at the molecular level.
Collapse
Affiliation(s)
- Zoltan Varga
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Wandi Zhu
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Angela R Schubert
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Jennifer L Pardieck
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Arie Krumholz
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Eric J Hsu
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Mark A Zaydman
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Jianmin Cui
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.)
| | - Jonathan R Silva
- From the Department of Biomedical Engineering, Washington University in St. Louis, MO (Z.V., W.Z., A.R.S., J.L.P., A.K., E.J.H., M.A.Z., J.C., J.R.S.); and MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary (Z.V.).
| |
Collapse
|
45
|
Abstract
Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee’s sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee’s channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations.
Collapse
|
46
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
47
|
Heterologous expression of NaV1.9 chimeras in various cell systems. Pflugers Arch 2015; 467:2423-35. [PMID: 25916202 DOI: 10.1007/s00424-015-1709-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 01/27/2023]
Abstract
SCN11A encodes the voltage-gated sodium channel NaV1.9, which deviates most strongly from the other eight NaV channels expressed in mammals. It is characterized by resistance to the prototypic NaV channel blocker tetrodotoxin and exhibits slow activation and inactivation gating. Its expression in dorsal root ganglia neurons suggests a role in motor or pain signaling functions as also recently demonstrated by the occurrence of various mutations in human SCN11A leading to altered pain sensation syndromes. The systematic investigation of human NaV1.9, however, is severely hampered because of very poor heterologous expression in host cells. Using patch-clamp and two-electrode voltage-clamp methods, we show that this limitation is caused by the C-terminal structure of NaV1.9. A chimera of NaV1.9 harboring the C terminus of NaV1.4 yields functional expression not only in neuronal cells but also in non-excitable cells, such as HEK 293T or Xenopus oocytes. The major functional difference of the chimeric channel with respect to NaV1.9 is an accelerated activation and inactivation. Since the entire transmembrane domain is preserved, it is suited for studying pharmacological properties of the channel and the functional impact of disease-causing mutations. Moreover, we demonstrate how mutation S360Y makes NaV1.9 channels sensitive to tetrodotoxin and saxitoxin and that the unusual slow open-state inactivation of NaV1.9 is also mediated by the IFM (isoleucine-phenylalanine-methionine) inactivation motif located in the linker connecting domains III and IV.
Collapse
|
48
|
Kamp TJ, January CT. Harry A. Fozzard, MD: 1931–2014. Circ Res 2015; 116:552-3. [PMID: 25821880 DOI: 10.1161/circresaha.115.306038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Timothy J Kamp
- Division of Cardiovascular Medicine, 8459 WIMR2, 1111 Highland Ave, University of Wisconsin-Madison, Madison, WI 53705. E-mail
| | | |
Collapse
|
49
|
Zimmer T, Haufe V, Blechschmidt S. Voltage-gated sodium channels in the mammalian heart. Glob Cardiol Sci Pract 2014; 2014:449-63. [PMID: 25780798 PMCID: PMC4355518 DOI: 10.5339/gcsp.2014.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
Mammalian species express nine functional voltage-gated Na(+) channels. Three of them, the cardiac-specific isoform Nav1.5 and the neuronal isoforms Nav1.8 and Nav1.9, are relatively resistant to the neurotoxin tetrodotoxin (TTX; IC50 ≥ 1 μM). The other six isoforms are highly sensitive to TTX with IC50 values in the nanomolar range. These isoforms are expressed in the central nervous system (Nav1.1, Nav1.2, Nav1.3, Nav1.6), in the skeletal muscle (Nav1.4), and in the peripheral nervous system (Nav1.6, Nav1.7). The isoform Nav1.5, encoded by the SCN5A gene, is responsible for the upstroke of the action potential in the heart. Mutations in SCN5A are associated with a variety of life-threatening arrhythmias, like long QT syndrome type 3 (LQT3), Brugada syndrome (BrS) or cardiac conduction disease (CCD). Previous immunohistochemical and electrophysiological assays demonstrated the cardiac expression of neuronal and skeletal muscle Na(+) channels in the heart of various mammals, which led to far-reaching speculations on their function. However, when comparing the Na(+) channel mRNA patterns in the heart of various mammalian species, only minute quantities of transcripts for TTX-sensitive Na(+) channels were detectable in whole pig and human hearts, suggesting that these channels are not involved in cardiac excitation phenomena in higher mammals. This conclusion is strongly supported by the fact that mutations in TTX-sensitive Na(+) channels were associated with epilepsy or skeletal muscle diseases, rather than with a pathological cardiac phenotype. Moreover, previous data from TTX-intoxicated animals and from cases of human tetrodotoxication showed that low TTX dosages caused at most little alterations of both the cardiac output and the electrocardiogram. Recently, genome-wide association studies identified SCN10A, the gene encoding Nav1.8, as a determinant of cardiac conduction parameters, and mutations in SCN10A have been associated with BrS. These novel findings opened a fascinating new research area in the cardiac ion channel field, and the on-going debate on how SCN10A/Nav1.8 affects cardiac conduction is very exciting.
Collapse
Affiliation(s)
- Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Steve Blechschmidt
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
50
|
Abstract
Although cardiac sodium channel blocking drugs can exert antiarrhythmic actions, they can also provoke life-threatening arrhythmias through a variety of mechanisms. This review addresses the way in which drugs interact with the channel, and how these effects translate to clinical beneficial or detrimental effects. A further understanding of the details of channel function and of drug-channel interactions may lead to the development of safer and more effective antiarrhythmic therapies.
Collapse
Affiliation(s)
- Dan M Roden
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|