1
|
Linker TM, Dagar R, Feinberg A, Sahel-Schackis S, Nomura KI, Nakano A, Shimojo F, Vashishta P, Bergmann U, Kling MF, Summers AM. Catalysis in Extreme Field Environments: A Case Study of Strongly Ionized SiO 2 Nanoparticle Surfaces. J Am Chem Soc 2024; 146:27563-27570. [PMID: 39327984 PMCID: PMC11467989 DOI: 10.1021/jacs.4c08550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
High electric fields can significantly alter catalytic environments and the resultant chemical processes. Such fields arise naturally in biological systems but can also be artificially induced through localized nanoscale excitations. Recently, strong field excitation of dielectric nanoparticles has emerged as an avenue for studying catalysis in highly ionized environments, producing extreme electric fields. While the dynamics of laser-driven surface ion emission has been extensively explored, understanding the molecular dynamics leading to fragmentation has remained elusive. Here, we employ a multiscale approach performing nonadiabatic quantum molecular dynamics (NAQMD) simulations on hydrogenated silica surfaces in both bare and wetted environments under field conditions mimicking those of an ionized nanoparticle. Our findings indicate that hole localization drives fragmentation dynamics, leading to surface silanol dissociation within 50 fs and charge transfer-induced water splitting in wetted environments within 150 fs. Further insight into such ultrafast mechanisms is critical for the advancement of catalysis on the surface of charged nanosystems.
Collapse
Affiliation(s)
- Thomas M. Linker
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ritika Dagar
- Department
of Physics, Ludwig-Maximilians-Universität
Munich, D-85748 Garching, Germany
| | - Alexandra Feinberg
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Samuel Sahel-Schackis
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Ken-ichi Nomura
- Collaboratory
for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Aiichiro Nakano
- Collaboratory
for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Fuyuki Shimojo
- Department
of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Priya Vashishta
- Collaboratory
for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Uwe Bergmann
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Matthias F. Kling
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- SLAC National
Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam M. Summers
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- SLAC National
Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Alexander O, Egun F, Rego L, Gutierrez AM, Garratt D, Cárdenas GA, Nogueira JJ, Lee JP, Zhao K, Wang RP, Ayuso D, Barnard JCT, Beauvarlet S, Bucksbaum PH, Cesar D, Coffee R, Duris J, Frasinski LJ, Huse N, Kowalczyk KM, Larsen KA, Matthews M, Mukamel S, O'Neal JT, Penfold T, Thierstein E, Tisch JWG, Turner JR, Vogwell J, Driver T, Berrah N, Lin MF, Dakovski GL, Moeller SP, Cryan JP, Marinelli A, Picón A, Marangos JP. Attosecond impulsive stimulated X-ray Raman scattering in liquid water. SCIENCE ADVANCES 2024; 10:eadp0841. [PMID: 39321305 DOI: 10.1126/sciadv.adp0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
We report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states. Thus, the wavepacket is impulsively created at a specific atomic site within a few hundred attoseconds through a nonlinear interaction between the water and the x-ray pulse. We observe this nonlinear signature in an intensity-dependent Stokes Raman sideband at 526 eV. Our measurements are supported by our state-of-the-art calculations based on the polarization response of water dimers in bulk solvation and propagation of attosecond x-ray pulses at liquid density.
Collapse
Affiliation(s)
- Oliver Alexander
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Felix Egun
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Laura Rego
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Cantoblanco, 28049 Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Douglas Garratt
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Juan J Nogueira
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jacob P Lee
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Kaixiang Zhao
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Ru-Pan Wang
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - David Ayuso
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
- Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin, Germany
| | - Jonathan C T Barnard
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Sandra Beauvarlet
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Physics department, University of Connecticut, Storrs, CT 06268, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - David Cesar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ryan Coffee
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Leszek J Frasinski
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Nils Huse
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Katarzyna M Kowalczyk
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Kirk A Larsen
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mary Matthews
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California-Irvine, Irvine, CA 92697, USA
| | - Jordan T O'Neal
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Thomas Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emily Thierstein
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John W G Tisch
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - James R Turner
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Josh Vogwell
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| | - Taran Driver
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nora Berrah
- Physics department, University of Connecticut, Storrs, CT 06268, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Agostino Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Antonio Picón
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jonathan P Marangos
- Department of Physics, Imperial College London, Blackett Laboratory, SW7 2AZ London, UK
| |
Collapse
|
3
|
Zhao R, Li L, Wu Q, Luo W, Zhang Q, Cui C. Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode. Nat Commun 2024; 15:8367. [PMID: 39333136 PMCID: PMC11436765 DOI: 10.1038/s41467-024-52790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The aqueous interface-rich system has been proposed to act as a trigger and a reservoir for reactive radicals, playing a crucial role in chemical reactions. Although much is known about the redox reactivity of water microdroplets at "droplets-in-gas" interfaces, it remains poorly understood for "bubbles-in-water" interfaces that are created by feeding gas through the porous membrane of the gas diffusion electrode. Here we reveal the spontaneous generation of highly reactive redox radical species detected by using electron paramagnetic resonance under such conditions without applying any bias and loading any catalysts. In combination with ultraviolet-visible spectroscopy, the redox feature has been further verified through several probe molecules. Unexpectedly, introducing crown ether allows to isolate and stabilize both water radical cations and hydrated electrons thus substantially increasing redox reactivity. Our finding suggests a reactive microenvironment at the interface of the gas diffusion electrode owing to the coexistence of oxidative and reductive species.
Collapse
Affiliation(s)
- Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Luo
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
4
|
Hutchison CM, Perrett S, van Thor JJ. XFEL Beamline Optical Instrumentation for Ultrafast Science. J Phys Chem B 2024; 128:8855-8868. [PMID: 39087627 PMCID: PMC11421085 DOI: 10.1021/acs.jpcb.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Free electron lasers operating in the soft and hard X-ray regime provide capabilities for ultrafast science in many areas, including X-ray spectroscopy, diffractive imaging, solution and material scattering, and X-ray crystallography. Ultrafast time-resolved applications in the picosecond, femtosecond, and attosecond regimes are often possible using single-shot experimental configurations. Aside from X-ray pump and X-ray probe measurements, all other types of ultrafast experiments require the synchronized operation of pulsed laser excitation for resonant or nonresonant pumping. This Perspective focuses on the opportunities for the optical control of structural dynamics by applying techniques from nonlinear spectroscopy to ultrafast X-ray experiments. This typically requires the synthesis of two or more optical pulses with full control of pulse and interpulse parameters. To this end, full characterization of the femtosecond optical pulses is also highly desirable. It has recently been shown that two-color and two-pulse femtosecond excitation of fluorescent protein crystals allowed a Tannor-Rice coherent control experiment, performed under characterized conditions. Pulse shaping and the ability to synthesize multicolor and multipulse conditions are highly desirable and would enable XFEL facilities to offer capabilities for structural dynamics. This Perspective will give a summary of examples of the types of experiments that could be achieved, and it will additionally summarize the laser, pulse shaping, and characterization that would be recommended as standard equipment for time-resolved XFEL beamlines, with an emphasis on ultrafast time-resolved serial femtosecond crystallography.
Collapse
Affiliation(s)
- Christopher
D. M. Hutchison
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Samuel Perrett
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
5
|
Tsuchida H, Tezuka T, Kai T, Matsuya Y, Majima T, Saito M. Liquid water radiolysis induced by secondary electrons generated from MeV-energy carbon ions. J Chem Phys 2024; 161:104503. [PMID: 39254164 DOI: 10.1063/5.0227465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Fast ion beams induce damage to deoxyribonucleic acid (DNA) by chemical products, including secondary electrons, produced from interaction with liquid water in living cells. However, the production process of these chemical products in the Bragg peak region used in particle therapy is not fully understood. To investigate this process, we conducted experiments to evaluate the radiolytic yields produced when a liquid water jet in vacuum is irradiated with MeV-energy carbon beams. We used secondary ion mass spectrometry to measure the products, such as hydronium cations (H3O+) and hydroxyl anions (OH-), produced along with ·OH radicals, which are significant inducers of DNA damage formation. In addition, we simulated the ionization process in liquid water by incident ions and secondary electrons using a Monte Carlo code for radiation transport. Our results showed that secondary electrons, rather than incident ions, are the primary cause of ionization in water. We found that the production yield of H3O+ or OH- was linked to the frequency of ionization by secondary electrons in water, with these electrons having energies between 10.9 and 550 eV. These electrons are responsible for ionizing the outer-shell electrons of water molecules. Finally, we present that the elementary processes contribute to advancing radiation biophysics and biochemistry, which study the formation mechanism of DNA damage.
Collapse
Affiliation(s)
- Hidetsugu Tsuchida
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoya Tezuka
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Takuya Majima
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Manabu Saito
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self-Catalytic NO/O 2 Gas-Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403921. [PMID: 39101290 DOI: 10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/29/2024] [Indexed: 08/06/2024]
Abstract
Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Fu Q, Zhang S, Shen S, Gu Z, Chen J, Song D, Sun P, Wang C, Guo Z, Xiao Y, Gao YQ, Guo Z, Liu Z. Radiotherapy-triggered reduction of platinum-based chemotherapeutic prodrugs in tumours. Nat Biomed Eng 2024:10.1038/s41551-024-01239-x. [PMID: 39025943 DOI: 10.1038/s41551-024-01239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody-trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibin Guo
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yunlong Xiao
- Beijing National Laboratory of Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory of Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Administration Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
8
|
Taylor J, Dubois F, Bergot E, Levallet G. Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). Int J Oncol 2024; 65:68. [PMID: 38785155 PMCID: PMC11155713 DOI: 10.3892/ijo.2024.5656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024] Open
Abstract
The prognosis for patients with non‑small cell lung cancer (NSCLC), a cancer type which represents 85% of all lung cancers, is poor with a 5‑year survival rate of 19%, mainly because NSCLC is diagnosed at an advanced and metastatic stage. Despite recent therapeutic advancements, ~50% of patients with NSCLC will develop brain metastases (BMs). Either surgical BM treatment alone for symptomatic patients and patients with single cerebral metastases, or in combination with stereotactic radiotherapy (RT) for patients who are not suitable for surgery or presenting with fewer than four cerebral lesions with a diameter range of 5‑30 mm, or whole‑brain RT for numerous or large BMs can be administered. However, radioresistance (RR) invariably prevents the action of RT. Several mechanisms of RR have been described including hypoxia, cellular stress, presence of cancer stem cells, dysregulation of apoptosis and/or autophagy, dysregulation of the cell cycle, changes in cellular metabolism, epithelial‑to‑mesenchymal transition, overexpression of programmed cell death‑ligand 1 and activation several signaling pathways; however, the role of the Hippo signaling pathway in RR is unclear. Dysregulation of the Hippo pathway in NSCLC confers metastatic properties, and inhibitors targeting this pathway are currently in development. It is therefore essential to evaluate the effect of inhibiting the Hippo pathway, particularly the effector yes‑associated protein‑1, on cerebral metastases originating from lung cancer.
Collapse
Affiliation(s)
- Jasmine Taylor
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
| | - Fatéméh Dubois
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Emmanuel Bergot
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pneumology and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Guénaëlle Levallet
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| |
Collapse
|
9
|
Wang Z, Dong X, Tang W, Wang ZL. Contact-electro-catalysis (CEC). Chem Soc Rev 2024; 53:4349-4373. [PMID: 38619095 DOI: 10.1039/d3cs00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Contact-electro-catalysis (CEC) is an emerging field that utilizes electron transfer occurring at the liquid-solid and even liquid-liquid interfaces because of the contact-electrification effect to stimulate redox reactions. The energy source of CEC is external mechanical stimuli, and solids to be used are generally organic as well as in-organic materials even though they are chemically inert. CEC has rapidly garnered extensive attention and demonstrated its potential for both mechanistic research and practical applications of mechanocatalysis. This review aims to elucidate the fundamental principle, prominent features, and applications of CEC by compiling and analyzing the recent developments. In detail, the theoretical foundation for CEC, the methods for improving CEC, and the unique advantages of CEC have been discussed. Furthermore, we outline a roadmap for future research and development of CEC. We hope that this review will stimulate extensive studies in the chemistry community for investigating the CEC, a catalytic process in nature.
Collapse
Affiliation(s)
- Ziming Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanli Dong
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| |
Collapse
|
10
|
Li H, Wang Z, Chu X, Zhao Y, He G, Hu Y, Liu Y, Wang ZL, Jiang P. Free Radicals Generated in Perfluorocarbon-Water (Liquid-Liquid) Interfacial Contact Electrification and Their Application in Cancer Therapy. J Am Chem Soc 2024; 146:12087-12099. [PMID: 38647488 DOI: 10.1021/jacs.4c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.
Collapse
Affiliation(s)
- Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430072, China
| | - Zichen Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xu Chu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yi Zhao
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangqin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yulin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Johny M, Schouder CA, Al-Refaie A, He L, Wiese J, Stapelfeldt H, Trippel S, Küpper J. Water is a radiation protection agent for ionised pyrrole. Phys Chem Chem Phys 2024; 26:13118-13130. [PMID: 38629233 DOI: 10.1039/d3cp03471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.
Collapse
Affiliation(s)
- Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- LIDYL, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ahmed Al-Refaie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
12
|
Luo SH, Zhao XJ, Cao MF, Xu J, Wang WL, Lu XY, Huang QT, Yue XX, Liu GK, Yang L, Ren B, Tian ZQ. Signal2signal: Pushing the Spatiotemporal Resolution to the Limit by Single Chemical Hyperspectral Imaging. Anal Chem 2024; 96:6550-6557. [PMID: 38642045 DOI: 10.1021/acs.analchem.3c04609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.
Collapse
Affiliation(s)
- Si-Heng Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiao-Jiao Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu-Ting Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xia-Xia Yue
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Liu Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Qiu L, Cooks RG. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Angew Chem Int Ed Engl 2024; 63:e202400118. [PMID: 38302696 DOI: 10.1002/anie.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Exploration of the unique chemical properties of interfaces can unlock new understanding. A striking example is the finding of accelerated reactions, particularly spontaneous oxidation reactions, that occur without assistance of catalysts or external oxidants at the air interface of both aqueous and organic solutions (provided they contain some water). This finding opened a new area of interfacial chemistry but also caused heated debate regarding the primary chemical species responsible for the observed oxidation. An overview of the literature covering oxidation in microdroplets with air interfaces is provided, together with a critical examination of previous findings and hypotheses. The water radical cation/radical anion pair, formed spontaneously and responsible for the electric field at or near the droplet/air interface, is suggested to constitute the primary redox species. Mechanisms of accelerated microdroplet reactions are critically discussed and it is shown that hydroxyl radical/hydrogen peroxide formation in microdroplets does not require that these species be the primary oxidant. Instead, we suggest that hydroxyl radical and hydrogen peroxide are the products of water radical cation decay in water. The importance of microdroplet chemistry in the prebiotic environment is sketched briefly and the role of partial solvation in reaction acceleration is noted.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| |
Collapse
|
14
|
Dobrovolskii D, Denisov SA, Sims HE, Mostafavi M. Reactivity of quasi-free electrons toward N 3- and its impact on H 2 formation mechanism in water radiolysis. Phys Chem Chem Phys 2024; 26:11604-11610. [PMID: 38545925 DOI: 10.1039/d4cp00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Picosecond pulse radiolysis measurements were employed to assess the effectiveness of N3- in scavenging quasi-free electrons in aqueous solutions. The absorption spectra of hydrated electrons were recorded within a 100 ps timeframe across four distinct solutions with N3- concentrations of 0.5, 1, 2, and 5 M in water. The results revealed a concentration-dependent shift in the maximum absorption spectra of fully solvated electrons. Notably, at 5 M concentration, the maximum absorption occurred at 670 nm, in contrast to 715 nm observed for water. Intriguingly, the formation yield of hydrated electrons within the initial 5 ps electron pulse remained unaffected, showing that, even at a concentration of 5 M, N3- does not effectively scavenge quasi-free electrons. This is in disagreement with conclusions from stochastic models found in the literature. This observation has an important impact on understanding the mechanism of H2 formation in water radiolysis, which we discuss briefly here.
Collapse
Affiliation(s)
- Denis Dobrovolskii
- Institut de Chimie Physique, Université Paris-Saclay, CNRS, Bâtiment 349, Orsay, 91405, France.
| | - Sergey A Denisov
- Institut de Chimie Physique, Université Paris-Saclay, CNRS, Bâtiment 349, Orsay, 91405, France.
| | - Howard E Sims
- Central Laboratory, National Nuclear Laboratory, Sellafield, Seascale CA20 1PG, UK
| | - Mehran Mostafavi
- Institut de Chimie Physique, Université Paris-Saclay, CNRS, Bâtiment 349, Orsay, 91405, France.
| |
Collapse
|
15
|
Tian Y, Liu K, Wang Y, Zhou Y, Lu P. Proton tunneling in the dissociation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. J Chem Phys 2024; 160:114311. [PMID: 38501475 DOI: 10.1063/5.0195867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Light-induced deprotonation of molecules is an important process in photochemical reactions. Here, we theoretically investigate the tunneling deprotonation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. The quasi-static picture shows that the field-dressed potential barrier is significantly lowered for the deprotonation channel when the mass asymmetry of the diatomic molecule increases. Our numerical simulations demonstrate that when the mass symmetry breaks, the tunneling deprotonation is significantly enhanced and the proton tunneling becomes the dominant dissociation channel in the THz driving fields. In addition, the simulated nuclear momentum distributions show that the emission of the proton is directed by the effective vector potential for the deprotonation channel and, meanwhile, the angular distribution of the emitting proton is affected by the alignment and rotation of the molecule induced by the rotating field.
Collapse
Affiliation(s)
- Yidian Tian
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kunlong Liu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Wang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
16
|
Wibowo RE, Garcia-Diez R, Bystron T, van der Merwe M, Prokop M, Arce MD, Efimenko A, Steigert A, Bernauer M, Wilks RG, Bouzek K, Bär M. Elucidating the Complex Oxidation Behavior of Aqueous H 3PO 3 on Pt Electrodes via In Situ Tender X-ray Absorption Near-Edge Structure Spectroscopy at the P K-Edge. J Am Chem Soc 2024; 146:7386-7399. [PMID: 38459944 PMCID: PMC10958492 DOI: 10.1021/jacs.3c12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
In situ tender X-ray absorption near-edge structure (XANES) spectroscopy at the P K-edge was utilized to investigate the oxidation mechanism of aqueous H3PO3 on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous H3PO3 via H2O yielding H3PO4 and H2. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous H3PO3 oxidation mechanism. In situ XANES studies of aqueous 5 mol dm-3 H3PO3 on electrodes with varying Pt availability and surface roughness reveal that Pt catalyzes the oxidation of aqueous H3PO3 to H3PO4. This oxidation is enhanced upon applying a positive potential to the Pt electrode or raising the electrolyte temperature, the latter being corroborated by complementary ion-exchange chromatography measurements. Notably, all of these oxidation processes involve reactions with H2O, as further supported by XANES measurements of aqueous H3PO3 of different concentrations, showing a more pronounced oxidation in electrolytes with a higher H2O content. The significant role of water in the oxidation of H3PO3 to H3PO4 supports the reaction mechanisms proposed for various chemical processes observed in this work and provides valuable insights into potential strategies to mitigate Pt catalyst poisoning by H3PO3 during HT-PEMFC operation.
Collapse
Affiliation(s)
- Romualdus Enggar Wibowo
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Raul Garcia-Diez
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Tomas Bystron
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marianne van der Merwe
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Martin Prokop
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Mauricio D. Arce
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Departamento
Caracterización de Materiales, INN-CNEA-CONICET, Centro Atómico Bariloche, Avenida Bustillo 9500, S. C. de Bariloche, Rio Negro 8400, Argentina
| | - Anna Efimenko
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
(HZB), Albert-Einstein
Straße 15, 12489 Berlin, Germany
| | - Alexander Steigert
- Institute
of Nanospectroscopy, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Milan Bernauer
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Regan G. Wilks
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
(HZB), Albert-Einstein
Straße 15, 12489 Berlin, Germany
| | - Karel Bouzek
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marcus Bär
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
(HZB), Albert-Einstein
Straße 15, 12489 Berlin, Germany
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Department
of X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy
(HI ERN), Albert-Einstein-Straße
15, 12489 Berlin, Germany
| |
Collapse
|
17
|
Borrelli W, Mei KJ, Park SJ, Schwartz BJ. Partial Molar Solvation Volume of the Hydrated Electron Simulated Via DFT. J Phys Chem B 2024; 128:2425-2431. [PMID: 38422045 PMCID: PMC10945486 DOI: 10.1021/acs.jpcb.3c05091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Different simulation models of the hydrated electron produce different solvation structures, but it has been challenging to determine which simulated solvation structure, if any, is the most comparable to experiment. In a recent work, Neupane et al. [J. Phys. Chem. B 2023, 127, 5941-5947] showed using Kirkwood-Buff theory that the partial molar volume of the hydrated electron, which is known experimentally, can be readily computed from an integral over the simulated electron-water radial distribution function. This provides a sensitive way to directly compare the hydration structure of different simulation models of the hydrated electron with experiment. Here, we compute the partial molar volume of an ab-initio-simulated hydrated electron model based on density-functional theory (DFT) with a hybrid functional at different simulated system sizes. We find that the partial molar volume of the DFT-simulated hydrated electron is not converged with respect to the system size for simulations with up to 128 waters. We show that even at the largest simulation sizes, the partial molar volume of DFT-simulated hydrated electrons is underestimated by a factor of 2 with respect to experiment, and at the standard 64-water size commonly used in the literature, DFT-based simulations underestimate the experimental solvation volume by a factor of ∼3.5. An extrapolation to larger box sizes does predict the experimental partial molar volume correctly; however, larger system sizes than those explored here are currently intractable without the use of machine-learned potentials. These results bring into question what aspects of the predicted hydrated electron radial distribution function, as calculated by DFT-based simulations with the PBEh-D3 functional, deviate from the true solvation structure.
Collapse
Affiliation(s)
| | | | - Sanghyun J. Park
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
18
|
Li S, Lu L, Bhattacharyya S, Pearce C, Li K, Nienhuis ET, Doumy G, Schaller RD, Moeller S, Lin MF, Dakovski G, Hoffman DJ, Garratt D, Larsen KA, Koralek JD, Hampton CY, Cesar D, Duris J, Zhang Z, Sudar N, Cryan JP, Marinelli A, Li X, Inhester L, Santra R, Young L. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 2024; 383:1118-1122. [PMID: 38359104 DOI: 10.1126/science.adn6059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Attosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS). Our analysis showed that the AX-ATAS response is confined to the subfemtosecond timescale, eliminating any hydrogen atom motion and demonstrating experimentally that the 1b1 splitting in the x-ray emission spectrum is related to dynamics and is not evidence of two structural motifs in ambient liquid water.
Collapse
Affiliation(s)
- Shuai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Swarnendu Bhattacharyya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Carolyn Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | | | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - S Moeller
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - G Dakovski
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D J Hoffman
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Garratt
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kirk A Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J D Koralek
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - C Y Hampton
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Cesar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Z Zhang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nicholas Sudar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - A Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Mayer D, Lever F, Gühr M. Time-resolved x-ray spectroscopy of nucleobases and their thionated analogs. Photochem Photobiol 2024; 100:275-290. [PMID: 38174615 DOI: 10.1111/php.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The photoinduced relaxation dynamics of nucleobases and their thionated analogs have been investigated extensively over the past decades motivated by their crucial role in organisms and their application in medical and biochemical research and treatment. Most of these studies focused on the spectroscopy of valence electrons and fragmentation. The advent of ultrashort x-ray laser sources such as free-electron lasers, however, opens new opportunities for studying the ultrafast molecular relaxation dynamics utilizing the site- and element-selectivity of x-rays. In this review, we want to summarize ultrafast experiments on thymine and 2-thiouracil performed at free-electron lasers. We performed time-resolved x-ray absorption spectroscopy at the oxygen K-edge after UV excitation of thymine. In addition, we investigated the excited state dynamics of 2-tUra via x-ray photoelectron spectroscopy at sulfur. For these methods, we show a strong sensitivity to the electronic state or charge distribution, respectively. We also performed time-resolved Auger-Meitner spectroscopy, which shows spectral shifts associated with internuclear distances close to the probed site. We discuss the complementary aspects of time-resolved x-ray spectroscopy techniques compared to optical and UV spectroscopy for the investigation of ultrafast relaxation processes.
Collapse
Affiliation(s)
- Dennis Mayer
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabiano Lever
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Markus Gühr
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Sopena Moros A, Li S, Li K, Doumy G, Southworth SH, Otolski C, Schaller RD, Kumagai Y, Rubensson JE, Simon M, Dakovski G, Kunnus K, Robinson JS, Hampton CY, Hoffman DJ, Koralek J, Loh ZH, Santra R, Inhester L, Young L. Tracking Cavity Formation in Electron Solvation: Insights from X-ray Spectroscopy and Theory. J Am Chem Soc 2024; 146:3262-3269. [PMID: 38270463 PMCID: PMC10859959 DOI: 10.1021/jacs.3c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We present time-resolved X-ray absorption spectra of ionized liquid water and demonstrate that OH radicals, H3O+ ions, and solvated electrons all leave distinct X-ray-spectroscopic signatures. Particularly, this allows us to characterize the electron solvation process through a tool that focuses on the electronic response of oxygen atoms in the immediate vicinity of a solvated electron. Our experimental results, supported by ab initio calculations, confirm the formation of a cavity in which the solvated electron is trapped. We show that the solvation dynamics are governed by the magnitude of the random structural fluctuations present in water. As a consequence, the solvation time is highly sensitive to temperature and to the specific way the electron is injected into water.
Collapse
Affiliation(s)
- Arturo Sopena Moros
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Shuai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christopher Otolski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinous 60439, United States
- Department of Chemistry, Northwestern University, 2145 N. Sheridan Rd., Evanston, Illinois 60208, United States
| | - Yoshiaki Kumagai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120, Sweden
| | - Marc Simon
- Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Sorbonne Université, CNRS, Paris F-75005, France
| | | | | | | | | | | | - Jake Koralek
- LCLS, SLAC, Menlo Park, California 94025, United States
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
- Department of Physics, Universität Hamburg, Notkestraße 9, Hamburg 22607, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Ekeberg T, Assalauova D, Bielecki J, Boll R, Daurer BJ, Eichacker LA, Franken LE, Galli DE, Gelisio L, Gumprecht L, Gunn LH, Hajdu J, Hartmann R, Hasse D, Ignatenko A, Koliyadu J, Kulyk O, Kurta R, Kuster M, Lugmayr W, Lübke J, Mancuso AP, Mazza T, Nettelblad C, Ovcharenko Y, Rivas DE, Rose M, Samanta AK, Schmidt P, Sobolev E, Timneanu N, Usenko S, Westphal D, Wollweber T, Worbs L, Xavier PL, Yousef H, Ayyer K, Chapman HN, Sellberg JA, Seuring C, Vartanyants IA, Küpper J, Meyer M, Maia FRNC. Observation of a single protein by ultrafast X-ray diffraction. LIGHT, SCIENCE & APPLICATIONS 2024; 13:15. [PMID: 38216563 PMCID: PMC10786860 DOI: 10.1038/s41377-023-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
Collapse
Affiliation(s)
- Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Dameli Assalauova
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Benedikt J Daurer
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Lutz A Eichacker
- University of Stavanger, Centre Organelle Research, Richard-Johnsensgate 4, 4021, Stavanger, Norway
| | - Linda E Franken
- Leibniz Institute for Experimental Virology (HPI), Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany
| | - Davide E Galli
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - Luca Gelisio
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Lars Gumprecht
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
| | - Laura H Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | | | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Alexandr Ignatenko
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jayanath Koliyadu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Olena Kulyk
- ELI Beamlines/IoP Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ruslan Kurta
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Markus Kuster
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Wolfgang Lugmayr
- Multi-User CryoEM Facility, Centre for Structural Systems Biology, Notkestr.85, 22607, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Jannik Lübke
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Carl Nettelblad
- Division of Scientific Computing, Science for Life Laboratory, Department of Information Technology, Uppsala University, Box 337, SE-75105, Uppsala, Sweden
| | | | | | - Max Rose
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Amit K Samanta
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
| | | | - Egor Sobolev
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Tamme Wollweber
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lena Worbs
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Paul Lourdu Xavier
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Kartik Ayyer
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Carolin Seuring
- Multi-User CryoEM Facility, Centre for Structural Systems Biology, Notkestr.85, 22607, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, 20146, Hamburg, Germany
| | - Ivan A Vartanyants
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
22
|
Wang Y, Wei P, Shen Z, Wang C, Ding J, Zhang W, Jin X, Vecitis CD, Gao G. O 2-Independent H 2O 2 Production via Water-Polymer Contact Electrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:925-934. [PMID: 38117535 DOI: 10.1021/acs.est.3c07674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hydrogen peroxide (H2O2), as a critical green chemical, has received immense attention in energy and environmental fields. The ability to produce H2O2 in earth-abundant water without relying on low solubility oxygen would be a sustainable and potentially economic process, applicable even to anaerobic microenvironments, such as groundwater treatment. However, the direct water to H2O2 process is currently hindered by low selectivity and low production rates. Herein, we report that poly(tetrafluoroethylene) (PTFE), a commonly used inert polymer, can act as an efficient triboelectric catalyst for H2O2 generation. For example, a high H2O2 production rate of 24.8 mmol gcat-1 h-1 at a dosage of 0.01 g/L PTFE was achieved under the condition of pure water, ambient atmosphere, and no sacrificial agents, which exceeds the performance of state-of-the-art aqueous H2O2 powder catalysts. Electron spin resonance and isotope experiments provide strong evidence that water-PTFE tribocatalysis can directly oxidize water to produce H2O2 under both anaerobic and aerobic conditions, albeit with different synthetic pathways. This study demonstrates a potential strategy for green and effective tribocatalytic H2O2 production that may be particularly useful toward environmental applications.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing 312000, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peiyun Wei
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing 312000, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenkai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chad D Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Ismail I, Ferté A, Penent F, Guillemin R, Peng D, Marchenko T, Travnikova O, Inhester L, Taïeb R, Verma A, Velasquez N, Kukk E, Trinter F, Koulentianos D, Mazza T, Baumann TM, Rivas DE, Ovcharenko Y, Boll R, Dold S, De Fanis A, Ilchen M, Meyer M, Goldsztejn G, Li K, Doumy G, Young L, Sansone G, Dörner R, Piancastelli MN, Carniato S, Bozek JD, Püttner R, Simon M. Alternative Pathway to Double-Core-Hole States. PHYSICAL REVIEW LETTERS 2023; 131:253201. [PMID: 38181353 DOI: 10.1103/physrevlett.131.253201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 01/07/2024]
Abstract
Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.
Collapse
Affiliation(s)
- Iyas Ismail
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Anthony Ferté
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Francis Penent
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Renaud Guillemin
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Dawei Peng
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Oksana Travnikova
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Richard Taïeb
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Abhishek Verma
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Nicolas Velasquez
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Edwin Kukk
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Dimitris Koulentianos
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Simon Dold
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Markus Ilchen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Gildas Goldsztejn
- Université Paris-Saclay, Institut des Sciences Moléculaires d'Orsay ISMO, UMR CNRS 8214, F-91405 Orsay, France
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - Giuseppe Sansone
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Maria Novella Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - Stéphane Carniato
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - Ralph Püttner
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14D-14195 Berlin, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris Cedex 05, France
| |
Collapse
|
24
|
Shepard C, Kanai Y. Ion-Type Dependence of DNA Electronic Excitation in Water under Proton, α-Particle, and Carbon Ion Irradiation: A First-Principles Simulation Study. J Phys Chem B 2023; 127:10700-10709. [PMID: 37943091 DOI: 10.1021/acs.jpcb.3c05446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Understanding how the electronic excitation of DNA changes in response to different high-energy particles is central to advancing ion beam cancer therapy and other related approaches, such as boron neutron capture therapy. While protons have been the predominant ions of choice in ion beam cancer therapy, heavier ions, particularly carbon ions, have drawn significant attention over the past decade. Carbon ions are expected to transfer larger amounts of energy according to linear response theory. However, molecular-level details of the electronic excitation under heavier ion irradiation remain unknown. In this work, we use real-time time-dependent density functional theory simulations to examine the quantum-mechanical details of DNA electronic excitations in water under proton, α-particle, and carbon ion irradiation. Our results show that the energy transfer does indeed increase for the heavier ions, while the excitation remains highly conformal. However, the increase in the energy transfer rate, measured by electronic stopping power, does not match the prediction by the linear response model, even when accounting for the velocity dependence of the irradiating ion's charge. The simulations also reveal that while the number of holes generated on DNA increases for heavier ions, the increase is only partially responsible for the larger stopping power. Larger numbers of highly energetic holes formed from the heavier ions also contribute significantly to the increased electronic stopping power.
Collapse
Affiliation(s)
- Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
25
|
Alías-Rodríguez M, Bonfrate S, Park W, Ferré N, Choi CH, Huix-Rotllant M. Solvent Effects and pH Dependence of the X-ray Absorption Spectra of Proline from Electrostatic Embedding Quantum Mechanics/Molecular Mechanics and Mixed-Reference Spin-Flip Time-dependent Density-Functional Theory. J Phys Chem A 2023. [PMID: 38019644 DOI: 10.1021/acs.jpca.3c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The accurate description of solvent effects on X-ray absorption spectra (XAS) is fundamental for comparing the simulated spectra with experiments in solution. Currently, few protocols exist that can efficiently reproduce the effects of the solute/solvent interactions on XAS. Here, we develop an efficient and accurate theoretical protocol for simulating the solvent effects on XAS. The protocol combines electrostatic embedding QM/MM based on electrostatic potential fitted operators for describing the solute/solvent interactions and mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) for simulating accurate XAS spectra. To demonstrate the capabilities of our protocol, we compute the X-ray absorption of neutral proline in the gas phase and ionic proline in water in all relevant K-edges, showing excellent agreement with experiments. We show that states represented by core to π* transitions are almost unaffected by the interaction with water, whereas the core to σ* transitions are more impacted by the fluctuation of proline structure and the electrostatic interaction with the solvent. Finally, we reconstruct the pH-dependent XAS of proline in solution, determining that the N K-edge can be used to distinguish its three protonation states.
Collapse
Affiliation(s)
| | | | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, Marseille 13013, France
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | | |
Collapse
|
26
|
da Silva Santos M, Medel R, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. Exposing the Oxygen-Centered Radical Character of the Tetraoxido Ruthenium(VIII) Cation [RuO 4 ] . Chemphyschem 2023; 24:e202300390. [PMID: 37589334 DOI: 10.1002/cphc.202300390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The tetraoxido ruthenium(VIII) radical cation, [RuO4 ]+ , should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4 ]+ , produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4 ]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4 ]+ to the closed-shell [RuO4 H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4 ]+ than for [OsO4 ]+ .
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Robert Medel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Max Flach
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Olesya S Ablyasova
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - J Tobias Lau
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| |
Collapse
|
27
|
Hu J, Iwamoto M, Chen X. A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator. NANO-MICRO LETTERS 2023; 16:7. [PMID: 37930592 PMCID: PMC10628068 DOI: 10.1007/s40820-023-01238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
The triboelectric nanogenerator (TENG) can effectively collect energy based on contact electrification (CE) at diverse interfaces, including solid-solid, liquid-solid, liquid-liquid, gas-solid, and gas-liquid. This enables energy harvesting from sources such as water, wind, and sound. In this review, we provide an overview of the coexistence of electron and ion transfer in the CE process. We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies. The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques. Additionally, we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces. Finally, this review elucidates the future opportunities and challenges that interface CE may encounter. We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
Collapse
Affiliation(s)
- Jun Hu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Mitsumasa Iwamoto
- Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33 O-Okayama, Meguro-Ku, Tokyo, 152-8552, Japan.
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
28
|
Li L, Wu Q, Xiang SK, Mu S, Zhao R, Xiao M, Long C, Zheng X, Cui C. Electron Paramagnetic Resonance Tracks Condition-Sensitive Water Radical Cation. J Phys Chem Lett 2023; 14:9183-9191. [PMID: 37800664 DOI: 10.1021/acs.jpclett.3c02268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oxidizing species or radicals generated in water are of vital importance in catalysis, the environment, and biology. In addition to several related reactive oxygen species, using electron paramagnetic resonance (EPR), we present a nontrapping chemical transformation pathway to track water radical cation (H2O+•) species, whose formation is very sensitive to the conditioning environments, such as light irradiation, mechanical action, and gas/chemical introduction. We reveal that H2O+• can oxidize the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to the crucial epoxy hydroxylamine (HDMP=O) intermediate, which further reacts with the hydroxyl radical (•OH) for the formation of the EPR-active sextet radical (DMPO=O•). Interestingly, we uncover that H2O+• can react with dimethyl methylphosphonate (DMMP), 2-methyl-2-nitrosopropane (MNP), 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO), and α-phenyl-N-tert-butylnitrone (PBN) which contain a double-bond structure to produce corresponding derivatives as well. It is thus expected that both H2O+• and •OH are ubiquitous in nature and in various water-containing experimental systems. These findings provide a novel perspective on radicals for water redox chemistry.
Collapse
Affiliation(s)
- Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shijia Mu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xia Zheng
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
29
|
Gopakumar G, Unger I, Slavíček P, Hergenhahn U, Öhrwall G, Malerz S, Céolin D, Trinter F, Winter B, Wilkinson I, Caleman C, Muchová E, Björneholm O. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat Chem 2023; 15:1408-1414. [PMID: 37620544 PMCID: PMC10533389 DOI: 10.1038/s41557-023-01302-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Biomolecular radiation damage is largely mediated by radicals and low-energy electrons formed by water ionization rather than by direct ionization of biomolecules. It was speculated that such an extensive, localized water ionization can be caused by ultrafast processes following excitation by core-level ionization of hydrated metal ions. In this model, ions relax via a cascade of local Auger-Meitner and, importantly, non-local charge- and energy-transfer processes involving the water environment. Here, we experimentally and theoretically show that, for solvated paradigmatic intermediate-mass Al3+ ions, electronic relaxation involves two sequential solute-solvent electron transfer-mediated decay processes. The electron transfer-mediated decay steps correspond to sequential relaxation from Al5+ to Al3+ accompanied by formation of four ionized water molecules and two low-energy electrons. Such charge multiplication and the generated highly reactive species are expected to initiate cascades of radical reactions.
Collapse
Affiliation(s)
- G Gopakumar
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - I Unger
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- FS-BIG, DESY, Hamburg, Germany
| | - P Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - U Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - G Öhrwall
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - S Malerz
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Paris, France
| | - F Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - B Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - I Wilkinson
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - C Caleman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - E Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| | - O Björneholm
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Iguchi A, Singh A, Bergmeister S, Azhagesan AA, Mizuse K, Fujii A, Tanuma H, Azuma T, Scheier P, Kuma S, Vilesov AF. Isolation and Infrared Spectroscopic Characterization of Hemibonded Water Dimer Cation in Superfluid Helium Nanodroplets. J Phys Chem Lett 2023; 14:8199-8204. [PMID: 37672355 PMCID: PMC10510431 DOI: 10.1021/acs.jpclett.3c02150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
The structure of the minimum unit of the radical cationic water clusters, the (H2O)2+ dimer, has attracted much attention because of its importance for the radiation chemistry of water. Previous spectroscopic studies indicated that the dimers have a proton-transferred structure (H3O+·OH), though the alternate metastable hemibonded structure (H2O·OH2)+ was also predicted based on theoretical calculations. Here, we produce (H2O)2+ dimers in superfluid helium nanodroplets and study their infrared spectra in the range of OH stretching vibrations. The observed spectra indicate the coexistence of the two structures in the droplets, supported by density functional theory calculations. This is the first spectroscopic identification of the hemibonded isomer of water radical cation dimers. The observation of the higher-energy isomer reveals efficient kinetic trapping for metastable ionic clusters due to the rapid cooling in helium droplets.
Collapse
Affiliation(s)
- Arisa Iguchi
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Atomic,
Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Amandeep Singh
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stefan Bergmeister
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Andrew A. Azhagesan
- Department
of Computer Science, University of Southern
California, Los Angeles, California 90089, United States
| | - Kenta Mizuse
- Department
of Chemistry, School of Science, Kitasato
University, Sagamihara, Kanagawa 252-0373, Japan
| | - Asuka Fujii
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hajime Tanuma
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Toshiyuki Azuma
- Atomic,
Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Susumu Kuma
- Atomic,
Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Andrey F. Vilesov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
Yang Y, Ren H, Zhang M, Zhou S, Mu X, Li X, Wang Z, Deng K, Li M, Ma P, Li Z, Hao X, Li W, Chen J, Wang C, Ding D. H 2 formation via non-Born-Oppenheimer hydrogen migration in photoionized ethane. Nat Commun 2023; 14:4951. [PMID: 37587115 PMCID: PMC10432507 DOI: 10.1038/s41467-023-40628-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Neutral H2 formation via intramolecular hydrogen migration in hydrocarbon molecules plays a vital role in many chemical and biological processes. Here, employing cold target recoil ion momentum spectroscopy (COLTRIMS) and pump-probe technique, we find that the non-adiabatic coupling between the ground and excited ionic states of ethane through conical intersection leads to a significantly high yield of neutral H2 fragment. Based on the analysis of fingerprints that are sensitive to orbital symmetry and electronic state energies in the photoelectron momentum distributions, we tag the initial electronic population of both the ground and excited ionic states and determine the branching ratios of H2 formation channel from those two states. Incorporating theoretical simulation, we established the timescale of the H2 formation to be ~1300 fs. We provide a comprehensive characterization of H2 formation in ionic states of ethane mediated by conical intersection and reveals the significance of non-adiabatic coupling dynamics in the intramolecular hydrogen migration.
Collapse
Affiliation(s)
- Yizhang Yang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Hao Ren
- Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Shengpeng Zhou
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiangxu Mu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Zhenzhen Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Ke Deng
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Mingxuan Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China.
| | - Xiaolei Hao
- Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, China.
| | - Weidong Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, and College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
| | - Jing Chen
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, and College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, Department of Modern Physics, University of Science and Technology of China, 230026, Hefei, China
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| | - Dajun Ding
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| |
Collapse
|
32
|
Seeger MF, Kammerer D, Blöchl J, Neuhaus M, Pervak V, Nubbemeyer T, Kling MF. 49 W carrier-envelope-phase-stable few-cycle 2.1 µm OPCPA at 10 kHz. OPTICS EXPRESS 2023; 31:24821-24834. [PMID: 37475300 DOI: 10.1364/oe.493326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
We demonstrate a mid-infrared optical parametric chirped pulse amplifier (OPCPA), delivering 2.1 µm center wavelength pulses with 20 fs duration and 4.9 mJ energy at 10 kHz repetition rate. This self-seeded system is based on a kW-class Yb:YAG thin-disk amplifier driving a CEP stable short-wavelength-infrared (SWIR) generation and three consecutive OPCPA stages. Our SWIR source achieves an average power of 49 W, while still maintaining excellent phase and average power stability with sub-100 mrad carrier-envelope-phase-noise and 0.8% average power fluctuations. These parameters enable the OPCPA setup to drive attosecond pump probe spectroscopy experiments with photon energies in the water window.
Collapse
|
33
|
Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavíˇek P, Moshammer R. Direct tracking of ultrafast proton transfer in water dimers. SCIENCE ADVANCES 2023; 9:eadg7864. [PMID: 37436977 PMCID: PMC10337913 DOI: 10.1126/sciadv.adg7864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Upon ionization, water forms a highly acidic radical cation H2O+· that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive H3O+, OH[Formula: see text] radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser. An extreme ultraviolet (XUV) pump photon initiates PT, and only dimers that have undergone PT at the instance of the ionizing XUV probe photon result in distinct H3O+ + OH+ pairs. By tracking the delay-dependent yield and kinetic energy release of these ion pairs, we measure a PT time of (55 ± 20) femtoseconds and image the geometrical rearrangement of the dimer cations during and after PT. Our direct measurement shows good agreement with nonadiabatic dynamics simulations for the initial PT and allows us to benchmark nonadiabatic theory.
Collapse
Affiliation(s)
- Kirsten Schnorr
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Sven Augustin
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Hannes Lindenblatt
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Yifan Liu
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Severin Meister
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Georg Schmid
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Florian Trost
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Petr Slavíˇek
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Robert Moshammer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
34
|
Timmermann S, Anthuparambil ND, Girelli A, Begam N, Kowalski M, Retzbach S, Senft MD, Akhundzadeh MS, Poggemann HF, Moron M, Hiremath A, Gutmüller D, Dargasz M, Öztürk Ö, Paulus M, Westermeier F, Sprung M, Ragulskaya A, Zhang F, Schreiber F, Gutt C. X-ray driven and intrinsic dynamics in protein gels. Sci Rep 2023; 13:11048. [PMID: 37422480 PMCID: PMC10329714 DOI: 10.1038/s41598-023-38059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text]. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values [Formula: see text]. Surprisingly small threshold values of [Formula: see text] s[Formula: see text] nm[Formula: see text] can drive the dynamics in the soft gels while for stronger gels this threshold is increased to [Formula: see text] s[Formula: see text] nm[Formula: see text]. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.
Collapse
Affiliation(s)
- Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| | - Nimmi Das Anthuparambil
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Marvin Kowalski
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Maximilian Darius Senft
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | | | - Marc Moron
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Michelle Dargasz
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| |
Collapse
|
35
|
Yin Z, Chang YP, Balčiūnas T, Shakya Y, Djorović A, Gaulier G, Fazio G, Santra R, Inhester L, Wolf JP, Wörner HJ. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature 2023; 619:749-754. [PMID: 37380782 PMCID: PMC10371863 DOI: 10.1038/s41586-023-06182-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
Proton transfer is one of the most fundamental events in aqueous-phase chemistry and an emblematic case of coupled ultrafast electronic and structural dynamics1,2. Disentangling electronic and nuclear dynamics on the femtosecond timescales remains a formidable challenge, especially in the liquid phase, the natural environment of biochemical processes. Here we exploit the unique features of table-top water-window X-ray absorption spectroscopy3-6 to reveal femtosecond proton-transfer dynamics in ionized urea dimers in aqueous solution. Harnessing the element specificity and the site selectivity of X-ray absorption spectroscopy with the aid of ab initio quantum-mechanical and molecular-mechanics calculations, we show how, in addition to the proton transfer, the subsequent rearrangement of the urea dimer and the associated change of the electronic structure can be identified with site selectivity. These results establish the considerable potential of flat-jet, table-top X-ray absorption spectroscopy7,8 in elucidating solution-phase ultrafast dynamics in biomolecular systems.
Collapse
Affiliation(s)
- Zhong Yin
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland.
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Miyagi, Sendai, Japan.
| | - Yi-Ping Chang
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
- European XFEL, Schenefeld, Germany
| | - Tadas Balčiūnas
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
| | - Yashoj Shakya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | | | - Giuseppe Fazio
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| | | | | |
Collapse
|
36
|
Lamas I, González J, Longarte A, Montero R. Influence of H-bonds on the photoionization of aromatic chromophores in water: The aniline molecule. J Chem Phys 2023; 158:2890456. [PMID: 37184001 DOI: 10.1063/5.0147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023] Open
Abstract
We have conducted time-resolved experiments (pump-probe and pump-repump-probe) on a model aromatic chromophore, aniline, after excitation in water at 267 nm. In the initial spectra recorded, in addition to the absorption corresponding to the bright ππ* excitation, the fingerprint of a transient state with the electron located on the solvent molecule is identified. We postulate that the latter corresponds to the πσ* state along the N-H bond, whose complete relaxation with a ∼500 ps lifetime results in the formation of the fully solvated electron and cation. This ionization process occurs in parallel with the ππ* photophysical channel that yields the characteristic ∼1 ns fluorescence lifetime. The observed branched pathway is rationalized in terms of the different H-bonds that the water establishes with the amino group. The proposed mechanism could be common for aromatics in water containing N-H or O-H bonds and would allow the formation of separated charges after excitation at the threshold of their electronic absorptions.
Collapse
Affiliation(s)
- Iker Lamas
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Jorge González
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Asier Longarte
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Raúl Montero
- Facultad de Ciencia y Tecnología, SGIKER Laser Facility, UPV/EHU, Sarriena, S/N, 48940 Leioa, Spain
| |
Collapse
|
37
|
Yuan K, Starchenko V, Rampal N, Yang F, Xiao X, Stack AG. Assessing an aqueous flow cell designed for in situ crystal growth under X-ray nanotomography and effects of radiolysis products. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:634-642. [PMID: 37067259 PMCID: PMC10161885 DOI: 10.1107/s1600577523002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.
Collapse
Affiliation(s)
- Ke Yuan
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vitalii Starchenko
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nikhil Rampal
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, Columbia University, NY 10027, USA
| | - Fengchang Yang
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew G. Stack
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
38
|
Xiao S, Wu H, Li N, Tan X, Deng H, Zhang X, Tang J, Li Y. Triboelectric Mechanism of Oil-Solid Interface Adopted for Self-Powered Insulating Oil Condition Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207230. [PMID: 36825678 PMCID: PMC10161025 DOI: 10.1002/advs.202207230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Indexed: 05/06/2023]
Abstract
The liquid-solid contact electrification mechanism has been explored in the aqueous solution system, but there are few systematic studies on oil-solid triboelectrification. Herein, an oil droplet triboelectric nanogenerator (Oil-droplet TENG) is designed as the probe to investigate the charge transfer properties at oil-solid interface. The charge transfer kinetics process is disclosed by the electrical signals produced, showing that the electron species initially predominated the oil-solid triboelectrification. The molecular structure and electronic properties of oil also affect triboelectric performance. Further, the charge transfer principle in multi-component liquid mixture during the electric double layer (EDL) development process is proposed to explain the component competition effect. As a proof of concept, a tubular-TENG is designed as a self-powered sensor for transformer oil trace water detection. The device demonstrates high water sensitivity with a detection limit of 10 µL L-1 and a response range of 10-100 µL L-1 . This work not only reveals the oil-solid triboelectric and charge transfer competition mechanism in EDL, but also open up a new channel for real-time online monitoring of trace water in transformer oil, which holds promise for information perception and intelligent operation of transformers in the power industry.
Collapse
Affiliation(s)
- Song Xiao
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Haoying Wu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Nan Li
- State Grid Tianjin Electric Power Research Institute, Tianjin, 300392, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, 650217, China
| | - Haocheng Deng
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ju Tang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
39
|
Buttersack T, Haak H, Bluhm H, Hergenhahn U, Meijer G, Winter B. Imaging temperature and thickness of thin planar liquid water jets in vacuum. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034901. [PMID: 37398627 PMCID: PMC10314331 DOI: 10.1063/4.0000188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
We present spatially resolved measurements of the temperature of a flat liquid water microjet for varying ambient pressures, from vacuum to 100% relative humidity. The entire jet surface is probed in a single shot by a high-resolution infrared camera. Obtained 2D images are substantially influenced by the temperature of the apparatus on the opposite side of the infrared camera; a protocol to correct for the thermal background radiation is presented. In vacuum, we observe cooling rates due to water evaporation on the order of 105 K/s. For our system, this corresponds to a temperature decrease in approximately 15 K between upstream and downstream positions of the flowing leaf. Making reasonable assumptions on the absorption of the thermal background radiation in the flatjet, we can extend our analysis to infer a thickness map. For a reference system, our value for the thickness is in good agreement with the one reported from white light interferometry.
Collapse
Affiliation(s)
- Tillmann Buttersack
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Henrik Haak
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Hendrik Bluhm
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bernd Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
40
|
Zhao R, You P, Meng S. Ring Polymer Molecular Dynamics with Electronic Transitions. PHYSICAL REVIEW LETTERS 2023; 130:166401. [PMID: 37154659 DOI: 10.1103/physrevlett.130.166401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Full quantum dynamics of molecules and materials is of fundamental importance, which requires a faithful description of simultaneous quantum motions of the electron and nuclei. A new scheme is developed for nonadiabatic simulations of coupled electron-nuclear quantum dynamics with electronic transitions based on the Ehrenfest theorem and ring polymer molecular dynamics. Built upon the isomorphic ring polymer Hamiltonian, time-dependent multistate electronic Schrödinger equations are solved self-consistently with approximate equation of motions for nuclei. Each bead bears a distinct electronic configuration and thus moves on a specific effective potential. This independent-bead approach provides an accurate description of the real-time electronic population and quantum nuclear trajectory, maintaining a good agreement with the exact quantum solution. Implementation of first-principles calculations enables us to simulate photoinduced proton transfer in H_{2}O-H_{2}O^{+} where we find a good agreement with experiment.
Collapse
Affiliation(s)
- Ruji Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
41
|
Shepard C, Yost DC, Kanai Y. Electronic Excitation Response of DNA to High-Energy Proton Radiation in Water. PHYSICAL REVIEW LETTERS 2023; 130:118401. [PMID: 37001078 DOI: 10.1103/physrevlett.130.118401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/13/2023] [Indexed: 06/19/2023]
Abstract
The lack of molecular-level understanding for the electronic excitation response of DNA to charged particle radiation, such as high-energy protons, remains a fundamental scientific bottleneck in advancing proton and other ion beam cancer therapies. In particular, the dependence of different types of DNA damage on high-energy protons represents a significant knowledge void. Here we employ first-principles real-time time-dependent density functional theory simulation, using a massively parallel supercomputer, to unravel the quantum-mechanical details of the energy transfer from high-energy protons to DNA in water. The calculations reveal that protons deposit significantly more energy onto the DNA sugar-phosphate side chains than onto the nucleobases, and greater energy transfer is expected onto the DNA side chains than onto water. As a result of this electronic stopping process, highly energetic holes are generated on the DNA side chains as a source of oxidative damage.
Collapse
Affiliation(s)
- Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Dillon C Yost
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
42
|
Cheng C, Prezhdo OV, Long R, Fang WH. Photolysis versus Photothermolysis of N 2O on a Semiconductor Surface Revealed by Nonadiabatic Molecular Dynamics. J Am Chem Soc 2023; 145:476-486. [PMID: 36541604 DOI: 10.1021/jacs.2c10643] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identifying photolysis and photothermolysis during a photochemical reaction has remained challenging because of the highly non-equilibrium and ultrafast nature of the processes. Using state-of-the-art ab initio adiabatic and nonadiabatic molecular dynamics, we investigate N2O photodissociation on the reduced rutile TiO2(110) surface and establish its detailed mechanism. The photodecomposition is initiated by electron injection, leading to the formation of a N2O- ion-radical, and activation of the N2O bending and symmetric stretching vibrations. Photothermolysis governs the N2O dissociation when N2O- is short-lived. The dissociation is activated by a combination of the anionic excited state evolution and local heating. A thermal fluctuation drives the molecular acceptor level below the TiO2 band edge, stabilizes the N2O- anion radical, and causes dissociation on a 1 ps timescale. As the N2O- resonance lifetime increases, photolysis becomes dominant since evolution in the anionic excited state activates the bending and symmetric stretching of N2O, inducing the dissociation. The photodecomposition occurs more easily when N2O is bonded to TiO2 through the O rather than N atom. We demonstrate further that a thermal dissociation of N2O can be realized by a rational choice of metal dopants, which enhance p-d orbital hybridization, facilitate electron transfer, and break N2O spontaneously. By investigating the charge dynamics and lifetime, we provide a fundamental atomistic understanding of the competition and synergy between the photocatalytic and photothermocatalytic dissociation of N2O and demonstrate how N2O reduction can be controlled by light irradiation, adsorption configuration, and dopants, enabling the design of high-performance transition-metal oxide catalysts.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, P. R. China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics, and Astronomy, University of Southern California, Los Angeles, California90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, P. R. China
| |
Collapse
|
43
|
Song Z, Ge C, Song Y, Chen Z, Shao B, Yuan X, Chen J, Xu D, Song T, Fang J, Wang Y, Sun B. Synergistic Solar-Driven Freshwater Generation and Electricity Output Empowered by Wafer-Scale Nanostructured Silicon. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205265. [PMID: 36420652 DOI: 10.1002/smll.202205265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Electricity generation triggered by the ubiquitous water evaporation process provides an intriguing way to harvest energy from water. Meanwhile, natural water evaporation is also a fundamental way to obtain fresh water for human beings. Here, a wafer-scale nanostructured silicon-based device that takes advantage of its well-aligned configuration that simultaneously realizes solar steam generation (SSG) for freshwater collection and hydrovoltaic effect generation for electricity output is developed. An ingenious porous, black carbon nanotube fabric (CNF) electrode endows the device with sustainable water self-pumping capability, excellent durable conductivity, and intense solar spectrum harvesting. A combined device based on the CNF electrode integrated with nanostructured silicon nanowire arrays (SiNWs) provided an aligned numerous surface-to-volume water evaporation interface that enables a recorded continuous short-circuit current 8.65 mA and a water evaporation rate of 1.31 kg m-2 h-1 under one sun illumination. Such wafer-scale SiNWs-based SSG and hydrovoltaic integration devices would unchain the bottleneck of the weak and discontinuous electrical output of hydrovoltaic devices, which inspires other sorts of semiconductor-based hydrovoltaic device designs to target superior performance.
Collapse
Affiliation(s)
- Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yuhang Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhewei Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Beibei Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xianrong Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiangyu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Tao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yusheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Baoquan Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
44
|
Low PJ, Chu W, Nie Z, Bin Mohd Yusof MS, Prezhdo OV, Loh ZH. Observation of a transient intermediate in the ultrafast relaxation dynamics of the excess electron in strong-field-ionized liquid water. Nat Commun 2022; 13:7300. [DOI: 10.1038/s41467-022-34981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractA unified picture of the electronic relaxation dynamics of ionized liquid water has remained elusive despite decades of study. Here, we employ sub-two-cycle visible to short-wave infrared pump-probe spectroscopy and ab initio nonadiabatic molecular dynamics simulations to reveal that the excess electron injected into the conduction band (CB) of ionized liquid water undergoes sequential relaxation to the hydrated electron s ground state via an intermediate state, identified as the elusive p excited state. The measured CB and p-electron lifetimes are 0.26 ± 0.02 ps and 62 ± 10 fs, respectively. Ab initio quantum dynamics yield similar lifetimes and furthermore reveal vibrational modes that participate in the different stages of electronic relaxation, with initial relaxation within the dense CB manifold coupled to hindered translational motions whereas subsequent p-to-s relaxation facilitated by librational and even intramolecular bending modes of water. Finally, energetic considerations suggest that a hitherto unobserved trap state resides ~0.3-eV below the CB edge of liquid water. Our results provide a detailed atomistic picture of the electronic relaxation dynamics of ionized liquid water with unprecedented time resolution.
Collapse
|
45
|
Zhou J, Belina M, Jia S, Xue X, Hao X, Ren X, Slavíček P. Ultrafast Charge and Proton Transfer in Doubly Ionized Ammonia Dimers. J Phys Chem Lett 2022; 13:10603-10611. [PMID: 36350084 DOI: 10.1021/acs.jpclett.2c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate the ultrafast energy and charge transfer processes between ammonia molecules following ionization reactions initiated by electron impact. Exploring ionization-induced processes in molecular clusters provides us with a detailed insight into the dynamics using experiments in the energy domain. We ionize the ammonia dimer with 200 eV electrons and apply the fragment ions coincident momentum spectroscopy and nonadiabatic molecular dynamics simulations. We identify two mechanisms leading to the doubly charged ammonia dimer. In the first one, a single molecule is ionized. This initiates an ultrafast proton transfer process, leading to the formation of the NH2+ + NH4+ pair. Alternatively, a dimer with a delocalized charge is formed dominantly via the intermolecular Coulombic decay, forming the NH3+·NH3+ dication. This dication further dissociates into two NH3+ cations. The ab initio calculations have reproduced the measured kinetic energy release of the ion pairs and revealed the dynamical processes following the double ionization.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xintai Hao
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| |
Collapse
|
46
|
Ekimova M, Kleine C, Ludwig J, Ochmann M, Agrenius TEG, Kozari E, Pines D, Pines E, Huse N, Wernet P, Odelius M, Nibbering ETJ. From Local Covalent Bonding to Extended Electric Field Interactions in Proton Hydration. Angew Chem Int Ed Engl 2022; 61:e202211066. [PMID: 36102247 PMCID: PMC9827956 DOI: 10.1002/anie.202211066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Seemingly simple yet surprisingly difficult to probe, excess protons in water constitute complex quantum objects with strong interactions with the extended and dynamically changing hydrogen-bonding network of the liquid. Proton hydration plays pivotal roles in energy transport in hydrogen fuel cells and signal transduction in transmembrane proteins. While geometries and stoichiometry have been widely addressed in both experiment and theory, the electronic structure of these specific hydrated proton complexes has remained elusive. Here we show, layer by layer, how utilizing novel flatjet technology for accurate x-ray spectroscopic measurements and combining infrared spectral analysis and calculations, we find orbital-specific markers that distinguish two main electronic-structure effects: Local orbital interactions determine covalent bonding between the proton and neigbouring water molecules, while orbital-energy shifts measure the strength of the extended electric field of the proton.
Collapse
Affiliation(s)
- Maria Ekimova
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Carlo Kleine
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jan Ludwig
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Miguel Ochmann
- Institute for Nanostructure and Solid State Physics, Center for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Thomas E. G. Agrenius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Eve Kozari
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Dina Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Ehud Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Nils Huse
- Institute for Nanostructure and Solid State Physics, Center for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Philippe Wernet
- Department of Physics and AstronomyUppsala UniversityBox 516 Lägerhyddsvägen 1751 20UppsalaSweden
| | - Michael Odelius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| |
Collapse
|
47
|
Song WZ, Zhang M, Qiu HJ, Li CL, Chen T, Jiang LL, Yu M, Ramakrishna S, Wang ZL, Long YZ. Insulator polymers achieve efficient catalysis under visible light due to contact electrification. WATER RESEARCH 2022; 226:119242. [PMID: 36257156 DOI: 10.1016/j.watres.2022.119242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Under the limitation of the carrier yield and mobility of semiconductor photocatalysts and the reaction domain, it seems that the photocatalytic efficiency cannot be greatly improved. Here, an efficient contact-electro-catalysis (CEC) system based on droplet triboelectric nanogenerator (TENG) is developed. Instead of using traditional semiconductor catalysts, the electric charge transferred during the electrification process of the contact between water droplets and polytetrafluoroethylene (PTFE) is used to participate in catalysis, and the output electrical signal can also monitor the degree of catalysis. The important role of light in the circulation of this CEC system is studied and discussed for the first time. It is proved that the contact electrification at the liquid-solid interface is accompanied by the generation of a large number of strong oxidizing radicals. The efficient transport of charge carriers driven by mechanical force and the active oxygen species distributed in the whole domain greatly improve the degradation rate of dyes. The experimental data show that the degradation efficiency of crystal violet (CV) reaches 90% within 38 s, and the rate constant k is as high as 3.7 min-1. This is a breakthrough in the field of catalysis.
Collapse
Affiliation(s)
- Wei-Zhi Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Hui-Jing Qiu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Chang-Long Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ting Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Long-Long Jiang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; Junada (Qingdao) Technology Co. Ltd., Qingdao International Academician Park, Qingdao 266199, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore
| | - Zhong-Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
48
|
Li X, Jia X, Paz ASP, Cao Y, Glover WJ. Evidence for Water Antibonding Orbital Mixing in the Hydrated Electron from Its Oxygen 1s X-ray Absorption Spectrum. J Am Chem Soc 2022; 144:19668-19672. [PMID: 36251402 DOI: 10.1021/jacs.2c07572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The X-ray absorption spectrum (XAS) of the hydrated electron (e(aq)-) has been simulated using time-dependent density functional theory with a quantum mechanics/molecular mechanics description. A unique XAS peak at 533 eV is observed with an energy and intensity in quantitative agreement with recent time-resolved experiments, allowing its assignment as arising from water O1s transitions to the singly occupied molecular orbital (SOMO) in which the excess electron resides. The transitions acquire oscillator strength due to the SOMO comprising an admixture of a cavity-localized orbital and water 4a1 and 2b2 antibonding orbitals. The mixing of antibonding orbitals has implications for the strength of couplings between e(aq)- and intramolecular modes of water.
Collapse
Affiliation(s)
- Xingpin Li
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| | - Xiangyu Jia
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China
| | - Amiel S P Paz
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| | - Yuquan Cao
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| | - William J Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| |
Collapse
|
49
|
Schwarz J, Kielgast F, Baev I, Reinwardt S, Trinter F, Klumpp S, Perry-Sassmannshausen A, Buhr T, Schippers S, Müller A, Bari S, Mondes V, Flesch R, Rühl E, Martins M. X-Ray absorption spectroscopy of H 3O . Phys Chem Chem Phys 2022; 24:23119-23127. [PMID: 36056691 DOI: 10.1039/d2cp02383k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the X-ray absorption of isolated H3O+ cations at the O 1s edge. The molecular ions were prepared in a flowing afterglow ion source which was designed for the production of small water clusters, protonated water clusters, and hydrated ions. Isolated H2O+ cations have been analyzed for comparison. The spectra show significant differences in resonance energies and widths compared to neutral H2O with resonances shifting to higher energies by as much as 10 eV and resonance widths increasing by as much as a factor of 5. The experimental results are supported by time-dependent density functional theory calculations performed for both molecular cations, showing a good agreement with the experimental data. The spectra reported here could enable the identification of the individual molecules in charged small water clusters or liquid water using X-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Julius Schwarz
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, Hamburg, Germany.
| | - Fridtjof Kielgast
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, Hamburg, Germany.
| | - Ivan Baev
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, Hamburg, Germany.
| | - Simon Reinwardt
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, Hamburg, Germany.
| | - Florian Trinter
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany.,Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Stephan Klumpp
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | | | - Ticia Buhr
- I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Leihgesterner Weg 217, 35292 Gießen, Germany
| | - Stefan Schippers
- I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Leihgesterner Weg 217, 35292 Gießen, Germany
| | - Alfred Müller
- I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Leihgesterner Weg 217, 35292 Gießen, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany.,Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Valerie Mondes
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Roman Flesch
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Eckart Rühl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Michael Martins
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, Hamburg, Germany.
| |
Collapse
|
50
|
Fabrication of a one‐dimensional copper(I) cyanide bearing 4,4′‐bis(imidazoly)biphenyl) polymer as a recyclable luminescent sensing material for sensitive detection of nitrofurazone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|