1
|
Renaud EA, Maupin AJM, Bordat Y, Graindorge A, Berry L, Besteiro S. Iron depletion has different consequences on the growth and survival of Toxoplasma gondii strains. Virulence 2024; 15:2329566. [PMID: 38509723 PMCID: PMC10962585 DOI: 10.1080/21505594.2024.2329566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for a pathology called toxoplasmosis, which primarily affects immunocompromised individuals and developing foetuses. The parasite can scavenge essential nutrients from its host to support its growth and survival. Among them, iron is one of the most important elements needed to sustain basic cellular functions as it is involved in a number of key metabolic processes, including oxygen transport, redox balance, and electron transport. We evaluated the effects of an iron chelator on the development of several parasite strains and found that they differed in their ability to tolerate iron depletion. The growth of parasites usually associated with a model of acute toxoplasmosis was strongly affected by iron depletion, whereas cystogenic strains were less sensitive as they were able to convert into persisting developmental forms that are associated with the chronic form of the disease. Ultrastructural and biochemical characterization of the impact of iron depletion on parasites also highlighted striking changes in both their metabolism and that of the host, with a marked accumulation of lipid droplets and perturbation of lipid homoeostasis. Overall, our study demonstrates that although acute iron depletion has an important effect on the growth of T. gondii, it has a more profound impact on actively dividing parasites, whereas less metabolically active parasite forms may be able to avoid some of the most detrimental consequences.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | | - Yann Bordat
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | | - Laurence Berry
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | |
Collapse
|
2
|
De Luca V, Giovannuzzi S, Capasso C, Supuran CT. Cloning, expression, and purification of an α-carbonic anhydrase from Toxoplasma gondii to unveil its kinetic parameters and anion inhibition profile. J Enzyme Inhib Med Chem 2024; 39:2346523. [PMID: 38847581 PMCID: PMC11163988 DOI: 10.1080/14756366.2024.2346523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024] Open
Abstract
Toxoplasmosis, induced by the intracellular parasite Toxoplasma gondii, holds considerable implications for global health. While treatment options primarily focusing on folate pathway enzymes have notable limitations, current research endeavours concentrate on pinpointing specific metabolic pathways vital for parasite survival. Carbonic anhydrases (CAs, EC 4.2.1.1) have emerged as potential drug targets due to their role in fundamental reactions critical for various protozoan metabolic processes. Within T. gondii, the Carbonic Anhydrase-Related Protein (TgCA_RP) plays a pivotal role in rhoptry biogenesis. Notably, α-CA (TcCA) from another protozoan, Trypanosoma cruzi, exhibited considerable susceptibility to classical CA inhibitors (CAIs) such as anions, sulphonamides, thiols, and hydroxamates. Here, the recombinant DNA technology was employed to synthesise and clone the identified gene in the T. gondii genome, which encodes an α-CA protein (Tg_CA), with the purpose of heterologously overexpressing its corresponding protein. Tg_CA kinetic constants were determined, and its inhibition patterns explored with inorganic metal-complexing compounds, which are relevant for rational compound design. The significance of this study lies in the potential development of innovative therapeutic strategies that disrupt the vital metabolic pathways crucial for T. gondii survival and virulence. This research may lead to the development of targeted treatments, offering new approaches to manage toxoplasmosis.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Tripathi A, Donkin RW, Miracle JS, Murphy RD, Gentry MS, Patwardhan A, Sinai AP. Dynamics of amylopectin granule accumulation during the course of the chronic Toxoplasma infection is linked to intra-cyst bradyzoite replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610794. [PMID: 39282379 PMCID: PMC11398317 DOI: 10.1101/2024.09.02.610794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The contribution of amylopectin granules (AG), comprised of a branched chain storage homopolymer of glucose, to the maintenance and progression of the chronic Toxoplasma gondii infection has remained undefined. Here we describe the role of AG in the physiology of encysted bradyzoites by using a custom developed imaging-based application AmyloQuant that permitted quantification of relative levels of AG within in vivo derived tissue cysts during the initiation and maturation of the chronic infection. Our findings establish that AG are dynamic entities, exhibiting considerable heterogeneity among tissue cysts at all post infection time points examined. Quantification of relative AG levels within tissue cysts exposes a previously unrecognized temporal cycle defined by distinct phases of AG accumulation and utilization over the first 6 weeks of the chronic phase. This AG cycle is temporally coordinated with overall bradyzoite mitochondrial activity implicating amylopectin in the maintenance and progression of the chronic infection. In addition, the staging of AG accumulation and its rapid utilization within encysted bradyzoites was associated with a burst of coordinated replication. As such our findings suggest that AG levels within individual bradyzoites, and across bradyzoites within tissue cysts may represent a key component in the licensing of bradyzoite replication, intimately linking stored metabolic potential to the course of the chronic infection. This extends the impact of AG beyond the previously assigned role that focused exclusively on parasite transmission. These findings force a fundamental reassessment of the chronic Toxoplasma infection, highlighting the critical need to address the temporal progression of this crucial stage in the parasite life cycle.
Collapse
|
4
|
Shendi SS, Selim SM, Sharaf SA, Gouda MA, Sallam HM, Sweed DM, Shafey DA. Anti-toxoplasmic effects of celecoxib alone and combined with spiramycin in experimental mice. Acta Trop 2024; 260:107448. [PMID: 39477047 DOI: 10.1016/j.actatropica.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Even though toxoplasmosis is a worldwide parasitic disease caused by Toxoplasma gondii (T. gondii), the available drugs used for the treatment of symptomatic toxoplasmosis have multiple drawbacks. So, there is a considerable need to discover new potential therapeutic agents. The current study aimed to assess the effect of celecoxib (CELE) alone or combined with spiramycin against chronic toxoplasmosis in experimentally infected mice. The study documented the reduction rate of T. gondii cysts in brain tissues and ultrastructural changes through transmission electron microscopy after treatment. We also investigated pathological changes in the brain, liver, lung, and spleen, as well as the expression of TGF-β, iNOS, and pSTAT-1 in brain tissues. Other markers for kidney function and serum levels of interleukins 10 and 12 were also assessed. The study reported a reduction rate of T. gondii brain cyst count of 32.9 % after CELE treatment, 71.7 % after spiramycin treatment, and 75.7 % after combined treatment. Furthermore, the CELE and spiramycin combination improved the ultrastructure and histopathology in brain tissues while decreasing TGF-β, iNOS, and pSTAT-1 expression. The combined therapy ameliorated the inflammation of the liver, lung, and spleen, upregulated the IL-12 level, reduced the IL-10 level, and was accompanied by a reduction in creatinine and urea in serum. In conclusion, CELE increased spiramycin therapeutic efficacy, and their combination showed a better response than spiramycin alone. Thus, the CELE combination with spiramycin represents a hopeful therapy against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Sawsan S Shendi
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sahar M Selim
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Soraya A Sharaf
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa A Gouda
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Hebatallah M Sallam
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Dina M Sweed
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Dalia A Shafey
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
5
|
Ouafi M, Couvreur C, Salmon-Rousseau A, Deleplancque AS, Stabler S, Maurage CA, Cordier C. Photo Quiz: Eccentric target sign in renal transplant recipient. J Clin Microbiol 2024; 62:e0029824. [PMID: 39475574 PMCID: PMC11481496 DOI: 10.1128/jcm.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Affiliation(s)
- Mahdi Ouafi
- Laboratory of Parasitology-Mycology, University Hospital of Lille, Lille, France
| | - Caroline Couvreur
- Laboratory of Parasitology-Mycology, University Hospital of Lille, Lille, France
| | | | | | - Sarah Stabler
- Infectious Diseases Department, University Hospital of Lille, Lille, France
| | | | - Camille Cordier
- Laboratory of Parasitology-Mycology, University Hospital of Lille, Lille, France
- INSERM U1285, Unité de Glycobiologie Structurale et Fonctionnelle (CNRS UMR 8576), University of Lille, Lille, France
| |
Collapse
|
6
|
Moafa HN, Altemani AH, Alaklabi A, Ghailan KY, Alshabi A, Darraj MA, Fadlalmola HA. The Prevalence of Toxoplasma gondii in Saudi Arabia (1994-2023): A Systematic Review and Meta-Analysis. J Epidemiol Glob Health 2024:10.1007/s44197-024-00314-5. [PMID: 39388058 DOI: 10.1007/s44197-024-00314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Toxoplasmosis is one of the most common parasites affecting humans in diverse populations caused by T. gondii. This study aims to systematically review and analyze the prevalence of T. gondii infection among various population categories in Saudi Arabia. Our search was done in five databases: PubMed, Scopus, Cochrane Library, Embase, and Web of Science to find the relevant studies from inception to November 2023. The pooled prevalence of toxoplasmosis among the total population living in Saudi Arabia was estimated using a random-effect meta-analysis approach, and Comprehensive Meta-Analysis software was utilized for this analysis. Our study included 30 case-control and retrospective studies published from 1994 to 2023 involving 20,699 patients from different regions in the Kingdom of Saudi Arabia. Various cities were included, such as Al-Ahsa, Najran, Riyadh, Arar, Mecca, al Khobar, Mushait, Tabuk, jazan, Hail City, Almadinah Almunawwarah, AL-Ahsa, and Abha; 27 reported outcomes related to IgG seroprevalence, revealing an overall toxoplasmosis prevalence of 27.5% in Saudi Arabia. Fifteen studies that measured IgM seroprevalence found an overall toxoplasmosis prevalence of 2.2%. Specifically for pregnant women, IgG seroprevalence was 28%. Among different age categories, the highest toxoplasmosis prevalence was observed in the group aged 31-45 years, reaching 32.5%, while the lowest prevalence was in the 10-20 years category at 19.3%. Regarding gravidity, the grand multi-gravida group exhibited the highest prevalence at 32.9%, with an upper limit of 47.8%. Furthermore, individuals who consumed freshwater demonstrated a higher incidence than those drinking bottled water, with respective prevalence rates of 33.5% and 29.4%. In conclusion, the prevalence of toxoplasmosis in Saudi Arabia is lower than the global average, with significant variations across different age groups, water sources, and dietary habits. Targeted educational programs and public health interventions are essential to raise awareness and reduce the risk of T. gondii infection. Future research should focus on improving study quality and exploring the broader implications of toxoplasmosis on public health in Saudi Arabia.
Collapse
Affiliation(s)
- Hassan N Moafa
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, 82912, Jazan, Saudi Arabia.
- Department of Quality and Patients Safety, Jazan University Hospital, Jazan University, 82913, Jazan, Saudi Arabia.
| | - Abdullah H Altemani
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, 47713, Tabuk, Saudi Arabia
| | - Ali Alaklabi
- King Saud Bin Abdulaziz University for Health Science, 11426, Riyadh, Saudi Arabia
- King Abdullah International Medical Research, 11481, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, 14611, Riyadh, Saudi Arabia
| | - Khalid Y Ghailan
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, 82912, Jazan, Saudi Arabia
| | - Alkhansa Alshabi
- Department of Medical Laboratory Technology, College of Nursing and Health Science, Jazan University, 82911, Jazan, Saudi Arabia
| | - Majid Ahmed Darraj
- Department of Internal Medicine, College of Medicine, Jazan University, 82913, Jazan, Saudi Arabia
| | | |
Collapse
|
7
|
Kent RS, Ward GE. Motility-dependent processes in Toxoplasma gondii tachyzoites and bradyzoites: same same but different. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615543. [PMID: 39386639 PMCID: PMC11463423 DOI: 10.1101/2024.09.28.615543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The tachyzoite stage of the apicomplexan parasite Toxoplasma gondii utilizes motility for multiple purposes during its lytic cycle, including host cell invasion, egress from infected cells, and migration to new uninfected host cells to repeat the process. Bradyzoite stage parasites, which establish a new infection in a naïve host, must also use motility to escape from the cysts that are ingested by the new host and then migrate to the gut wall, where they either invade cells of the intestinal epithelium or squeeze between these cells to infect the underlying connective tissue. We know very little about the motility of bradyzoites, which we analyze in detail here and compare to the well-characterized motility and motility-dependent processes of tachyzoites. Unexpectedly, bradyzoites were found to be as motile as tachyzoites in a 3D model extracellular matrix, and they showed increased invasion into and transmigration across certain cell types, consistent with their need to establish the infection in the gut. The motility of the two stages was inhibited to the same extent by cytochalasin D and KNX-002, compounds known to target the parasite's actomyosin-based motor. In contrast, other compounds that impact tachyzoite motility (tachyplegin and enhancer 5) have less of an effect on bradyzoites, and rapid bradyzoite egress from infected cells is not triggered by treatment with calcium ionophores, as it is with tachyzoites. The similarities and differences between these two life cycle stages highlight the need to characterize both tachyzoites and bradyzoites for a more complete understanding of the role of motility in the parasite life cycle and the effect that potential therapeutics targeting parasite motility will have on disease establishment and progression.
Collapse
Affiliation(s)
- Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
- 1041 BMSB, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
| |
Collapse
|
8
|
Bondarenko K, Limoge F, Pedram K, Gissot M, Young JC. Enzymatically enhanced ultrastructure expansion microscopy unlocks expansion of in vitro Toxoplasma gondii cysts. mSphere 2024; 9:e0032224. [PMID: 39189782 PMCID: PMC11423595 DOI: 10.1128/msphere.00322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked the detail of super-resolution images for a broader scientific circle, lowering the cost and entry skill requirements for the field. One of its branches, ultrastructure expansion microscopy (U-ExM), has become popular among research groups studying apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. Here, we show that the chronic cyst-forming stage of Toxoplasma, however, resists U-ExM expansion, impeding precise protein localization. We then solve the in vitro cyst's resistance to denaturation required for successful U-ExM. As the cyst's main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using the pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal cell culture without disrupting immunofluorescence analysis of parasite proteins. Using StcE-enhanced U-ExM, we clarified the localization of the GRA2 protein, which is important for establishing a normal cyst, observing GRA2 granules spanning across the CST1 cyst wall. The StcE-U-ExM protocol allows accurate pinpointing of proteins in the bradyzoite cyst, which will greatly facilitate investigation of the underlying biology of cyst formation and its vulnerabilities. IMPORTANCE Toxoplasma gondii is an intracellular parasite capable of establishing long-term chronic infection in nearly all warm-blooded animals. During the chronic stage, parasites encapsulate to form cysts predominantly in neurons and skeletal muscle. Current anti-Toxoplasma drugs do not eradicate chronic parasites, leaving a reservoir of infection. The cyst is critical for disease transmission and pathology, yet it is harder to study, with the function of many chronic-stage proteins still unknown. Ultrastructure expansion microscopy, a new method to overcome the light microscopy's diffraction limit by physically expanding the sample, allowed in-depth studies of acute Toxoplasma infection. We show that Toxoplasma cysts resist expansion using standard protocol, but an additional enzymatic digestion with the mucinase StcE allows full expansion. This protocol offers new avenues for examining the chronic stage, including precise spatial organization of cyst-specific proteins, linking these locations to morphological structures, and detailed investigations of components of the durable cyst wall.
Collapse
Affiliation(s)
- Kseniia Bondarenko
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Floriane Limoge
- U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Mathieu Gissot
- U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joanna C. Young
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Traversa D, Morelli S, Di Cesare A, Colombo M, Iorio R, Pagliaccia A, Catalano C, Paoletti B, Brueckmann R. Seropositivity for Toxoplasma gondii in cats with clinical signs and living in households with women of childbearing age. Vet Parasitol 2024; 332:110313. [PMID: 39278072 DOI: 10.1016/j.vetpar.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Toxoplasmosis caused by Toxoplasma gondii is a protozoal zoonosis with high sanitary risk for pregnant women and immunocompromised people. Felids, including domestic cats, are the only definitive hosts of T. gondii. They shed oocysts which, in the environment, become infectious for a wide range of animals, including humans, acting as intermediate hosts. This study evaluated the frequency of acute toxoplasmosis in domestic cats with compatible clinical signs and living in households with women of childbearing age. Individual serum samples were collected from 150 cats and analyzed for IgM and IgG against T. gondii. Statistical analyses were performed to evaluate associations between seropositivity and potential risk factors. Overall, 31 cats (20.7 %) were seropositive for anti-T. gondii antibodies, i.e. 9 (6.0 %) for IgM, 17 (11.3 %) for IgG and 5 (3.3 %) for both. The cats showed different combinations of clinical pictures. The following statistically significant associations were found: male sex and positivity for IgM and/or IgG (p=0.0248; OR= 0.3537; 95 % CI= 0.1528-0.8675), presence of 2 or more clinical signs and positivity to IgM only (p=0.0003; OR= +infinity; 95 % CI= 3.924 to +infinity), presence of either neurological signs (p=0.0025; OR= 13.30; 95 % CI= 3.409-61.39) or ocular signs (p=0.0228; OR= 5.835; 95 % CI= 1.631-22.37) and positivity to IgM only, presence of gastrointestinal signs and positivity to IgG only (p=0.0083; OR= 5.508; 95 % CI= 1.503-18.54). Male sex also resulted a possible risk factor in the binomial logistic regression (p= 0.011; OR= 3.336; 95 % CI= 1.131-8.44). These results indicate that cats living with women of childbearing age are at risk of infection with T. gondii. The presence of certain clinical signs can be helpful in identifying recent and/or current infections using laboratory analyses. Awareness on toxoplasmosis should be kept high to protect animal and public health.
Collapse
Affiliation(s)
- Donato Traversa
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy.
| | - Simone Morelli
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Angela Di Cesare
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Mariasole Colombo
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Raffaella Iorio
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | | | - Cecilia Catalano
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Barbara Paoletti
- Department of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Roberto Brueckmann
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck 23560, Germany
| |
Collapse
|
10
|
Xia J, Fu Y, Huang W, Uddin T, Sibley LD. Constitutive upregulation of transcription factors underlies permissive bradyzoite differentiation in a natural isolate of Toxoplasma gondii. mBio 2024; 15:e0064124. [PMID: 39150246 PMCID: PMC11389365 DOI: 10.1128/mbio.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
Toxoplasma gondii bradyzoites play a critical role in pathology due to their long-term persistence in intermediate hosts and their potential to reactivate, resulting in severe diseases in immunocompromised individuals. Currently, there is no effective treatment for eliminating bradyzoites. Hence, better in vitro models of T. gondii bradyzoite development would facilitate identification of therapeutic targets for bradyzoites. Herein, we characterized a natural isolate of T. gondii, called Tg68, which showed slower in vitro replication of tachyzoites, and permissive bradyzoite development under stress conditions in vitro. Transcriptional analysis revealed constitutive expression in Tg68 tachyzoites of the key regulators of bradyzoite development including BFD1, BFD2, and several AP2 factors. Consistent with this finding, Tg68 tachyzoites expressed high levels of bradyzoite-specific genes including BAG1, ENO1, and LDH2. Moreover, after stress-induced differentiation, Tg68 bradyzoites exhibited gene expression profiles of mature bradyzoites, even at early time points. These data suggest that Tg68 tachyzoites exist in a pre-bradyzoite stage primed to readily develop into mature bradyzoites under stress conditions in vitro. Tg68 presents a novel model for differentiation in vitro that will serve as a useful tool for the investigation of bradyzoite biology and the development of therapeutics. IMPORTANCE Toxoplasma gondii is a widespread protozoan that chronically infects ~30% of the world's population. T. gondii can differentiate between the fast-growing life stage that causes acute infection and the slow-growing stage that persists in the host for extended periods of time. The slow-growing stage cannot be eliminated by the host immune response or currently known antiparasitic drugs. Studies on the slow-growing stage have been limited due to the limitations of in vivo experiments and the challenges of in vitro manipulation. Here, we characterize a natural isolate of T. gondii, which constitutively expresses factors that drive development and that is permissive to convert to the slow-growing stage under stress conditions in vitro. The strain presents a novel in vitro model for studying the chronic phase of toxoplasmosis and identifying new therapeutic treatments for chronic infections.
Collapse
Affiliation(s)
- Jing Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Taher Uddin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Liyanage KLDTD, Amery-Gale J, Uboldi AD, Adriaanse K, Firestone SM, Tonkin CJ, Jabbar A, Hufschmid J. Seroprevalence and risk factors for Toxoplasma gondii exposure in Australian feral and stray cats using an in-house modified agglutination test. Vet Parasitol 2024; 332:110306. [PMID: 39265207 DOI: 10.1016/j.vetpar.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Toxoplasma gondii is a globally distributed zoonotic protist, capable of infecting all warm-blooded animals. In Australia, cats (Felis catus) are the only definitive host capable of spreading T. gondii infection via oocysts. Free-roaming cats are widespread in Australia and can play a central role in the ecology of T. gondii. Therefore, understanding the epidemiology of this parasite in stray and feral cats is essential to understanding the potential risk of infection in animals and humans. Due to a lack of easily accessible commercial kits, an in-house modified agglutination test (MAT) was established to test for IgG antibodies against T. gondii, using cell culture-derived T. gondii tachyzoites, and compared with a commercial MAT. A total of 552 serum samples collected during 2018 - 2021 from stray (n = 456) and feral cats (n = 90) (samples with missing data n = 6) from four Australian states, representing different age groups of both sexes, were screened for antibodies against T. gondii. Risk factors for T. gondii infection were assessed using multivariable logistic regression analysis. The in-house MAT had excellent agreement with the commercial MAT and provided a reliable and economical serological tool for T. gondii screening in animals. The overall observed seroprevalence for T. gondii in cats was 40.4 % (223/552). Bodyweight (as a proxy for age), geographical location, season and whether cats were feral or stray, were factors associated with T. gondii seropositivity in cats. Sex was not found to be a risk factor for T. gondii infection in feral and stray cats. This study shows that Australian stray and feral cats have a high T. gondii seroprevalence, which may translate to significant health impacts for wildlife species, livestock and the public.
Collapse
Affiliation(s)
- K L D Tharaka D Liyanage
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria 3030, Australia.
| | - Jemima Amery-Gale
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro D Uboldi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Simon M Firestone
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria 3030, Australia; Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria 3030, Australia
| |
Collapse
|
12
|
Miguel-Vicedo M, Cabello P, Ortega-Navas MC, González-Barrio D, Fuentes I. Prevalence of Human Toxoplasmosis in Spain Throughout the Three Last Decades (1993-2023): A Systematic Review and Meta-analysis. J Epidemiol Glob Health 2024; 14:621-637. [PMID: 38864976 PMCID: PMC11444046 DOI: 10.1007/s44197-024-00258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Humans are infected by Toxoplasma gondii worldwide and its consequences may seriously affect an immune deprived population such as HIV and transplanted patients or pregnant women and foetuses. A deep knowledge of toxoplasmosis seroprevalence in Spain is needed in order to better shape health policies and educational programs. We present the results of the first systematic review and meta-analysis on the human prevalence for this disease in Spain. Databases (PubMed, Web of Science, SCOPUS and Teseo) were searched for relevant studies that were published between January 1993 and December 2023 and all population-based cross-sectional and longitudinal studies reporting the human seroprevalence in Spain were revised. Within the population analysed, our targeted groups were immunocompetent population, pregnant women and immunocompromised patients. Among 572 studies and 35 doctoral theses retrieved, 15 studies and three doctoral theses were included in the meta-analysis. A random effects model was used for the meta-analyses due to the high heterogeneity found between studies (I2: 99.97), since it is a statistically conservative model, in addition to allowing better external validity. The global pooled seroprevalence was 32.3% (95% CI 28.7-36.2%). Most of the studies carried out were in pregnant women and the meta-analysis reported that the pooled seroprevalence of toxoplasmosis in pregnant women in Spain was 24.4% (24,737/85,703, 95% CI 21.2-28.0%), based on the random effects model. It is recommended to continue monitoring the seroprevalence status of T. gondii in order to obtain essential guidelines for the prevention and control of the infection in the population.
Collapse
Affiliation(s)
- Mariola Miguel-Vicedo
- Toxoplasmosis and Protozoosis Unit, Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Department of Educational Theory and Social Pedagogy, National University of Distance Education (UNED) Madrid, Madrid, Spain
- Ph.D. Program in Biomedical Science and Public Health. IMIENS, National University of Distance Education (UNED) Madrid, Madrid, Spain
| | - Paula Cabello
- International University of Valencia-VIU, 46002, Valencia, Spain
| | - M Carmen Ortega-Navas
- Department of Educational Theory and Social Pedagogy, National University of Distance Education (UNED) Madrid, Madrid, Spain
| | - David González-Barrio
- Toxoplasmosis and Protozoosis Unit, Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.
| | - Isabel Fuentes
- Toxoplasmosis and Protozoosis Unit, Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
13
|
Zorilla R, Ching LL, Elisara T, Kramer K, Nerurkar VR. Re-Emerging, Under-Recognized Zoonotic, and Neglected Tropical Diseases in Hawai'i. Jpn J Infect Dis 2024; 77:187-200. [PMID: 38825457 DOI: 10.7883/yoken.jjid.2023.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hawai'i, the United States' most western geographic state in the Pacific, lies between the North and South American continents and the Indo-Pacific regions, including Japan. The tropical environmental conditions of the Hawaiian Islands provide favorable ecosystems for various infectious pathogens, their vectors, and reservoirs. This creates an environment conducive to the transmission of zoonotic diseases affecting both humans and animals. Hawai'i has experienced an increase in dengue, leptospirosis, and murine typhus outbreaks. Furthermore, toxoplasmosis and neuroangiostrongyliasis cases remain prevalent throughout the state, and the putative presence of autochthonous Zika cases identified in a retrospective study may be of national public health concern. Understanding the factors that affect the transmission and distribution of zoonoses is necessary to identify at-risk locations and populations. The One Health approach seeks to understand, report, and interpret these factors and requires collaboration between private and governmental institutions. One Health should focus on neglected tropical diseases (NTD) and prioritize development of interventions to control and prevent the transmission of diseases that spread between animals and humans. This review focuses on the epidemiological and clinical characteristics of under-recognized zoonotic and NTD affecting Hawai'i, including leptospirosis, murine typhus, neuroangiostrongyliasis, toxoplasmosis, dengue, and Zika.
Collapse
Affiliation(s)
- Rodson Zorilla
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Pacific Center for Emerging Infectious Diseases, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Minority Health Research Training Program, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
| | - Lauren Lei Ching
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Pacific Center for Emerging Infectious Diseases, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
| | - Tiana Elisara
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Pacific Center for Emerging Infectious Diseases, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Minority Health Research Training Program, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
| | - Kenton Kramer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
| | - Vivek Ramchandra Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Pacific Center for Emerging Infectious Diseases, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
- Minority Health Research Training Program, John A Burns School of Medicine, University of Hawai'i at Mānoa, USA
| |
Collapse
|
14
|
Mazzone F, Klischan MKT, Greb J, Smits SHJ, Pietruszka J, Pfeffer K. Synthesis and In vitro evaluation of bichalcones as novel anti-toxoplasma agents. Front Chem 2024; 12:1406307. [PMID: 39104777 PMCID: PMC11298430 DOI: 10.3389/fchem.2024.1406307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an apicomplexan parasite that infects approximately a third of the world's human population. This disease can cause serious complications during pregnancy and can be fatal in immunocompromised hosts. The current treatment options for toxoplasmosis face several limitations. Thus, to address the urgent medical need for the discovery of novel anti-toxoplasma potential drug candidates, our research focused on exploring a series of monomeric and dimeric chalcones, polyphenolic molecules belonging to the class of flavonoids. Chalcones 1aa-1bg and axially chiral A-A'-connected bichalcones 2aa-2bg were evaluated in vitro against the proliferation of the parasite in a cell-based assay. A comparison of the efficacy demonstrated that, in several cases, bichalcones exhibited increased bioactivity compared to their corresponding monomeric counterparts. Among these compounds, a bichalcone with a phenyl substituent and a methyl moiety 2ab showed the most potent and selective inhibitory activity in the nanomolar range. Both enantiomers of this bichalcone were synthesized using an axially chiral biphenol building block. The biaryl bond was forged using Suzuki cross-coupling in water under micellar catalysis conditions. Separation of the atropisomers of this biphenol building block was conducted by chiral HPLC on a preparative scale. The biological evaluation of the enantiomers revealed that the (R a)-enantiomer (R a)-2ab is the eutomer. These studies suggest that bichalcones may be important drug candidates for further in vivo evaluations for the discovery of anti-toxoplasma drugs.
Collapse
Affiliation(s)
- Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Moritz K. T. Klischan
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Julian Greb
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Deng M, Gao F, Liu T, Zhan W, Quan J, Zhao Z, Wu X, Zhong Z, Zheng H, Chu J. T. gondii excretory proteins promote the osteogenic differentiation of human bone mesenchymal stem cells via the BMP/Smad signaling pathway. J Orthop Surg Res 2024; 19:386. [PMID: 38951811 PMCID: PMC11218376 DOI: 10.1186/s13018-024-04839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.
Collapse
Affiliation(s)
- Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuolan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiaqi Chu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
17
|
Uzelac A, Klun I, Djurković-Djaković O. Early immune response to Toxoplasma gondii lineage III isolates of different virulence phenotype. Front Cell Infect Microbiol 2024; 14:1414067. [PMID: 38912206 PMCID: PMC11190176 DOI: 10.3389/fcimb.2024.1414067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Toxoplasma gondii is an intracellular parasite of importance to human and veterinary health. The structure and diversity of the genotype population of T. gondii varies considerably with respect to geography, but three lineages, type I, II and III, are distributed globally. Lineage III genotypes are the least well characterized in terms of biology, host immunity and virulence. Once a host is infected with T.gondii, innate immune mechanisms are engaged to reduce the parasite burden in tissues and create a pro-inflammatory environment in which the TH1 response develops to ensure survival. This study investigated the early cellular immune response of Swiss-Webster mice post intraperitoneal infection with 10 tachyzoites of four distinct non-clonal genotypes of lineage III and a local isolate of ToxoDB#1. The virulence phenotype, cumulative mortality (CM) and allele profiles of ROP5, ROP16, ROP18 and GRA15 were published previously. Methods Parasite dissemination in different tissues was analyzed by real-time PCR and relative expression levels of IFNγ, IL12-p40, IL-10 and TBX21 in the cervical lymph nodes (CLN), brain and spleen were calculated using the ΔΔCt method. Stage conversion was determined by detection of the BAG1 transcript in the brain. Results Tissue dissemination depends on the virulence phenotype but not CM, while the TBX21 and cytokine levels and kinetics correlate better with CM than virulence phenotype. The earliest detection of BAG1 was seven days post infection. Only infection with the genotype of high CM (69.4%) was associated with high T-bet levels in the CLN 24 h and high systemic IFNγ expression which was sustained over the first week, while infection with genotypes of lower CM (38.8%, 10.7% and 6.8%) is characterized by down-regulation and/or low systemic levels of IFNγ. The response intensity, as assessed by cytokine levels, to the genotype of high CM wanes over time, while it increases gradually to genotypes of lower CM. Discussion The results point to the conclusion that the immune response is not correlated with the virulence phenotype and/or allele profile, but an early onset, intense pro-inflammatory response is characteristic of genotypes with high CM. Additionally, high IFNγ level in the brain may hamper stage conversion.
Collapse
Affiliation(s)
- Aleksandra Uzelac
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
18
|
Ullmann J, Kodym P, Flegr J, Berenová D, Jirsová S, Kaňková Š. Oral Sex as a Potential Route for Toxoplasma Gondii Transmission: Experiment with Human Semen and Laboratory Mice Model. Acta Parasitol 2024; 69:1314-1318. [PMID: 38662074 DOI: 10.1007/s11686-024-00848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Toxoplasma gondii is one of the most widespread parasites in the human population globally. Several modes of its transmission have been proposed: some are well-researched and confirmed, others remain unconfirmed. One unconfirmed hypothesis pertains to potential transmission of Toxoplasma gondii via oral sex (fellatio) in humans. A recent study found tissue cysts in the semen of men with latent toxoplasmosis. Therefore, we aimed to test the hypothesis of Toxoplasma gondii transmission through oral sex experimentally. METHODS Eighty-two laboratory mice were orally administered semen samples from 41 men with latent toxoplasmosis. These semen samples were examined for the presence of Toxoplasma gondii DNA using PCR. RESULTS We detected Toxoplasma gondii DNA in three of the 41 semen samples from men with latent toxoplasmosis. Oral administration of semen samples to laboratory mice did not result in parasite transmission. CONCLUSION We have not demonstrated the transmission of Toxoplasma to mice by oral exposure to semen from infected men. While this does not conclusively rule out the possibility of such transmission in humans, the results suggest that, if it does occur, this mode of transmission is likely infrequent.
Collapse
Affiliation(s)
- Jana Ullmann
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Petr Kodym
- National Reference Laboratory for Toxoplasmosis, National Institute of Public Health, Prague, Czech Republic
| | - Jaroslav Flegr
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Berenová
- National Reference Laboratory for Toxoplasmosis, National Institute of Public Health, Prague, Czech Republic
| | - Simona Jirsová
- Centre for Assisted Reproduction, Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Hasan MF, Harun AB, Hossain D, Bristi SZT, Uddin AHMM, Karim MR. Toxoplasmosis in animals and humans: a neglected zoonotic disease in Bangladesh. J Parasit Dis 2024; 48:189-200. [PMID: 38840887 PMCID: PMC11147975 DOI: 10.1007/s12639-024-01664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/21/2024] [Indexed: 06/07/2024] Open
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, is a zoonotic disease that affects a wide range of warm-blooded animals, including humans. The parasite undergoes both sexual and asexual reproduction in intermediate hosts (humans and animals) and definitive hosts (cats). Transmission in humans occurs through consuming oocyst-contaminated water, fruits, vegetables, and raw or undercooked meats. In Bangladesh, several factors contribute to an increased risk of contracting toxoplasmosis. The parasite is reported to cause diseases among livestock such as goats and sheep in this country, and it has also been associated with some human illnesses. Toxoplasmosis prevalence varies significantly worldwide, with developing countries like Bangladesh experiencing higher rates. Diagnostic methods include both conventional non-DNA-based tests and molecular detection techniques, while treatment options involve using antiparasitic drugs like sulfadiazine and pyrimethamine. To control toxoplasmosis, essential steps include improving sanitation, promoting safe food handling, and educating the public about risks related to cat ownership and undercooked meat consumption. Implementing prenatal screening and treatment is also important. With the growing popularity of pet ownership in urban areas, it becomes essential to emphasize the veterinary and public health significance of toxoplasmosis in Bangladesh. This article comprehensively reviews various aspects of toxoplasmosis, with a specific focus on the situation in Bangladesh.
Collapse
Affiliation(s)
- Md. Farhan Hasan
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Anas Bin Harun
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Delower Hossain
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Sabiha Zarin Tasnim Bristi
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225 Bangladesh
| | - A. H. M. Musleh Uddin
- Department of Surgery and Theriogenology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| | - Md Robiul Karim
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| |
Collapse
|
20
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
Jiang Y, Shi Y, Xue Y, Hu D, Song X. AP2XII-1 and AP2XI-2 Suppress Schizogony Gene Expression in Toxoplasma gondii. Int J Mol Sci 2024; 25:5527. [PMID: 38791568 PMCID: PMC11122372 DOI: 10.3390/ijms25105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Toxoplasma gondii is an intracellular parasite that is important in medicine and veterinary science and undergoes distinct developmental transitions in its intermediate and definitive hosts. The switch between stages of T. gondii is meticulously regulated by a variety of factors. Previous studies have explored the role of the microrchidia (MORC) protein complex as a transcriptional suppressor of sexual commitment. By utilizing immunoprecipitation and mass spectrometry, constituents of this protein complex have been identified, including MORC, Histone Deacetylase 3 (HDAC3), and several ApiAP2 transcription factors. Conditional knockout of MORC or inhibition of HDAC3 results in upregulation of a set of genes associated with schizogony and sexual stages in T. gondii tachyzoites. Here, our focus extends to two primary ApiAP2s (AP2XII-1 and AP2XI-2), demonstrating their significant impact on the fitness of asexual tachyzoites and their target genes. Notably, the targeted disruption of AP2XII-1 and AP2XI-2 resulted in a profound alteration in merozoite-specific genes targeted by the MORC-HDAC3 complex. Additionally, considerable overlap was observed in downstream gene profiles between AP2XII-1 and AP2XI-2, with AP2XII-1 specifically binding to a subset of ApiAP2 transcription factors, including AP2XI-2. These findings reveal an intricate cascade of ApiAP2 regulatory networks involved in T. gondii schizogony development, orchestrated by AP2XII-1 and AP2XI-2. This study provides valuable insights into the transcriptional regulation of T. gondii growth and development, shedding light on the intricate life cycle of this parasitic pathogen.
Collapse
Affiliation(s)
- Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.J.); (Y.X.); (D.H.)
| | - Yuehong Shi
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China;
| | - Yingying Xue
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.J.); (Y.X.); (D.H.)
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.J.); (Y.X.); (D.H.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China;
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.J.); (Y.X.); (D.H.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China;
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
22
|
Sun M, Tang T, He K, Long S. TBC9, an essential TBC-domain protein, regulates early vesicular transport and IMC formation in Toxoplasma gondii. Commun Biol 2024; 7:596. [PMID: 38762629 PMCID: PMC11102469 DOI: 10.1038/s42003-024-06310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.
Collapse
Affiliation(s)
- Ming Sun
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tao Tang
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Opsteegh M, Cuperus T, van Buuren C, Dam-Deisz C, van Solt-Smits C, Verhaegen B, Joeres M, Schares G, Koudela B, Egberts F, Verkleij T, van der Giessen J, Wisselink HJ. In vitro assay to determine inactivation of Toxoplasma gondii in meat samples. Int J Food Microbiol 2024; 416:110643. [PMID: 38452660 DOI: 10.1016/j.ijfoodmicro.2024.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Consumption of raw and undercooked meat is considered as an important source of Toxoplasma gondii infections. However, most non-heated meat products contain salt and additives, which affect T. gondii viability. It was our aim to develop an in vitro method to substitute the mouse bioassay for determining the effect of salting on T. gondii viability. Two sheep were experimentally infected by oral inoculation with 6.5 × 104 oocysts. Grinded meat samples of 50 g were prepared from heart, diaphragm, and four meat cuts. Also, pooled meat samples were either kept untreated (positive control), frozen (negative control) or supplemented with 0.6 %, 0.9 %, 1.2 % or 2.7 % NaCl. All samples were digested in pepsin-HCl solution, and digests were inoculated in duplicate onto monolayers of RK13 (a rabbit kidney cell line). Cells were maintained for up to four weeks and parasite growth was monitored by assessing Cq-values using the T. gondii qPCR on cell culture supernatant in intervals of one week and ΔCq-values determined. Additionally, 500 μL of each digest from the individual meat cuts, heart and diaphragm were inoculated in duplicate in IFNγ KO mice. Both sheep developed an antibody response and tissue samples contained similar concentrations of T. gondii DNA. From all untreated meat samples positive ΔCq-values were obtained in the in vitro assay, indicating presence and multiplication of viable parasites. This was in line with the mouse bioassay, with the exception of a negative mouse bioassay on one heart sample. Samples supplemented with 0.6 %-1.2 % NaCl showed positive ΔCq-values over time. The frozen sample and the sample supplemented with 2.7 % NaCl remained qPCR positive but with high Cq-values, which indicated no growth. In conclusion, the in vitro method has successfully been used to detect viable T. gondii in tissues of experimentally infected sheep, and a clear difference in T. gondii viability was observed between the samples supplemented with 2.7 % NaCl and those with 1.2 % NaCl or less.
Collapse
Affiliation(s)
- Marieke Opsteegh
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Tryntsje Cuperus
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Chesley van Buuren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Cecile Dam-Deisz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research, Wageningen University and Research, P.O. Box 65, 8200 AB Lelystad, the Netherlands.
| | - Bavo Verhaegen
- Sciensano, Service of Foodborne Pathogens, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium.
| | - Maike Joeres
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Břetislav Koudela
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242 Brno, Czech Republic.
| | - Frans Egberts
- Dutch Meat Products Association (VNV), P.O. Box 61, 2700 AB Zoetermeer, the Netherlands.
| | - Theo Verkleij
- Wageningen Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Joke van der Giessen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Henk J Wisselink
- Wageningen Bioveterinary Research, Wageningen University and Research, P.O. Box 65, 8200 AB Lelystad, the Netherlands.
| |
Collapse
|
24
|
Bowater RO, Gummow B, Mackie T, Thompson AR, Hayes DA, Goudkamp K, Taylor JD. Toxoplasmosis epidemic in a population of urbanised allied rock-wallabies (Petrogale assimilis) on Magnetic Island (Yunbenun), North Queensland. Aust Vet J 2024; 102:256-263. [PMID: 38361144 DOI: 10.1111/avj.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/26/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
A mortality event involving 23 allied rock-wallabies (Petrogale assimilis) displaying neurological signs and sudden death occurred in late April to May 2021 in a suburban residential area directly adjacent to Magnetic Island National Park, on Magnetic Island (Yunbenun), North Queensland, Australia. Three allied rock-wallabies were submitted for necropsy, and in all three cases, the cause of death was disseminated toxoplasmosis. This mortality event was unusual because only a small, localised population of native wallabies inhabiting a periurban area on a tropical island in the Great Barrier Reef World Heritage Area were affected. A disease investigation determined the outbreak was likely linked to the presence of free-ranging feral and domesticated cats inhabiting the area. There were no significant deaths of other wallabies or wildlife in the same or other parts of Magnetic Island (Yunbenun) at the time of the outbreak. This is the first reported case of toxoplasmosis in allied rock-wallabies (Petrogale assimilis), and this investigation highlights the importance of protecting native wildlife species from an infectious and potentially fatal parasitic disease.
Collapse
Affiliation(s)
- R O Bowater
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Road, Townsville, 4811, Queensland, Australia
| | - B Gummow
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Road, Townsville, 4811, Queensland, Australia
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - T Mackie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Road, Townsville, 4811, Queensland, Australia
| | - A R Thompson
- Department of Primary Industries, Parks, Water and Environment, Animal Health Laboratory, 165 Westbury Road, Prospect, Launceston, Tasmania, 7250, Australia
| | - D A Hayes
- Launceston General Hospital, Launceston, Tasmania, 7250, Australia
| | - K Goudkamp
- Nelly Bay, Magnetic Island, Queensland, 4819, Australia
| | - J D Taylor
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Road, Townsville, 4811, Queensland, Australia
| |
Collapse
|
25
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
26
|
Yang X, Yang J, Lyu M, Li Y, Liu A, Shen B. The α subunit of AMP-activated protein kinase is critical for the metabolic success and tachyzoite proliferation of Toxoplasma gondii. Microb Biotechnol 2024; 17:e14455. [PMID: 38635138 PMCID: PMC11025617 DOI: 10.1111/1751-7915.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
Toxoplasma gondii is a zoonotic parasite infecting humans and nearly all warm-blooded animals. Successful parasitism in diverse hosts at various developmental stages requires the parasites to fine tune their metabolism according to environmental cues and the parasite's needs. By manipulating the β and γ subunits, we have previously shown that AMP-activated protein kinase (AMPK) has critical roles in regulating the metabolic and developmental programmes. However, the biological functions of the α catalytic subunit have not been established. T. gondii encodes a canonical AMPKα, as well as a KIN kinase whose kinase domain has high sequence similarities to those of classic AMPKα proteins. Here, we found that TgKIN is dispensable for tachyzoite growth, whereas TgAMPKα is essential. Depletion of TgAMPKα expression resulted in decreased ATP levels and reduced metabolic flux in glycolysis and the tricarboxylic acid cycle, confirming that TgAMPK is involved in metabolic regulation and energy homeostasis in the parasite. Sequential truncations at the C-terminus found an α-helix that is key for the function of TgAMPKα. The amino acid sequences of this α-helix are not conserved among various AMPKα proteins, likely because it is involved in interactions with TgAMPKβ, which only have limited sequence similarities to AMPKβ in other eukaryotes. The essential role of the less conserved C-terminus of TgAMPKα provides opportunities for parasite specific drug designs targeting TgAMPKα.
Collapse
Affiliation(s)
- Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Research Center for Infectious Diseases, Department of Pathogen Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Hongshan LaboratoryWuhanHubei ProvinceChina
- Key Laboratory of Preventive Medicine in Hubei ProvinceHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenGuangdong ProvinceChina
| |
Collapse
|
27
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Brown IG, Yin B, Magaj MM, Holness NK, Smiley J, Redemann S, Ewald SE. iNOS is necessary for GBP-mediated T. gondii clearance in murine macrophages via vacuole nitration and intravacuolar network collapse. Nat Commun 2024; 15:2698. [PMID: 38538595 PMCID: PMC10973475 DOI: 10.1038/s41467-024-46790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samantha L Lempke
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jan C Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Isabel G Brown
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nadia K Holness
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
28
|
Barreto LE, Macena LA, de Braga DTO, Silva NS, da Silveira BC, Rocha DDS, Albuquerque GR. Detection of Toxoplasma gondii in artisanal salted meat products sold in street markets of the Ilhéus-Itabuna microregion. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e020223. [PMID: 38511819 PMCID: PMC10954249 DOI: 10.1590/s1984-29612024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
This study aimed to detect Toxoplasma gondii in artisanal salted meat products sold in street markets in the Ilhéus-Itabuna microregion and to assess the salt concentration used in their preparation and its influence on the parasite's viability. A total of 125 samples of various artisanal meat products sold in street markets located in the Ilhéus-Itabuna microregion were collected during 2021. Serological analysis using indirect hemagglutination (HAI) and molecular analysis (PCR) were performed on these samples to detect the presence of the parasite. Möhr's method was utilized to determine the sodium chloride concentration in the samples. Of all samples, 21 were subjected to a bioassay in albino mice to verify the viability of possible tissue cysts. Among the 125 meat products, 10 (8%) tested positive in the serological analysis including four cured pork sausages, five beef sun-dried meats, and one mixed fresh sausage (pork and chicken). None of 125 samples tested positive in the molecular analysis. On bioassay, all mice tested negative for the presence of the parasite. The NaCl concentration in the positive samples ranged from 2.9% to 8%. The results demonstrated that the salt concentration in the collected samples was sufficient to inactivate the parasite T. gondii.
Collapse
Affiliation(s)
- Luane Etienne Barreto
- Programa de Pós-graduação em Ciência Animal, Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brasil
| | - Larissa Araújo Macena
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brasil
| | | | - Nicolli Souza Silva
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brasil
| | - Brunno Cardoso da Silveira
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brasil
| | - Daniele de Santana Rocha
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brasil
| | - George Rêgo Albuquerque
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brasil
| |
Collapse
|
29
|
Xia J, Fu Y, Huang W, Sibley LD. Constitutive upregulation of transcription factors underlies permissive bradyzoite differentiation in a natural isolate of Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582596. [PMID: 38464000 PMCID: PMC10925318 DOI: 10.1101/2024.02.28.582596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Toxoplasma gondii bradyzoites play a critical role in pathology due to their long-term persistence in intermediate hosts and their potential to reactivate, resulting in severe diseases in immunocompromised individuals. Currently there is no effective treatment for eliminating bradyzoites. Hence, better in vitro models of T. gondii cyst development would facilitate identification of therapeutic targets for bradyzoites. Herein we characterized a natural isolate of T. gondii, called Tg68, which showed slower in vitro replication of tachyzoites, and permissive bradyzoite development under stress conditions in vitro. Transcriptional analysis revealed constitutive expression in Tg68 tachyzoites of the key regulators of bradyzoite development including BFD1, BFD2, and several AP2 factors. Consistent with this finding, Tg68 tachyzoites expressed high levels of bradyzoite-specific genes including BAG1, ENO1, and LDH2. Moreover, after stress induced differentiation, Tg68 bradyzoites exhibited gene expression profiles of mature bradyzoites, even at early time points. These data suggest that Tg68 tachyzoites exist in a pre-bradyzoite stage primed to readily develop into mature bradyzoites under stress conditions in vitro. Tg68 presents a novel model for differentiation in vitro that will serve as a useful tool for investigation of bradyzoite biology and development of therapeutics.
Collapse
Affiliation(s)
- Jing Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
30
|
Wang JL, Li TT, Zhang NZ, Wang M, Sun LX, Zhang ZW, Fu BQ, Elsheikha HM, Zhu XQ. The transcription factor AP2XI-2 is a key negative regulator of Toxoplasma gondii merogony. Nat Commun 2024; 15:793. [PMID: 38278808 PMCID: PMC10817966 DOI: 10.1038/s41467-024-44967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Sexual development in Toxoplasma gondii is a multistep process that culminates in the production of oocysts, constituting approximately 50% of human infections. However, the molecular mechanisms governing sexual commitment in this parasite remain poorly understood. Here, we demonstrate that the transcription factors AP2XI-2 and AP2XII-1 act as negative regulators, suppressing merozoite-primed pre-sexual commitment during asexual development. Depletion of AP2XI-2 in type II Pru strain induces merogony and production of mature merozoites in an alkaline medium but not in a neutral medium. In contrast, AP2XII-1-depleted Pru strain undergoes several rounds of merogony and produces merozoites in a neutral medium, with more pronounced effects observed under alkaline conditions. Additionally, we identified two additional AP2XI-2-interacting proteins involved in repressing merozoite programming. These findings underscore the intricate regulation of pre-sexual commitment by a network of factors and suggest that AP2XI-2 or AP2XII-1-depleted Pru parasites can serve as a model for studying merogony in vitro.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
31
|
Yao Y, Shi T, Shu P, Zhang Y, Gu H. Toxoplasma gondii infection and brain inflammation: A two-sample mendelian randomization analysis. Heliyon 2024; 10:e24228. [PMID: 38234880 PMCID: PMC10792577 DOI: 10.1016/j.heliyon.2024.e24228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Background Toxoplasma gondii is an opportunistic parasitic protozoan that can cause highly fatal toxoplasmic encephalitis when the host immune system is compromised. However, the transition from chronic to acute infection remains poorly understood. In this study, we conducted a 180-day observation of tissue damage and inflammation in the brains of mice infected with T. gondii. Subsequently, we investigated the inflammatory factors that T. gondii infection may alter using two-sample Mendelian randomization (MR) analysis. Methods We first established a mouse model of T. gondii infection. Subsequently, the mice were euthanized, the brain tissue collected, and immunohistochemistry and hematoxylin and eosin staining performed to observe tissue damage and inflammatory conditions at various time points. Our study also included a published large-scale genome-wide association study meta-analysis that encompassed the circulating concentrations of 41 cytokines. This dataset included 8293 individuals from three independent population cohorts in Finland. Genetic association data for T. gondii were sourced from the Integrative Epidemiology Unit and European Bioinformatics Institute datasets, which included 5010 and 559 individuals of European ancestry, respectively. To assess the causal relationship between T. gondii infection and inflammatory biomarkers, we applied a two-sample MR. Results Inflammation and damage resulting from T. gondii infection varied among the distinct regions of the mouse brain. Based on the MR analysis results, three inflammatory biomarkers were chemically assigned to Chemokines and Others, including IP10 (interferon gamma inducible protein-10), MCP1 (monocyte chemoattractant protein-1), and TRAIL (TNF-related apoptosis-inducing ligand). Conclusion Our study commenced with the assessment of tissue damage and progression of inflammation in distinct regions of the mouse brain after T. gondii infection. Subsequently, using MR analysis, we detected potential alterations in inflammatory factors associated with this infection. These findings offer valuable insights into the mechanisms underlying toxoplasmic encephalitis and suggest directions for the prevention and treatment of T. gondii infections.
Collapse
Affiliation(s)
- Yong Yao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- College of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Taiyu Shi
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Panyin Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Yixin Zhang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Maus D, Curtis B, Warschkau D, Betancourt ED, Seeber F, Blume M. Generation of Mature Toxoplasma gondii Bradyzoites in Human Immortalized Myogenic KD3 Cells. Bio Protoc 2024; 14:e4916. [PMID: 38213326 PMCID: PMC10777055 DOI: 10.21769/bioprotoc.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite and one of the most successful foodborne pathogens. Upon infection and dissemination, the parasites convert into the persisting, chronic form called bradyzoites, which reside within cysts in muscle and brain tissue. Despite their importance, bradyzoites remain difficult to investigate directly, owing to limited in vitro models. In addition, the need for new drugs targeting the chronic stage, which is underlined by the lack of eradicating treatment options, remains difficult to address since in vitro access to drug-tolerant bradyzoites remains limited. We recently published the use of a human myotube-based bradyzoite cell culture system and demonstrated its applicability to investigate the biology of T. gondii bradyzoites. Encysted parasites can be functionally matured during long-term cultivation in these immortalized cells and possess many in vivo-like features, including pepsin resistance, oral infectivity, and antifolate resistance. In addition, the system is scalable, enabling experimental approaches that rely on large numbers, such as metabolomics. In short, we detail the cultivation of terminally differentiated human myotubes and their subsequent infection with tachyzoites, which then mature to encysted bradyzoites within four weeks at ambient CO2 levels. We also discuss critical aspects of the procedure and suggest improvements. Key features • This protocol describes a scalable human myotube-based in vitro system capable of generating encysted bradyzoites featuring in vivo hallmarks. • Bradyzoite differentiation is facilitated through CO2 depletion but without additional artificial stress factors like alkaline pH. • Functional maturation occurs over four weeks.
Collapse
Affiliation(s)
- Deborah Maus
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
| | - Blake Curtis
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
- Research School of Chemistry, The Australian National University, Canberra, Australia
| | - David Warschkau
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Estefanía Delgado Betancourt
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Seeber
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Martin Blume
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
33
|
Antunes AV, Shahinas M, Swale C, Farhat DC, Ramakrishnan C, Bruley C, Cannella D, Robert MG, Corrao C, Couté Y, Hehl AB, Bougdour A, Coppens I, Hakimi MA. In vitro production of cat-restricted Toxoplasma pre-sexual stages. Nature 2024; 625:366-376. [PMID: 38093015 PMCID: PMC10781626 DOI: 10.1038/s41586-023-06821-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Sexual reproduction of Toxoplasma gondii, confined to the felid gut, remains largely uncharted owing to ethical concerns regarding the use of cats as model organisms. Chromatin modifiers dictate the developmental fate of the parasite during its multistage life cycle, but their targeting to stage-specific cistromes is poorly described1,2. Here we found that the transcription factors AP2XII-1 and AP2XI-2 operate during the tachyzoite stage, a hallmark of acute toxoplasmosis, to silence genes necessary for merozoites, a developmental stage critical for subsequent sexual commitment and transmission to the next host, including humans. Their conditional and simultaneous depletion leads to a marked change in the transcriptional program, promoting a full transition from tachyzoites to merozoites. These in vitro-cultured pre-gametes have unique protein markers and undergo typical asexual endopolygenic division cycles. In tachyzoites, AP2XII-1 and AP2XI-2 bind DNA as heterodimers at merozoite promoters and recruit MORC and HDAC3 (ref. 1), thereby limiting chromatin accessibility and transcription. Consequently, the commitment to merogony stems from a profound epigenetic rewiring orchestrated by AP2XII-1 and AP2XI-2. Successful production of merozoites in vitro paves the way for future studies on Toxoplasma sexual development without the need for cat infections and holds promise for the development of therapies to prevent parasite transmission.
Collapse
Affiliation(s)
- Ana Vera Antunes
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Martina Shahinas
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Dayana C Farhat
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | | | - Christophe Bruley
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Marie G Robert
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Charlotte Corrao
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health and Malaria Research Institute, Baltimore, MD, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
34
|
Zhao G, Dong H, Dai L, Xie H, Sun H, Zhang J, Wang Q, Xu C, Yin K. Proteomics analysis of Toxoplasma gondii merozoites reveals regulatory proteins involved in sexual reproduction. Microb Pathog 2024; 186:106484. [PMID: 38052278 DOI: 10.1016/j.micpath.2023.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Sexual reproduction plays a crucial role in the transmission and life cycle of toxoplasmosis. The merozoites are the only developmental stage capable of differentiation into male and female gametes, thereby initiating sexual reproduction to form oocysts that are excreted into the environment. Hence, our study aimed to perform proteomic analyses of T. gondii Pru strain merozoites, a pre-sexual developmental stage in cat IECs, and tachyzoites, an asexual developmental stage, using the tandem mass tag (TMT) method in order to identify the differentially expressed proteins (DEPs) of merozoites. Proteins functions were subjected to cluster analysis, and DEPs were validated through the qPCR method. The results showed that a total of 106 proteins were identified, out of which 85 proteins had quantitative data. Among these, 15 proteins were differentially expressed within merozoites, with four exhibiting up-regulation and being closely associated with the material and energy metabolism as well as the cell division of T. gondii. Two novel DEPs, namely S8GHL5 and A0A125YP41, were identified, and their homologous family members have been demonstrated to play regulatory roles in oocyte maturation and spermatogenesis in other species. Therefore, they may potentially exhibit regulatory functions during the differentiation of micro- and macro-gametophytes at the initiation stage of sexual reproduction in T. gondii. In conclusion, our results showed that the metabolic and divisional activities in the merozoites surpass those in the tachyzoites, thereby providing structural, material, and energetic support for gametophytes development. The discovery of two novel DEPs associated with sexual reproduction represents a significant advancement in understanding Toxoplasma sexual reproduction initiation and oocyst formation.
Collapse
Affiliation(s)
- Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Lisha Dai
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| |
Collapse
|
35
|
Mishra V, Mitra P, Barbuddhe S, Thorat Y, Chavan K, Shinde S, Chaudhari S, Khan W, Deshmukh AS. Serological and molecular detection of Toxoplasma gondii and Neospora caninum in free-ranging rats from Nagpur, India. Parasitol Res 2023; 123:63. [PMID: 38114841 DOI: 10.1007/s00436-023-08095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Toxoplasma gondii and Neospora caninum are cyst-forming coccidian parasites that infect both wild and domestic non-felids as intermediate hosts, with rodents serving as important reservoir hosts during their life cycles. This study was aimed at investigating T. gondii and N. caninum infections and identifying factors favouring T. gondii infection in free-ranging rats from India. A total of 181 rodents were trap-captured, and blood and brain samples were subsequently collected for serological and molecular examination of T. gondii and N. caninum. Antibodies against T. gondii and N. caninum were detected by MAT/NAT and IFAT in 13.8% (25/181) and 1.65% (3/181) of rodents, respectively. All three N. caninum samples positive by NAT/IFAT were also positive for ELISA, while for T. gondii, 19 of 25 MAT/IFAT positive samples were also positive for ELISA. The antibody titers (MAT/NAT/IFAT) of rodents seropositive for T. gondii ranged from 25 to 400, while those of rats seropositive for N. caninum ranged from 25 to 100. Also, using PCR, DNA from T. gondii (B1 gene) and N. caninum (NC5 gene) was found in 2.76% (5/181) of brain samples and 0.55% (1/181) of brain samples. All PCR positive samples were also seropositive. No mixed infections were observed in the serological and molecular detections. A Chi-square analysis revealed that older rats and rats living in urban areas are significantly associated with T. gondii infection; however, rodent species, gender, location, habitat types, and seasonality were statistically nonsignificant. Overall, this study demonstrated that T. gondii was widely distributed while N. caninum was less prevalent among free-ranging rats in the studied area.
Collapse
Affiliation(s)
- Veena Mishra
- Molecular Parasitology Laboratory, DBT-National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, Telangana, India
| | - Pallabi Mitra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Shruti Barbuddhe
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Yogesh Thorat
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Kailas Chavan
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Shilpshri Shinde
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Sandeep Chaudhari
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Waqar Khan
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Abhijit S Deshmukh
- Molecular Parasitology Laboratory, DBT-National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, Telangana, India.
| |
Collapse
|
36
|
Fietz SA, Grochow T, Schares G, Töpfer T, Heilmann RM. Fulminant Pneumonia Due to Reactivation of Latent Toxoplasmosis in a Cat-A Case Report. Pathogens 2023; 13:7. [PMID: 38276153 PMCID: PMC10818954 DOI: 10.3390/pathogens13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with felids, including domestic cats, as definitive hosts. In immunocompetent individuals, T. gondii infection is usually asymptomatic. However, under immunosuppression, it may have severe pathological impacts, which often result from the reactivation of a chronic infection. In this case study, a 21-month-old female domestic shorthair cat-diagnosed with primary immune-mediated hemolytic anemia three months prior and treated with cyclosporine and prednisolone-presented with acute tachypnea, dyspnea, diarrhea, and anorexia. Thoracic radiography suggested severe pneumonia. Testing for Mycoplasma spp., Anaplasma spp., Ehrlichia spp., and lungworm infection was negative. Serology for T. gondii revealed seroconversion of IgG, but not of IgM, indicating previous exposure to T. gondii. The cat remained stable but tachypneic for three days, followed by an acute onset of dyspnea and clinical deterioration, after which euthanasia was elected. Numerous protozoa were present in a postmortem transtracheal bronchoalveolar lavage and fine-needle aspiration of the lung. Microsatellite typing classified the extracted DNA as T. gondii type II variant TgM-A. This case demonstrates that T. gondii reactivation, leading to fulminant pneumonia, can be a sequela of immunosuppressive treatment in cats and should, therefore, be considered as a differential diagnosis in immunosuppressed cats with acute-onset respiratory signs. Rapid diagnosis may prevent fatal consequences.
Collapse
Affiliation(s)
- Simone A. Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, DE-04103 Leipzig, Germany; (S.A.F.); (T.G.)
| | - Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, DE-04103 Leipzig, Germany; (S.A.F.); (T.G.)
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, DE-17493 Greifswald-Insel Riems, Germany;
| | - Tanja Töpfer
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, DE-04103 Leipzig, Germany;
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, DE-04103 Leipzig, Germany;
| |
Collapse
|
37
|
Rodriguez JB, Szajnman SH. An updated review of chemical compounds with anti-Toxoplasma gondii activity. Eur J Med Chem 2023; 262:115885. [PMID: 37871407 DOI: 10.1016/j.ejmech.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.
Collapse
Affiliation(s)
- Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina.
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
38
|
Wagner T, Bangoura B, Wiedmer S, Daugschies A, Dunay IR. Phytohormones regulate asexual Toxoplasma gondii replication. Parasitol Res 2023; 122:2835-2846. [PMID: 37725257 DOI: 10.1007/s00436-023-07968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The protozoan Toxoplasma gondii (T. gondii) is a zoonotic disease agent causing systemic infection in warm-blooded intermediate hosts including humans. During the acute infection, the parasite infects host cells and multiplies intracellularly in the asexual tachyzoite stage. In this stage of the life cycle, invasion, multiplication, and egress are the most critical events in parasite replication. T. gondii features diverse cell organelles to support these processes, including the apicoplast, an endosymbiont-derived vestigial plastid originating from an alga ancestor. Previous studies have highlighted that phytohormones can modify the calcium-mediated secretion, e.g., of adhesins involved in parasite movement and cell invasion processes. The present study aimed to elucidate the influence of different plant hormones on the replication of asexual tachyzoites in a human foreskin fibroblast (HFF) host cell culture. T. gondii replication was measured by the determination of T. gondii DNA copies via qPCR. Three selected phytohormones, namely abscisic acid (ABA), gibberellic acid (GIBB), and kinetin (KIN) as representatives of different plant hormone groups were tested. Moreover, the influence of typical cell culture media components on the phytohormone effects was assessed. Our results indicate that ABA is able to induce a significant increase of T. gondii DNA copies in a typical supplemented cell culture medium when applied in concentrations of 20 ng/μl or 2 ng/μl, respectively. In contrast, depending on the culture medium composition, GIBB may potentially serve as T. gondii growth inhibitor and may be further investigated as a potential treatment for toxoplasmosis.
Collapse
Affiliation(s)
- Tina Wagner
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berit Bangoura
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, WY, 82070, USA.
| | - Stefanie Wiedmer
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
39
|
Zhu S, Camp L, Patel A, VanWormer E, Shapiro K. High prevalence and diversity of Toxoplasma gondii DNA in feral cat feces from coastal California. PLoS Negl Trop Dis 2023; 17:e0011829. [PMID: 38100522 PMCID: PMC10756541 DOI: 10.1371/journal.pntd.0011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that can cause severe morbidity and mortality in warm-blooded animals, including marine mammals such as sea otters. Free-ranging cats can shed environmentally resistant T. gondii oocysts in their feces, which are transported through rain-driven runoff from land to sea. Despite their large population sizes and ability to contribute to environmental oocyst contamination, there are limited studies on T. gondii oocyst shedding by free-ranging cats. We aimed to determine the frequency and genotypes of T. gondii oocysts shed by free-ranging domestic cats in central coastal California and evaluate whether genotypes present in feces are similar to those identified in sea otters that died from fatal toxoplasmosis. We utilized a longitudinal field study of four free-ranging cat colonies to assess oocyst shedding prevalence using microscopy and molecular testing with polymerase chain reaction (PCR). T. gondii DNA was confirmed with primers targeting the ITS1 locus and positive samples were genotyped at the B1 locus. While oocysts were not visualized using microscopy (0/404), we detected T. gondii DNA in 25.9% (94/362) of fecal samples. We genotyped 27 samples at the B1 locus and characterized 13 of these samples at one to three additional loci using multi locus sequence typing (MLST). Parasite DNA detection was significantly higher during the wet season (16.3%, 59/362) compared to the dry season (9.7%; 35/362), suggesting seasonal variation in T. gondii DNA presence in feces. High diversity of T. gondii strains was characterized at the B1 locus, including non-archetypal strains previously associated with sea otter mortalities. Free-ranging cats may thus play an important role in the transmission of virulent T. gondii genotypes that cause morbidity and mortality in marine wildlife. Management of free-ranging cat colonies could reduce environmental contamination with oocysts and subsequent T. gondii infection in endangered marine mammals and people.
Collapse
Affiliation(s)
- Sophie Zhu
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Lauren Camp
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Anika Patel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Natural Resources, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
40
|
Peyvandi A, Gorgani-Firouzjaee T, Najafzadehvarzi H, Jafarzadeh J. Urtica dioica Extract Leads to Cyst Reduction, Enhanced Cell-Mediated Immune Response, and Antioxidant Activity in Experimental Toxoplasmosis. Acta Parasitol 2023; 68:880-890. [PMID: 37924457 DOI: 10.1007/s11686-023-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Toxoplasmosis is a cosmopolitan parasitic infection caused by Toxoplasma gondii which is commonly treated by pyrimethamine (PYR) plus sulfadiazine (SDZ) with several adverse side effects. The present study evaluated the therapeutic effects of Urtica dioica L. aqueous extract (UDE) on acute and chronic toxoplasmosis in mice. METHODS For this purpose, mice were infected with 20 cysts (acute infection) or 10 cysts (chronic infection) of T. gondii (Me49 strain). The mice were treated with 200 mg/kg of UDE intraperitoneally (IP) and intragastric route (IG). The UDE-treated mice were compared with the PYR + SDZ treatment. The histopathological changes, cyst count, total antioxidant capacity (TAC), malondialdehyde (MDA) assay, and serum INF-γ were also evaluated. RESULTS In the acute toxoplasmosis, UDE by IP and IG administration significantly reduced the number of brain cysts by 93.74 and 92.55%, respectively, and increased the survival rate to 80% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 88.2 and 83.4%, respectively, for IP and IG treatments. Moreover, UDE significantly increased INF- γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were reduced in the UDE-treated subgroups compared to the untreated group. UDE treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. CONCLUSION The results show that U. dioica possesses significant immunostimulant and antioxidant activity with a higher cyst reduction in the brain during acute toxoplasmosis. Further studies are required to investigate the fractionations of UDE against T. gondii and its combination with other standard drugs.
Collapse
Affiliation(s)
- Ali Peyvandi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Ganj-Afroz Ave., Babol, Iran.
| | - Hossein Najafzadehvarzi
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Jafarzadeh
- Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
41
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Ren H, Mao G, Zhang Y, Zhu N, Liang Q, Jiang Y, Yang Y. Isolation and Characterization of a Viable Toxoplasma gondii from Captive Caracal ( Caracal caracal). Pathogens 2023; 12:1412. [PMID: 38133295 PMCID: PMC10747901 DOI: 10.3390/pathogens12121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Toxoplasma gondii is a widespread protozoan parasite that infects most warm-blooded animals, and felids can serve as intermediate and definitive hosts. Pathological diagnosis and serological and etiological investigations were conducted on a captive caracal (Caracal caracal) carcass collected from China in 2022. Pathological diagnosis revealed that cardiac insufficiency, pulmonary edema, hepatic failure, and renal insufficiency were the causes of the caracal's death. A modified agglutination test (cut-off: 1:25) revealed that IgG antibodies against T. gondii were present in the myocardium juice (1:1600), ascitic fluid (1:3200), and hydropericardium (1:800). A viable T. gondii (TgCaracalCHn2) strain was isolated from the tissue samples (heart, brain, spleen, and skeletal muscle) of this caracal using a mouse bioassay. The genotype of TgCaracalCHn2 was ToxoDB#5 (Type II variant), as determined via RFLP-PCR. The strain was avirulent in Swiss mice and matched the prediction of ROP18 and ROP5 gene alleles of TgCaracalCHn2 (2/2). Mild tissue cysts (203 ± 265) were observed in mice brains after inoculation with TgCaracalCHn2 tachyzoites. ToxoDB#5 is the dominant genotype in North American wildlife, and this is the first documented isolation of T. gondii ToxoDB#5 from China. This indicates that caracal plays an important role in the transmission of this T. gondii genotype.
Collapse
Affiliation(s)
- Hongjie Ren
- College of Animal Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Gaohui Mao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Yan Zhang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Niuping Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Qunchao Liang
- Henan Yinji Jiabao Amusement Park Management Co., Ltd., Zhengzhou 452300, China
| | - Yibao Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Yurong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| |
Collapse
|
43
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
44
|
Feng Z, Ling H, Zhu Z, Pei Y, Sun Z, Wang X, Wang L, Liu Q, Liu J. Identification of specific antigens between Toxoplasma gondii and Neospora caninum and application of potential diagnostic antigen TgGRA54. Parasitol Res 2023; 122:2557-2566. [PMID: 37670006 DOI: 10.1007/s00436-023-07955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Toxoplasma gondii is a zoonotic parasite that is very common in livestock. Meat products from livestock infected with T. gondii are one of the important transmission routes of toxoplasmosis. Rapid and reliable diagnosis is a prerequisite for the prevention and control of toxoplasmosis. Neospora caninum and T. gondii are similar in morphology and life history, and there are a large number of cross antigens between them, making clinical diagnosis of toxoplasmosis more difficult. In this study, immunoprecipitation-mass spectrometry (IP-MS) was used to screen for T. gondii-specific antigens, and the specific antigen was cloned and expressed in Escherichia coli. The specific antigen was then used to establish an indirect ELISA diagnostic method. A total of 241 specific antigens of T. gondii and 662 cross antigens between T. gondii and N. caninum were screened by IP-MS. Through bioinformatics analysis and homology comparison, seven proteins were selected for gene cloning and prokaryotic expression, and the most suitable antigen, TgGRA54, was selected to establish an indirect ELISA for T. gondii. Compared with the indirect immunofluorescent antibody test (IFAT), the positive coincidence rate of the ELISA based on rTgGRA54 was 100% (72/72) and the negative coincidence rate was 80.95% (17/21). The indirect ELISA method based on TgGRA54 recombinant protein was established to detect T. gondii antibodies in bovine sera, and the recombinant protein reacted well with T. gondii positive sera from sheep, mouse, and swine, indicating that the recombinant protein is a good diagnostic antigen for T. gondii.
Collapse
Affiliation(s)
- Zixuan Feng
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huifang Ling
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zifu Zhu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanqun Pei
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhepeng Sun
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xianmei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lifang Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
45
|
Wang Z, Li J, Yang Q, Sun X. Global Proteome-Wide Analysis of Cysteine S-Nitrosylation in Toxoplasma gondii. Molecules 2023; 28:7329. [PMID: 37959749 PMCID: PMC10649196 DOI: 10.3390/molecules28217329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Toxoplasma gondii transmits through various routes, rapidly proliferates during acute infection and causes toxoplasmosis, which is an important zoonotic disease in human and veterinary medicine. T. gondii can produce nitric oxide and derivatives, and S-nitrosylation contributes to their signaling transduction and post-translation regulation. To date, the S-nitrosylation proteome of T. gondii remains mystery. In this study, we reported the first S-nitrosylated proteome of T. gondii using mass spectrometry in combination with resin-assisted enrichment. We found that 637 proteins were S-nitrosylated, more than half of which were localized in the nucleus or cytoplasm. Motif analysis identified seven motifs. Of these motifs, five and two contained lysine and isoleucine, respectively. Gene Ontology enrichment revealed that S-nitrosylated proteins were primarily located in the inner membrane of mitochondria and other organelles. These S-nitrosylated proteins participated in diverse biological and metabolic processes, including organic acid binding, carboxylic acid binding ribose and phosphate biosynthesis. T. gondii S-nitrosylated proteins significantly contributed to glycolysis/gluconeogenesis and aminoacyl-tRNA biosynthesis. Moreover, 27 ribosomal proteins and 11 microneme proteins were identified as S-nitrosylated proteins, suggesting that proteins in the ribosome and microneme were predominantly S-nitrosylated. Protein-protein interaction analysis identified three subnetworks with high-relevancy ribosome, RNA transport and chaperonin complex components. These results imply that S-nitrosylated proteins of T. gondii are associated with protein translation in the ribosome, gene transcription, invasion and proliferation of T. gondii. Our research is the first to identify the S-nitrosylated proteomic profile of T. gondii and will provide direction to the ongoing investigation of the functions of S-nitrosylated proteins in T. gondii.
Collapse
Affiliation(s)
- Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.)
| | | | | | | |
Collapse
|
46
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. mSphere 2023; 8:e0026323. [PMID: 37768053 PMCID: PMC10597413 DOI: 10.1128/msphere.00263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Toxoplasma gondii's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole (PV) in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both acute and chronic infections. Murine macrophages infected with ∆gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro, which was confirmed with reduced IL-12 and interferon-gamma in vivo. This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the nuclear factor-κB (NF-κB) complex. While GRA15 similarly regulates NF-κB, infection with ∆gra83/∆gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labeling experiments to reveal candidate GRA83 interacting T. gondii-derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit the parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma's ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection is important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
Affiliation(s)
- Amara C. Thind
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline M. Mota
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula N. Gonçalves
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tiago W. P. Mineo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Peter J. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
47
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
48
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
49
|
Sokol-Borrelli SL, Reilly SM, Holmes MJ, Orchanian SB, Massmann MD, Sharp KG, Cabo LF, Alrubaye HS, Martorelli Di Genova B, Lodoen MB, Sullivan WJ, Boyle JP. A transcriptional network required for bradyzoite development in Toxoplasma gondii is dispensable for recrudescent disease. Nat Commun 2023; 14:6078. [PMID: 37770433 PMCID: PMC10539341 DOI: 10.1038/s41467-023-40948-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Identification of regulators of Toxoplasma gondii bradyzoite development and cyst formation is the most direct way to address the importance of parasite development in long-term persistence and reactivation of this parasite. Here we show that a T. gondii gene (named Regulator of Cystogenesis 1; ROCY1) is sufficient for T. gondii bradyzoite formation in vitro and in vivo. ROCY1 encodes an RNA binding protein that has a preference for 3' regulatory regions of hundreds of T. gondii transcripts, and its RNA-binding domains are required to mediate bradyzoite development. Female mice infected with ΔROCY1 parasites have reduced (>90%) cyst burden. While viable parasites can be cultivated from brain tissue for up to 6 months post-infection, chronic brain-resident ΔROCY1 parasites have reduced oral infectivity compared to wild type. Despite clear defects in bradyzoite formation and oral infectivity, ΔROCY1 parasites were able to reactivate with similar timing and magnitude as wild type parasites for up to 5 months post-infection. Therefore while ROCY1 is a critical regulator of the bradyzoite developmental pathway, it is not required for parasite reactivation, raising new questions about the persisting life stage responsible for causing recrudescent disease.
Collapse
Affiliation(s)
- Sarah L Sokol-Borrelli
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah M Reilly
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Holmes
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 462022, USA
| | - Stephanie B Orchanian
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | - Mackenzie D Massmann
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine G Sharp
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah F Cabo
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hisham S Alrubaye
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Martorelli Di Genova
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Melissa B Lodoen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 462022, USA
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|