1
|
De Jonge B, Pardon B, Callens J, Chiers K. Characterization of early-stage lesions and investigation on the role of mucosal trauma in hemorrhagic bowel syndrome in cattle. Vet Q 2024; 44:1-11. [PMID: 38832661 DOI: 10.1080/01652176.2024.2360422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Hemorrhagic bowel syndrome (HBS) is characterized by a dissecting intramucosal hematoma at the small bowel, causing obstruction and severe hemorrhage in dairy cattle. Recent investigation revealed the presence of early-stage lesions in cows affected by HBS. These are presumed to be the initial stage of the hematoma, as both share unique dissection of the lamina muscularis mucosae (LMM) as histological hallmark. Early-stage lesions of HBS have not been characterized in greater detail, and neither has the hypothesis of mucosal abrasion as etiology been explored. Therefore, the first objective of the present study was to characterize the morphology of early-stage lesions, by gross examination, histochemistry, immunohistochemistry and transmission electron microscopy. The second objective was to determine the effect of mucosal abrasion to the small intestine in an ex vivo model. A total of 86 early-stage lesions from 10 cows with HBS were characterized. No underlying alterations at the LMM were evident which could explain their occurrence. However, degeneration at the ultrastructural level of the LMM smooth muscle cells was present in 3 of 4 lesions, it is however unclear whether this is primary or secondary. Bacteriological examination did not reveal any association with a specific bacterium. Experimental-induced and early-stage lesions were gross and histologically evaluated and scored in three cows with HBS and seven controls. Experimentally induced lesions in both affected cows and controls, were histologically very similar to the naturally occurring early-stage lesions. Altogether, the results are suggestive for mucosal trauma to play a role in the pathogenesis of HBS.
Collapse
Affiliation(s)
- Bert De Jonge
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Bart Pardon
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Jozefien Callens
- Animal Health Service-Flanders (DGZ Vlaanderen), Torhout, Belgium
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Qin H, Ren J, Zeng D, Jin R, Deng Q, Su L, Luo Z, Jiang J, Wang P. Using reverse vaccinology techniques combined with B-cell epitope prediction to screen potential antigenic proteins of the bovine pathogen Clostridium perfringens type A. Microb Pathog 2024; 197:107049. [PMID: 39447662 DOI: 10.1016/j.micpath.2024.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Clostridium perfringens type A frequently causes necrohaemorrhagic enteritis in cattle, a rapidly progressing disease with a high mortality rate, thus inflicting substantial economic losses in the cattle industry. Effective prevention and control of this disease rely on rapid detection and vaccination strategies, making the screening of antigenic proteins with diagnostic and vaccine potential particularly crucial. In this study, we conducted a pangenomic analysis of 15 bacterial strains, grounded in traditional reverse vaccinology and supplemented with B-cell linear and conformational epitope analysis tools. This approach led to the identification of 2304 core genes and 3606 accessory genes, among which 58 surface-exposed proteins, encoded by core genes, were identified Proteins lacking tertiary structure information were predicted via AlphaFold2, ultimately identifying four target proteins and 14 candidate proteins enriched with linear and conformational epitopes, including virulence proteins such as alpha-toxin, theta-toxin, and alpha-clostripain, and extracellular solute-binding proteins, rhodanese-like proteins, and the accessory gene-encoded lysozyme inhibitor LprI family protein. Our findings demonstrate that the combined use of multiple B-cell epitope analysis tools can help overcome the limitations of any single tool. The proteins selected in this study offer valuable references for rapid diagnostics and the development of genetically engineered vaccines.
Collapse
Affiliation(s)
- He Qin
- Department of Animal Medicine, Shihezi University, Shihezi, China
| | - Jingjing Ren
- Department of Animal Medicine, Shihezi University, Shihezi, China
| | - Dongdong Zeng
- Department of Animal Medicine, Shihezi University, Shihezi, China
| | - Ruijie Jin
- Department of Animal Medicine, Shihezi University, Shihezi, China
| | - Qiuyan Deng
- Department of Animal Medicine, Shihezi University, Shihezi, China
| | - Lihe Su
- Department of Animal Science, Shihezi University, Shihezi, China
| | - Zengyang Luo
- Department of Animal Medicine, Shihezi University, Shihezi, China
| | - Jianjun Jiang
- Department of Animal Medicine, Shihezi University, Shihezi, China.
| | - Pengyan Wang
- Department of Animal Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
3
|
Hamzavipour R, Zahmatkesh A, Paradise A, Hosseini F. Protection efficacy and immunogenicity of Clostridium chauvoei proteins as a subunit blackleg vaccine or an adjuvant for Clostridium perfringens epsilon toxoid. Toxicon 2024; 251:108124. [PMID: 39395742 DOI: 10.1016/j.toxicon.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Potential application of Clostridium chauvoei proteins was studied as a subunit blackleg vaccine or a biological adjuvant for Clostridium perfringens epsilon toxoid vaccine. Extracellular and cell surface proteins were extracted from C. chauvoei culture, and their protective efficacy was evaluated by potency test in guinea pigs. In order to investigate the effect of cell surface proteins on C. perfringens epsilon toxoid immunogenicity, rabbits were inoculated subcutaneously twice with: C. perfringens type D toxoid supernatant +200 μg C. chauvoei cell surface proteins (PR-200), toxoid supernatant + 400 μg cell surface proteins (PR-400), inactivated C. perfringens type D vaccine (Vac), toxoid supernatant (Tox), or PBS. Isolation of cell surface proteins yielded about 2.5 mg/L culture protein with a sharp band at 43 kDa probably corresponding to flagellin. Potency test demonstrated the protection ability of both cellular and extracellular proteins of C. chauvoei. ELISA showed that the highest antibody titers against epsilon toxoid belonged to PR-400 and Vac groups. The effect of days post immunization on antibody response was not significant. No significant difference was observed between PR-400 and Vac, as well as PR-200 and Tox groups. Clostridium chauvoei cell surface proteins may have the potential for application as a blackleg disease vaccine and an adjuvant for clostridial toxoids.
Collapse
Affiliation(s)
- Roxana Hamzavipour
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Alireza Paradise
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farzaneh Hosseini
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
4
|
Sanford TC, Tweten RK, Abrahamsen HL. Bacterial cholesterol-dependent cytolysins and their interaction with the human immune response. Curr Opin Infect Dis 2024; 37:164-169. [PMID: 38527455 PMCID: PMC11042984 DOI: 10.1097/qco.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Many cholesterol-dependent cytolysin (CDC)-producing pathogens pose a significant threat to human health. Herein, we review the pore-dependent and -independent properties CDCs possess to assist pathogens in evading the host immune response. RECENT FINDINGS Within the last 5 years, exciting new research suggests CDCs can act to inhibit important immune functions, disrupt critical cell signaling pathways, and have tissue-specific effects. Additionally, recent studies have identified a key region of CDCs that generates robust immunity, providing resources for the development of CDC-based vaccines. SUMMARY This review provides new information on how CDCs alter host immune responses to aid bacteria in pathogenesis. These studies can assist in the design of more efficient vaccines and therapeutics against CDCs that will enhance the immune response to CDC-producing pathogens while mitigating the dampening effects CDCs have on the host immune response.
Collapse
Affiliation(s)
- Tristan C. Sanford
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Rodney K. Tweten
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Hunter L. Abrahamsen
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| |
Collapse
|
5
|
Chen S, Liu J, Luo S, Xing L, Li W, Gong L. The Effects of Bacillus amyloliquefaciens SC06 on Behavior and Brain Function in Broilers Infected by Clostridium perfringens. Animals (Basel) 2024; 14:1547. [PMID: 38891594 PMCID: PMC11171150 DOI: 10.3390/ani14111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Poultry studies conducted on Clostridium perfringens (CP) mainly focus on the effects of intestinal health and productive performance. Notably, the probiotic Bacillus amyloliquefaciens SC06 (BaSC06) is known to play a role in preventing bacterial infection. However, whether CP could induce the changes in brain function and behaviors and whether BaSC06 could play roles in these parameters is yet to be reported. The aim of this study was to evaluate the effects of BaSC06 on stress-related behaviors and gene expression, as well as the brain morphology and mRNA sequence of the hypothalamus in broiler chickens. A total of 288 one-day-old chicks were randomly divided into four groups: (1) a control group with no treatment administered or infection; (2) birds treated with the BaSC06 group; (3) a CP group; and (4) a BaSC06 plus CP (Ba_CP) group. The results showed that stress and fear-related behaviors were significantly induced by a CP infection and decreased due to the treatment of BaSC06. CP infection caused pathological damage to the pia and cortex of the brain, while BaSC06 showed a protective effect. CP significantly inhibited hypothalamic GABA and promoted HTR1A gene expression, while BaSC06 promoted GABA and decreased HTR1A gene expression. The different genes were nearly found between the comparisons of control vs. Ba group and Ba vs. CP group, while there were a great number of different genes between the comparisons of control vs. Ba_CP as well as CP vs. Ba_CP. Several different gene expression pathways were found that were related to disease, energy metabolism, and nervous system development. Our results will help to promote poultry welfare and health, as well as provide insights into probiotics to replace antibiotics and reduce resistance in the chicken industry.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Shuyan Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Weifen Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| |
Collapse
|
6
|
Abo Elyazeed H, Elhariri M, Eldeen NE, Aziz DA, Elhelw R. Genetic diversity and phylogenetic relationships of Clostridium perfringens strains isolated from mastitis and enteritis in Egyptian dairy farms. BMC Microbiol 2024; 24:157. [PMID: 38710998 DOI: 10.1186/s12866-024-03260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.
Collapse
Affiliation(s)
- Heidy Abo Elyazeed
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud Elhariri
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Nashwa Ezz Eldeen
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Biology Department, Faculty of Science - Taif University, Taif, Saudi Arabia
| | - Dalal Ahmed Aziz
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Rehab Elhelw
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
7
|
Titball RW. The Molecular Architecture and Mode of Action of Clostridium perfringens ε-Toxin. Toxins (Basel) 2024; 16:180. [PMID: 38668605 PMCID: PMC11053738 DOI: 10.3390/toxins16040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.
Collapse
|
8
|
Hoonakker M, Zariri A, de Brouwer L, David D, Borgman A, Sloots A. An in vitro assay for toxicity testing of Clostridium perfringens type C β-toxin. Front Immunol 2024; 15:1373411. [PMID: 38646535 PMCID: PMC11026656 DOI: 10.3389/fimmu.2024.1373411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the β-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the β-toxin. Methods Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for β-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the β-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.
Collapse
Affiliation(s)
| | | | | | | | | | - Arjen Sloots
- Department of Product Characterization and Formulation, Intravacc B.V., Bilthoven, Netherlands
| |
Collapse
|
9
|
Ali HM, Hussain S, Ahmad MZ, Siddique AB, Ali S, Mohiuddin M, Ehsan M, Nadeem M, Qayyum A, Hussain R, Khan I, A. Al Farraj D, Alzaidi E. Molecular identification of different toxinogenic strains of Clostridium perfringens and histo-pathological observations of camels died of per-acute entero-toxaemia. Heliyon 2024; 10:e27859. [PMID: 38533056 PMCID: PMC10963320 DOI: 10.1016/j.heliyon.2024.e27859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Enterotoxaemia is a severe disease caused by Clostridium perfringens and render high mortality and huge economic losses in livestock. However, scanty information and only few cases are reported about the presence and patho-physiology of enterotoxaemia in camels. The bacterium induces per-acute death in animals due to rapid production of different lethal toxins. The necropsy of camels (per-acute = 15, acute = 3) was conducted at 18 outbreaks of enterotoxaemia in camels in the desert area of Bahawalpur region. At necropsy, the serosal surfaces of visceral organs in the abdominal, peritoneal and thoracic cavities were found to have petechiation with severe congestion. Moreover, both the cut-sections of different visceral organs and the histo-pathological analysis revealed the pathological lesions in heart, lungs, kidneys, spleen, small and large intestines. Grossly, the kidneys were severely congested, hyperemic, swollen and softer in consistency. Under the microscope, different sections of kidneys indicated that the convulated and straight tubules were studded with erythrocytes. In the intestines, there were stunting fusion of crypts and villi. Similarly, various histo-pathological ailments were also observed in the heart, lungs and spleen. At blood agar, the collected samples showed beta hemolytic colonies of C. perfringens that appeared as medium sized rods microscopically and stained positively on Gram staining. Multiplex PCR revealed C. perfringens type A (α and β2 genes) and D (epsilon gene) and the deaths were found to be significantly higher due to C. perfringens type D compared to those by C. perfringens type A. Hence, it has been concluded that enterotoxaemia in camel affects multiple organs and becomes fatal, if occurred due to C. perfringens type D.
Collapse
Affiliation(s)
- Hafiz Muhammad Ali
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Shujaat Hussain
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Zishan Ahmad
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Abu Baker Siddique
- Institute of Microbiology, Government College University, Faisalabad, 38000, Pakistan
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mudassar Mohiuddin
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muhammad Ehsan
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Nadeem
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Abdul Qayyum
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Iahtasham Khan
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Sub-campus, Jhang, 35200, Pakistan
| | - Dunia A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Enshad Alzaidi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Guo S, Tong W, Qi Y, Jiang M, Li P, Zhang Z, Hu Q, Song Z, Ding B. Effects of Dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei Supplementation on the Intestinal Stem Cell Proliferation, Immunity, and Ileal Microbiota of Broiler Chickens Challenged by Coccidia and Clostridium perfringens. Animals (Basel) 2023; 13:3864. [PMID: 38136901 PMCID: PMC10740854 DOI: 10.3390/ani13243864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study was conducted to investigate effects of dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei supplementation on the intestinal stem cell proliferation, immunity, and ileal microbiota of broiler chickens challenged by coccidia and Clostridium perfringens. A total of 336 one-day-old Ross 308 chickens were randomly assigned into four groups. Chickens in the control (CTR) group were fed basal diet, and chickens in the three challenged groups were fed basal diets supplemented with nothing (CCP group), 1.0 × 109 CFU/kg L. fermentum (LF_CCP group), and 1.0 × 109 CFU/kg L. paracasei (LP_CCP group), respectively. All challenged birds were infected with coccildia on day 9 and Clostridium perfringens during days 13-18. The serum and intestinal samples were collected on days 13 and 19. The results showed that L. fermentum significantly increased jejunal gene expression of cdxB (one of the intestinal stem cell marker genes) on day 13. Additionally, L. fermentum significantly up-regulated mRNA levels of JAK3 and TYK2 and tended to increase STAT6 mRNA expression in jejunum on day 19. In the cecal tonsil, both L. fermentum and L. paracasei decreased mRNA expression of JAK2 on day 13, and L. fermentum down-regulated JAK1-2, STAT1, and STAT5-6 gene expressions on day 19. Ileal microbiological analysis showed that coccidial infection increased the Escherichia-Shigella, Lactobacillus, and Romboutsia abundance and decreased Candidatus_Arthromitus richness on day 13, which were reversed by Lactobacillus intervention. Moreover, Lactobacilli increased ileal Lactobacillus richness on day 19. In conclusion, Lactobacilli alleviated the impairment of intestinal stem cell proliferation and immunity in coccidia- and C. perfringens-challenged birds via modulating JAK/STAT signaling and reshaping intestinal microflora.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Wenfei Tong
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Ya Qi
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Meihan Jiang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd., Xianning 437099, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhuan Song
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| |
Collapse
|
11
|
Nagahama M, Takehara M, Seike S, Sakaguchi Y. Cellular Uptake and Cytotoxicity of Clostridium perfringens Iota-Toxin. Toxins (Basel) 2023; 15:695. [PMID: 38133199 PMCID: PMC10747272 DOI: 10.3390/toxins15120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Clostridium perfringens iota-toxin is composed of two separate proteins: a binding protein (Ib) that recognizes a host cell receptor and promotes the cellular uptake of a catalytic protein and (Ia) possessing ADP-ribosyltransferase activity that induces actin cytoskeleton disorganization. Ib exhibits the overall structure of bacterial pore-forming toxins (PFTs). Lipolysis-stimulated lipoprotein receptor (LSR) is defined as a host cell receptor for Ib. The binding of Ib to LSR causes an oligomer formation of Ib in lipid rafts of plasma membranes, mediating the entry of Ia into the cytoplasm. Ia induces actin cytoskeleton disruption via the ADP-ribosylation of G-actin and causes cell rounding and death. The binding protein alone disrupts the cell membrane and induces cytotoxicity in sensitive cells. Host cells permeabilized by the pore formation of Ib are repaired by a Ca2+-dependent plasma repair pathway. This review shows that the cellular uptake of iota-toxin utilizes a pathway of plasma membrane repair and that Ib alone induces cytotoxicity.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; (M.T.); (Y.S.)
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; (M.T.); (Y.S.)
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima 737-0112, Japan;
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; (M.T.); (Y.S.)
| |
Collapse
|
12
|
Álvarez-Pérez S, Anega B, Blanco JL, Hernández M, García ME. In vitro activity of fidaxomicin and combinations of fidaxomicin with other antibiotics against Clostridium perfringens strains isolated from dogs and cats. BMC Vet Res 2023; 19:238. [PMID: 37974163 PMCID: PMC10652485 DOI: 10.1186/s12917-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that fidaxomicin, a macrocyclic lactone antibiotic used to treat recurrent Clostridioides difficile-associated diarrhea, also displays potent in vitro bactericidal activity against Clostridium perfringens strains isolated from humans. However, to date, there is no data on the susceptibility to fidaxomicin of C. perfringens strains of animal origin. On the other hand, although combination therapy has become popular in human and veterinary medicine, limited data are available on the effects of antibiotic combinations on C. perfringens. We studied the in vitro response of 21 C. perfringens strains obtained from dogs and cats to fidaxomicin and combinations of fidaxomicin with six other antibiotics. RESULTS When tested by an agar dilution method, fidaxomicin minimum inhibitory concentrations (MICs) ranged between 0.004 and 0.032 µg/ml. Moreover, the results of Etest-based combination assays revealed that the incorporation of fidaxomicin into the test medium at a concentration equivalent to half the MIC significantly increased the susceptibility of isolates to metronidazole and erythromycin in 71.4% and 61.9% of the strains, respectively, and the susceptibility to clindamycin, imipenem, levofloxacin, and vancomycin in 42.9-52.4% of the strains. In contrast, ¼ × MIC concentrations of fidaxomicin did not have any effect on levofloxacin and vancomycin MICs and only enhanced the effects of clindamycin, erythromycin, imipenem, and metronidazole in ≤ 23.8% of the tested strains. CONCLUSIONS The results of this study demonstrate that fidaxomicin is highly effective against C. perfringens strains of canine and feline origin. Although fidaxomicin is currently considered a critically important antimicrobial that has not yet been licensed for veterinary use, we consider that the results reported in this paper provide useful baseline data to track the possible emergence of fidaxomicin resistant strains of C. perfringens in the veterinary setting.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Blanca Anega
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Alimolaei M, Afzali S. Prevalence of Clostridium perfringens toxinotypes in antibiotic-associated diarrheal (AAD) patients in Iranian hospitals; can toxinotype D serve as a possible zoonotic agent for humans? Acta Trop 2023; 247:107002. [PMID: 37597720 DOI: 10.1016/j.actatropica.2023.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
While Clostridium perfringens (C. perfringens) toxinotype F is known as the cause of 15% of antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD) cases, the association of the other C. perfringens toxinotypes with AAD/SD is not investigated. Therefore, the incidence of C. perfringens-associated diarrhea was investigated in hospitalized patients in six Iranian hospitals. A total of 151 stool specimens from AAD/SD patients were investigated for C. perfringens strains and the isolates were analyzed for the major (cpa, cpb, etx, and iap) and minor (cpe, cpb2, netb, PFO, and tpeL) toxin genes by PCR. C. perfringens isolation ratio was 28.5% (43 of 151 patients). C. perfringens isolation rates were not significant between different gender and age groups (p > 0.05), whereas it was significant between different wards and hospitals (p < 0.01). The cpa gene was detected in all C. perfringens isolates (n = 116). After that, the highest prevalence belonged to tpeL (87.1%), followed by pfo (84.5%), cpb2 (69.8%), cpe (55.2%), etx (12.9%), and netb (1.7%) genes. Based on these gene profiles, 35 (30.2%), 64 (55.2%), 15 (12.9%), and two (1.7%) isolates belonged to toxinotypes A, F, D, and G, respectively, and the other toxinotypes were not detected. This study persists in considering toxinotype F in Iranian AAD patients as it was the dominant C. perfringens toxinotype. Remarkably, the isolation of toxinotype D suggests it as a potential trigger in C. perfringens-associated AAD for the first time and highlights it as a possible zoonotic agent for humans.
Collapse
Affiliation(s)
- Mojtaba Alimolaei
- Research and Development Department, Kerman branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sadegh Afzali
- Research and Development Department, Kerman branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| |
Collapse
|
14
|
Manjunatha V, Nixon JE, Mathis GF, Lumpkins BS, Güzel-Seydim ZB, Seydim AC, Greene AK, Jiang X. Nigella sativa as an antibiotic alternative to promote growth and enhance health of broilers challenged with Eimeria maxima and Clostridium perfringens. Poult Sci 2023; 102:102831. [PMID: 37356299 PMCID: PMC10404756 DOI: 10.1016/j.psj.2023.102831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
The poultry industry has significant coccidiosis and necrotic enteritis (NE) challenges, leading to high mortality and unacceptable growth without antibiotic treatment. This research explored supplementing Nigella sativa (black cumin) seed oil in poultry feed to mitigate coccidiosis and prevent or lessen NE in broilers. In vivo studies consisted of 384 and 320 Cobb 500 male broiler chicks distributed in a randomized complete block experimental design for trials 1 and 2, respectively. The first trial compared 3 concentrations (1, 2, and 5 mL/kg) of black cumin seed oil (BCSO), and trial 2 compared 2 concentrations (2 and 5 mL/kg) BCSO, with birds challenged with Eimeria maxima and Clostridium perfringens (Cp) strains Cp#6 and Cp#4, respectively. Broiler live performance, NE disease outcomes, and Cp populations were measured for both trials. A commercially available BCSO oil product, determined in a preliminary in vitro study to have the highest anti-Cp activity, was selected for in vivo studies. Gas chromatography-mass spectrometry analysis indicated the major bioactive compounds p-cymene, thymoquinone, carvacrol, and thymol were present in the BCSO. In trial 1 with strain Cp#6, BCSO concentrations of 2 and 5 mL/kg reduced NE lesion score and mortality rate to 1.6% compared with 7.8% for positive control, with no adverse impact on live performance. In trial 2 with strain Cp#4, BCSO reduced NE lesion scores and mortality rate to 35.9% compared with 51.6% for positive control and also improved weight gain when there was a Cp infection in broiler chickens. The current study compared NE in broilers challenged with 2 different Cp strains producing different levels of NE. Following Cp infection, both the population of vegetative cells and spores of Cp in cecal contents decreased for all treatments in trial 2. In conclusion, BCSO at concentrations of 2 and 5 mL/kg enhanced broiler live performance and alleviated NE and has potential as a natural, non-medication antimicrobial nutritional supplement for use as a feed additive in chickens.
Collapse
Affiliation(s)
- Vishal Manjunatha
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Julian E Nixon
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA
| | - Greg F Mathis
- Southern Poultry Feed & Research, Athens, GA 30607, USA
| | | | - Zeynep B Güzel-Seydim
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Atif C Seydim
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Annel K Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA
| | - Xiuping Jiang
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
15
|
Titball RW, Lewis N, Nicholas R. Is Clostridium perfringens epsilon toxin associated with multiple sclerosis? Mult Scler 2023; 29:1057-1063. [PMID: 37480283 PMCID: PMC10413780 DOI: 10.1177/13524585231186899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023]
Abstract
Clostridium perfringens epsilon toxin is associated with enterotoxaemia in livestock. More recently, it is proposed to play a role in multiple sclerosis (MS) in humans. Compared to matched controls, strains of C. perfringens which produce epsilon toxin are significantly more likely to be isolated from the gut of MS patients and at significantly higher levels; similarly, sera from MS patients are significantly more likely to contain antibodies to epsilon toxin. Epsilon toxin recognises the myelin and lymphocyte (MAL) protein receptor, damaging the blood-brain barrier and brain cells expressing MAL. In the experimental autoimmune encephalomyelitis model of MS, the toxin enables infiltration of immune cells into the central nervous system, inducing an MS-like disease. These studies provide evidence that epsilon toxin plays a role in MS, but do not yet fulfil Koch's postulates in proving a causal role.
Collapse
Affiliation(s)
| | | | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Acevedo HD, Schlesinger MS, Streitenberger N, Henderson E, Asin J, Beingesser J, Uzal FA. Enterotoxemia produced by lambda toxin-positive Clostridium perfringens type D in 2 neonatal goat kids. J Vet Diagn Invest 2023; 35:448-451. [PMID: 37212504 PMCID: PMC10331383 DOI: 10.1177/10406387231176995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Enterotoxemia caused by Clostridium perfringens type D usually affects sheep and goats ≥ 2-wk-old. The main clinical signs and lesions of the disease are produced by the epsilon toxin (ETX) elaborated by this microorganism. However, ETX is produced in the form of a mostly inactive prototoxin that requires protease cleavage for activation. It has traditionally been believed that younger animals are not affected by type D enterotoxemia given the low trypsin activity in the intestinal content associated with the trypsin-inhibitory action of colostrum. Two Nigerian dwarf goat kids, 2- and 3-d-old, with a history of acute diarrhea followed by death, were submitted for postmortem examination and diagnostic workup. Autopsy and histopathology revealed mesocolonic edema, necrosuppurative colitis, and protein-rich pulmonary edema. Alpha toxin and ETX were detected in intestinal content, and C. perfringens type D was isolated from the colon of both animals. The isolates encoded the gene for lambda toxin, a protease that has been shown previously to activate ETX in vitro. Type D enterotoxemia has not been reported previously in neonatal kids, to our knowledge, and we suggest that lambda toxin activated the ETX.
Collapse
Affiliation(s)
- Hernando D. Acevedo
- Faculty of Veterinary Medicine and Zootechnics, University of Tolima (UT), Ibagué-Tolima, Colombia
| | - Maya S. Schlesinger
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Nicolás Streitenberger
- California Animal Health and Food Safety Laboratory System–San Bernardino branch, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Laboratory System–San Bernardino branch, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Javier Asin
- California Animal Health and Food Safety Laboratory System–San Bernardino branch, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Juliann Beingesser
- California Animal Health and Food Safety Laboratory System–San Bernardino branch, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System–San Bernardino branch, School of Veterinary Medicine, University of California–Davis, CA, USA
| |
Collapse
|
17
|
Ma Y, Sannino D, Linden JR, Haigh S, Zhao B, Grigg JB, Zumbo P, Dündar F, Butler D, Profaci CP, Telesford K, Winokur PN, Rumah KR, Gauthier SA, Fischetti VA, McClane BA, Uzal FA, Zexter L, Mazzucco M, Rudick R, Danko D, Balmuth E, Nealon N, Perumal J, Kaunzner U, Brito IL, Chen Z, Xiang JZ, Betel D, Daneman R, Sonnenberg GF, Mason CE, Vartanian T. Epsilon toxin-producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J Clin Invest 2023; 133:e163239. [PMID: 36853799 PMCID: PMC10145940 DOI: 10.1172/jci163239] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.
Collapse
Affiliation(s)
- Yinghua Ma
- Feil Family Brain and Mind Research Institute
| | | | | | | | - Baohua Zhao
- Feil Family Brain and Mind Research Institute
| | - John B. Grigg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Paul Zumbo
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Daniel Butler
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Caterina P. Profaci
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | | | - Paige N. Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-endocrinology and
| | - Kareem R. Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Susan A. Gauthier
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, UCD, Davis, California, USA
| | - Lily Zexter
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | | | - David Danko
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | - Nancy Nealon
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Jai Perumal
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, and
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Core Laboratories Center, Weill Cornell Medicine, New York, New York, USA
| | - Doron Betel
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | - Gregory F. Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Christopher E. Mason
- Feil Family Brain and Mind Research Institute
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute
- Immunology and Microbial Pathogenesis Program and
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
18
|
Tsekouras N, Meletis E, Kostoulas P, Labronikou G, Athanasakopoulou Z, Christodoulopoulos G, Billinis C, Papatsiros VG. Detection of Enterotoxigenic Escherichia coli and Clostridia in the Aetiology of Neonatal Piglet Diarrhoea: Important Factors for Their Prevention. Life (Basel) 2023; 13:life13051092. [PMID: 37240738 DOI: 10.3390/life13051092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to research the involvement of enterotoxigenic E. coli (ETEC) and C. difficile or C. perfringens type C in the aetiology of neonatal piglet diarrhoea in Greece and to identify preventive factors for them. A total of 78 pooled faecal samples were collected randomly from 234 suckling piglets (1-4 days of age) with diarrhoea from 26 pig farms (3 piglets × 3 litters × 26 farms = 234 piglets = 78 faecal pool samples). The collected samples were initially screened for the presence of E. coli and C. difficile or C. perfringens via cultivation on MacConkey and anaerobic blood agar, respectively. Subsequently, the samples were pooled on ELUTE cards. From samples tested, 69.23% of those in the farms were ETEC F4-positive, 30.77% were ETEC F5-positive, 61.54% ETEC were F6-positive, 42.31% were ETEC F4- and E. coli enterotoxin LT-positive, 19.23% were ETEC F5- and LT-positive, 42.31% were ETEC F6- and LT-positive, while LT was found in 57.69% of those in the farms. C. difficile was involved in many cases and identified as an emerging neonatal diarrhoea etiological agent. Specifically, Toxin A of C. difficile was found in 84.62% and Toxin B in 88.46% of those in the farms. Antibiotic administration to sows in combination with probiotics or acidifiers was revealed to reduce the detection of antigens of ETEC and the enterotoxin LT of E. coli.
Collapse
Affiliation(s)
- Nikolaos Tsekouras
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | - Eleftherios Meletis
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece
| | - Polychronis Kostoulas
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece
| | | | - Zoi Athanasakopoulou
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | - Georgios Christodoulopoulos
- Department of Animal Science, Agricultural University of Athens, 75 Iera Odos Street, Botanikos, 11855 Athens, Greece
| | - Charalambos Billinis
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | - Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
19
|
Yang J, Yang Q, Huang X, Yan Z, Wang P, Gao X, Li J, Gun S. METTL3-Mediated LncRNA EN_42575 m6A Modification Alleviates CPB2 Toxin-Induced Damage in IPEC-J2 Cells. Int J Mol Sci 2023; 24:ijms24065725. [PMID: 36982798 PMCID: PMC10054829 DOI: 10.3390/ijms24065725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) modified by n6-methyladenosine (m6A) have been implicated in the development and progression of several diseases. However, the mechanism responsible for the role of m6A-modified lncRNAs in Clostridium perfringens type C piglet diarrhea has remained largely unknown. We previously developed an in vitro model of CPB2 toxin-induced piglet diarrhea in IPEC-J2 cells. In addition, we previously performed RNA immunoprecipitation sequencing (MeRIP-seq), which demonstrated lncRNA EN_42575 as one of the most regulated m6A-modified lncRNAs in CPB2 toxin-exposed IPEC-J2 cells. In this study, we used MeRIP-qPCR, FISH, EdU, and RNA pull-down assays to determine the function of lncRNA EN_42575 in CPB2 toxin-exposed IPEC-J2 cells. LncRNA EN_42575 was significantly downregulated at different time points in CPB2 toxin-treated cells. Functionally, lncRNA EN_42575 overexpression reduced cytotoxicity, promoted cell proliferation, and inhibited apoptosis and oxidative damage, whereas the knockdown of lncRNA EN_42575 reversed these results. Furthermore, the dual-luciferase analysis revealed that METTL3 regulated lncRNA EN_42575 expression in an m6A-dependent manner. In conclusion, METTL3-mediated lncRNA EN_42575 exerted a regulatory effect on IPEC-J2 cells exposed to CPB2 toxins. These findings offer novel perspectives to further investigate the function of m6A-modified lncRNAs in piglet diarrhea.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
20
|
De Jonge B, Pardon B, Goossens E, Van Immerseel F, Vereecke N, Pas ML, Callens J, Caliskan N, Roels S, Chiers K. Hemorrhagic bowel syndrome in dairy cattle: Gross, histological, and microbiological characterization. Vet Pathol 2023; 60:235-244. [PMID: 36601786 DOI: 10.1177/03009858221143402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic bowel syndrome (HBS) is a sporadic and fatal disease of predominantly lactating dairy cattle, characterized by segmental hemorrhage and luminal clot formation in the small intestine. Although, Clostridium perfringens and Aspergillus fumigatus have been associated with HBS, the pathogenesis and cause are currently unknown. In this study, 18 naturally occurring cases of HBS (7 necropsied immediately following euthanasia, 11 with 12-48 hour postmortem intervals) were investigated to characterize the pathology and the intestinal microbiome. Hemorrhagic bowel syndrome was characterized by a single small-intestinal, intramucosal hematoma with dissection of the lamina muscularis mucosae. In most cases necropsied immediately after euthanasia (4/7), the intestinal mucosa proximal to the hematoma contained 9 to 14, dispersed, solitary or clustered, erosions or lacerations measuring 4 to 45 mm. In 77% (37/48) of these mucosal lesions, microscopic splitting of the lamina muscularis mucosae comparable to the hematoma was present. These findings suggest the intramucosal hematoma to originate from small mucosal erosions through dissecting hemorrhage within the lamina muscularis mucosae. No invasive fungal growth was observed in any tissue. Bacteriological cultivation and nanopore sequencing showed a polymicrobial population at the hematoma and unaffected intestine, with mostly mild presence of C perfringens at selective culture. Gross and microscopic lesions, as well as the culture and sequencing results, were not in support of involvement of C perfringens or A fumigatus in the pathogenesis of HBS.
Collapse
Affiliation(s)
| | | | | | | | - Nick Vereecke
- Ghent University, Merelbeke, Belgium.,PathoSense BV, Lier, Belgium
| | | | | | | | - Stefan Roels
- Animal Health Service Flanders, Torhout, Belgium
| | | |
Collapse
|
21
|
Uzal FA, Navarro MA, Asin J, Boix O, Ballarà-Rodriguez I, Gibert X. Clostridial diarrheas in piglets: A review. Vet Microbiol 2023; 280:109691. [PMID: 36870204 DOI: 10.1016/j.vetmic.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Clostridium perfringens type C and Clostridioides difficile are the main enteric clostridial pathogens of swine and are both responsible for neonatal diarrhea in this species. The role of Clostridum perfringes type A is under discussion. History, clinical signs, gross lesions and histological findings are the basis for a presumptive diagnosis of C. perfringens type C or C. difficile infection. Confirmation is based upon detection of beta toxin of C. perfringens type C or toxin A/B of C. difficile, respectively, in intestinal contents or feces. Isolation of C. perfringens type C and/or C. difficile is highly suggestive of infection by these microorganisms but it is not enough to confirm a diagnosis as they may be found in the intestine of some healthy individuals. Diagnosis of C. perfringens type A-associated diarrhea is more challenging because the diagnostic criteria have not been well defined and the specific role of alpha toxin (encoded by all strains of this microorganism) and beta 2 toxin (produced by some type A strains) is not clear. The goal of this paper is to describe the main clostridial enteric diseases of piglets, including etiology, epidemiology, pathogenesis, clinical signs, pathology and diagnosis.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, 105 W Central Ave, San Bernardino, CA 92408, USA.
| | - Mauricio A Navarro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Asin
- California Animal Health and Food Safety Laboratory System, 105 W Central Ave, San Bernardino, CA 92408, USA
| | - Oriol Boix
- HIPRA, Avda. la Selva 135, CP 17170 Amer (Girona), Spain
| | | | - Xavier Gibert
- HIPRA, Avda. la Selva 135, CP 17170 Amer (Girona), Spain
| |
Collapse
|
22
|
Angwenyi SKS, Hassell J, Miller MA, Mutinda M, Vitali F, Murray S. A
review of
clostridial
diseases
in
rhinoceroses. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
- Shaleen Kemunto Sarange Angwenyi
- Global Health Program Smithsonian's National Zoo and Conservation Biology Institute Washington, DC USA
- Mpala Research Centre Nanyuki Kenya
| | - James Hassell
- Global Health Program Smithsonian's National Zoo and Conservation Biology Institute Washington, DC USA
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Michele Ann Miller
- Division of Molecular Biology and Human Genetics Stellenbosch University Faculty of Medicine and Health Sciences, Biomedical Sciences Private Bag X1 Stellenbosch South Africa
| | - Mathew Mutinda
- Veterinary Services Department Kenya Wildlife Service Nairobi Kenya
| | - Francesca Vitali
- Global Health Program Smithsonian's National Zoo and Conservation Biology Institute Washington, DC USA
| | - Suzan Murray
- Global Health Program Smithsonian's National Zoo and Conservation Biology Institute Washington, DC USA
| |
Collapse
|
23
|
Oba PM, Carroll MQ, Sieja KM, de Souza Nogueira JP, Yang X, Epp TY, Warzecha CM, Varney JL, Fowler JW, Coon CN, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, metabolite concentrations, and microbiota populations of dogs subjected to exercise challenge. J Anim Sci 2023; 101:skac424. [PMID: 36573478 PMCID: PMC9890449 DOI: 10.1093/jas/skac424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to determine the fecal characteristics, microbiota, and metabolites of dogs fed a Saccharomyces cerevisiae fermentation product (SCFP) and subjected to exercise challenge in untrained and trained states. Thirty-six adult dogs (18 male, 18 female; mean age: 7.1 yr; mean body weight: 29.0 kg) were randomly assigned to control or SCFP-supplemented (250 mg/dog/d) diets and fed for 10 wk. After 3 wk, dogs were given an exercise challenge (6.5 km run), with fresh fecal samples collected pre- and post-challenge. Dogs were then trained by a series of distance-defined running exercise regimens over 7 wk (two 6.4 km runs/wk for 2 wk; two 9.7 km runs/wk for 2 wk; two 12.9 km runs/wk for 2 wk; two 3.2 km runs/wk). Dogs were then given exercise challenge (16 km run) in the trained state, with fresh fecal samples collected pre- and post-challenge. Fecal microbiota data were evaluated using QIIME2, while all other data were analyzed using the Mixed Models procedure of SAS. Effects of diet, exercise, and diet*exercise were tested with P < 0.05 considered significant. Exercise challenge reduced fecal pH and ammonia in both treatments, and in untrained and trained dogs. After the exercise challenge in untrained dogs, fecal indole, isobutyrate, and isovalerate were reduced, while acetate and propionate were increased. Following the exercise challenge in trained dogs, fecal scores and butyrate decreased, while isobutyrate and isovalerate increased. SCFP did not affect fecal scores, pH, dry matter, or metabolites, but fecal Clostridium was higher in controls than in SCFP-fed dogs over time. SCFP and exercise challenge had no effect on alpha or beta diversity in untrained dogs. However, the weighted principal coordinate analysis plot revealed clustering of dogs before and after exercise in trained dogs. After exercise challenge, fecal Collinsella, Slackia, Blautia, Ruminococcus, and Catenibacterium were higher and Bacteroides, Parabacteroides, Prevotella, Phascolarctobacterium, Fusobacterium, and Sutterella were lower in both untrained and trained dogs. Using qPCR, SCFP increased fecal Turicibacter, and tended to increase fecal Lactobacillus vs. controls. Exercise challenge increased fecal Turicibacter and Blautia in both untrained and trained dogs. Our findings show that exercise and SCFP may affect the fecal microbiota of dogs. Exercise was the primary cause of the shifts, however, with trained dogs having more profound changes than untrained dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly M Sieja
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Xiaojing Yang
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tammi Y Epp
- Cargill, Incorporated, Wayzata, MN 55391, USA
| | | | | | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Alkhulaifi MM, Alqhtani AH, Alharthi AS, Al Sulaiman AR, Abudabos AM. Influence of prebiotic yeast cell wall extracts on growth performance, carcase attributes, biochemical metabolites, and intestinal morphology and bacteriology of broiler chickens challenged with Salmonella typhimurium and Clostridium perfringens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen H. Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali R. Al Sulaiman
- National Center for Environmental Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Alaeldein M. Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Takehara M, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin up-regulates plasma membrane CD11b expression on murine neutrophils by changing intracellular localization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184054. [PMID: 36155052 DOI: 10.1016/j.bbamem.2022.184054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Gas gangrene caused by Clostridium perfringens type A infection is a highly lethal infection of soft tissue characterized by rapid spread of tissue necrosis. This tissue destruction is related to profound attenuation of blood flow accompanied by formation of platelet-leukocyte aggregates in the blood vessels. Several studies have identified α-toxin, which has both sphingomyelinase and phospholipase C activities, as a major virulence factor in the aggregate formation via activation of the platelet gpIIbIIIa. Here, we show that α-toxin greatly and rapidly increases plasma membrane localization of CD11b, which binds to the platelet gpIIbIIIa via fibrinogen, in mouse neutrophils. Interestingly, short-term treatment of α-toxin has little effect on gene expression profiles in neutrophils, and the toxin does not change the total protein expression levels of CD11b in whole cell lysates. The following analysis demonstrated that CD11b localizes to intracellular vesicles in intact cells, but the localization changed to the cytoplasmic membrane in α-toxin-treated cells. These results suggest that CD11b is recruited to the cytoplasmic membrane by α-toxin. Previously, we reported that α-toxin promotes the formation of ceramide by its sphingomyelinase activity in mouse neutrophils. Interestingly, a synthetic cell-permeable ceramide analog, C2-ceramide, increases plasma membrane localization of CD11b, suggesting that ceramide production by α-toxin recruits CD11b to the cytoplasmic membrane to promote platelet-leukocyte aggregation. Together, our results illustrate that the increase of cell membrane CD11b expression by α-toxin might be crucial for the pathogenesis of C. perfringens to promote formation of platelet-leukocyte aggregates, leading to rapid tissue necrosis due to ischemia.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
26
|
Identification and Characterization of Clostridium perfringens Atypical CPB2 Toxin in Cell Cultures and Field Samples Using Monoclonal Antibodies. Toxins (Basel) 2022; 14:toxins14110796. [PMID: 36422970 PMCID: PMC9693285 DOI: 10.3390/toxins14110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
A direct sandwich enzyme-linked immunosorbent assay (sELISA) was developed for the detection of the atypical β2-toxin (CPB2) of Clostridium perfringens. Polyclonal (PAbs) and monoclonal (MAbs) antibodies were previously obtained employing recombinant CPB2 produced in the baculovirus system as antigen. In the current study, PAbs were used as capture molecules, while purified MAbs conjugated to horseradish peroxidase (MAbs-HRP) were used for the detection of atypical CPB2 toxin. MAbs 5C11E6 and 2G3G6 showed high reactivity, sensitivity and specificity when tested on 232 C. perfringens cell culture isolates. In addition, a reactivity variation among different strains producing atypical CPB2 toxin was observed using the conformation-dependent MAb 23E6E6, suggesting the hypothesis of high instability and/or the existence of different three-dimensional structures of this toxin. Results obtained by sELISA and Western blotting performed on experimentally CPB2-contaminated feces revealed a time-dependent proteolytic degradation as previously observed with the consensus allelic form of CPB2. Finally, the sELISA and an end-point PCR, specific for the atypical cpb2 gene, were used to test field samples (feces, rectal swabs and intestinal contents) from different dead animal species with suspected or confirmed clostridiosis. The comparison of sELISA data with those obtained with end-point PCR suggests this method as a promising tool for the detection of atypical CPB2 toxin.
Collapse
|
27
|
Bruggisser J, Iacovache I, Musson SC, Degiacomi MT, Posthaus H, Zuber B. Cryo-EM structure of the octameric pore of Clostridium perfringens β-toxin. EMBO Rep 2022; 23:e54856. [PMID: 36215680 PMCID: PMC9724662 DOI: 10.15252/embr.202254856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Clostridium perfringens is one of the most widely distributed and successful pathogens producing an impressive arsenal of toxins. One of the most potent toxins produced is the C. perfringens β-toxin (CPB). This toxin is the main virulence factor of type C strains. We describe the cryo-electron microscopy (EM) structure of CPB oligomer. We show that CPB forms homo-octameric pores like the hetero-oligomeric pores of the bi-component leukocidins, with important differences in the receptor binding region and the N-terminal latch domain. Intriguingly, the octameric CPB pore complex contains a second 16-stranded β-barrel protrusion atop of the cap domain that is formed by the N-termini of the eight protomers. We propose that CPB, together with the newly identified Epx toxins, is a member a new subclass of the hemolysin-like family. In addition, we show that the β-barrel protrusion domain can be modified without affecting the pore-forming ability, thus making the pore particularly attractive for macromolecule sensing and nanotechnology. The cryo-EM structure of the octameric pore of CPB will facilitate future developments in both nanotechnology and basic research.
Collapse
Affiliation(s)
- Julia Bruggisser
- Institute of Animal Pathology, Vetsuisse‐FacultyUniversity of BernBernSwitzerland
| | - Ioan Iacovache
- Institute of Anatomy, Medical FacultyUniversity of BernBernSwitzerland
| | | | | | - Horst Posthaus
- Institute of Animal Pathology, Vetsuisse‐FacultyUniversity of BernBernSwitzerland
| | - Benoît Zuber
- Institute of Anatomy, Medical FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
28
|
Marcano V, Gamble T, Maschek K, Stabler L, Fletcher O, Davis J, Troan BV, Villegas AM, Tsai YY, Barbieri NL, Franca M. Necrotizing Hepatitis Associated with Clostridium perfringens in Broiler Chicks. Avian Dis 2022; 66:337-344. [PMID: 36254367 DOI: 10.1637/aviandiseases-d-22-00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
In this retrospective study we describe unusual cases of clostridial hepatitis associated with high mortality in young broiler chicks. Eleven cases of necrotizing hepatitis in broiler chicks from four companies were submitted to the Poultry Diagnostic and Research Center or the Georgia Poultry Laboratory Network between 2017 and 2020. In most flocks, increased 3-day mortality was followed by an elevated 7-day mortality. Gross lesions included green to dark brown discoloration of the liver, congested lungs, serosanguineous fluid in the caudoventral aspect of the abdomen, and emphysema in the yolk sacs. In birds older than a week of age, disease with neurologic signs became evident and consisted of tremors, stargazing, and incoordination. Histopathologic evaluation revealed multifocal to coalescing fibrinoheterophilic and necrotizing hepatitis associated with gram-positive, long, rod-shaped bacteria. Formalin-fixed liver samples from six cases out of eight cases tested were positive for Clostridium perfringens by immunohistochemistry. Liver samples from two cases were culture positive for Clostridium spp., and C. perfringens was isolated from one sample. Toxinotyping by PCR performed in seven samples revealed the presence of the genes that code for alpha toxin phospholipase C (cpa or plc) and necrotic enteritis toxin B-like (netB) in six samples and as well as C. perfringens large cytotoxin (tpeL) in one sample. Broiler breeders are the suspected source of the infection, and testing revealed C. perfringens in hatchery samples and among broiler breeder flocks. Antimicrobial therapy was coupled with enhanced sanitation at the farm and hatchery in that company, markedly decreasing the mortality and clinical signs. This is the first comprehensive evaluation of clostridial necrotizing hepatitis in newly hatched chicks, and the second ever reported in the literature.
Collapse
Affiliation(s)
- Valerie Marcano
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602, ,
| | | | | | - Lisa Stabler
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| | - Oscar Fletcher
- College of Veterinary Medicine, North Carolina State University, Population Health and Pathobiology, Raleigh, NC 27607
| | - James Davis
- Department of Diagnostics, Georgia Poultry Laboratory Network, Gainesville, GA 30507
| | - Brigid V Troan
- College of Veterinary Medicine, North Carolina State University, Population Health and Pathobiology, Raleigh, NC 27607
| | - Ana M Villegas
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602.,Poultry Science Department, The University of Georgia, Athens, GA 30602
| | - Yu-Yang Tsai
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| | - Nicolle L Barbieri
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| | - Monique Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| |
Collapse
|
29
|
Lee JH, Lee B, Rousseau X, Gomes GA, Oh HJ, Kim YJ, Chang SY, An JW, Go YB, Song DC, Cho HA, Cho JH. Stimbiotic supplementation modulated intestinal inflammatory response and improved boilers performance in an experimentally-induced necrotic enteritis infection model. J Anim Sci Biotechnol 2022; 13:100. [PMID: 36100948 PMCID: PMC9472449 DOI: 10.1186/s40104-022-00753-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Two experiments were conducted to establish an optimal NE challenge model and evaluate the efficacy of stimbiotic (STB) supplementation in necrotic enteritis (NE) challenged broilers. In Exp. 1, a total of 120 Arbor Acres (AA) broilers (45.0 ± 0.21 g) were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement. Vaccine treatments included non-challenge (0), × 10 the recommended dose (× 10) or × 20 the recommended dose (× 20) by the manufacturer. Clostridium perfringens (CP) treatments were non-challenge (No) or 3 mL of 2.2 × 107 CFU CP challenge (Yes). In Exp. 2, a total of 72 AA broilers (40.17 ± 0.27 g) were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement. Dietary treatments included non-additive (CON), 100 mg/kg STB (STB) and 100 mg/kg STB on top of a typical commercial blend including an essential oil, probiotics, and enzyme (CB). Challenge treatments included non-NE challenge (No) and NE challenge (Yes) as established in Exp. 1. Results In Exp. 1, CP and vaccine challenge decreased (P < 0.05) body weight (BW), body weight gain (BWG) and feed intake (FI), and increased (P < 0.05) the number of broilers with diarrhea and intestinal lesions. The oral administration of × 20 recommended dose of vaccines coupled with 3 mL of 2.2 × 107 CFU CP resulted in (P < 0.01) a significantly increased incidence of wet litter and intestinal lesions. Thus, this treatment was chosen as the challenge model for the successful inducement of NE in Exp. 2. In Exp. 2, the NE challenge negatively affected (P < 0.01) growth performance, ileal morphology, immunoglobulin contents in blood, caecal microbiota in the caecum, footpad dermatitis, intestinal lesion scores, tumour necrosis factor (TNF-α) and endotoxin in the serum compared with the non-NE challenged birds. The supplementation of STB and CB in diets enhanced (P < 0.05) growth performance, intestinal microbiota, and blood profiles by stimulating ileal morphology (VH and VH:CD) and propionate production in the cecum, and there were no differences in measured variables between STB and CB supplemented birds. Conclusion Overall, these results indicate that STB supplementation was able to reduce the inflammatory response and improve the performance of NE challenged birds, and the supplementation of STB alone was as effective as a typical commercial blend containing a number of other additives.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Byongkon Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.,Cherrybro Co., Ltd., Jincheon-Gun, 27820, South Korea
| | | | | | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yong Ju Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Young Bin Go
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
30
|
Yadav JP, Kaur S, Dhaka P, Vijay D, Bedi JS. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: A scoping review. Anaerobe 2022; 77:102639. [PMID: 36108893 DOI: 10.1016/j.anaerobe.2022.102639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
Clostridium perfringens is one of the most important foodborne pathogens that causes histotoxic diseases and intestinal infections in both humans and animals. The present scoping review has been designed to analyze the literature published during 2000-2021 from India on the prevalence, molecular characterization, and antimicrobial resistance profile of C. perfringens isolates recovered from humans, animals, animal-based foods, and associated environmental samples. The peer-reviewed articles retrieved from four electronic databases (Google Scholar, PubMed, Science Direct, and Web of Science) were assessed using PRISMA-ScR guidelines. A total of 32 studies from India were selected on the basis of their relevance and inclusion criteria. The overall prevalence of C. perfringens among domestic animals having history of clinical symptoms and among healthy animals was found to be 65.8% (508/772) and 42.8% (493/1152), respectively. The pathogen was also detected in clinically affected wild animals (75%), healthy wild animals (35.4%), and captive birds (24.5%). The detection of C. perfringens among poultry having necrotic enteritis and among healthy birds was found to be 66.8% (321/480) and 25.6% (80/312), respectively. The detection of pathogen among animal-based foods (i.e., meat, milk, and fish and their products) and environmental samples depicted a prevalence of 20.8% (325/1562) and 30.2% (23/76), respectively. However, the prevalence of C. perfringens among humans having history of diarrhea and among healthy humans was found to be 25% (70/280) and 23.2% (36/155), respectively. The genotyping of C. perfringens isolates revealed that toxin type A was found to be the most prevalent genotype. Along with the alpha toxin gene (cpa), beta (cpb), epsilon (etx), iota (itx), enterotoxin (cpe), beta-2 toxin (cpb2), and NetB (netB) toxins were also detected in different combinations. Antimicrobial resistance profile of C. perfringens isolates recovered from different sources demonstrated that the highest resistance was detected against sulphonamides (76.8%) and tetracycline (41.3%) by phenotypic and genotypic detection methods, respectively. Comprehensive scientific studies covering different geographical areas at the human-animal-environment interface are crucial to generalize the real magnitude of C. perfringens-associated problem in India and for establishing a reliable database.
Collapse
Affiliation(s)
- Jay Prakash Yadav
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, 151103, India.
| | - Simranpreet Kaur
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Deepthi Vijay
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680651, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| |
Collapse
|
31
|
Ong CT, Ross EM, Boe-Hansen G, Turni C, Hayes BJ, Fordyce G, Tabor AE. Adaptive sampling during sequencing reveals the origins of the bovine reproductive tract microbiome across reproductive stages and sexes. Sci Rep 2022; 12:15075. [PMID: 36065055 PMCID: PMC9445037 DOI: 10.1038/s41598-022-19022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Cattle enterprises are one of the major livestock production systems globally and are forecasted to have stable growth in the next decade. To facilitate sustainable live weight production, optimal reproductive performance is essential. Microbial colonisation in the reproductive tract has been demonstrated as one of the factors contributing to bovine reproductive performance. Studies also implied that reproductive metagenomes are different at each stage of the estrous cycle. This study applied Oxford Nanopore Technologies’ adaptive long-read sequencing to profile the bovine reproductive microbiome collected from tropical cattle in northern Queensland, Australia. The microbiome samples were collected from cattle of different sexes, reproductive status and locations to provide a comprehensive view of the bovine reproductive microbiome in northern Australian cattle. Ascomycota, Firmicutes and Proteobacteria were abundant phyla identified in the bovine reproductive metagenomes of Australian cattle regardless of sexes, reproductive status and location. The species level taxonomical investigation suggested that gastrointestinal metagenome and the surrounding environment were potentially the origins of the bovine reproductive metagenome. Functional profiles further affirmed this implication, revealing that the reproductive metagenomes of the prepubertal and postpartum animals were dominated by microorganisms that catabolise dietary polysaccharides as an energy substrate while that of the pregnant animals had the function of harvesting energy from aromatic compounds. Bovine reproductive metagenome investigations can be employed to trace the origins of abnormal metagenomes, which is beneficial for disease prevention and control. Additionally, our results demonstrated different reproductive metagenome diversities between cattle from two different locations. The variation in diversity within one location can serve as the indicator of abnormal reproductive metagenome, but between locations inferences cannot be made. We suggest establishing localised metagenomic indices that can be used to infer abnormal reproductive metagenomes which contribute to abortion or sub-fertility.
Collapse
Affiliation(s)
- Chian Teng Ong
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gry Boe-Hansen
- Faculty of Science, School of Veterinary Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Geoffry Fordyce
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Faculty of Science, School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
32
|
Karagulle B, Celik F, Simsek S, Ahmed H, Shen Y, Cao J. First molecular evidence of Clostridium perfringens in adult Fasciola spp. isolates in cattle hosts. Front Vet Sci 2022; 9:967045. [PMID: 36118337 PMCID: PMC9478789 DOI: 10.3389/fvets.2022.967045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciolosis is a parasitic disease caused by Fasciola spp. It is a prevalent helminth infection globally. Clostridial hepatitis is a general name refer to disorders caused by a few clostridial agents that most severely affect the liver. Migration of young parasite forms (mostly Fasciola hepatica) in the parenchymal tissue of the liver causes necrosis and anaerobic environment, stimulating the proliferation of C. novyi type B spores. This study investigated the occurrence of Clostridium spp in adult Fasciola spp isolates. Isolates (n = 100) were collected from the bile ducts of infected cattle after slaughter. Total genomic DNA was extracted from each sample. A multiplex-PCR based on the flagellin C (fliC) gene was used for quick identification of C. chauvoei, C. haemolyticum, C. novyi types A and B, and C. septicum. In addition, a pair of primers Cpa (F) and Cpa (R) were used for detection of the C. perfringens alpha toxin gene. The products were sequenced. No band was obtained after multiplex-PCR of the fliC gene. A 247 bp band was detected in two isolates using the Cpa primers. BLAST analysis of these two isolates characterized both as C. perfringens alpha toxin. This is the first description of the molecular detection of C. perfringens in flukes. Further studies are needed to investigate whether Clostridum species is also carried by other developmental forms (egg and larval stages) of Fasciola spp.
Collapse
Affiliation(s)
- Burcu Karagulle
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
- *Correspondence: Sami Simsek
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jianping Cao
| |
Collapse
|
33
|
Banawas SS. Systematic Review and Meta-Analysis on the Frequency of Antibiotic-Resistant Clostridium Species in Saudi Arabia. Antibiotics (Basel) 2022; 11:antibiotics11091165. [PMID: 36139945 PMCID: PMC9495114 DOI: 10.3390/antibiotics11091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium is a genus comprising Gram-positive, rod-shaped, spore-forming, anaerobic bacteria that cause a variety of diseases. However, there is a shortage of information regarding antibiotic resistance in the genus in Saudi Arabia. This comprehensive analysis of research results published up until December 2021 intends to highlight the incidence of antibiotic resistance in Clostridium species in Saudi Arabia. PubMed, Google Scholar, Web of Science, SDL, and ScienceDirect databases were searched using specific keywords, and ten publications on antibiotic resistance in Clostridium species in Saudi Arabia were identified. We found that the rates of resistance of Clostridium difficile to antibiotics were as follows: 42% for ciprofloxacin, 83% for gentamicin, 28% for clindamycin, 25% for penicillin, 100% for levofloxacin, 24% for tetracycline, 77% for nalidixic acid, 50% for erythromycin, 72% for ampicillin, and 28% for moxifloxacin; whereas those of C. perfringens were: 21% for metronidazole, 83% for ceftiofur, 39% for clindamycin, 59% for penicillin, 62% for erythromycin, 47% for oxytetracycline, and 47% for lincomycin. The current findings suggest that ceftiofur, erythromycin, lincomycin, and oxytetracycline should not be used in C. perfringens infection treatments in humans or animals in Saudi Arabia.
Collapse
Affiliation(s)
- Saeed S. Banawas
- Department of Medical Laboratories, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia; ; Tel.: +966-164041510
- Health and Basic Sciences Research Center, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
34
|
Pathology and Pathogenesis of Brain Lesions Produced by Clostridium perfringens Type D Epsilon Toxin. Int J Mol Sci 2022; 23:ijms23169050. [PMID: 36012315 PMCID: PMC9409160 DOI: 10.3390/ijms23169050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens type D epsilon toxin (ETX) produces severe, and frequently fatal, neurologic disease in ruminant livestock. The disorder is of worldwide distribution and, although vaccination has reduced its prevalence, ETX still causes substantial economic loss in livestock enterprises. The toxin is produced in the intestine as a relatively inactive prototoxin, which is subsequently fully enzymatically activated to ETX. When changed conditions in the intestinal milieu, particularly starch overload, favor rapid proliferation of this clostridial bacterium, large amounts of ETX can be elaborated. When sufficient toxin is absorbed from the intestine into the systemic circulation and reaches the brain, two neurologic syndromes can develop from this enterotoxemia. If the brain is exposed to large amounts of ETX, the lesions are fundamentally vasculocentric. The neurotoxin binds to microvascular endothelial receptors and other brain cells, the resulting damage causing increased vascular permeability and extravasation of plasma protein and abundant fluid into the brain parenchyma. While plasma protein, particularly albumin, pools largely perivascularly, the vasogenic edema becomes widely distributed in the brain, leading to a marked rise in intracranial pressure, coma, sometimes cerebellar herniation, and, eventually, often death. When smaller quantities of ETX are absorbed into the bloodstream, or livestock are partially immune, a more protracted clinical course ensues. The resulting brain injury is characterized by bilaterally symmetrical necrotic foci in certain selectively vulnerable neuroanatomic sites, termed focal symmetrical encephalomalacia. ETX has also been internationally listed as a potential bioterrorism agent. Although there are no confirmed human cases of ETX intoxication, the relatively wide species susceptibility to this toxin and its high toxicity mean it is likely that human populations would also be vulnerable to its neurotoxic actions. While the pathogenesis of ETX toxicity in the brain is incompletely understood, the putative mechanisms involved in neural lesion development are discussed.
Collapse
|
35
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
36
|
Prince Milton AA, Momin AG, Gandhale PN, Das S, Ghatak S, Priya GB, Firake DM, Srinivas K, Momin KM, Hussain Z, Sen A. Prevalence, toxinotyping, antimicrobial susceptibility and biofilm-forming ability of Clostridium perfringens isolated from free-living rodents and shrews. Anaerobe 2022; 77:102618. [PMID: 35933078 DOI: 10.1016/j.anaerobe.2022.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Clostridium perfringens (C. perfringens), is a spore-forming and toxin-producing pathogenic anaerobic Gram-positive rod-shaped bacterium with immense public health/zoonotic concern. Rodents are well-known reservoirs and vectors for a large number of zoonoses and strong links have been recognized between synanthropic rodents and foodborne disease outbreaks throughout the world. To date, no study has been conducted for studying the prevalence of C. perfringens in rodents and shrews. In this study, we investigated faecal samples from free-living rodents and shrews trapped in Meghalaya, a North-eastern hill state of India for the presence of virulent and antimicrobial-resistant C. perfringens. METHODS A total of 122 animals comprising six species of rodents and one species of shrews were trapped: Mus musculus (n = 15), Mus booduga (n = 7), Rattus rattus (n = 9), Rattus norvegicus (n = 3), Bandicota indica (n = 30), Bandicota bengalensis (n = 32) and Suncus murinus (n = 26). The faecal swabs were collected and processed for the isolation of C. perfringens. Toxinotyping was done using PCR. Antimicrobial susceptibility testing and biofilm forming ability testing were done using Kirby Bauer disc diffusion method and crystal violet assay. RESULTS C. perfringens was isolated from 27 of the 122 faecal swabs (22.1%), from six species of rodents and shrews. Five of the host species were rodents, Bandicota bengalensis (25%), Bandicota indica (16.7%), Rattus norvegicus (33.3%), Mus musculus (13.3%), Mus booduga (42.8%) and Suncus murinus (29.6%). The common toxinotype was type A (59.2%) followed by Type A with beta2 toxin (33.3%), Type C (3.7%) and Type C with beta2 toxin (3.7%). None of the isolates harboured cpe, etx, iap, and NetB genes and therefore none was typed as either B, D, E, F, or G. Nine isolates (33.3%) turned out to be multi-drug resistant (MDR), displaying resistance to three or more categories of antibiotics tested. Twenty-three out of twenty-seven isolates (85.2%) were forming biofilms. CONCLUSION Globally, this is the first study to report the prevalence of C. perfringens and its virulence profile and antimicrobial resistance in free-living rodents and shrews. The rodents and shrews can potentially contaminate the food and environment and can infect humans and livestock with multi-drug resistant/virulent Type A and Type C C. perfringens.
Collapse
Affiliation(s)
| | - Aleimo G Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | | | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - G Bhuvana Priya
- College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - Dnyaneshwar Madhukar Firake
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India; ICAR-Directorate of Floricultural Research, Pune, Maharashtra, India
| | - Kandhan Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Kasanchi M Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Zakir Hussain
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
37
|
Alimolaei M, Ezatkhah M. Prevalence and genotypic characterization of Clostridium perfringens associated with goat (Capra hircus) enterotoxemia in Southeast Iran. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Motafeghi F, Mortazavi P, Mahdavi M, Shokrzadeh M. Cellular effects of epsilon toxin on the cell viability and oxidative stress of normal and lung cancer cells. Microb Pathog 2022; 169:105649. [PMID: 35738467 DOI: 10.1016/j.micpath.2022.105649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Clostridium perfringens is a type of gram-positive anaerobic bacilli. C.perfringens produces many toxins, of which epsilon (ε) is one of the major ones. The mechanism of epsilon's toxicity is located in the lipid of cell membrane tissues. Epsilon toxin is known as a bioterrorism agent. Inhalation of these aerosols can destroy pulmonary vascular endothelial cells and cause lung injury, which increases vascular permeability and pulmonary edema. METHODS In this study, we investigated the toxicity of epsilon toxin by using the MTT assay, evaluated oxidative stress effects such as ROS and LPO using the DCFH and TBA reagents, and measured the GSH of the normal and lung cancer cells by using the DTNB reagent. RESULTS The result showed that 1 μg/ml of epsilon toxin caused mitochondrial disorder and reduced the growth of the normal cell line. This toxin also induced ROS and damage to lipid membranes. Furthermore, the same effect occurred in the lung cancer cell, and the epsilon toxin inhibited cancer cell proliferation. CONCLUSION This toxin causes toxicity by binding to lipid membranes. As the present study results have confirmed, epsilon toxin inhibits mitochondrial function and induces ROS and lipid membrane damage.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Mortazavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Mahdavi
- Student Research Committee, Ramsar International Branch, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
39
|
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022; 11:pathogens11060692. [PMID: 35745546 PMCID: PMC9229159 DOI: 10.3390/pathogens11060692] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings.
Collapse
|
40
|
Biofilm formation, antimicrobial assay, and toxin-genotypes of Clostridium perfringens type C isolates cultured from a neonatal Yangtze finless porpoise. Arch Microbiol 2022; 204:361. [DOI: 10.1007/s00203-022-02990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
|
41
|
Enterocolitis in Goats Associated With Enterotoxaemia in the Perspective of Two Toxins: Epsilon Toxin and beta-2 Toxin – An Immunohistochemical and Molecular Study. Comp Immunol Microbiol Infect Dis 2022; 87:101837. [DOI: 10.1016/j.cimid.2022.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
42
|
Khan MZ, Li F, Huang X, Nouman M, Bibi R, Fan X, Zhou H, Shan Z, Wang L, Jiang Y, Cui W, Qiao X, Li Y, Wang X, Tang L. Oral Immunization of Chickens with Probiotic Lactobacillus crispatus Constitutively Expressing the α-β2-ε-β1 Toxoids to Induce Protective Immunity. Vaccines (Basel) 2022; 10:698. [PMID: 35632454 PMCID: PMC9147743 DOI: 10.3390/vaccines10050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is a bacterium that commonly causes zoonotic disease. The pathogenicity of C. perfringens is a result of the combined action of α, β, and ε exotoxins. In this study, Lactobacillus crispatus (pPG-T7g10/L. crispatus) expressing the main toxoids of C. perfringens, α, ε, β1, and β2, with EGFP-labeling, was constructed, and the protective effect was estimated in chickens. The α-β2-ε-β1 toxoid was constitutively expressed for confirmation by laser confocal microscopy and western blotting, and its immunogenicity was analyzed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemical assays. After booster immunization, the probiotic vaccine group showed significantly higher levels (p < 0.05) of specific secretory IgA (sIgA) and IgY antibodies in the serum and intestinal mucus. Furthermore, the levels of cytokines, including interferon (IFN)-γ, interleukin (lL)-2, IL-4, IL-10, IL-12, and IL-17, and the proliferation of spleen lymphocytes in chickens orally immunized with pPG-E-α-β2-ε-β1/L. crispatus increased significantly. Histopathological observations showed that the intestinal pathological changes in chickens immunized with pPG-E-α-β2ε-β1/L. crispatus were significantly alleviated. These data reveal that the probiotic vaccine could stimulate mucosal, cellular, and humoral immunity and provide an active defense against the toxins of C. perfringens, suggesting a promising candidate for oral vaccines against C. perfringens.
Collapse
Affiliation(s)
- Mohammad Zeb Khan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | - Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | - Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | | | - Roshna Bibi
- Department of Boyany, University of Swat, Mingora 19200, Pakistan;
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
43
|
Hussain R, Guangbin Z, Abbas RZ, Siddique AB, Mohiuddin M, Khan I, Rehman TU, Khan A. Clostridium perfringens Types A and D Involved in Peracute Deaths in Goats Kept in Cholistan Ecosystem During Winter Season. Front Vet Sci 2022; 9:849856. [PMID: 35372540 PMCID: PMC8971777 DOI: 10.3389/fvets.2022.849856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
Enterotoxemia is a severe and peracute disease caused by Clostridium perfringens (C. perfringens) rendering high mortality leading to huge economic losses, especially in small ruminants. The bacterium induces peracute death in animals based on the rapid production of different lethal toxins. Mortality occurred three private herds of two breeds, i.e., Makhi Cheeni and Beetal, and one non-descriptive (Teddy) herds reared in the desert area of Bahawalpur, Pakistan. At necropsy, tissue samples for histopathology and intestinal contents for bacterial isolation and culture were collected. Following the standard procedure, tissue slides were prepared. Multiplex PCR was used to identify toxinotypes using specific primers. Morbidity, mortality, and case fatality in Makhi Cheeni, Beetal, and Teddy goats caused by enterotoxemia were 87.58, 75.81, and 76.11%, respectively. Based on toxinotypes in the present outbreaks, C. perfringens type A (cpα = 20.7%; cpα + cpβ2 = 11.2%) and C. perfringens type D (cpα + cpβ2 + etx = 47.7%; cpα + etx = 20.7%) were detected. Deaths due to C. perfringens type D (68.10%) were significantly higher (p < 0.001) compared with deaths by C. perfringens type A (34.90%). Petechiation of serosal surfaces, hemorrhage of intestines, lungs, and liver were seen. Kidneys were soft, and under the microscope, tubules were studded with erythrocytes. There was stunting and fusion in the intestinal villi. From this study, we concluded that endotoxemia can occur in any season; thus, a proper vaccination schedule must be followed for the protection of small ruminants' health.
Collapse
Affiliation(s)
- Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zhang Guangbin
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Rao Zahid Abbas
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Faculty of Science and Technology, Government College University, Faisalabad, Pakistan
| | - Mudassar Mohiuddin
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tauseef Ur Rehman
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
- *Correspondence: Ahrar Khan
| |
Collapse
|
44
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, El-Shall NA, Saad AM, Salem HM, El-Tahan AM, Khafaga AF, Taha AE, AbuQamar SF, El-Tarabily KA. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult Sci 2022; 101:101590. [PMID: 34953377 PMCID: PMC8715378 DOI: 10.1016/j.psj.2021.101590] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In line with the substantial increase in the broiler industry worldwide, Clostridium perfringens-induced necrotic enteritis (NE) became a continuous challenge leading to high economic losses, especially after banning antimicrobial growth promoters in feeds by many countries. The disease is distributed worldwide in either clinical or subclinical form, causing a reduction in body weight or body weight gain and the feed conversion ratio, impairing the European Broiler Index or European Production Efficiency Factor. There are several predisposing factors in the development of NE. Clinical signs varied from inapparent signs in case of subclinical infection (clostridiosis) to obvious enteric signs (morbidity), followed by an increase in mortality level (clostridiosis or clinical infection). Clinical and laboratory diagnoses are based on case history, clinical signs, gross and histopathological lesions, pathogenic agent identification, serological testing, and molecular identification. Drinking water treatment is the most common route for the administration of several antibiotics, such as penicillin, bacitracin, and lincomycin. Strict hygienic management practices in the farm, careful selection of feed ingredients for ration formulation, and use of alternative antibiotic feed additives are all important in maintaining broiler efficiency and help increase the profitability of broiler production. The current review highlights NE caused by C. perfringens and explains the advances in the understanding of C. perfringens virulence factors involved in the pathogenesis of NE with special emphasis on the use of available antibiotic alternatives such as herbal extracts and essential oils as well as vaccines for the control and prevention of NE in broiler chickens.
Collapse
|
45
|
Necrotic enteritis in chickens: a review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim Health Res Rev 2022; 22:147-162. [DOI: 10.1017/s146625232100013x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractNecrotic enteritis (NE), caused by Clostridium perfringens (CP), is one of the most common of poultry diseases, causing huge economic losses to the poultry industry. This review provides an overview of the pathogenesis of NE in chickens and of the interaction of CP with the host immune system. The roles of management, nutrition, probiotics, and vaccination in reducing the incidence and severity of NE in poultry flocks are also discussed.
Collapse
|
46
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
47
|
Immunogenic and neutralization efficacy of recombinant perfringolysin O of Clostridium perfringens and its C-terminal receptor-binding domain in a murine model. Immunol Res 2022; 70:240-255. [PMID: 35032316 PMCID: PMC8760870 DOI: 10.1007/s12026-021-09254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens is a Gram-positive anaerobe ubiquitously present in different environments, including the gut of humans and animals. C. perfringens have been classified in the seven toxinotypes based on the secreted toxins that cause different diseases in humans and animals. Perfringolysin O (PFO), a cholesterol-dependent pore-forming cytolysin, is one of the potent toxins secreted by almost all C. perfringens isolates. The PFO acts in synergy with α-toxin in the progression of gas gangrene in humans and necrohemorrhagic enteritis in the calves.C. perfringens infections spread very fast, and the animals die within a few hours of the onset of infection. This necessitates the use of vaccines to control clostridial infections. Though the vaccine potential of other toxins has been reported, PFO has remained unexplored. The present study describes the immunogenic and protective potential of native recombinant PFO (WTrPFO). Since the PFO is toxic to the host cells, the non-toxic C-terminal domain of PFO (rPFOC-ter) was also assessed for its immunogenicity and protective efficacy. Immunization of mice with the purified soluble recombinant histidine-tagged WTrPFO and rPFOC-ter, expressed in E. coli, generated robust mixed immune response and T cell memory. Pre-incubation of the WTrPFO with anti-WTrPFO and rPFOC-ter antisera negated its hemolytic activity in mice RBCs, as well as its cytotoxic effect in mice peritoneal macrophages in vitro. Thus, immunization with the WTrPFO and its non-toxic C-terminal domain generated neutralizing antibodies, suggesting their vaccine potential against the PFO. Thus, the non-toxic C-terminal domain of PFO could serve as an alternative to PFO as a vaccine candidate.
Collapse
|
48
|
Zhou Y, Wang B, Wang Q, Tang L, Zou P, Zeng Z, Zhang H, Gong L, Li W. Protective Effects of Lactobacillus plantarum Lac16 on Clostridium perfringens Infection-Associated Injury in IPEC-J2 Cells. Int J Mol Sci 2021; 22:ijms222212388. [PMID: 34830269 PMCID: PMC8620398 DOI: 10.3390/ijms222212388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Huihua Zhang
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
- Correspondence: (L.G.); (W.L.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Correspondence: (L.G.); (W.L.)
| |
Collapse
|
49
|
Sun N, Xue Y, Wei S, Wu B, Wang H, Zeng D, Zhao Y, Khalique A, Pan K, Zeng Y, Shu G, Jing B, Ni X. Compound Probiotics Improve Body Growth Performance by Enhancing Intestinal Development of Broilers with Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2021; 15:558-572. [PMID: 34735679 DOI: 10.1007/s12602-021-09867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study is to explore whether or not the combined application of BS15 and H2 is capable to have a more effective control effect on SNE in broilers. A total of 240 1-day-old female chickens were randomly divided into 5 groups: (a) basal diet in negative control group (NC group); (b) basal diet + SNE infection (coccidiosis vaccine + CP) (PC group); (c) basal diet + SNE infection + H2 pre-treatment (BT group); (d) basal diet + SNE infection + BS15 pre-treatment (LT group); and (e) basal diet + SNE infection + H2 pre-treatment + BS15 pre-treatment (MT group). The results showed the MT group had the most positive effect on inhibiting the negative effect of growth performance at 42 days of age. In the detection of the NC, PC, and MT group indicators at 28 days of age, we found that MT group significantly promoted ileum tissue development of broilers, and the ileum of broilers in the MT group formed a flora structure different from NC and PC, although it was found that the MT group had no effect on the butyrate level in the cecum, but it could affect the serum immune level, such as significantly reducing the level of pro-inflammatory cytokine IL-8 and increasing the content of immunoglobulin IgM and IgG. In conclusion, the composite preparation of Lactobacillus johnsonii BS15 and Bacillus licheniformis H2 could effectively improve the growth performance against SNE broilers, which is possibly caused by the improvement of the immune levels, the reduction of inflammation levels, and the promotion of the intestinal development.
Collapse
Affiliation(s)
- Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Xue
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyi Wei
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Hesong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Zhao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Wiese M, Hui Y, Holck J, Sejberg JJP, Daures C, Maas E, Kot W, Borné JM, Khakimov B, Thymann T, Nielsen DS. High throughput in vitro characterization of pectins for pig(let) nutrition. Anim Microbiome 2021; 3:69. [PMID: 34627409 PMCID: PMC8501679 DOI: 10.1186/s42523-021-00129-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Fiber-rich feed components possess prebiotic potential to enhance pig health and are considered a potential solution to the high prevalence of post-weaning diarrhea in pig production under the phased suspension of antibiotics and zinc oxide use. METHODS We screened the gut microbiota modulatory properties of pectin substrates prepared from sugar beet within the freshly weaned piglet gut microbiome using an in vitro colon model, the CoMiniGut. We focused on testing a variety (13) of sugar beet-derived pectin substrates with defined structures, as well as known prebiotics such as inulin, fructooligosaccharide (FOS) and galactooligosaccharide (GOS), to gain insights on the structure-function related properties of specific substrates on the weaner gut microbial composition as well as shortchain fatty acid production (SCFA). RESULTS Sugar beet-derived pectin and rhamnogalacturonan-I selectively increased the relative abundance of Bacteroidetes, specifically Prevotella copri, Bacteroides ovatus, Bacteroides acidificiens, and an unclassified Bacteroides member. The degree of esterification impacted the relative abundance of these species and the SCFA production during the in vitro fermentations. Modified arabinans derived from sugar beet promoted the growth of Blautia, P. copri, Lachnospiraceae members and Limosilactobacillus mucosae and amongst all oligosaccharides tested yielded the highest amount of total SCFA produced after 24 h of fermentation. Sugar beet-derived substrates yielded higher total SCFA concentrations (especially acetic and propionic acid) relative to the known prebiotics inulin, FOS and GOS. CONCLUSION Our results indicate that the molecular structures of pectin, that can be prepared form just one plant source (sugar beet) can selectively stimulate different GM members, highlighting the potential of utilizing pectin substrates as targeted GM modulatory ingredients.
Collapse
Affiliation(s)
- Maria Wiese
- CP Kelco ApS, Lille Skensved, Denmark.
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
- Microbiology and Systems Biology Department, TNO, Utrechtsweg 48, 3704 HE, Zeist, The Netherlands.
| | - Yan Hui
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Celia Daures
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Evy Maas
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|