1
|
Azzi-Martin L, Touffait-Calvez V, Everaert M, Jia R, Sifré E, Seeneevassen L, Varon C, Dubus P, Ménard A. Cytolethal Distending Toxin Modulates Cell Differentiation and Elicits Epithelial to Mesenchymal Transition. J Infect Dis 2024; 229:1688-1701. [PMID: 38416880 DOI: 10.1093/infdis/jiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The bacterial genotoxin, cytolethal distending toxin (CDT), causes DNA damage in host cells, a risk factor for carcinogenesis. Previous studies have shown that CDT induces phenotypes reminiscent of epithelial to mesenchymal transition (EMT), a process involved in cancer initiation and progression. METHODS We investigated different steps of EMT in response to Helicobacter hepaticus CDT and its active CdtB subunit using in vivo and in vitro models. RESULTS Most of the steps of the EMT process were induced by CDT/CdtB and observed throughout the study in murine and epithelial cell culture models. CdtB induced cell-cell junction disassembly, causing individualization of cells and acquisition of a spindle-like morphology. The key transcriptional regulators of EMT (SNAIL and ZEB1) and some EMT markers were upregulated at both RNA and protein levels in response to CDT/CdtB. CdtB increased the expression and proteolytic activity of matrix metalloproteinases, as well as cell migration. A range of these results were confirmed in Helicobacter hepaticus-infected and xenograft murine models. In addition, colibactin, a genotoxic metabolite produced by Escherichia coli, induced EMT-like effects in cell culture. CONCLUSIONS Overall, these data show that infection with genotoxin-producing bacteria elicits EMT process activation, supporting their role in tumorigenesis.
Collapse
Affiliation(s)
- Lamia Azzi-Martin
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | | | - Maude Everaert
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Ruxue Jia
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Elodie Sifré
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Lornella Seeneevassen
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Christine Varon
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | - Pierre Dubus
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
- Institut de Pathologie et de Biologie du Cancer, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Armelle Ménard
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Intestinal Inflammation Reversibly Alters the Microbiota to Drive Susceptibility to Clostridioides difficile Colonization in a Mouse Model of Colitis. mBio 2022; 13:e0190422. [PMID: 35900107 PMCID: PMC9426610 DOI: 10.1128/mbio.01904-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Susceptibility to Clostridioides difficile infection (CDI) typically follows the administration of antibiotics. Patients with inflammatory bowel disease (IBD) have increased incidence of CDI, even in the absence of antibiotic treatment. However, the mechanisms underlying this susceptibility are not well understood. To explore the intersection between CDI and IBD, we recently described a mouse model where colitis triggered by the murine gut bacterium, Helicobacter hepaticus, in IL-10-/- mice led to susceptibility to C. difficile colonization without antibiotic administration. The current work disentangles the relative contributions of inflammation and gut microbiota in colonization resistance to C. difficile in this model. We show that inflammation drives changes in microbiota composition, which leads to CDI susceptibility. Decreasing inflammation with an anti-p40 monoclonal antibody promotes a shift of the microbiota back toward a colonization-resistant state. Transferring microbiota from susceptible and resistant mice to germfree animals transfers the susceptibility phenotype, supporting the primacy of the microbiota in colonization resistance. These findings shine light on the complex interactions between the host, microbiota, and C. difficile in the context of intestinal inflammation, and may form a basis for the development of strategies to prevent or treat CDI in IBD patients. IMPORTANCE Patients with inflammatory bowel disease (IBD) have an increased risk of developing C. difficile infection (CDI), even in the absence of antibiotic treatment. Yet, mechanisms regulating C. difficile colonization in IBD patients remain unclear. Here, we use an antibiotic-independent mouse model to demonstrate that intestinal inflammation alters microbiota composition to permit C. difficile colonization in mice with colitis. Notably, treating inflammation with an anti-p40 monoclonal antibody, a clinically relevant IBD therapeutic, restores microbiota-mediated colonization resistance to the pathogen. Through microbiota transfer experiments in germfree mice, we confirm that the microbiota shaped in the setting of IBD is the primary driver of susceptibility to C. diffiicile colonization. Collectively, our findings provide insight into CDI pathogenesis in the context of intestinal inflammation, which may inform methods to manage infection in IBD patients. More broadly, this work advances our understanding of mechanisms by which the host-microbiota interface modulates colonization resistance to C. difficile.
Collapse
|
3
|
Old but New: Group IIA Phospholipase A 2 as a Modulator of Gut Microbiota. Metabolites 2022; 12:metabo12040352. [PMID: 35448539 PMCID: PMC9029192 DOI: 10.3390/metabo12040352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Among the phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family contains 11 mammalian isoforms that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using sPLA2-deficient or -overexpressed mouse strains, along with mass spectrometric lipidomics to determine sPLA2-driven lipid pathways, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. In general, individual sPLA2s exert their specific functions within tissue microenvironments, where they are intrinsically expressed through hydrolysis of extracellular phospholipids. Recent studies have uncovered a new aspect of group IIA sPLA2 (sPLA2-IIA), a prototypic sPLA2 with the oldest research history among the mammalian PLA2s, as a modulator of the gut microbiota. In the intestine, Paneth cell-derived sPLA2-IIA acts as an antimicrobial protein to shape the gut microbiota, thereby secondarily affecting inflammation, allergy, and cancer in proximal and distal tissues. Knockout of intestinal sPLA2-IIA in BALB/c mice leads to alterations in skin cancer, psoriasis, and anaphylaxis, while overexpression of sPLA2-IIA in Pla2g2a-null C57BL/6 mice induces systemic inflammation and exacerbates arthritis. These phenotypes are associated with notable changes in gut microbiota and fecal metabolites, are variable in different animal facilities, and are abrogated after antibiotic treatment, co-housing, or fecal transfer. These studies open a new mechanistic action of this old sPLA2 and add the sPLA2 family to the growing list of endogenous factors capable of affecting the microbe–host interaction and thereby systemic homeostasis and diseases.
Collapse
|
4
|
Qian M, Cao S, Wang T, Xu X, Zhang Q. Apoptosis triggered by cytolethal distending toxin B subunit of Helicobacter hepaticus is aggravated by autophagy inhibition in mouse hepatocytes. Biochem Biophys Res Commun 2022; 598:40-46. [PMID: 35151202 DOI: 10.1016/j.bbrc.2022.01.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 11/02/2022]
Abstract
Hepatocytes injury caused by cytolethal distending toxin (CDT) are major events during helicobacter hepaticus (H.hepaticus) infection. Recent study showed that pre-survival autophagy was promoted against CdtB subunit induced DNA damage. In the present study, we demonstrated that inflammatory cytokines IL-6, IL-1β, TNF-α, IFN-α, IFN-γ expression and STAT phosphorylation were promoted by CdtB. Besides, CdtB decreased cell viability while promote apoptosis in mouse liver (AML12) cells. Especially, apoptotic protein caspase-9, caspase-3 and PARP were activated while the ratio of Bcl-2/Bax was decreased after CdtB treatment. Moreover, apoptosis induced by CdtB was inhibited due to Erk/p38 MAPK signaling pathway suppression performed with SB203580 or U0126. Meanwhile, we found that CdtB increased autophagic marker levels accompanied by Akt/mTOR/P70S6K signaling pathway in a dose dependent manner. To assess the correlation between autophagy and apoptosis induced by H.hepaticus, chloroquine (CQ, 50 μM) was employed to inhibit autophagy. The result showed that inhibition of autophagy with CQ treatment promoted apoptosis induced by CdtB. Altogether, all these results suggest that CdtB triggers apoptosis via MAPK/Erk/p38 signaling pathway in caspase dependent manner, which was prevented by autophagy in AML12 cells. Collectively, our findings provide new insights into the virulence potential of CdtB on the molecular pathogenesis throughout H.hepaticus infection.
Collapse
Affiliation(s)
- Miao Qian
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuyang Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiangming Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Taizhou University, Taizhou, China.
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Doré E, Joly-Beauparlant C, Morozumi S, Mathieu A, Lévesque T, Allaeys I, Duchez AC, Cloutier N, Leclercq M, Bodein A, Payré C, Martin C, Petit-Paitel A, Gelb MH, Rangachari M, Murakami M, Davidovic L, Flamand N, Arita M, Lambeau G, Droit A, Boilard E. The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes inflammation. JCI Insight 2022; 7:152638. [PMID: 35076027 PMCID: PMC8855825 DOI: 10.1172/jci.insight.152638] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.
Collapse
Affiliation(s)
- Etienne Doré
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Alban Mathieu
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Tania Lévesque
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Isabelle Allaeys
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Anne-Claire Duchez
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Nathalie Cloutier
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Mickaël Leclercq
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Antoine Bodein
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Christine Payré
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Cyril Martin
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Agnes Petit-Paitel
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Manu Rangachari
- CHU de Québec-Université Laval Research Center, Neurosciences Axis, Quebec City, Quebec, Canada
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Laetitia Davidovic
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Nicolas Flamand
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, Yokohama, Japan
| | - Gérard Lambeau
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Eric Boilard
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| |
Collapse
|
6
|
Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P. Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 2021; 86:1138-1154. [PMID: 34425210 DOI: 10.1016/j.semcancer.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The Helicobacter genus actually comprises 46 validly published species divided into two main clades: gastric and enterohepatic Helicobacters. These bacteria colonize alternative sites of the digestive system in animals and humans, and contribute to inflammation and cancers. In humans, Helicobacter infection is mainly related to H. pylori, a gastric pathogen infecting more than half of the world's population, leading to chronic inflammation of the gastric mucosa that can evolve into two types of gastric cancers: gastric adenocarcinomas and gastric MALT lymphoma. In addition, H. pylori but also non-H. pylori Helicobacter infection has been associated with many extra-gastric malignancies. This review focuses on H. pylori and its role in gastric cancers and extra-gastric diseases, as well as malignancies induced by non-H. pylori Helicobacters. Their different virulence factors and their involvement in carcinogenesis is discussed. This review highlights the importance of both gastric and enterohepatic Helicobacters in gastrointestinal and liver cancers.
Collapse
Affiliation(s)
- Christine Varon
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France; Univ. Bordeaux, UFR des Sciences Médicales, Bordeaux, France
| | - Sadia Khalid
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia
| | - Lornella Seeneevassen
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pirjo Spuul
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia.
| |
Collapse
|
7
|
Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-dependent type I interferon response. Cell Mol Life Sci 2021; 78:6319-6335. [PMID: 34308492 PMCID: PMC8429409 DOI: 10.1007/s00018-021-03902-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Collapse
|
8
|
Ochoa S, Collado L. Enterohepatic Helicobacter species - clinical importance, host range, and zoonotic potential. Crit Rev Microbiol 2021; 47:728-761. [PMID: 34153195 DOI: 10.1080/1040841x.2021.1924117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genus Helicobacter defined just over 30 years ago, is a highly diverse and fast-growing group of bacteria that are able to persistently colonize a wide range of animals. The members of this genus are subdivided into two groups with different ecological niches, associated pathologies, and phylogenetic relationships: the gastric Helicobacter (GH) and the enterohepatic Helicobacter (EHH) species. Although GH have been mostly studied, EHH species have become increasingly important as emerging human pathogens and potential zoonotic agents in the last years. This group of bacteria has been associated with the development of several diseases in humans from acute pathologies like gastroenteritis to chronic pathologies that include inflammatory bowel disease, and liver and gallbladder diseases. However, their reservoirs, as well as their routes of transmission, have not been well established yet. Therefore, this review summarizes the current knowledge of taxonomy, epidemiology, and clinical role of the EHH group.
Collapse
Affiliation(s)
- Sofia Ochoa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Luis Collado
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
9
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
10
|
Intestinal Inflammation and Altered Gut Microbiota Associated with Inflammatory Bowel Disease Render Mice Susceptible to Clostridioides difficile Colonization and Infection. mBio 2021; 12:e0273320. [PMID: 34126769 PMCID: PMC8262858 DOI: 10.1128/mbio.02733-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clostridioides difficile is a noteworthy pathogen in patients with inflammatory bowel disease (IBD). Patients with IBD who develop concurrent C. difficile infection (CDI) experience increased morbidity and mortality. IBD is associated with intestinal inflammation and alterations of the gut microbiota, both of which can diminish colonization resistance to C. difficile. Here, we describe the development of a mouse model to explore the role that IBD-induced changes of the gut microbiome play in susceptibility to C. difficile. Helicobacter hepaticus, a normal member of the mouse gut microbiota, triggers pathological inflammation in the distal intestine akin to human IBD in mice that lack intact interleukin 10 (IL-10) signaling. We demonstrate that mice with H. hepaticus-induced IBD were susceptible to C. difficile colonization in the absence of other perturbations, such as antibiotic treatment. Concomitant IBD and CDI were associated with significantly worse disease than observed in animals with colitis alone. Development of IBD resulted in a distinct intestinal microbiota community compared to that of non-IBD controls. Inflammation played a critical role in the susceptibility of animals with IBD to C. difficile colonization, as mice colonized with an isogenic mutant of H. hepaticus that triggers an attenuated intestinal inflammation maintained full colonization resistance. These studies with a novel mouse model of IBD and CDI emphasize the importance of host responses and alterations of the gut microbiota in susceptibility to C. difficile colonization and infection in the setting of IBD.
Collapse
|
11
|
Zhu L, Zhu C, Cao S, Zhang Q. Helicobacter hepaticus Induce Colitis in Male IL-10 -/- Mice Dependent by Cytolethal Distending Toxin B and via the Activation of Jak/Stat Signaling Pathway. Front Cell Infect Microbiol 2021; 11:616218. [PMID: 33777833 PMCID: PMC7994616 DOI: 10.3389/fcimb.2021.616218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
It has been well documented that cytolethal distending toxin (CDT) from Helicobacter hepaticus (H. hepaticus), Campylobacter jejuni (C. jejuni) and other Gram-negative intestinal pathogens is linked to the inflammatory bowel disease (IBD). However, the mechanisms underlying the progression of H. hepaticus induced colitis remains unclear. In this study, male B6.129P2-IL10tm1Cgn/J mice were infected by H. hepaticus and ΔCdtB H. hepaticus for 6, 12, 18, and 24 weeks. Histopathology, H. hepaticus colonization levels, expression of inflammatory cytokines, signaling pathways, and content of NO in proximal colon were examined. We found that Cytolethal distending toxin subunit B (CdtB) deletion had no influence on colonization ability of H. hepaticus in colon of B6.129P2-IL10tm1cgn/J mice, and there was no significant difference in abundance of colonic H. hepaticus over infection duration. H. hepaticus aggravated rectocele and proximal colonic inflammation, especially at 24 WPI, while ΔCdtB H. hepaticus could not cause significant symptom. Furthermore, mRNA levels of Il-6, Tnf-α, Il-1β, and iNOS significantly increased in the proximal colon of H. hepaticus-infected mice compared to ΔCdtB H. hepaticus infected group from 12 WPI to 24 WPI. In addition, the elevated content of NO and activated Stat3 and Jak2 in colon were observed in H. hepaticus infected mice. These data demonstrated that CdtB promote colitis development in male B6.129P2-IL10tm1Cgn/J mice by induction of inflammatory response and activation of Jak-Stat signaling pathway.
Collapse
Affiliation(s)
- Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chen Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shuyang Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Pons BJ, Loiseau N, Hashim S, Tadrist S, Mirey G, Vignard J. Functional Study of Haemophilus ducreyi Cytolethal Distending Toxin Subunit B. Toxins (Basel) 2020; 12:toxins12090530. [PMID: 32825080 PMCID: PMC7551728 DOI: 10.3390/toxins12090530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The Cytolethal Distending Toxin (CDT) is produced by many Gram-negative pathogenic bacteria responsible for major foodborne diseases worldwide. CDT induces DNA damage and cell cycle arrest in host-cells, eventually leading to senescence or apoptosis. According to structural and sequence comparison, the catalytic subunit CdtB is suggested to possess both nuclease and phosphatase activities, carried by a single catalytic site. However, the impact of each activity on cell-host toxicity is yet to be characterized. Here, we analyze the consequences of cell exposure to different CDT mutated on key CdtB residues, focusing on cell viability, cell cycle defects, and DNA damage induction. A first class of mutant, devoid of any activity, targets putative catalytic (H160A), metal binding (D273R), and DNA binding residues (R117A-R144A-N201A). The second class of mutants (A163R, F156-T158, and the newly identified G114T), which gathers mutations on residues potentially involved in lipid substrate binding, has only partially lost its toxic effects. However, their defects are alleviated when CdtB is artificially introduced inside cells, except for the F156-T158 double mutant that is defective in nuclear addressing. Therefore, our data reveal that CDT toxicity is mainly correlated to CdtB nuclease activity, whereas phosphatase activity may probably be involved in CdtB intracellular trafficking.
Collapse
Affiliation(s)
| | | | | | | | - Gladys Mirey
- Correspondence: (G.M.); (J.V.); Tel.: +33-582-066-338 (G.M.)
| | - Julien Vignard
- Correspondence: (G.M.); (J.V.); Tel.: +33-582-066-338 (G.M.)
| |
Collapse
|
13
|
Martin OC, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins (Basel) 2020; 12:E63. [PMID: 31973033 PMCID: PMC7076804 DOI: 10.3390/toxins12020063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
Affiliation(s)
- Océane C.B. Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33320 Bordeaux, France;
| | - Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, 17177 Stockholm, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
14
|
Cytolethal Distending Toxin Subunit B: A Review of Structure-Function Relationship. Toxins (Basel) 2019; 11:toxins11100595. [PMID: 31614800 PMCID: PMC6832162 DOI: 10.3390/toxins11100595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial virulence factor produced by several Gram-negative pathogenic bacteria. These bacteria, found in distinct niches, cause diverse infectious diseases and produce CDTs differing in sequence and structure. CDTs have been involved in the pathogenicity of the associated bacteria by promoting persistent infection. At the host-cell level, CDTs cause cell distension, cell cycle block and DNA damage, eventually leading to cell death. All these effects are attributable to the catalytic CdtB subunit, but its exact mode of action is only beginning to be unraveled. Sequence and 3D structure analyses revealed similarities with better characterized proteins, such as nucleases or phosphatases, and it has been hypothesized that CdtB exerts a biochemical activity close to those enzymes. Here, we review the relationships that have been established between CdtB structure and function, particularly by mutation experiments on predicted key residues in different experimental systems. We discuss the relevance of these approaches and underline the importance of further study in the molecular mechanisms of CDT toxicity, particularly in the context of different pathological conditions.
Collapse
|
15
|
Mannion A, Shen Z, Feng Y, Artim SC, Ravindra K, Ge Z, Fox JG. Gamma-glutamyltranspeptidase expression by Helicobacter saguini, an enterohepatic Helicobacter species isolated from cotton top tamarins with chronic colitis. Cell Microbiol 2018; 21:e12968. [PMID: 30365223 DOI: 10.1111/cmi.12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Helicobacter saguini is a novel enterohepatic Helicobacter species isolated from captive cotton top tamarins with chronic colitis and colon cancer. Monoassociated H. saguini infection in gnotobiotic IL-10-/- mice causes typhlocolitis and dysplasia; however, the virulent mechanisms of this species are unknown. Gamma-glutamyltranspeptidase (GGT) is an enzymatic virulence factor expressed by pathogenic Helicobacter and Campylobacter species that inhibits host cellular proliferation and promotes inflammatory-mediated gastrointestinal pathology. The aim of this study was to determine if H. saguini expresses an enzymatically active GGT homologue with virulence properties. EXPERIMENTAL PROCEDURES Two putative GGT paralogs (HSGGT1 and HSGGT2) identified in the H. saguini genome were bioinformatically analysed to predict enzymatic functionality and virulence potential. An isogenic knockout mutant strain and purified recombinant protein of HSGGT1 were created to study enzymatic activity and virulence properties by in vitro biochemical and cell culture experiments. RESULTS Bioinformatic analysis predicted that HSGGT1 has enzymatic functionality and is most similar to the virulent homologue expressed by Helicobacter bilis, whereas HSGGT2 contains putatively inactivating mutations. An isogenic knockout mutant strain and recombinant HSGGT1 protein were successfully created and demonstrated that H. saguini has GGT enzymatic activity. Recombinant HSGGT1 protein and sonicate from wild-type but not mutant H. saguini inhibited gastrointestinal epithelial and lymphocyte cell proliferation without evidence of cell death. The antiproliferative effect by H. saguini sonicate or recombinant HSGGT1 protein could be significantly prevented with glutamine supplementation or the GGT-selective inhibitor acivicin. Recombinant HSGGT1 protein also induced proinflammatory gene expression in colon epithelial cells. CONCLUSIONS This study shows that H. saguini may express GGT as a potential virulence factor and supports further in vitro and in vitro studies into how GGT expression by enterohepatic Helicobacter species influences the pathogenesis of gastrointestinal inflammatory diseases.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kodihalli Ravindra
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Zou S, Fang L, Lee MH. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf) 2018; 6:1-12. [PMID: 29479437 PMCID: PMC5806407 DOI: 10.1093/gastro/gox031] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal microbiome, containing at least 100 trillion bacteria, resides in the mucosal surface of human intestine. Recent studies show that perturbations in the microbiota may influence physiology and link to a number of diseases, including colon tumorigenesis. Colorectal cancer (CRC), the third most common cancer, is the disease resulting from multi-genes and multi-factors, but the mechanistic details between gut microenvironment and CRC remain poorly characterized. Thanks to new technologies such as metagenome sequencing, progress in large-scale analysis of the genetic and metabolic profile of gut microbial has been possible, which has facilitated studies about microbiota composition, taxonomic alterations and host interactions. Different bacterial species and their metabolites play critical roles in the development of CRC. Also, microbiota is important in the inflammatory response and immune processes deregulation during the development and progression of CRC. This review summarizes current studies regarding the association between gastrointestinal microbiota and the development of CRC, which provides insights into the therapeutic strategy of CRC.
Collapse
Affiliation(s)
- Shaomin Zou
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou 510020, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510020, China
| | - Lekun Fang
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou 510020, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510020, China
| | - Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou 510020, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510020, China
| |
Collapse
|
17
|
Ge Z, Feng Y, Ge L, Parry N, Muthupalani S, Fox JG. Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cell Microbiol 2017; 19. [PMID: 28111881 DOI: 10.1111/cmi.12728] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
Multiple pathogenic Gram-negative bacteria produce the cytolethal distending toxin (CDT) with activity of DNase I; CDT can induce DNA double-strand breaks (DSBs), G2/M cell cycle arrest, and apoptosis in cultured mammalian cells. However, the link of CDT to in vivo tumorigenesis is not fully understood. In this study, 129/SvEv Rag2-/- mice were gavaged with wild-type Helicobacter hepatics 3B1(Hh) and its isogenic cdtB mutant HhcdtBm7, followed by infection for 10 and 20 weeks (WPI). HhCDT deficiency did not affect cecal colonization levels of HhcdtBm7, but attenuated severity of cecal pathology in HhcdtBm7-infected mice. Of importance, preneoplasic dysplasia was progressed to cancer from 10 to 20 WPI in the Hh-infected mice but not in the HhcdtBm7-infected mice. In addition, the loss of HhCDT significantly dampened transcriptional upregulation of cecal Tnfα and Il-6, but elevated Il-10 mRNA levels when compared to Hh at 10 WPI. Furthermore, the presence of HhCDT increased numbers of lower bowel intestinal γH2AX-positive epithelial cells (a marker of DSBs) at both 10 and 20 WPI and augmented phospho-Stat3 foci+ intestinal crypts (activation of Stat3) at 20 WPI. Our findings suggest that CDT promoted Hh carcinogenesis by enhancing DSBs and activation of the Tnfα/Il-6-Stat3 signaling pathway.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Lili Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Nicola Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| |
Collapse
|
18
|
D'Elios MM, Vallese F, Capitani N, Benagiano M, Bernardini ML, Rossi M, Rossi GP, Ferrari M, Baldari CT, Zanotti G, de Bernard M, Codolo G. The Helicobacter cinaedi antigen CAIP participates in atherosclerotic inflammation by promoting the differentiation of macrophages in foam cells. Sci Rep 2017; 7:40515. [PMID: 28074932 PMCID: PMC5225449 DOI: 10.1038/srep40515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that certain specific microbial infections participate in atherosclerosis by inducing inflammation and immune reactions, but how the pathogens implicated in this pathology trigger the host responses remains unknown. In this study we show that Helicobacter cinaedi (Hc) is a human pathogen linked to atherosclerosis development since at least 27% of sera from atherosclerotic patients specifically recognize a protein of the Hc proteome, that we named Cinaedi Atherosclerosis Inflammatory Protein (CAIP) (n = 71). CAIP appears to be implicated in this pathology because atheromatous plaques isolated from atherosclerotic patients are enriched in CAIP-specific T cells (10%) which, in turn, we show to drive a Th1 inflammation, an immunopathological response typically associated to atherosclerosis. Recombinant CAIP promotes the differentiation and maintenance of the pro-inflammatory profile of human macrophages and triggers the formation of foam cells, which are a hallmark of atherosclerosis. This study identifies CAIP as a relevant factor in atherosclerosis inflammation linked to Hc infection and suggests that preventing and eradicating Hc infection could reduce the incidence of atherosclerosis.
Collapse
Affiliation(s)
- Mario Milco D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nagaja Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Lina Bernardini
- Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy.,Institute Pasteur Italy - Fondazione Cenci Bolognetti, Rome, Italy
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Gian Paolo Rossi
- Internal Medicine, Department of Medicine-DIMED, University of Padua, Italy
| | - Mauro Ferrari
- Vascular Surgery Unit, Cisanello University Hospital AOUP, Pisa, Italy
| | | | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Gaia Codolo
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
19
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
20
|
Rasmussen RE, Erstad SM, Ramos-Martinez EM, Fimognari L, De Porcellinis AJ, Sakuragi Y. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria. Microb Cell Fact 2016; 15:186. [PMID: 27825349 PMCID: PMC5101802 DOI: 10.1186/s12934-016-0587-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls, lysis of cyanobacterial cells is inefficient and often laborious. In some cases radioisotope-labeled substrates can be fed directly to intact cells; however, label-free assays are often favored due to safety and practical reasons. RESULTS Here we show an easy and highly efficient method for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism in cyanobacteria. Incubation of the cyanobacterial cells in the commercially available B-PER reagent for 10 min permeabilized the cells, as confirmed by the SYTOX Green staining. There was no significant change in the cell shape and no major loss of intracellular proteins was observed during the treatment. When used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process and subsequent activity assays were successfully adapted to the 96-well plate system. CONCLUSIONS An easy, efficient and scalable permeabilization protocol was established for cyanobacteria. The permeabilized cells can be directly applied for measurement of G6PDH and Rubisco activities without using radioisotopes and the protocol may be readily adapted to studies of other cyanobacterial species and other intracellular enzymes. The permeabilization and enzyme assays can be performed in 96-well plates in a high-throughput manner.
Collapse
Affiliation(s)
- Randi Engelberth Rasmussen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Erick Miguel Ramos-Martinez
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
21
|
Impact of CDT Toxin on Human Diseases. Toxins (Basel) 2016; 8:toxins8070220. [PMID: 27429000 PMCID: PMC4963852 DOI: 10.3390/toxins8070220] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cytolethal distending toxin (CDT) is found in Gram-negative bacteria, especially in certain Proteobacteria such as the Pasteurellaceae family, including Haemophilus ducreyi and Aggregatibacter (Actinobacillus) actinomycetemcomitans, in the Enterobacteriaceae family and the Campylobacterales order, including the Campylobacter and Helicobacter species. In vitro and in vivo studies have clearly shown that this toxin has a strong effect on cellular physiology (inflammation, immune response modulation, tissue damage). Some works even suggest a potential involvement of CDT in cancers. In this review, we will discuss these different aspects.
Collapse
|
22
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
23
|
Del Bel Belluz L, Guidi R, Pateras IS, Levi L, Mihaljevic B, Rouf SF, Wrande M, Candela M, Turroni S, Nastasi C, Consolandi C, Peano C, Tebaldi T, Viero G, Gorgoulis VG, Krejsgaard T, Rhen M, Frisan T. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection. PLoS Pathog 2016; 12:e1005528. [PMID: 27055274 PMCID: PMC4824513 DOI: 10.1371/journal.ppat.1005528] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.
Collapse
Affiliation(s)
- Lisa Del Bel Belluz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Guidi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis S. Pateras
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Laura Levi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Boris Mihaljevic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wrande
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Milan, Italy
| | - Toma Tebaldi
- Centre for Integrative Biology University of Trento, Trento, Italy
| | | | - Vassilis G. Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
24
|
Frank J, Dingemanse C, Schmitz AM, Vossen RHAM, van Ommen GJB, den Dunnen JT, Robanus-Maandag EC, Anvar SY. The Complete Genome Sequence of the Murine Pathobiont Helicobacter typhlonius. Front Microbiol 2016; 6:1549. [PMID: 26779178 PMCID: PMC4705304 DOI: 10.3389/fmicb.2015.01549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 01/27/2023] Open
Abstract
Background: Immuno-compromised mice infected with Helicobacter typhlonius are used to model microbially inducted inflammatory bowel disease (IBD). The specific mechanism through which H. typhlonius induces and promotes IBD is not fully understood. Access to the genome sequence is essential to examine emergent properties of this organism, such as its pathogenicity. To this end, we present the complete genome sequence of H. typhlonius MIT 97-6810, obtained through single-molecule real-time sequencing. Results: The genome was assembled into a single circularized contig measuring 1.92 Mbp with an average GC content of 38.8%. In total 2,117 protein-encoding genes and 43 RNA genes were identified. Numerous pathogenic features were found, including a putative pathogenicity island (PAIs) containing components of type IV secretion system, virulence-associated proteins and cag PAI protein. We compared the genome of H. typhlonius to those of the murine pathobiont H. hepaticus and human pathobiont H. pylori. H. typhlonius resembles H. hepaticus most with 1,594 (75.3%) of its genes being orthologous to genes in H. hepaticus. Determination of the global methylation state revealed eight distinct recognition motifs for adenine and cytosine methylation. H. typhlonius shares four of its recognition motifs with H. pylori. Conclusion: The complete genome sequence of H. typhlonius MIT 97-6810 enabled us to identify many pathogenic features suggesting that H. typhlonius can act as a pathogen. Follow-up studies are necessary to evaluate the true nature of its pathogenic capabilities. We found many methylated sites and a plethora of restriction-modification systems. The genome, together with the methylome, will provide an essential resource for future studies investigating gene regulation, host interaction and pathogenicity of H. typhlonius. In turn, this work can contribute to unraveling the role of Helicobacter in enteric disease.
Collapse
Affiliation(s)
- Jeroen Frank
- Leiden Genome Technology Center, Leiden University Medical Center Leiden, Netherlands
| | - Celia Dingemanse
- Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Arnoud M Schmitz
- Leiden Genome Technology Center, Leiden University Medical Center Leiden, Netherlands
| | - Rolf H A M Vossen
- Leiden Genome Technology Center, Leiden University Medical Center Leiden, Netherlands
| | - Gert-Jan B van Ommen
- Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Johan T den Dunnen
- Leiden Genome Technology Center, Leiden University Medical CenterLeiden, Netherlands; Department of Human Genetics, Leiden University Medical CenterLeiden, Netherlands; Department of Clinical Genetics, Leiden University Medical CenterLeiden, Netherlands
| | | | - Seyed Yahya Anvar
- Leiden Genome Technology Center, Leiden University Medical CenterLeiden, Netherlands; Department of Human Genetics, Leiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
25
|
Dixon SD, Huynh MM, Tamilselvam B, Spiegelman LM, Son SB, Eshraghi A, Blanke SR, Bradley KA. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins. PLoS One 2015; 10:e0143977. [PMID: 26618479 PMCID: PMC4664275 DOI: 10.1371/journal.pone.0143977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/11/2015] [Indexed: 12/29/2022] Open
Abstract
Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.
Collapse
Affiliation(s)
- Shandee D. Dixon
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melanie M. Huynh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Batcha Tamilselvam
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Lindsey M. Spiegelman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sophia B. Son
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Aria Eshraghi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules 2015; 5:1762-82. [PMID: 26270677 PMCID: PMC4598774 DOI: 10.3390/biom5031762] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
|
27
|
Abstract
: The human intestinal microbiome plays a critical role in human health and disease, including the pathogenesis of inflammatory bowel disease (IBD). Numerous studies have identified altered bacterial diversity and abundance at varying taxonomic levels through biopsies and fecal samples of patients with IBD and diseased model animals. However, inconsistent observations regarding the microbial compositions of such patients have hindered the efforts in assessing the etiological role of specific bacterial species in the pathophysiology of IBD. These observations highlight the importance of minimizing the confounding factors associated with IBD and the need for a standardized methodology to analyze well-defined microbial sampling sources in early IBD diagnosis. Furthermore, establishing the linkage between microbiota compositions with their function within the host system can provide new insights on the pathogenesis of IBD. Such research has been greatly facilitated by technological advances that include functional metagenomics coupled with proteomic and metabolomic profiling. This review provides updates on the composition of the microbiome in IBD and emphasizes microbiota dysbiosis-involved mechanisms. We highlight functional roles of specific bacterial groups in the development and management of IBD. Functional analyses of the microbiome may be the key to understanding the role of microbiota in the development and chronicity of IBD and reveal new strategies for therapeutic intervention.
Collapse
|
28
|
Promotion of atherosclerosis by Helicobacter cinaedi infection that involves macrophage-driven proinflammatory responses. Sci Rep 2014; 4:4680. [PMID: 24732347 PMCID: PMC3986732 DOI: 10.1038/srep04680] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/17/2014] [Indexed: 01/11/2023] Open
Abstract
Helicobacter cinaedi is the most common enterohepatic Helicobacter species that causes bacteremia in humans, but its pathogenicity is unclear. Here, we investigated the possible association of H. cinaedi with atherosclerosis in vivo and in vitro. We found that H. cinaedi infection significantly enhanced atherosclerosis in hyperlipidaemic mice. Aortic root lesions in infected mice showed increased accumulation of neutrophils and F4/80+ foam cells, which was due, at least partly, to bacteria-mediated increased expression of proinflammatory genes. Although infection was asymptomatic, detection of cytolethal distending toxin RNA of H. cinaedi indicated aorta infection. H. cinaedi infection altered expression of cholesterol receptors and transporters in cultured macrophages and caused foam cell formation. Also, infection induced differentiation of THP-1 monocytes. These data provide the first evidence of a pathogenic role of H. cinaedi in atherosclerosis in experimental models, thereby justifying additional investigations of the possible role of enterohepatic Helicobacter spp. in atherosclerosis and cardiovascular disease.
Collapse
|
29
|
Belibasakis GN, Bostanci N. Inflammatory and bone remodeling responses to the cytolethal distending toxins. Cells 2014; 3:236-46. [PMID: 24709959 PMCID: PMC4092851 DOI: 10.3390/cells3020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxins (CDTs) are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| |
Collapse
|
30
|
Varon C, Mocan I, Mihi B, Péré-Védrenne C, Aboubacar A, Moraté C, Oleastro M, Doignon F, Laharie D, Mégraud F, Ménard A. Helicobacter pullorum Cytolethal Distending Toxin Targets Vinculin and Cortactin and Triggers Formation of Lamellipodia in Intestinal Epithelial Cells. J Infect Dis 2014; 209:588-99. [DOI: 10.1093/infdis/jit539] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
31
|
Liyanage NP, Dassanayake RP, Kuszynski CA, Duhamel GE. Contribution of Helicobacter hepaticus cytolethal distending toxin subunits to human epithelial cell cycle arrest and apoptotic death in vitro. Helicobacter 2013; 18:433-43. [PMID: 23895367 PMCID: PMC3808484 DOI: 10.1111/hel.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus, the cause of chronic typhlocolitis and hepatitis leading to colonic and hepatocellular carcinomas in mice. Interaction of the tripartite polypeptide CdtA, CdtB, and CdtC subunits produced by H. hepaticus CDT (HhepCDT) causes cell cycle arrest and apoptotic death of cultured cells; however, the contribution of individual subunit to these processes has not been investigated. MATERIALS AND METHODS The temporal relationship between cell cycle and apoptotic death of human epithelial HeLa and INT407 cells intoxicated with HhepCDT holotoxin or reconstituted recombinant HhepCDT was compared by flow cytometry. The genotoxic activity of individual and combinations of recombinant HhepCDT protein subunits or increasing concentrations of individual recombinant HhepCDT protein subunits transfected into HeLa cells was assessed at 72 hours post-treatment by flow cytometry. RESULTS Similar time course of HhepCDT-induced G2 /M cell cycle arrest and apoptotic death was found with both cell lines which reached a maximum at 72 hours. The presence of all three HhepCDT subunits was required for maximum cell cycle arrest and apoptosis of both cell lines. Transfection of HeLa cells with HhepCdtB, but not with HhepCdtA or HhepCdtC, resulted in a dose-dependent G2 /M arrest and apoptotic death. CONCLUSION All three subunits of HhepCDT are required for maximum epithelial cell cycle arrest and progression to apoptotic death, and HhepCdtB subunit alone is necessary and sufficient for epithelial cell genotoxicity.
Collapse
Affiliation(s)
- Namal P.M. Liyanage
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| | - Rohana P. Dassanayake
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| | - Charles A. Kuszynski
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, U.S.A
| | - Gerald E. Duhamel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| |
Collapse
|
32
|
Falsafi T, Mahboubi M. Helicobacter hepaticus, a new pathogenic species of the Helicobacter genus: Similarities and differences with H. pylori. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:185-94. [PMID: 24475322 PMCID: PMC3895553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Helicobacter hepaticus was discovered in 1992 as a cause of liver cancer in the A/JCr mouse model. In susceptible mice, infection by H. hepaticus causes chronic gastrointestinal inflammation leading to neoplasia. It can also cause morphological changes in breast-glands leading to neoplasm and adenocarcinoma in mouse models. Studies performed on humans have revealed that H. hepaticus may also be a human pathogen since infection by H. hepaticus can be associated with cholecystitis, cholelithiasis and gallbladder cancer. H. hepaticus is a close relative of H. pylori, but it lacks the major virulence factors of H. pylori including vacoulating cytotoxin A (VacA) and cytotoxin associated gene (cagA). Moreover, SabA, AlpA, and BabA, three important adhesin proteins of H. pylori, are absent in its genome. In contrast, the genome of H. hepaticus contains genes encoding some orthologus virulence factors of Campylobacter jejuni such as cytolethal distending toxin (CDT), and PebI adhesin factor. Other genes including 16S rRNA, 18 KDa immunogenic protein, and urease structural subunits are related to H. pylori. Its genome contains a small island consisting of 71 Kbp named HHGI1, which probably encodes a secretion system type IV (T4SS), and some other virulence factors. As far as the immunogenic antigens are concerned, the lipopolysaccharide (LPS) and flagellin of H. hepaticus are weak stimulants of the immune system, while pro-inflammatory responses are mainly induced by its lipoproteins and most likely by the peptidoglycan. Concerning the multidrug efflux pumps, a homologue of H. pylori TolC, HefA, has been observed in H. hepaticus which contributes to resistance to amoxicillin and bile acids.
Collapse
Affiliation(s)
- Tahereh Falsafi
- Corresponding author: Dr. Tahereh Falsafi, Address: Department of Biology, Alzahra University, Vanak, Tehran, Iran. Tel & Fax: +98-21-88058912. E-mail:
| | | |
Collapse
|
33
|
Yang I, Eibach D, Kops F, Brenneke B, Woltemate S, Schulze J, Bleich A, Gruber AD, Muthupalani S, Fox JG, Josenhans C, Suerbaum S. Intestinal microbiota composition of interleukin-10 deficient C57BL/6J mice and susceptibility to Helicobacter hepaticus-induced colitis. PLoS One 2013; 8:e70783. [PMID: 23951007 PMCID: PMC3739778 DOI: 10.1371/journal.pone.0070783] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/22/2013] [Indexed: 12/26/2022] Open
Abstract
The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10−/− mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10−/− mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.
Collapse
Affiliation(s)
- Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Daniel Eibach
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Friederike Kops
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Birgit Brenneke
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Sabrina Woltemate
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Jessika Schulze
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- * E-mail:
| |
Collapse
|
34
|
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) are at increase risk for bone loss and fractures. Therefore, in the present study, we examined the effect of experimental IBD on bone health. METHODS We used a murine model of colitis, Helicobacter hepaticus-infected interleukin-10-deficient animals. Molecular and histological properties of bone and intestine were examined to identify the immunopathological consequences of colitis in male and female mice. RESULTS At 6 weeks postinfection, we observed significant trabecular bone loss in male mice but surprisingly not in female mice. This was true for both distal femur and vertebral locations. In addition, H. hepaticus infection suppressed osteoblast markers only in male mice. Consistent with effects on bone health, male mice with H. hepaticus infection had more severe colitis as determined by histology and elevated levels of inflammatory cytokines in the colon. Although H. hepaticus levels in the stool appeared similar in male and female mice 1 week after infection, by 6 weeks, H. hepaticus levels were greater in male mice, indicating that H. hepaticus survival and virulence within the gastrointestinal tract could be gender dependent. CONCLUSION In summary, H. hepaticus-induced colitis severity and associated bone loss is gender regulated, possibly as a result of gender-specific effects on H. hepaticus colonization in the mouse gastrointestinal tract and the consequent immunopathological responses.
Collapse
|
35
|
Nagalingam NA, Robinson CJ, Bergin IL, Eaton KA, Huffnagle GB, Young VB. The effects of intestinal microbial community structure on disease manifestation in IL-10-/- mice infected with Helicobacter hepaticus. MICROBIOME 2013; 1:15. [PMID: 24450737 PMCID: PMC3971628 DOI: 10.1186/2049-2618-1-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/22/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND The aberrant inflammation that is the hallmark of the inflammatory bowel diseases (IBD) is associated with several factors, including changes in the intestinal microbiota. Here, we confirmed that an intestinal microbiota is needed for development of typhlocolitis in Helicobacter hepaticus infected IL-10-/- C57BL/6 mice, and investigated the role of the microbiota in modulating disease. RESULTS We altered the murine microbiota by treatment with the antibiotics vancomycin or cefoperazone prior to H. hepaticus infection. Through surveys of the 16S rRNA encoding-gene, analyses of histology and changes in expression of host mediators, we correlated alterations in the microbiota with host responses. We found that resident microbes are essential for initiation of disease, as animals mono-associated with H. hepaticus did not develop colitis. Despite the requirement for an indigenous microbiota for the initiation of disease, the severity of disease was independent of antibiotic-induced changes in the microbial community structure. Despite differences in the expression of host inflammatory mediators associated with shifts in the microbiota, H. hepaticus infection led to similar histopathologic lesions in microbial communities exposed to either cefoperazone or vancomycin. CONCLUSION In conclusion, we demonstrate that colitis due to H. hepaticus infection can be initiated and progress in the presence of several different microbial communities. Furthermore, H. hepaticus is the main driver of inflammation in this model, while the specific structure of the microbiota may modulate the host pathways that lead to chronic inflammation.
Collapse
Affiliation(s)
- Nabeetha A Nagalingam
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48109, USA
- Current address: Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Courtney J Robinson
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Current address: Department of Biology, Howard University, Washington, DC, 20059, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kathryn A Eaton
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary B Huffnagle
- Department of Internal Medicine/Pulmonary Division, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vincent B Young
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
36
|
Le Roux-Goglin E, Dubus P, Asencio C, Jutand MA, Rosenbaum J, Mégraud F. Hepatic lesions observed in hepatitis C virus transgenic mice infected by Helicobacter hepaticus. Helicobacter 2013; 18:33-40. [PMID: 23067369 DOI: 10.1111/j.1523-5378.2012.00995.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The heterogeneity of hepatitis C virus (HCV) infection cannot always be explained by HCV genotypes or host genetic factors, raising the issue of possible cofactors. A new form of hepatitis leading to liver cancer was discovered in 1992 in mice, owing to an infection by Helicobacter hepaticus. Moreover, several studies showed an association between the presence of HCV and Helicobacter in the liver of patients with severe liver diseases suggesting a possible synergism between the two pathogens. In an HCV transgenic mouse model with a B6C3F1 background, the combination of H. hepaticus infection and the HCV transgene resulted in a significantly greater incidence and multiplicity of preneoplastic and neoplastic liver foci in males. OBJECTIVES Because the mouse genetic background is a major determinant in the development of liver disease, our aim was to test the synergism between HCV and H. hepaticus infection using transgenic mice with a more sensitive genetic background to H. hepaticus infection. METHODS For this purpose, four groups of mice were followed up to 14 months, the presence of H. hepaticus was monitored by PCR and hepatic lesions were looked for. RESULTS We found that H. hepaticus, but not the HCV transgene, increased the number of hepatic lesions. The presence of carcinoma was more likely to occur on a background of hepatitis, and the overall lesions were more frequent in the presence of steatosis. The effect of the mouse genetic background was greater than the effect of the HCV transgene and was sufficient to promote lesions particularly via its sensitivity to H. hepaticus infection. CONCLUSIONS Genetic susceptibility may be a more important factor than expected. Indeed, the synergism between HCV and H. hepaticus infection involved in liver disease may be highly host dependent.
Collapse
|
37
|
Enhanced production of early lineages of monocytic and granulocytic cells in mice with colitis. Proc Natl Acad Sci U S A 2012; 109:16594-9. [PMID: 23012474 DOI: 10.1073/pnas.1213854109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bone marrow (BM) is a large, highly active, and responsive tissue. Interestingly, little is known about the impact of colitis on hematopoietic functions. Using dextran sodium sulfate (DSS) to induce colitis in mice, we identified significant changes in the BM. Specifically, cells of the monocytic and granulocytic lineages increased nearly 60% and 80%, respectively. This change would support and promote the large infiltration of the gut with neutrophils and monocytes that are the primary cause of inflammation and tissue damage during colitis. Conversely, the early lineages of B and T cells declined in the marrow and thymus with particularly large losses observed among pre-B and pre-T cells with heightened levels of apoptosis noted among CD4(+)CD8(+) thymocytes from DSS-treated mice. Also noteworthy was the 40% decline in cells of the erythrocytic lineages in the marrow of colitis mice, which undoubtedly contributed to the anemia observed in these mice. The peripheral blood reflected the marrow changes as demonstrated by a 2.6-fold increase in neutrophils, a 60% increase in monocytes, and a decline in the lymphocyte population. Thus, colitis changed the BM in profound ways that parallel the general outcomes of colitis including infiltration of the gut with monocytes and neutrophils, inflammation, and anemia. The data provide important understandings of the full impact of colitis that may lead to unique treatments and therapies.
Collapse
|
38
|
Nagalingam NA, Lynch SV. Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2012; 18:968-84. [PMID: 21936031 DOI: 10.1002/ibd.21866] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022]
Abstract
Studying the role of the human microbiome as it relates to human health status has revolutionized our view of microbial community contributions to a large number of diseases, particularly chronic inflammatory disorders. The lower gastrointestinal (GI) tract houses trillions of microbial cells representing a large diversity of species in relatively well-defined phylogenetic ratios that are associated with maintenance of key aspects of host physiology and immune homeostasis. It is not surprising, therefore, that many GI inflammatory diseases, including inflammatory bowel disease (IBD), are associated with substantial changes in the composition of these microbial assemblages, either as a cause or consequence of host inflammatory response. Here we review current knowledge in the emerging field of human microbiome research as it relates to IBD, specifically focusing on Crohn's disease (CD) and ulcerative colitis (UC). We discuss bacteriotherapeutic efforts to restore GI microbial assemblage integrity via probiotic supplementation of IBD patients, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Nabeetha A Nagalingam
- Colitis and Crohn's Disease Microbiome Research Core, Division of Gastroenterology, University of California, San Francisco, Calfornia 94143-0538, USA
| | | |
Collapse
|
39
|
McCaskey SJ, Rondini EA, Clinthorne JF, Langohr IM, Gardner EM, Fenton JI. Increased presence of effector lymphocytes during Helicobacter hepaticus-induced colitis. World J Gastroenterol 2012; 18:1459-69. [PMID: 22509077 PMCID: PMC3319941 DOI: 10.3748/wjg.v18.i13.1459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/12/2011] [Accepted: 12/31/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify and characterize drosophila mothers against decapentaplegic (SMAD)3-dependent changes in immune cell populations following infection with Helicobacter hepaticus (H. hepaticus).
METHODS: SMAD3-/- (n = 19) and colitis-resistant SMAD3+/- (n = 24) mice (8-10 wk of age) were infected with H. hepaticus and changes in immune cell populations [T lymphocytes, natural killer (NK) cells, T regulatory cells] were measured in the spleen and mesenteric lymph nodes (MsLNs) at 0 d, 3 d, 7 d and 28 d post-infection using flow cytometry. Genotype-dependent changes in T lymphocytes and granzyme B+ cells were also assessed after 28 d in proximal colon tissue using immunohistochemistry.
RESULTS: As previously observed, SMAD3-/-, but not SMAD3+/- mice, developed colitis, peaking at 4 wk post-infection. No significant changes in T cell subsets were observed in the spleen or in the MsLNs between genotypes at any time point. However, CD4+ and CD8+/CD62Llo cells, an effector T lymphocyte population, as well as NK cells (NKp46/DX5+) were significantly higher in the MsLNs of SMAD3-/- mice at 7 d and 28 d post-infection. In the colon, a higher number of CD3+ cells were present in SMAD3-/- compared to SMAD3+/– mice at baseline, which did not significantly change during infection. However, the number of granzyme B+ cells, a marker of cytolytic lymphocytes, significantly increased in SMAD3-/- mice 28 d post-infection compared to both SMAD3+/- mice and to baseline values. This was consistent with more severe colitis development in these animals.
CONCLUSION: Data suggest that defects in SMAD3 signaling increase susceptibility to H. hepaticus-induced colitis through aberrant activation and/or dysregulation of effector lymphocytes.
Collapse
|
40
|
Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. MICROBIOLOGY-SGM 2011; 157:1851-1875. [PMID: 21565933 DOI: 10.1099/mic.0.049536-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.
Collapse
Affiliation(s)
- Rasika N Jinadasa
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Stephen E Bloom
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Whary MT, Taylor NS, Feng Y, Ge Z, Muthupalani S, Versalovic J, Fox JG. Lactobacillus reuteri promotes Helicobacter hepaticus-associated typhlocolitis in gnotobiotic B6.129P2-IL-10(tm1Cgn) (IL-10(-/-) ) mice. Immunology 2011; 133:165-78. [PMID: 21426337 DOI: 10.1111/j.1365-2567.2011.03423.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To model inflammatory bowel disease, we assessed infection with Helicobacter hepaticus 3B1 (ATCC 51449) and a potential probiotic Lactobacillus reuteri (ATCC PTA-6475) in gnotobiotic B6.129P2-IL-10(tm1Cgn) (IL-10(-/-) ) mice. No typhlocolitis developed in germ-free controls (n=21) or in L. reuteri (n=8) or H. hepaticus (n=18) mono-associated mice for 20 weeks post-infection. As positive controls, three specific pathogen-free IL-10(-/-) mice dosed with H. hepaticus developed severe typhlocolitis within 11 weeks. Because L. reuteri PTA-6475 has anti-inflammatory properties in vitro, it was unexpected to observe significant typhlocolitis (P<0·0001) in mice that had been infected with L. reuteri followed in 1 week by H. hepaticus (n=16). The H. hepaticus colonization was not affected through 20 weeks post-infection but L. reuteri colonization was lower in co-infected compared with L. reuteri mono-associated mice at 8-11 weeks post-infection (P<0·05). Typhlocolitis was associated with an increased T helper type 1 serum IgG2c response to H. hepaticus in co-infected mice compared with H. hepaticus mono-associated mice (P<0·005) and similarly, mRNA expression in caecal-colonic tissue was elevated at least twofold for chemokine ligands and pro-inflammatory interleukin-1α (IL-1α), IL-1β, IL-12 receptor, tumour necrosis factor-α and inducible nitric oxide synthase. Anti-inflammatory transforming growth factor-β, lactotransferrin, peptidoglycan recognition proteins, Toll-like receptors 4, 6, 8 and particularly 9 gene expression, were also elevated only in co-infected mice (P<0·05). These data support that the development of typhlocolitis in H. hepaticus-infected IL-10(-/-) mice required co-colonization with other microbiota and in this study, required only L. reuteri. Although the effects other microbiota may have on H. hepaticus virulence properties remain speculative, further investigations using this gnotobiotic model are now possible.
Collapse
Affiliation(s)
- Mark T Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Fox JG, Ge Z, Whary MT, Erdman SE, Horwitz BH. Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol 2011; 4:22-30. [PMID: 20944559 PMCID: PMC3939708 DOI: 10.1038/mi.2010.61] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering work in the 1990s first linked a novel microaerobic bacterium, Helicobacter hepaticus, with chronic active hepatitis and inflammatory bowel disease in several murine models. Targeted H. hepaticus infection experiments subsequently demonstrated its ability to induce colitis, colorectal cancer, and extraintestinal diseases in a number of mouse strains with defects in immune function and/or regulation. H. hepaticus is now widely utilized as a model system to dissect how intestinal microbiota interact with the host to produce both inflammatory and tolerogenic responses. This model has been used to make important advances in understanding factors that regulate both acquired and innate immune response within the intestine. Further, it has been an effective tool to help define the function of regulatory T cells, including their ability to directly inhibit the innate inflammatory response to gut microbiota. The complete genomic sequence of H. hepaticus has advanced the identification of several virulence factors and aided in the elucidation of H. hepaticus pathogenesis. Delineating targets of H. hepaticus virulence factors could facilitate novel approaches to treating microbially induced lower bowel inflammatory diseases.
Collapse
Affiliation(s)
- JG Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA,Corresponding author. Mailing address: Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16-825, Cambridge, MA 02139. Phone (617) 253-1735. Fax: (617) 258-5708.
| | - Z Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - MT Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - SE Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - BH Horwitz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
43
|
Eaton KA, Opp JS, Gray BM, Bergin IL, Young VB. Ulcerative typhlocolitis associated with Helicobacter mastomyrinus in telomerase-deficient mice. Vet Pathol 2010; 48:713-25. [PMID: 20926734 DOI: 10.1177/0300985810383876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Telomerase deficiency induces early senescence and defects in proliferating cell populations, but in mice it has not been associated with inflammatory bowel disease. Genetically engineered mice lacking either telomerase reverse transcriptase (TERT) or telomerase RNA were examined for chronic diarrhea and wasting. Affected mice had pasty stools, thickened nondistensible colon walls, and contracted ceca. Histologically, the cecal mucosa was largely replaced by inflammatory infiltrate consisting of plasma cells, neutrophils, lymphocytes, and macrophages with marked widespread fibrosis and ulceration. Remaining epithelium was disorganized and hyperplastic, with multifocal dysplasia. Colonic mucosa was markedly hyperplastic with similar inflammation and epithelial dysplasia. Multifocal adenomatous hyperplasia, but no inflammation, was present in the small intestine. Microaerophilic spiral bacteria with 16S rRNA gene sequences identical to Helicobacter mastomyrinus were isolated from the colon and cecum. Severe granulomatous typhlocolitis without epithelial dysplasia developed in germ-free recombination-activating gene (RAG) knockout (KO) recipients of CD4+ T cells and inoculated with cecal contents from affected TERT KO mice and in specific pathogen-free recipient RAG KO mice and interleukin-10 KO mice inoculated with H mastomyrinus. Typhlocolitis in mice given H mastomyrinus was more severe than in mice given Helicobacter hepaticus. Telomerase-deficient mice are susceptible to helicobacter-associated typhlocolitis. H mastomyrinus causes severe disease in susceptible mouse strains.
Collapse
Affiliation(s)
- K A Eaton
- University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
44
|
Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, Gardner EM, Fenton JI. Dietary Fish Oil Alters T Lymphocyte Cell Populations and Exacerbates Disease in a Mouse Model of Inflammatory Colitis. Cancer Res 2010; 70:7960-9. [DOI: 10.1158/0008-5472.can-10-1396] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 2010; 8:564-77. [PMID: 20622892 DOI: 10.1038/nrmicro2403] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a major human health problem. The bacteria that live in the gut play an important part in the pathogenesis of IBD. However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in establishing a healthy intestinal barrier and in its disruption is evolving only slowly. In recent years, mouse models of intestinal inflammatory disorders based on defined bacterial infections have been used intensively to dissect the roles of individual bacterial species and specific bacterial components in the pathogenesis of IBD. In this Review, we focus on the impact of pathogenic and commensal bacteria on IBD-like pathogenesis in mouse infection models and summarize important recent developments.
Collapse
|
46
|
Liyanage NPM, Manthey KC, Dassanayake RP, Kuszynski CA, Oakley GG, Duhamel GE. Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter 2010; 15:98-107. [PMID: 20402812 DOI: 10.1111/j.1523-5378.2010.00749.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Helicobacter hepaticus, the prototype for enterohepatic Helicobacter species, colonizes the lower intestinal and hepatobiliary tracts of mice and causes typhlocolitis, hepatitis, and hepatocellular carcinoma in susceptible mouse strains. Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus. CDT of several Gram-negative bacteria is associated with double-stranded DNA breaks resulting in cell cycle arrest and death of a wide range of eukaryotic cells in vitro. We previously observed H. hepaticus CDT (HhCDT) mediated apoptosis in INT407 cells. However, the exact mechanism for the induction of the apoptotic pathway by HhCDT is unknown. The objective of this study was to identify the apoptotic signaling pathway induced by HhCDT in INT407 cells. MATERIALS AND METHODS INT407 cells were incubated with or without recombinant HhCDT for 0-72 hours. H2AX phosphorylation and apoptotic parameters were analyzed. RESULTS H2AX was phosphorylated 24 hours postexposure to HhCDT. Expression of pro-apoptotic Bax protein was upregulated after 24 hours, while Bcl(2) expression decreased. Cytochrome c was released from mitochondria after 12-24 hours of exposure. Concurrently, caspase 3/7 and 9 were activated. However, pretreatment of INT407 cells with caspase inhibitor (Z-VAD-FMK) inhibited the activation of caspase 3/7 and 9. Significant activity of caspase 8 was not observed in toxin treated cells. Activation of caspase 3/7 and caspase 9 confirms the involvement of the mitochondrial apoptotic pathway in HhCDT-treated cells. CONCLUSION These findings show, for the first time, the ability of HhCDT to induce apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Namal P M Liyanage
- School of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ando ES, De-Gennaro LA, Faveri M, Feres M, DiRienzo JM, Mayer MPA. Immune response to cytolethal distending toxin of Aggregatibacter actinomycetemcomitans in periodontitis patients. J Periodontal Res 2010; 45:471-80. [PMID: 20337882 DOI: 10.1111/j.1600-0765.2009.01260.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. MATERIAL AND METHODS Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. RESULTS Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. CONCLUSION Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Collapse
Affiliation(s)
- E S Ando
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Kawamoto D, Ando ES, Longo PL, Nunes ACR, Wikström M, Mayer MPA. Genetic diversity and toxic activity ofAggregatibacter actinomycetemcomitansisolates. ACTA ACUST UNITED AC 2009; 24:493-501. [DOI: 10.1111/j.1399-302x.2009.00547.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1020-9. [PMID: 19299577 PMCID: PMC4059386 DOI: 10.1152/ajpgi.90696.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Decreased bone density and stature can occur in pediatric patients with inflammatory bowel disease (IBD). Little is known about how IBD broadly impacts the skeleton. To evaluate the influence of an acute episode of IBD on growing bone, 4-wk-old mice were administered 5% dextran sodium sulfate (DSS) for 5 days to induce colitis and their recovery was monitored. During active disease and early recovery, trabecular bone mineral density, bone volume, and thickness were decreased. Cortical bone thickness, outer perimeter, and density were also decreased, whereas inner perimeter and marrow area were increased. These changes appear to maintain bone strength since measures of moments of inertia were similar between DSS-treated and control mice. Histological (static and dynamic), serum, and RNA analyses indicate that a decrease in osteoblast maturation and function account for changes in bone density. Unlike some conditions of bone loss, marrow adiposity did not increase. Similar to reports in humans, bone length decreased and correlated with decreases in growth plate thickness and chondrocyte marker expression. During disease recovery, mice experienced a growth spurt that led to their achieving final body weights and bone length, density, and gene expression similar to healthy controls. Increased TNF-alpha and decreased IGF-I serum levels were observed with active disease and returned to normal with recovery. Changes in serum TNF-alpha (increased) and IGF-I (decreased) paralleled changes in bone parameters and returned to normal values with recovery, suggesting a potential role in the skeletal response.
Collapse
|
50
|
Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice. Infect Immun 2009; 77:2508-16. [PMID: 19307212 DOI: 10.1128/iai.00166-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Helicobacter cinaedi colonizes a wide host range, including rodents, and may be an emerging zoonotic agent. Colonization parameters, pathology, serology, and inflammatory responses to wild-type H. cinaedi (WT(Hc)) were evaluated in B6.129P2-IL-10(tm1Cgn) (IL-10(-/-)) mice for 36 weeks postinfection (WPI) and in C57BL/6 (B6) mice for 12 WPI. Because cytolethal distending toxin (CDT) may be a virulence factor, IL-10(-/-) mice were also infected with the cdtB(Hc) and cdtB-N(Hc) isogenic mutants and evaluated for 12 WPI. Consistent with other murine enterohepatic helicobacters, WT(Hc) did not cause typhlocolitis in B6 mice, but mild to severe lesions developed at the cecocolic junction in IL-10(-/-) mice, despite similar colonization levels of WT(Hc) in the cecum and colon of both B6 and IL-10(-/-) mice. WT(Hc) and cdtB mutants also colonized IL-10(-/-) mice to a similar extent, but infection with either cdtB mutant resulted in attenuated typhlocolitis and hyperplasia compared to infection with WT(Hc) (P < 0.03), and only WT(Hc) infection caused dysplasia and intramucosal carcinoma. WT(Hc) and cdtB(Hc) mutant infection of IL-10(-/-) mice elevated mRNA expression of tumor necrosis factor alpha, inducible nitric oxide synthase, and gamma interferon in the cecum, as well as elevated Th1-associated serum immunoglobulin G2a(b) compared to infection of B6 mice (P < 0.05). Although no hepatitis was noted, liver samples were PCR positive at various time points for WT(Hc) or the cdtB(Hc) mutant in approximately 33% of IL-10(-/-) mice and in 10 to 20% of WT(Hc)-infected B6 mice. These results indicate that WT(Hc) can be used to model inflammatory bowel disease in IL-10(-/-) mice and that CDT contributes to the virulence of H. cinaedi.
Collapse
|