1
|
Kant S, Sun Y, Pancholi V. StkP- and PhpP-Mediated Posttranslational Modifications Modulate the S. pneumoniae Metabolism, Polysaccharide Capsule, and Virulence. Infect Immun 2023; 91:e0029622. [PMID: 36877045 PMCID: PMC10112228 DOI: 10.1128/iai.00296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Pneumococcal Ser/Thr kinase (StkP) and its cognate phosphatase (PhpP) play a crucial role in bacterial cytokinesis. However, their individual and reciprocal metabolic and virulence regulation-related functions have yet to be adequately investigated in encapsulated pneumococci. Here, we demonstrate that the encapsulated pneumococcal strain D39-derived D39ΔPhpP and D39ΔStkP mutants displayed differential cell division defects and growth patterns when grown in chemically defined media supplemented with glucose or nonglucose sugars as the sole carbon source. Microscopic and biochemical analyses supported by RNA-seq-based global transcriptomic analyses of these mutants revealed significantly down- and upregulated polysaccharide capsule formation and cps2 genes in D39ΔPhpP and D39ΔStkP mutants, respectively. While StkP and PhpP individually regulated several unique genes, they also participated in sharing the regulation of the same set of differentially regulated genes. Cps2 genes were reciprocally regulated in part by the StkP/PhpP-mediated reversible phosphorylation but independent of the MapZ-regulated cell division process. StkP-mediated dose-dependent phosphorylation of CcpA proportionately inhibited CcpA-binding to Pcps2A, supporting increased cps2 gene expression and capsule formation in D39ΔStkP. While the attenuation of the D39ΔPhpP mutant in two mouse infection models corroborated with several downregulated capsules-, virulence-, and phosphotransferase systems (PTS)-related genes, the D39ΔStkP mutant with increased amounts of polysaccharide capsules displayed significantly decreased virulence in mice compared to the D39 wild-type, but more virulence compared to D39ΔPhpP. NanoString technology-based inflammation-related gene expression and Meso Scale Discovery-based multiplex chemokine analysis of human lung cells cocultured with these mutants confirmed their distinct virulence phenotypes. StkP and PhpP may, therefore, serve as critical therapeutic targets.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Youcheng Sun
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
2
|
Klenow L, Elfageih R, Gao J, Wan H, Withers SG, de Gier JW, Daniels R. Influenza virus and pneumococcal neuraminidases enhance catalysis by similar yet distinct sialic acid-binding strategies. J Biol Chem 2023; 299:102891. [PMID: 36634846 PMCID: PMC9929470 DOI: 10.1016/j.jbc.2023.102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses and the bacterium Streptococcus pneumoniae (pneumococci) both express neuraminidases that catalyze release of sialic acid residues from oligosaccharides and glycoproteins. Although these respiratory pathogen neuraminidases function in a similar environment, it remains unclear if these enzymes use similar mechanisms for sialic acid cleavage. Here, we compared the enzymatic properties of neuraminidases from two influenza A subtypes (N1 and N2) and the pneumococcal strain TIGR4 (NanA, NanB, and NanC). Insect cell-produced N1 and N2 tetramers exhibited calcium-dependent activities and stabilities that varied with pH. In contrast, E. coli-produced NanA, NanB, and NanC were isolated as calcium insensitive monomers with stabilities that were more resistant to pH changes. Using a synthetic substrate (MUNANA), all neuraminidases showed similar pH optimums (pH 6-7) that were primarily defined by changes in catalytic rate rather than substrate binding affinity. Upon using a multivalent substrate (fetuin sialoglycans), much higher specific activities were observed for pneumococcal neuraminidases that contain an additional lectin domain. In virions, N1 and especially N2 also showed enhanced specific activity toward fetuin that was lost upon the addition of detergent, indicating the sialic acid-binding capacity of neighboring hemagglutinin molecules likely contributes to catalysis of natural multivalent substrates. These results demonstrate that influenza and pneumococcal neuraminidases have evolved similar yet distinct strategies to optimize their catalytic activity.
Collapse
Affiliation(s)
- Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rageia Elfageih
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
3
|
Escuret V, Terrier O. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Front Microbiol 2023; 14:1137336. [PMID: 37213507 PMCID: PMC10192862 DOI: 10.3389/fmicb.2023.1137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
The activity of sialic acids, known to play critical roles in biology and many pathological processes, is finely regulated by a class of enzymes called sialidases, also known as neuraminidases. These are present in mammals and many other biological systems, such as viruses and bacteria. This review focuses on the very particular situation of co-infections of the respiratory epithelium, the scene of complex functional interactions between viral, bacterial, and human neuraminidases. This intrinsically multidisciplinary topic combining structural biology, biochemistry, physiology, and the study of host-pathogen interactions, opens up exciting research perspectives that could lead to a better understanding of the mechanisms underlying virus-bacteria co-infections and their contribution to the aggravation of respiratory pathology, notably in the context of pre-existing pathological contexts. Strategies that mimic or inhibit the activity of the neuraminidases could constitute interesting treatment options for viral and bacterial infections.
Collapse
|
4
|
Nejatie A, Steves E, Gauthier N, Baker J, Nesbitt J, McMahon SA, Oehler V, Thornton NJ, Noyovitz B, Khazaei K, Byers BW, Zandberg WF, Gloster TM, Moore MM, Bennet AJ. Kinetic and Structural Characterization of Sialidases (Kdnases) from Ascomycete Fungal Pathogens. ACS Chem Biol 2021; 16:2632-2640. [PMID: 34724608 DOI: 10.1021/acschembio.1c00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialidases catalyze the release of sialic acid from the terminus of glycan chains. We previously characterized the sialidase from the opportunistic fungal pathogen, Aspergillus fumigatus, and showed that it is a Kdnase. That is, this enzyme prefers 3-deoxy-d-glycero-d-galacto-non-2-ulosonates (Kdn glycosides) as the substrate compared to N-acetylneuraminides (Neu5Ac). Here, we report characterization and crystal structures of putative sialidases from two other ascomycete fungal pathogens, Aspergillus terreus (AtS) and Trichophyton rubrum (TrS). Unlike A. fumigatus Kdnase (AfS), hydrolysis with the Neu5Ac substrates was negligible for TrS and AtS; thus, TrS and AtS are selective Kdnases. The second-order rate constant for hydrolysis of aryl Kdn glycosides by AtS is similar to that by AfS but 30-fold higher by TrS. The structures of these glycoside hydrolase family 33 (GH33) enzymes in complex with a range of ligands for both AtS and TrS show subtle changes in ring conformation that mimic the Michaelis complex, transition state, and covalent intermediate formed during catalysis. In addition, they can aid identification of important residues for distinguishing between Kdn and Neu5Ac substrates. When A. fumigatus, A. terreus, and T. rubrum were grown in chemically defined media, Kdn was detected in mycelial extracts, but Neu5Ac was only observed in A. terreus or T. rubrum extracts. The C8 monosaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) was also identified in A. fumigatus and T. rubrum samples. A fluorescent Kdn probe was synthesized and revealed the localization of AfS in vesicles at the cell surface.
Collapse
Affiliation(s)
- Ali Nejatie
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Elizabeth Steves
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Nick Gauthier
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Jamie Baker
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Jason Nesbitt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Stephen A. McMahon
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Fife, U.K
| | - Verena Oehler
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Fife, U.K
| | - Nicholas J. Thornton
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Fife, U.K
| | - Benjamin Noyovitz
- Department of Chemistry, I. K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna V1V 1V7, British Columbia, Canada
| | - Kobra Khazaei
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Brock W. Byers
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, I. K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna V1V 1V7, British Columbia, Canada
| | - Tracey M. Gloster
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Fife, U.K
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| | - Andrew J. Bennet
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British
Columbia, Canada
| |
Collapse
|
5
|
Yamaguchi M, Kinjo Y, Nizet V. Editorial: Host-Pathogen Interactions During Pneumococcal Infection. Front Cell Infect Microbiol 2021; 11:752959. [PMID: 34760720 PMCID: PMC8573109 DOI: 10.3389/fcimb.2021.752959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Victor Nizet
- Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California (UC), San Diego, La Jolla, CA, United States.,Biomedical Sciences Graduate Program, University of California (UC), San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Padra M, Benktander J, Padra JT, Andersson A, Brundin B, Tengvall S, Christenson K, Qvarfordt I, Gad R, Paulsson M, Pournaras N, Lindén A, Lindén SK. Mucin Binding to Moraxella catarrhalis During Airway Inflammation is Dependent on Sialic Acid. Am J Respir Cell Mol Biol 2021; 65:593-602. [PMID: 34192508 DOI: 10.1165/rcmb.2021-0064oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with colonization by bacterial pathogens and repeated airway infections, leading to exacerbations and impaired lung function. The highly glycosylated mucins in the mucus lining the airways are an important part of the host defense against pathogens. However, mucus accumulation can contribute to COPD pathology. Here, we examined whether inflammation is associated with glycosylation changes that affect interactions between airway mucins and pathogens. We isolated mucins from lower airway samples (LAS, n=4-9) from long-term smokers with and without COPD and from never-smokers. The most abundant terminal glycan moiety was N-acetylneuraminic acid (Neu5Ac) among smokers with and without COPD and N-acetyl-hexoseamine among never-smokers. Moraxella catarrhalis bound to MUC5 mucins from smokers with and without COPD. M. catarrhalis binding correlated with inflammatory parameters and Neu5Ac content. M. catarrhalis binding was abolished by enzymatic removal of Neu5Ac. Furthermore, M. catarrhalis bound to α2-6 sialyl-lactose suggesting that α2-6 sialic acid contributes to M. catarrhalis binding to mucins. Further, we detected more M. catarrhalis binding to mucins from patients with pneumonia than to those from control subjects (n=8-13) and this binding correlated with C-reactive protein and Neu5Ac levels. These results suggest a key role of inflammation induced Neu5Ac in adhesion of M. catarrhalis to airway mucins. Inflammation induced ability of MUC5 mucins to bind M. catarrhalis is likely a host defense mechanism in the healthy lung, although it cannot be excluded that impaired mucociliary clearance limits the effectiveness of this defense in COPD patients.
Collapse
Affiliation(s)
- Médea Padra
- Sahlgrenska Academy, 70712, Institute of Biomedicine, Goteborg, Sweden
| | - John Benktander
- University of Gothenburg Sahlgrenska Academy, 70712, Biomedicine, Goteborg, Sweden
| | - János T Padra
- University of Gothenburg Sahlgrenska Academy, 70712, Biomedicine, Goteborg, Sweden
| | - Anders Andersson
- University of Gothenburg Institute of Medicine, 174417, Department of Internal Medicine and Clinical Nutrition, Goteborg, Sweden.,Sahlgrenska University Hospital, 56749, COPD Center, Department of Respiratory Medicine and Allergology, Goteborg, Sweden
| | - Bettina Brundin
- Karolinska Institute Institute of Environmental Medicine, 193414, Unit for Lung and Airway Research, Stockholm, Sweden
| | - Sara Tengvall
- University of Gothenburg Institute of Medicine, 174417, Department of Internal Medicine and Clinical Nutrition, Goteborg, Sweden
| | - Karin Christenson
- University of Gothenburg Institute of Odontology, 251781, Department of Oral Microbiology & Immunology, Goteborg, Sweden
| | - Ingemar Qvarfordt
- University of Gothenburg Institute of Medicine, 174417, Department of Internal Medicine and Clinical Nutrition, Goteborg, Sweden
| | - Robert Gad
- Skåne University Hospital Lund, 59564, Department of Anesthesiology and Intensive Care, Lund, Sweden
| | - Magnus Paulsson
- Lunds Universitet, 5193, Translational Medicine, Malmö, Sweden.,Skåne University Hospital Lund, 59564, Department of Infectious diseases, Lund, Sweden
| | - Nikolaos Pournaras
- Karolinska Institute Institute of Environmental Medicine, 193414, Unit for Lung and Airway Research, Stockholm, Sweden.,Karolinska University Hospital, 59562, Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Stockholm, Sweden
| | - Anders Lindén
- Karolinska Institute Institute of Environmental Medicine, 193414, Unit for Lung and Airway Research, Stockholm, Sweden.,Karolinska University Hospital, 59562, Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Stockholm, Sweden
| | - Sara K Lindén
- University of Gothenburg Sahlgrenska Academy, 70712, Biomedicine, Goteborg, Sweden;
| |
Collapse
|
7
|
Yan T, Tang X, Sun L, Tian R, Li Z, Liu G. Co infection of respiratory syncytial viruses (RSV) and streptococcus pneumonia modulates pathogenesis and dependent of serotype and phase variant. Microb Pathog 2020; 144:104126. [PMID: 32173494 DOI: 10.1016/j.micpath.2020.104126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is touted to be the generally found pathogen in patients with respiratory issues and there is an epidemiologic linkage present between Respiratory syncytial virus (RSV). This study aim at investigating the interaction between RSV and two serotypes of S. pneumoniae using a distinct animal model and a well-established colonizing pneumococcal strain. Phase variants phenotype of each strain was determined under oblique light. Co infection model was developed using BALB/c mice housed in a BSL-2 facility. Coinfection experiments were performed and number of bacterial colonies was quantified and phase determination was evaluated. RSV was detected in sample through real-time quantitative PCR. Adherence assays were performed to determine adherence of Spn strains and its knock out ΔNanA to nasopharyngeal carcinoma (NPC) epithelial CNE3 cell line. The biofilm viability was determined and phase composition was counted using plate count. Neuraminidase activity was measured in fluorometircassessed using 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUAN) as substrate as described in earlier literature. The GraphPad Software version 5.01 i.e., GraphPad Prism was used to conduct the statistical analysis. The extent of bacterial colonization was increased significantly (p < 0.05), when the mice were co infected. Nasal epithelium remained intact in mock sample with features of a thick mucociliary border. A small percentage of pneumococci exhibit phase variation between opaque phase and transparent phase. The percentage adherent of both phase were not found to be varying significantly within serotype but it was seen that nonpathogenic type 27 was more adherent. Biofilm formation was selectively more for transparent phase from a mixed-phase inoculum. Adherence of both phase variant of S. pneumoniae to nasopharyngeal epithelial cells 2 h post infection expressed as the percentage of adherent bacteria relative to the inoculum. In absence of viral infection, the nasal colonization of the opaque and the transparent variant was increased many folds, which was a significant differences. The extent of nasal colonization by the ΔNanA mutant strain were significantly reduced post-bacterial infection for both type of wild-type (P < 0.05). The findings explore insights into the interactions occurring between S. pneumoniae and RSV during respiratory infections and pneumococcal acquisition, indicate that pneumococcal serotypes have different ability to cause infection as well as co infections and potentially follow an unappreciated mechanism. Much more research work is needed to further understand the minutiae of this interaction within co-infection process.
Collapse
Affiliation(s)
- Tingfei Yan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaoyan Tang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Lei Sun
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Runhua Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Guangzhen Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
8
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
9
|
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
|
10
|
Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2019; 9:1521-1538. [PMID: 30289054 PMCID: PMC6177239 DOI: 10.1080/21505594.2018.1520545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae isolates express up to three neuraminidases (sialidases), NanA, NanB and NanC, all of which cleave the terminal sialic acid of glycan-structures that decorate host cell surfaces. Most research has focused on the role of NanA with limited investigations evaluating the roles of all three neuraminidases in host-pathogen interactions. We generated two highly potent monoclonal antibodies (mAbs), one that blocks the enzymatic activity of NanA and one cross-neutralizing NanB and NanC. Total neuraminidase activity of clinical S. pneumoniae isolates could be inhibited by this mAb combination in enzymatic assays. To detect desialylation of cell surfaces by pneumococcal neuraminidases, primary human tracheal/bronchial mucocilial epithelial tissues were infected with S. pneumoniae and stained with peanut lectin. Simultaneous targeting of the neuraminidases was required to prevent desialylation, suggesting that inhibition of NanA alone is not sufficient to preserve terminal lung glycans. Importantly, we also found that all three neuraminidases increased the interaction of S. pneumoniae with human airway epithelial cells. Lectin-staining of lung tissues of mice pre-treated with mAbs before intranasal challenge with S. pneumoniae confirmed that both anti-NanA and anti-NanBC mAbs were required to effectively block desialylation of the respiratory epithelium in vivo. Despite this, no effect on survival, reduction in pulmonary bacterial load, or significant changes in cytokine responses were observed. This suggests that neuraminidases have no pivotal role in this murine pneumonia model that is induced by high bacterial challenge inocula and does not progress from colonization as it happens in the human host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karin Groß
- a Arsanis Biosciences , Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sharapova YA, Švedas VK. Molecular Modeling of the Binding of the Allosteric Inhibitor Optactin at a New Binding Site in Neuraminidase A from Streptococcus pneumoniae. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0027131418050097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Das A, Cui X, Chivukula V, Iyer SS. Detection of Enzymes, Viruses, and Bacteria Using Glucose Meters. Anal Chem 2018; 90:11589-11598. [DOI: 10.1021/acs.analchem.8b02960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amrita Das
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xikai Cui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Vasanta Chivukula
- Atlanta Metropolitan State College, 1630 Metropolitan Parkway, Atlanta, Georgia 30310, United States
| | - Suri S. Iyer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| |
Collapse
|
13
|
Ryan JT, Slattery H, Hickey RM, Marotta M. Bovine milk oligosaccharides as anti-adhesives against the respiratory tract pathogen Streptococcus pneumoniae. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Sharapova Y, Suplatov D, Švedas V. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. FEBS J 2018; 285:2428-2445. [PMID: 29704878 DOI: 10.1111/febs.14486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Neuraminidase A (NanA) of the pathogen Streptococcus pneumoniae cleaves receptors of the human respiratory epithelial surface during bacterial colonization. The full-size structure of NanA that contains one lectin and one catalytic domain within a single polypeptide chain remains unresolved. Both domains are crucial for the microorganism's virulence and considered as promising antimicrobial targets. Methods of bioinformatics and molecular dynamics have been implemented to model NanA's structure and study interaction between the lectin and catalytic domains in three neuraminidases NanA, NanB, and NanC from Streptococcus pneumoniae. A significant difference in spatial organization of these homologous enzymes has been revealed. The lectin and catalytic domains of NanB and NanC form rigid globules stabilized by multiple interdomain interactions, whereas in NanA, the two domains are separated by a 16 amino acids long flexible linker - a characteristic of proteins that require conformational flexibility for their functioning. The biological role of this structural adaptation of NanA as a key virulence enzyme is discussed.
Collapse
Affiliation(s)
- Yana Sharapova
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| | - Dmitry Suplatov
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
15
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
16
|
Naclerio R, Blair C, Yu X, Won YS, Gabr U, Baroody FM. Allergic Rhinitis Augments the Response to a Bacterial Sinus Infection in Mice: A Review of an Animal Model. ACTA ACUST UNITED AC 2018; 20:524-33. [PMID: 17063749 DOI: 10.2500/ajr.2006.20.2920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Sinusitis is a poorly understood disease. Despite the significant morbidity and the enormous cost of treating sinusitis, little progress has been made at improving our understanding of its pathophysiology. One reason for restricted progress in understanding the disease is the lack of a satisfactory animal model that mimics sinusitis in man. Objective We review data establishing the development of sinusitis in mice after instillation of Streptococcus pneumoniae, the most common pathogen responsible for acute sinusitis in man. We also review data showing that allergic inflammation in mice worsens a subsequent bacterial sinusitis. We use this data to hypothesize how allergic inflammation worsens a bacterial sinus infection. Methods Different strains of mice were made allergic and/or infected. Results We show our ability to generate an allergic reaction in the nose after sensitization to ovalbumin. Our data further show that an ongoing allergic nasal reaction worsens acute sinusitis. Conclusion A mouse model has been created for a study of the interaction of allergic rhinitis and acute bacterial sinusitis.
Collapse
Affiliation(s)
- Robert Naclerio
- Section of Otolaryngology-Head and Neck Surgery, The Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
18
|
Casanova L, Cortaredona S, Gaudart J, Launay O, Vanhems P, Villani P, Verger P. Effectiveness of seasonal influenza vaccination in patients with diabetes: protocol for a nested case-control study. BMJ Open 2017; 7:e016023. [PMID: 28821521 PMCID: PMC5629692 DOI: 10.1136/bmjopen-2017-016023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Seasonal influenza vaccination (SIV) is recommended for people with diabetes, but its effectiveness has not been demonstrated. All of the available studies are observational and marred with the healthy vaccine bias, that is, bias resulting from the generally better health behaviours practised by people who choose to be vaccinated against influenza, compared with those who do not. This protocol is intended to study the effectiveness of SIV in people with treated diabetes and simultaneously to control for bias. METHODS AND ANALYSES This case-control study is nested in a historical cohort and is designed to study vaccine effectiveness (VE) assessed by morbidity, mortality and anti-infective drug use. The cohort will comprise a representative sample of health insurance beneficiaries in France and will cover 10 consecutive epidemic seasons. It will include all patients reimbursed three separate times for drugs to treat diabetes. The first study of VE will use reasons for hospitalisation as the primary end point, and the second with the use of neuraminidase inhibitors and of antibiotics as the end points. A case will be defined as any person in the cohort reaching any end point at a given date. The case patient will be matched with the largest possible number of controls (individuals not reaching the end point by this date) according to the propensity score method with an optimal calliper width. A conditional logistic model will be used to estimate ORs to take into account both the matching and the repetition of measurements. The model will be applied separately during and outside of epidemic periods to estimate the residual confounding. ETHICS AND DISSEMINATION The study has been approved by the French Commission on Individual Data Protection and Public Liberties (ref: AT/CPZ/SVT/JB/DP/CR05222O). The study's findings will be published in peer-reviewed journals and disseminated at international conferences and through social media.
Collapse
Affiliation(s)
- Ludovic Casanova
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France., Marseille, France
- ORS PACA, Observatoire Régional de la Santé Provence-Alpes-Côte d'Azur, Marseille, France
- Department of General Practice, Aix Marseille University, Marseille, France
| | - Sébastien Cortaredona
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France., Marseille, France
- ORS PACA, Observatoire Régional de la Santé Provence-Alpes-Côte d'Azur, Marseille, France
| | - Jean Gaudart
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France., Marseille, France
| | - Odile Launay
- Inserm, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philippe Vanhems
- Inserm, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Paris, France
- Infection Control and Epidemiology Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Patrick Villani
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France., Marseille, France
- ORS PACA, Observatoire Régional de la Santé Provence-Alpes-Côte d'Azur, Marseille, France
| | - Pierre Verger
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France., Marseille, France
- ORS PACA, Observatoire Régional de la Santé Provence-Alpes-Côte d'Azur, Marseille, France
- Inserm, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Paris, France
| |
Collapse
|
19
|
Cui X, Das A, Dhawane AN, Sweeney J, Zhang X, Chivukula V, Iyer SS. Highly specific and rapid glycan based amperometric detection of influenza viruses. Chem Sci 2017; 8:3628-3634. [PMID: 28580101 PMCID: PMC5437373 DOI: 10.1039/c6sc03720h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Rapid and precise detection of influenza viruses in a point of care setting is critical for applying appropriate countermeasures. Current methods such as nucleic acid or antibody based techniques are expensive or suffer from low sensitivity, respectively. We have developed an assay that uses glucose test strips and a handheld potentiostat to detect the influenza virus with high specificity. Influenza surface glycoprotein neuraminidase (NA), but not bacterial NA, cleaved galactose bearing substrates, 4,7di-OMe N-acetylneuraminic acid attached to the 3 or 6 position of galactose, to release galactose. In contrast, viral and bacterial NA cleaved the natural substrate, N-acetylneuraminic acid attached to the 3 or 6 position of galactose. The released galactose was detected amperometrically using a handheld potentiostat and dehydrogenase bearing glucose test strips. The specificity for influenza was confirmed using influenza strains and different respiratory pathogens that include Streptococcus pneumoniae and Haemophilus influenzae; bacteria do not cleave these molecules. The assay was also used to detect co-infections caused by influenza and bacterial NA. Viral drug susceptibility and testing with human clinical samples was successful in 15 minutes, indicating that this assay could be used to rapidly detect influenza viruses at primary care or resource poor settings using ubiquitous glucose meters.
Collapse
Affiliation(s)
- Xikai Cui
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Amrita Das
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Abasaheb N Dhawane
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Joyce Sweeney
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Xiaohu Zhang
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Vasanta Chivukula
- Atlanta Metropolitan State College , 1630 Metropolitan Parkway , Atlanta , GA 30310 , USA
| | - Suri S Iyer
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| |
Collapse
|
20
|
Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017; 21:2586-2598. [PMID: 28402019 PMCID: PMC5618700 DOI: 10.1111/jcmm.13179] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol-dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence-associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY-mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Meng Song
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China
| |
Collapse
|
21
|
Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017; 85:IAI.01044-16. [PMID: 28096183 DOI: 10.1128/iai.01044-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
Even in the vaccine era, Streptococcus pneumoniae (the pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large part because of the high prevalence of nasal colonization with the pneumococcus in children. The primary pneumococcal neuraminidase, NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by S. pneumoniae, in part via the synergistic contributions of the viral neuraminidase. The specific role of its pneumococcal counterpart, NanA, in this interaction, however, is less well understood. We demonstrate in a mouse model that NanA-deficient pneumococci are impaired in their ability to cause both nasal colonization and middle ear infection. Coinfection with neuraminidase-expressing influenza virus and S. pneumoniae potentiates both colonization and infection but not to wild-type levels, suggesting an intrinsic role of NanA. Using in vitro models, we show that while NanA contributes to both epithelial adherence and biofilm viability, its effect on the latter is actually independent of its sialidase activity. These data indicate that NanA contributes both enzymatically and nonenzymatically to pneumococcal pathogenesis and, as such, suggest that it is not a redundant bystander during coinfection with influenza A virus. Rather, its expression is required for the full synergism between these two pathogens.
Collapse
|
22
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
23
|
Barenkamp SJ, Ogra PL, Bakaletz LO, Chonmaitree T, Heikkinen T, Hurst DS, Kawauchi H, Kurono Y, Leiberman A, Murphy TF, Patel JA, Sih TM, St Geme JW, Stenfors LE. 5. Microbiology and Immunology. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894051140s109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Bluestone CD, Hebda PA, Alper CM, Sando I, Buchman CA, Stangerup SE, Felding JU, Swarts JD, Ghadiali SN, Takahashi H. 2. Eustachian Tube, Middle Ear, and Mastoid Anatomy; Physiology, Pathophysiology, and Pathogenesis. Ann Otol Rhinol Laryngol 2016; 194:16-30. [PMID: 15700932 DOI: 10.1177/00034894051140s105] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Charles D Bluestone
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Afzal M, Shafeeq S, Manzoor I, Henriques-Normark B, Kuipers OP. N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:158. [PMID: 27900287 PMCID: PMC5110562 DOI: 10.3389/fcimb.2016.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this study, we have explored the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylglucosamine (NAG). Transcriptome comparison of S. pneumoniae D39 wild-type grown in chemically defined medium (CDM) in the presence of 0.5% NAG to that grown in the presence of 0.5% glucose revealed elevated expression of many genes/operons, including nagA, nagB, manLMN, and nanP. We have further confirmed the NAG-dependent expression of nagA, nagB, manLMN, and nanP by β-galactosidase assays. nagA, nagB and glmS are putatively regulated by a transcriptional regulator NagR. We predicted the operator site of NagR (dre site) in PnagA, PnagB, and PglmS, which was further confirmed by mutating the predicted dre site in the respective promoters (nagA, nagB, and glmS). Growth comparison of ΔnagA, ΔnagB, and ΔglmS with the D39 wild-type demonstrates that nagA and nagB are essential for S. pneumoniae D39 to grow in the presence of NAG as a sole carbon source. Furthermore, deletion of ccpA shows that CcpA has no effect on the expression of nagA, nagB, and glmS in the presence of NAG in S. pneumoniae.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | | | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
26
|
Blanchette KA, Shenoy AT, Milner J, Gilley RP, McClure E, Hinojosa CA, Kumar N, Daugherty SC, Tallon LJ, Ott S, King SJ, Ferreira DM, Gordon SB, Tettelin H, Orihuela CJ. Neuraminidase A-Exposed Galactose Promotes Streptococcus pneumoniae Biofilm Formation during Colonization. Infect Immun 2016; 84:2922-32. [PMID: 27481242 PMCID: PMC5038079 DOI: 10.1128/iai.00277-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/21/2016] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and β-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.
Collapse
Affiliation(s)
- Krystle A Blanchette
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Anukul T Shenoy
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey Milner
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ryan P Gilley
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Erin McClure
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cecilia A Hinojosa
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nikhil Kumar
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sean C Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luke J Tallon
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra Ott
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samantha J King
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carlos J Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii. Toxins (Basel) 2016; 8:toxins8060189. [PMID: 27322322 PMCID: PMC4926155 DOI: 10.3390/toxins8060189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022] Open
Abstract
The clostridia produce an arsenal of toxins to facilitate their survival within the host environment. TcsL is one of two major toxins produced by Clostridium sordellii, a human and animal pathogen, and is essential for disease pathogenesis of this bacterium. C. sordellii produces many other toxins, but the role that they play in disease is not known, although previous work has suggested that the sialidase enzyme NanS may be involved in the characteristic leukemoid reaction that occurs during severe disease. In this study we investigated the role of NanS in C. sordellii disease pathogenesis. We constructed a nanS mutant and showed that NanS is the only sialidase produced from C. sordellii strain ATCC9714 since sialidase activity could not be detected from the nanS mutant. Complementation with the wild-type gene restored sialidase production to the nanS mutant strain. Cytotoxicity assays using sialidase-enriched culture supernatants applied to gut (Caco2), vaginal (VK2), and cervical cell lines (End1/E6E7 and Ect1/E6E7) showed that NanS was not cytotoxic to these cells. However, the cytotoxic capacity of a toxin-enriched supernatant to the vaginal and cervical cell lines was substantially enhanced in the presence of NanS. TcsL was not the mediator of the observed cytotoxicity since supernatants harvested from a TcsL-deficient strain displayed similar cytotoxicity levels to TcsL-containing supernatants. This study suggests that NanS works synergistically with an unknown toxin or toxins to exacerbate C. sordellii-mediated tissue damage in the host.
Collapse
|
28
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
29
|
Abstract
Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia, sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection. This review is an attempt to do so with consideration for the latest research findings.
Collapse
|
30
|
Xu Z, von Grafenstein S, Walther E, Fuchs JE, Liedl KR, Sauerbrei A, Schmidtke M. Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility. Sci Rep 2016; 6:25169. [PMID: 27125351 PMCID: PMC4850393 DOI: 10.1038/srep25169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae is the leading pathogen causing bacterial pneumonia and meningitis. Its surface-associated virulence factor neuraminidase A (NanA) promotes the bacterial colonization by removing the terminal sialyl residues from glycoconjugates on eukaryotic cell surface. The predominant role of NanA in the pathogenesis of pneumococci renders it an attractive target for therapeutic intervention. Despite the highly conserved activity of NanA, our alignment of the 11 NanAs revealed the evolutionary diversity of this enzyme. The amino acid substitutions we identified, particularly those in the lectin domain and in the insertion domain next to the catalytic centre triggered our special interest. We synthesised the representative NanAs and the mutagenized derivatives from E. coli for enzyme kinetics study and neuraminidase inhibitor susceptibility test. Via molecular docking we got a deeper insight into the differences between the two major variants of NanA and their influence on the ligand-target interactions. In addition, our molecular dynamics simulations revealed a prominent intrinsic flexibility of the linker between the active site and the insertion domain, which influences the inhibitor binding. Our findings for the first time associated the primary sequence diversity of NanA with the biochemical properties of the enzyme and with the inhibitory efficiency of neuraminidase inhibitors.
Collapse
Affiliation(s)
- Zhongli Xu
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Susanne von Grafenstein
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Elisabeth Walther
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Julian E Fuchs
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Klaus R Liedl
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| |
Collapse
|
31
|
Abstract
Sialic acids, or the more broad term nonulosonic acids, comprise a family of nine-carbon keto-sugars ubiquitous on mammalian mucous membranes as terminal modifications of mucin glycoproteins. Sialic acids have a limited distribution among bacteria, and the ability to catabolize sialic acids is mainly confined to pathogenic and commensal species. This ability to utilize sialic acid as a carbon source is correlated with bacterial virulence, especially, in the sialic acid rich environment of the oral cavity, respiratory, intestinal, and urogenital tracts. This chapter discusses the distribution of sialic acid catabolizers among the sequenced bacterial genomes and examines the studies that have linked sialic acid catabolism with increased in vivo fitness in a number of species using several animal models. This chapter presents the most recent findings in sialobiology with a focus on sialic acid catabolism, which demonstrates an important relationship between the catabolism of sialic acid and bacterial pathogenesis.
Collapse
|
32
|
Chigwechokha PK, Tabata M, Shinyoshi S, Oishi K, Araki K, Komatsu M, Itakura T, Shiozaki K. Recombinant sialidase NanA (rNanA) cleaves α2-3 linked sialic acid of host cell surface N-linked glycoprotein to promote Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2015; 47:34-45. [PMID: 26291491 DOI: 10.1016/j.fsi.2015.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
Edwardsiella tarda is one of the major pathogenic bacteria affecting both marine and freshwater fish species. Sialidase NanA expressed endogenously in E. tarda is glycosidase removing sialic acids from glycoconjugates. Recently, the relationship of NanA sialidase activity to E. tarda infection has been reported, however, the mechanism with which sialidase NanA aids the pathogenicity of E. tarda remained unclear. Here, we comprehensively determined the biochemical properties of NanA towards various substrates in vitro to provide novel insights on the potential NanA target molecule at the host cell. GAKS cell pretreated with recombinant NanA showed increased susceptibility to E. tarda infection. Moreover, sialidase inhibitor treated E. tarda showed a significantly reduced ability to infect GAKS cells. These results indicate that NanA-induced desialylation of cell surface glycoconjugates is essential for the initial step of E. tarda infection. Among the natural substrates, NanA exhibited the highest activity towards 3-sialyllactose, α2-3 linked sialic acid carrying sialoglycoconjugates. Supporting this finding, intact GAKS cell membrane exposed to recombinant NanA showed changes of glycoconjugates only in α2-3 sialo-linked glycoproteins, but not in glycolipids and α2-6 sialo-linked glycoproteins. Lectin staining of cell surface glycoprotein provided further evidence that α2-3 sialo-linkage of the N-linked glycoproteins was the most plausible target of NanA sialidase. To confirm the significance of α2-3 sialo-linkage desialylation for E. tarda infection, HeLa cells which possessed lower amount of α2-3 sialo-linkage glycoprotein were used for infection experiment along with GAKS cells. As a result, infection of HeLa cells by E. tarda was significantly reduced when compared to GAKS cells. Furthermore, E. tarda infection was significantly inhibited by mannose pretreatment suggesting that the bacterium potentially recognizes and binds to mannose or mannose containing chains following desialylation. Together, these results suggest that E. tarda may employ endogenous NanA to desialylate α2-3 glycoproteins on host cells, thus revealing one of the potential binding molecules during infection.
Collapse
Affiliation(s)
- Petros Kingstone Chigwechokha
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Department of Fisheries, Mzuzu University, Mzuzu, Malawi
| | - Mutsumi Tabata
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | | | - Kazuki Oishi
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kyosuke Araki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Takao Itakura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
33
|
Yang L, Connaris H, Potter JA, Taylor GL. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor. BMC STRUCTURAL BIOLOGY 2015; 15:15. [PMID: 26289431 PMCID: PMC4546082 DOI: 10.1186/s12900-015-0042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Streptococcus pneumoniae Neuraminidase A (NanA) is a multi-domain protein anchored to the bacterial surface. Upstream of the catalytic domain of NanA is a domain that conforms to the sialic acid-recognising CBM40 family of the CAZY (carbohydrate-active enzymes) database. This domain has been identified to play a critical role in allowing the bacterium to promote adhesion and invasion of human brain microvascular endothelial cells, and hence may play a key role in promoting bacterial meningitis. In addition, the CBM40 domain has also been reported to activate host chemokines and neutrophil recruitment during infection. RESULTS Crystal structures of both apo- and holo- forms of the NanA CBM40 domain (residues 121 to 305), have been determined to 1.8 Å resolution. The domain shares the fold of other CBM40 domains that are associated with sialidases. When in complex with α2,3- or α2,6-sialyllactose, the domain is shown to interact only with the terminal sialic acid. Significantly, a deep acidic pocket adjacent to the sialic acid-binding site is identified, which is occupied by a lysine from a symmetry-related molecule in the crystal. This pocket is adjacent to a region that is predicted to be involved in protein-protein interactions. CONCLUSIONS The structural data provide the details of linkage-independent sialyllactose binding by NanA CBM40 and reveal striking surface features that may hold the key to recognition of binding partners on the host cell surface. The structure also suggests that small molecules or sialic acid analogues could be developed to fill the acidic pocket and hence provide a new therapeutic avenue against meningitis caused by S. pneumoniae.
Collapse
Affiliation(s)
- Lei Yang
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Helen Connaris
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Jane A Potter
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Garry L Taylor
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
34
|
Paixão L, Oliveira J, Veríssimo A, Vinga S, Lourenço EC, Ventura MR, Kjos M, Veening JW, Fernandes VE, Andrew PW, Yesilkaya H, Neves AR. Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected]. PLoS One 2015; 10:e0121042. [PMID: 25826206 PMCID: PMC4380338 DOI: 10.1371/journal.pone.0121042] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/12/2015] [Indexed: 01/13/2023] Open
Abstract
The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Laura Paixão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joana Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André Veríssimo
- Centre for Intelligent Systems, LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Vinga
- Centre for Intelligent Systems, LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eva C. Lourenço
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Morten Kjos
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Vitor E. Fernandes
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Peter W. Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Ana Rute Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
35
|
Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster. Appl Environ Microbiol 2015; 81:3121-31. [PMID: 25724955 DOI: 10.1128/aem.00499-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the transcriptomic response of Streptococcus pneumoniae D39 to sialic acid (N-acetylneuraminic acid [Neu5Ac]). Transcriptome comparison of wild-type D39 grown in M17 medium with and without sialic acid revealed the elevated expression of various genes and operons, including the nan gene cluster (nan operon I and nanA gene). Our microarray analysis and promoter-lacZ fusion studies showed that the transcriptional regulator NanR acts as a transcriptional activator of nan operon I and the nanA gene in the presence of sialic acid. The putative regulatory site of NanR in the promoter region of nan operon I is predicted and confirmed by promoter truncation experiments. Furthermore, the role of CcpA in the regulation of the nan gene cluster is demonstrated through microarray analysis and promoter-lacZ fusion studies, suggesting that in the presence of sialic acid and glucose, CcpA represses the expression of nan operon I while the expression of the nanA gene is CcpA independent.
Collapse
|
36
|
Walther E, Richter M, Xu Z, Kramer C, von Grafenstein S, Kirchmair J, Grienke U, Rollinger JM, Liedl KR, Slevogt H, Sauerbrei A, Saluz HP, Pfister W, Schmidtke M. Antipneumococcal activity of neuraminidase inhibiting artocarpin. Int J Med Microbiol 2014; 305:289-97. [PMID: 25592264 DOI: 10.1016/j.ijmm.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/01/2014] [Accepted: 12/14/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus (S.) pneumoniae is a major cause of secondary bacterial pneumonia during influenza epidemics. Neuraminidase (NA) is a virulence factor of both pneumococci and influenza viruses. Bacterial neuraminidases (NAs) are structurally related to viral NA and susceptible to oseltamivir, an inhibitor designed to target viral NA. This prompted us to evaluate the antipneumococcal potential of two NA inhibiting natural compounds, the diarylheptanoid katsumadain A and the isoprenylated flavone artocarpin. Chemiluminescence, fluorescence-, and hemagglutination-based enzyme assays were applied to determine the inhibitory efficiency (IC(50) value) of the tested compounds towards pneumococcal NAs. The mechanism of inhibition was studied via enzyme kinetics with recombinant NanA NA. Unlike oseltamivir, which competes with the natural substrate of NA, artocarpin exhibits a mixed-type inhibition with a Ki value of 9.70 μM. Remarkably, artocarpin was the only NA inhibitor (NAI) for which an inhibitory effect on pneumococcal growth (MIC: 0.99-5.75 μM) and biofilm formation (MBIC: 1.15-2.97 μM) was observable. In addition, we discovered that the bactericidal effect of artocarpin can reduce the viability of pneumococci by a factor of >1000, without obvious harm to lung epithelial cells. This renders artocarpin a promising natural product for further investigations.
Collapse
Affiliation(s)
- E Walther
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - M Richter
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Z Xu
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - C Kramer
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - S von Grafenstein
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - J Kirchmair
- University of Hamburg, Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - U Grienke
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria; University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - J M Rollinger
- University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - K R Liedl
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - H Slevogt
- Jena University Hospital, ZIK Septomics, Albert-Einstein-Straße 10, 07745 Jena, Germany
| | - A Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - H P Saluz
- Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstraße 11a, 07745 Jena, Germany
| | - W Pfister
- Jena University Hospital, Department of Medical Microbiology, Erlanger Allee 101, 07747 Jena, Germany
| | - M Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knöll-Straße 2, 07745 Jena, Germany.
| |
Collapse
|
37
|
Influenza A virus alters pneumococcal nasal colonization and middle ear infection independently of phase variation. Infect Immun 2014; 82:4802-12. [PMID: 25156728 DOI: 10.1128/iai.01856-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is both a widespread nasal colonizer and a leading cause of otitis media, one of the most common diseases of childhood. Pneumococcal phase variation influences both colonization and disease and thus has been linked to the bacteria's transition from colonizer to otopathogen. Further contributing to this transition, coinfection with influenza A virus has been strongly associated epidemiologically with the dissemination of pneumococci from the nasopharynx to the middle ear. Using a mouse infection model, we demonstrated that coinfection with influenza virus and pneumococci enhanced both colonization and inflammatory responses within the nasopharynx and middle ear chamber. Coinfection studies were also performed using pneumococcal populations enriched for opaque or transparent phase variants. As shown previously, opaque variants were less able to colonize the nasopharynx. In vitro, this phase also demonstrated diminished biofilm viability and epithelial adherence. However, coinfection with influenza virus ameliorated this colonization defect in vivo. Further, viral coinfection ultimately induced a similar magnitude of middle ear infection by both phase variants. These data indicate that despite inherent differences in colonization, the influenza A virus exacerbation of experimental middle ear infection is independent of the pneumococcal phase. These findings provide new insights into the synergistic link between pneumococcus and influenza virus in the context of otitis media.
Collapse
|
38
|
Richards VP, Choi SC, Pavinski Bitar PD, Gurjar AA, Stanhope MJ. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment. BMC Genomics 2013; 14:920. [PMID: 24369756 PMCID: PMC3890567 DOI: 10.1186/1471-2164-14-920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine, glycerol and glucose, and possibly aminoglycoside antibiotic resistance. Conclusion We detected several genetic factors likely important in S. agalactiae’s adaptation to the bovine environment, in particular lactose metabolism. Of concern is the up regulation of a putative antibiotic resistance gene (GCN5-related N-acetyltransferase) that might reflect an adaptation to the use of aminoglycoside antibiotics within this environment.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Hiscox TJ, Harrison PF, Chakravorty A, Choo JM, Ohtani K, Shimizu T, Cheung JK, Rood JI. Regulation of sialidase production in Clostridium perfringens by the orphan sensor histidine kinase ReeS. PLoS One 2013; 8:e73525. [PMID: 24023881 PMCID: PMC3762733 DOI: 10.1371/journal.pone.0073525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Clostridium perfringens is ubiquitous in nature and is often found as a commensal of the human and animal gastrointestinal tract. It is the primary etiological agent of clostridial myonecrosis, or gas gangrene, a serious infection that results in extensive tissue necrosis due to the action of one or more potent extracellular toxins. α-toxin and perfringolysin O are the major extracellular toxins involved in the pathogenesis of gas gangrene, but histotoxic strains of C. perfringens, such as strain 13, also produce many degradative enzymes such as collagenases, hyaluronidases, sialidases and the cysteine protease, α-clostripain. The production of many of these toxins is regulated either directly or indirectly by the global VirSR two-component signal transduction system. By isolating a chromosomal mutant and carrying out microarray analysis we have identified an orphan sensor histidine kinase, which we have named ReeS (regulator of extracellular enzymes sensor). Expression of the sialidase genes nanI and nanJ was down-regulated in a reeS mutant. Since complementation with the wild-type reeS gene restored nanI and nanJ expression to wild-type levels, as shown by quantitative reverse transcription-PCR and sialidase assays we concluded that ReeS positively regulates the expression of these sialidase genes. However, mutation of the reeS gene had no significant effect on virulence in the mouse myonecrosis model. Sialidase production in C. perfringens has been previously shown to be regulated by both the VirSR system and RevR. In this report, we have analyzed a previously unknown sensor histidine kinase, ReeS, and have shown that it also is involved in controlling the expression of sialidase genes, adding further complexity to the regulatory network that controls sialidase production in C. perfringens.
Collapse
Affiliation(s)
- Thomas J. Hiscox
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Paul F. Harrison
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Anjana Chakravorty
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jocelyn M. Choo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Kaori Ohtani
- Department of Microbiology, Graduate School of Medical Science, Kanazawa University, Takara-machi Kanazawa, Ishikawa, Japan
| | - Tohru Shimizu
- Department of Microbiology, Graduate School of Medical Science, Kanazawa University, Takara-machi Kanazawa, Ishikawa, Japan
| | - Jackie K. Cheung
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Julian I. Rood
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
40
|
Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 2013; 3:3/7/a010215. [PMID: 23818515 DOI: 10.1101/cshperspect.a010215] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pneumococcus is the classic Gram-positive extracellular pathogen. The medical burden of diseases it causes is amongst the greatest in the world. Intense study for more than 100 years has yielded an understanding of fundamental aspects of its physiology, pathogenesis, and immunity. Efforts to control infection have led to the deployment of polysaccharide vaccines and an understanding of antibiotic resistance. The inflammatory response to pneumococci, one of the most potent in medicine, has revealed the double-edged sword of clearance of infection but at a cost of damage to host cells. In virtually every aspect of the infectious process, the pneumococcus has set the rules of the Gram-positive pathogenesis game.
Collapse
|
41
|
Brittan JL, Buckeridge TJ, Finn A, Kadioglu A, Jenkinson HF. Pneumococcal neuraminidase A: an essential upper airway colonization factor for Streptococcus pneumoniae. Mol Oral Microbiol 2012; 27:270-83. [PMID: 22759312 DOI: 10.1111/j.2041-1014.2012.00658.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Streptococcus pneumoniae colonizes the upper respiratory tract from where the organisms may disseminate systemically to cause life threatening infections. The mechanisms by which pneumococci colonize epithelia are not understood, but neuraminidase A (NanA) has a major role in promoting growth and survival in the upper respiratory tract. In this article we show that mutants of S. pneumoniae D39 deficient in NanA or neuraminidase B (NanB) are abrogated in adherence to three epithelial cell lines, and to primary nasopharyngeal cells. Adherence levels were partly restored by nanA complementation in trans. Enzymic activity of NanA was shown to be necessary for pneumococcal adherence to epithelial cells, and adherence of the nanA mutant was restored to wild-type level by pre-incubation of epithelial cells with Lactococcus lactis cells expressing NanA. Pneumococcal nanA or nanB mutants were deficient in biofilm formation, while expression of NanA on L. lactis or Streptococcus gordonii promoted biofilm formation by these heterologous host organisms. The results suggest that NanA is an enzymic factor mediating adherence to epithelial cells by decrypting receptors for adhesion, and functions at least in part as an adhesin in biofilm formation. Neuraminidase A thus appears to play multiple temporal roles in pneumococcal infection, from adherence to host tissues, colonization, and community development, to systemic spread and crossing of the blood-brain barrier.
Collapse
Affiliation(s)
- J L Brittan
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
42
|
Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012; 12:200. [PMID: 22963456 PMCID: PMC3509027 DOI: 10.1186/1471-2180-12-200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022] Open
Abstract
Background Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung. Results In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells. Conclusions The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media.
Collapse
Affiliation(s)
- Luciana Gualdi
- Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jin RP, Hu YH, Sun BG, Zhang XH, Sun L. Edwardsiella tarda sialidase: pathogenicity involvement and vaccine potential. FISH & SHELLFISH IMMUNOLOGY 2012; 33:514-521. [PMID: 22705341 DOI: 10.1016/j.fsi.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 06/01/2023]
Abstract
Bacterial sialidases are a group of glycohydrolases that are known to play an important role in invasion of host cells and tissues. In this study, we examined in a model of Japanese flounder (Paralichthys olivaceus) the potential function of NanA, a sialidase from the fish pathogen Edwardsiella tarda. NanA is composed of 670 residues and shares low sequence identities with known bacterial sialidases. In silico analysis indicated that NanA possesses a sialidase domain and an autotransporter domain, the former containing five Asp-boxes, a RIP motif, and the conserved catalytic site of bacterial sialidases. Purified recombinant NanA (rNanA) corresponding to the sialidase domain exhibited glycohydrolase activity against sialic acid substrate in a manner that is pH and temperature dependent. Immunofluorescence microscopy showed binding of anti-rNanA antibodies to E. tarda, suggesting that NanA was localized on cell surface. Mutation of nanA caused drastic attenuation in the ability of E. tarda to disseminate into and colonize fish tissues and to induce mortality in infected fish. Likewise, cellular study showed that the nanA mutant was significantly impaired in the infectivity against cultured flounder cells. Immunoprotective analysis showed that rNanA in the form of a subunit vaccine conferred effective protection upon flounder against lethal E. tarda challenge. rNanA vaccination induced the production of specific serum antibodies, which enhanced complement-mediated bactericidal activity and reduced infection of E. tarda into flounder cells. Together these results indicate that NanA plays an important role in the pathogenesis of E. tarda and may be exploited for the control of E. tarda infection in aquaculture.
Collapse
Affiliation(s)
- Ren-ping Jin
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|
44
|
Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM. Influenza neuraminidase: A druggable target for natural products. Nat Prod Rep 2012; 29:11-36. [DOI: 10.1039/c1np00053e] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Interleukin-1β regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intercellular cooperation between pulmonary epithelial cells and macrophages. Infect Immun 2011; 80:1140-9. [PMID: 22158745 DOI: 10.1128/iai.05697-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The success of Streptococcus pneumoniae (the pneumococcus) as a pulmonary pathogen is related to its restriction of innate immune responses by respiratory epithelial cells. The mechanisms used to overcome this restriction are incompletely elucidated. Pulmonary chemokine expression involves complex cellular and molecular networks, involving the pulmonary epithelium, but the specific cellular interactions and the cytokines that control them are incompletely defined. We show that serotype 2 or 4 pneumococci induce only modest levels of CXCL8 expression from epithelial cell lines, even in the absence of a polysaccharide capsule. In contrast, coculture of A549 cells with the macrophage-like THP-1 cell line, differentiated with vitamin D, or monocyte-derived macrophages enhanced CXCL8 release. Supernatants from the THP-1 cell line prime A549 cells to release CXCL8 at levels similar to cocultures. Interleukin-1Ra (IL-1Ra) inhibits CXCL8 release from cocultures and reduces the activity of macrophage-conditioned media, but inhibition of tumor necrosis factor alpha (TNF-α) had only a minimal effect on CXCL8 release. Release of IL-1β but not TNF-α was upregulated in cocultures. IL-1 type 1 receptor knockout C57BL/6 and BALB/c mice confirmed the importance of IL-1 signaling in CXC chemokine expression and neutrophil recruitment in vivo. In fulminant disease, increased IL-1 signaling resulted in increased neutrophils in the airway and more invasive disease. These results demonstrate that IL-1 is an important component of the cellular network involving macrophages and epithelial cells, which facilitates CXC chemokine expression and aids neutrophil recruitment during pneumococcal pneumonia. They also highlight a potential clinical role for anti-IL-1 treatment to limit excessive neutrophilic inflammation in the lung.
Collapse
|
46
|
Roy S, Honma K, Douglas CWI, Sharma A, Stafford GP. Role of sialidase in glycoprotein utilization by Tannerella forsythia. MICROBIOLOGY-SGM 2011; 157:3195-3202. [PMID: 21885482 PMCID: PMC3352272 DOI: 10.1099/mic.0.052498-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host–pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.
Collapse
Affiliation(s)
- Sumita Roy
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Kiyonobu Honma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - C W Ian Douglas
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Graham P Stafford
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| |
Collapse
|
47
|
Kim S, Oh DB, Kang HA, Kwon O. Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 2011; 91:1-15. [PMID: 21544654 DOI: 10.1007/s00253-011-3307-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases (EC 3.2.1.18), belong to a class of glycosyl hydrolases that release terminal N-acylneuraminate residues from the glycans of glycoproteins, glycolipids, and polysaccharides. In bacteria, sialidases can be used to scavenge sialic acids as a nutrient from various sialylated substrates or to recognize sialic acids exposed on the surface of the host cell. Despite the fact that bacterial sialidases share many structural features, their biochemical properties, especially their linkage and substrate specificities, vary widely. Bacterial sialidases can catalyze the hydrolysis of terminal sialic acids linked by the α(2,3)-, α(2,6)-, or α(2,8)-linkage to a diverse range of substrates. In addition, some of these enzymes can catalyze the transfer of sialic acids from sialoglycans to asialoglycoconjugates via a transglycosylation reaction mechanism. Thus, some bacterial sialidases have been applied to synthesize complex sialyloligosaccharides through chemoenzymatic approaches and to analyze the glycan structure. In this review article, the biochemical features of bacterial sialidases and their potential applications in regioselective hydrolysis reactions as well as sialylation by transglycosylation for the synthesis of sialylated complex glycans are discussed.
Collapse
Affiliation(s)
- Seonghun Kim
- Microbe-based Fusion Technology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup, South Korea
| | | | | | | |
Collapse
|
48
|
Richards VP, Lang P, Bitar PDP, Lefébure T, Schukken YH, Zadoks RN, Stanhope MJ. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. INFECTION GENETICS AND EVOLUTION 2011; 11:1263-75. [PMID: 21536150 DOI: 10.1016/j.meegid.2011.04.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/16/2011] [Indexed: 12/18/2022]
Abstract
In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p<0.0001). The majority of the bovine strain-specific genes (∼ 85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight into mechanisms facilitating environmental adaptation and acquisition of potential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment.
Collapse
Affiliation(s)
- Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 2011; 29:428-35. [PMID: 21478876 DOI: 10.1038/nbt.1846] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/16/2011] [Indexed: 12/18/2022]
Abstract
Suppression of inflammation is critical for effective therapy of many infectious diseases. However, the high rates of mortality caused by sepsis attest to the need to better understand the basis of the inflammatory sequelae of sepsis and to develop new options for its treatment. In mice, inflammatory responses to host danger-associated molecular patterns (DAMPs), but not to microbial pathogen-associated molecular patterns (PAMPs), are repressed by the interaction [corrected] of CD24 and SiglecG (SIGLEC10 in human). Here we use an intestinal perforation model of sepsis to show that microbial sialidases target the sialic acid-based recognition of CD24 by SiglecG/10 to exacerbate inflammation. Sialidase inhibitors protect mice against sepsis by a mechanism involving both CD24 and Siglecg, whereas mutation of either gene exacerbates sepsis. Analysis of sialidase-deficient bacterial mutants confirms the key contribution of disrupting sialic acid-based pattern recognition to microbial virulence and supports the clinical potential of sialidase inhibition for dampening inflammation caused by infection.
Collapse
|
50
|
Coats MT, Murphy T, Paton JC, Gray B, Briles DE. Exposure of Thomsen-Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. Microb Pathog 2011; 50:343-9. [PMID: 21377521 DOI: 10.1016/j.micpath.2011.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 12/22/2022]
Abstract
Pneumococcal hemolytic uremic syndrome is recognized in a small portion of otherwise healthy children who have or have recently had Streptococcus pneumoniae infections, including severe pneumonia, meningitis, and bacteremia. As in other types of hemolytic uremic syndrome (HUS), pneumococcal HUS is characterized by microangiopathic hemolytic anemia, and thrombocytopenia, usually with extensive kidney damage. Although not demonstrated in vivo, the pathogenesis of pneumococcal HUS has been attributed to the action pneumococcal neuraminidase exposing the usually cryptic Thomsen-Friedenreich antigen (T-antigen) on red blood cells (RBC), and kidney glomeruli. We evaluated the effect of pneumococcal infection on desialylation of RBC and glomeruli during pneumococcal infections in mice. Following intravenous infection with capsular type 19F pneumococci, CFU levels exceeding 1000 CFU/mL blood by the third day were significantly more likely to result in exposed T-antigen on RBC than lower levels of bacteremia. In a pneumonia model, significantly more T-antigen was exposed on RBC in mice treated with penicillin than in those receiving mock treatment. Utilizing mutant pneumococci, we demonstrated that neuraminidase A but not neuraminidase B was necessary for exposure of T-antigen on RBC in vivo. Thus, pneumococcal neuraminidase A is necessary for the exposure of T-antigen in vivo and treatment with penicillin increases this effect. Interestingly, NanA(-) pneumococci were found in the blood in higher numbers and caused more deaths than wild type, NanB(-), or the NanA(-)/NanB(-) pneumococci.
Collapse
Affiliation(s)
- Mamie T Coats
- Department of Microbiology, University of Alabama at Birmingham, 1530 3rd Ave South, Birmingham, AL 35294-2170, USA
| | | | | | | | | |
Collapse
|