1
|
Liu Y, Potts JL, Bloch D, Nian K, McCormick CA, Fanari O, Rouhanifard SH. Paired Capture and FISH Detection of Individual Virions Enable Cell-Free Determination of Infectious Titers. ACS Sens 2023; 8:2563-2571. [PMID: 37368999 PMCID: PMC10621038 DOI: 10.1021/acssensors.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titers is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and polymerase chain reaction (PCR)-based (sensitive but not rapid). Current viral titration methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid capture fluorescence in situ hybridization (FISH) or rapture FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are "infectious," thus serving as a more consistent proxy of infectious titers. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer and then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH); thus, it is selective for infectious particles (i.e., positive for coat proteins and positive for genomes).
Collapse
Affiliation(s)
- Yifang Liu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jacob L. Potts
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Caroline A. McCormick
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Oleksandra Fanari
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Grose C. Surveillance of Nigerian children suggests that varicella may be a risk factor for acquisition of monkeypox. Front Public Health 2023; 11:1140956. [PMID: 36844851 PMCID: PMC9948024 DOI: 10.3389/fpubh.2023.1140956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Affiliation(s)
- Charles Grose
- Division of Infectious Diseases, Virology Laboratory, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun Biol 2022; 5:898. [PMID: 36056184 PMCID: PMC9438360 DOI: 10.1038/s42003-022-03863-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) has recently overtaken enterovirus A71 and CV-A16 as the primary causative agent of hand, foot, and mouth disease worldwide. Virions of CV-A6 were not identified in previous structural studies, and it was speculated that the virus is unique among enteroviruses in using altered particles with expanded capsids to infect cells. In contrast, the virions of other enteroviruses are required for infection. Here we used cryo-electron microscopy (cryo-EM) to determine the structures of the CV-A6 virion, altered particle, and empty capsid. We show that the CV-A6 virion has features characteristic of virions of other enteroviruses, including a compact capsid, VP4 attached to the inner capsid surface, and fatty acid-like molecules occupying the hydrophobic pockets in VP1 subunits. Furthermore, we found that in a purified sample of CV-A6, the ratio of infectious units to virions is 1 to 500. Therefore, it is likely that virions of CV-A6 initiate infection, like those of other enteroviruses. Our results provide evidence that future vaccines against CV-A6 should target its virions instead of the antigenically distinct altered particles. Furthermore, the structure of the virion provides the basis for the rational development of capsid-binding inhibitors that block the genome release of CV-A6. A cryo-EM structure for the three conformers of coxsackievirus A6 provides insight into the infection process of this enterovirus, which is responsible for numerous cases of hand, foot, and mouth disease.
Collapse
|
4
|
Yang Y, Murray J, Haverstick J, Tripp RA, Zhao Y. Silver nanotriangle array based LSPR sensor for rapid coronavirus detection. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 359:131604. [PMID: 35221531 PMCID: PMC8857771 DOI: 10.1016/j.snb.2022.131604] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 05/06/2023]
Abstract
A rapid, portable, and cost-effective method to detect the infection of SARS-CoV-2 is fundamental toward mitigating the current COVID-19 pandemic. Herein, a human angiotensin-converting enzyme 2 protein (ACE2) functionalized silver nanotriangle (AgNT) array localized surface plasmon resonance (LSPR) sensor is developed for rapid coronavirus detection, which is validated by SARS-CoV-2 spike RBD protein and CoV NL63 virus with high sensitivity and specificity. A linear shift of the LSPR wavelength versus the logarithm of the concentration of the spike RBD protein and CoV NL63 is observed. The limits of detection for the spike RBD protein, CoV NL63 in buffer and untreated saliva are determined to be 0.83 pM, 391 PFU/mL, and 625 PFU/mL, respectively, while the detection time is found to be less than 20 min. Thus, the AgNT array optical sensor could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - James Haverstick
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
A Multi-Laboratory Comparison of Methods for Detection and Quantification of African Swine Fever Virus. Pathogens 2022; 11:pathogens11030325. [PMID: 35335649 PMCID: PMC8949307 DOI: 10.3390/pathogens11030325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
African swine fever is a viral disease of the family Suidae. Methods to detect and quantify African swine fever virus (ASFV) include qPCR and virus infectivity assays. Individual laboratories often use in-house procedures for these assays, which can hamper the comparison of results. The objective of this study was to estimate the probability of ASFV detection using these assays, and to determine the inter-test correlations between results. This was achieved by testing a panel of 80 samples at three reference laboratories. Samples were analysed using nucleic acid extraction and qPCR, as well as virus infectivity assays. For qPCR, a very high probability (ranging from 0.96 to 1.0) of detecting ASFV DNA was observed for all tested systems. For virus infectivity assays in cells, the probability of detecting infectious ASFV varied from 0.68 to 0.90 and was highest using pulmonary alveolar macrophages, followed by MARC145 cells, peripheral blood monocytes, and finally wild boar lung cells. Intraclass correlation coefficient estimates of 0.97 (0.96–0.98) between qPCR methods, 0.80 (0.74–0.85) to 0.94 (0.92–0.96) between virus infectivity assays, and 0.77 (0.68–0.83) to 0.95 (0.93–0.96) between qPCR methods and virus infectivity assays were obtained. These findings show that qPCR gives the highest probability for the detection of ASFV.
Collapse
|
6
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
7
|
Braspenning SE, Lebbink RJ, Depledge DP, Schapendonk CME, Anderson LA, Verjans GMGM, Sadaoka T, Ouwendijk WJD. Mutagenesis of the Varicella-Zoster Virus Genome Demonstrates That VLT and VLT-ORF63 Proteins Are Dispensable for Lytic Infection. Viruses 2021; 13:v13112289. [PMID: 34835095 PMCID: PMC8619377 DOI: 10.3390/v13112289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Primary varicella-zoster virus (VZV) infection leads to varicella and the establishment of lifelong latency in sensory ganglion neurons. Reactivation of latent VZV causes herpes zoster, which is frequently associated with chronic pain. Latent viral gene expression is restricted to the VZV latency-associated transcript (VLT) and VLT-ORF63 (VLT63) fusion transcripts. Since VLT and VLT63 encode proteins that are expressed during lytic infection, we investigated whether pVLT and pVLT-ORF63 are essential for VZV replication by performing VZV genome mutagenesis using CRISPR/Cas9 and BAC technologies. We first established that CRISPR/Cas9 can efficiently mutate VZV genomes in lytically VZV-infected cells through targeting non-essential genes ORF8 and ORF11 and subsequently show recovery of viable mutant viruses. By contrast, the VLT region was markedly resistant to CRISPR/Cas9 editing. Whereas most mutants expressed wild-type or N-terminally altered versions of pVLT and pVLT-ORF63, only a minority of the resulting mutant viruses lacked pVLT and pVLT-ORF63 coding potential. Growth curve analysis showed that pVLT/pVLT-ORF63 negative viruses were viable, but impaired in growth in epithelial cells. We confirmed this phenotype independently using BAC-derived pVLT/pVLT-ORF63 negative and repaired viruses. Collectively, these data demonstrate that pVLT and/or pVLT-ORF63 are dispensable for lytic VZV replication but promote efficient VZV infection in epithelial cells.
Collapse
Affiliation(s)
- Shirley E. Braspenning
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (C.M.E.S.); (L.A.A.); (G.M.G.M.V.)
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands;
| | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Claudia M. E. Schapendonk
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (C.M.E.S.); (L.A.A.); (G.M.G.M.V.)
| | - Laura A. Anderson
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (C.M.E.S.); (L.A.A.); (G.M.G.M.V.)
| | - Georges M. G. M. Verjans
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (C.M.E.S.); (L.A.A.); (G.M.G.M.V.)
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Correspondence: (T.S.); (W.J.D.O.); Tel.: +81-78-382-6272 (T.S.); +31-10-7032134 (W.J.D.O.)
| | - Werner J. D. Ouwendijk
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (C.M.E.S.); (L.A.A.); (G.M.G.M.V.)
- Correspondence: (T.S.); (W.J.D.O.); Tel.: +81-78-382-6272 (T.S.); +31-10-7032134 (W.J.D.O.)
| |
Collapse
|
8
|
The basic reproductive number and particle-to-plaque ratio: comparison of these two parameters of viral infectivity. Virol J 2021; 18:92. [PMID: 33931090 PMCID: PMC8085655 DOI: 10.1186/s12985-021-01566-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic has brought more widespread attention to the basic reproductive number (Ro), an epidemiologic measurement. A lesser-known measure of virologic infectivity is the particle-to-plaque ratio (P:PFU). We suggest that comparison between the two parameters may assist in better understanding viral transmission dynamics.
Collapse
|
9
|
Zhou M, Kamarshi V, Arvin AM, Oliver SL. Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. PLoS Pathog 2020; 16:e1009022. [PMID: 33216797 PMCID: PMC7717522 DOI: 10.1371/journal.ppat.1009022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Cell-cell fusion (abbreviated as cell fusion) is a characteristic pathology of medically important viruses, including varicella-zoster virus (VZV), the causative agent of chickenpox and shingles. Cell fusion is mediated by a complex of VZV glycoproteins, gB and gH-gL, and must be tightly regulated to enable skin pathogenesis based on studies with gB and gH hyperfusogenic VZV mutants. Although the function of gB and gH-gL in the regulation of cell fusion has been explored, whether host factors are directly involved in this regulation process is unknown. Here, we discovered host factors that modulated VZV gB/gH-gL mediated cell fusion via high-throughput screening of bioactive compounds with known cellular targets. Two structurally related non-antibiotic macrolides, tacrolimus and pimecrolimus, both significantly increased VZV gB/gH-gL mediated cell fusion. These compounds form a drug-protein complex with FKBP1A, which binds to calcineurin and specifically inhibits calcineurin phosphatase activity. Inhibition of calcineurin phosphatase activity also enhanced both herpes simplex virus-1 fusion complex and syncytin-1 mediated cell fusion, indicating a broad role of calcineurin in modulating this process. To characterize the role of calcineurin phosphatase activity in VZV gB/gH-gL mediated fusion, a series of biochemical, biological and infectivity assays was performed. Pimecrolimus-induced, enhanced cell fusion was significantly reduced by shRNA knockdown of FKBP1A, further supporting the role of calcineurin phosphatase activity in fusion regulation. Importantly, inhibition of calcineurin phosphatase activity during VZV infection caused exaggerated syncytia formation and suppressed virus propagation, which was consistent with the previously reported phenotypes of gB and gH hyperfusogenic VZV mutants. Seven host cell proteins that remained uniquely phosphorylated when calcineurin phosphatase activity was inhibited were identified as potential downstream factors involved in fusion regulation. These findings demonstrate that calcineurin is a critical host cell factor pivotal in the regulation of VZV induced cell fusion, which is essential for VZV pathogenesis.
Collapse
Affiliation(s)
- Momei Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vivek Kamarshi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann M. Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
10
|
Ouwendijk WJD, Dekker LJM, van den Ham HJ, Lenac Rovis T, Haefner ES, Jonjic S, Haas J, Luider TM, Verjans GMGM. Analysis of Virus and Host Proteomes During Productive HSV-1 and VZV Infection in Human Epithelial Cells. Front Microbiol 2020; 11:1179. [PMID: 32547533 PMCID: PMC7273502 DOI: 10.3389/fmicb.2020.01179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) are two closely related human alphaherpesviruses that persistently infect most adults worldwide and cause a variety of clinically important diseases. Herpesviruses are extremely well adapted to their hosts and interact broadly with cellular proteins to regulate virus replication and spread. However, it is incompletely understood how HSV-1 and VZV interact with the host proteome during productive infection. This study determined the temporal changes in virus and host protein expression during productive HSV-1 and VZV infection in the same cell type. Results demonstrated the temporally coordinated expression of HSV-1 and VZV proteins in infected cells. Analysis of the host proteomes showed that both viruses affected extracellular matrix composition, transcription, RNA processing and cell division. Moreover, the prominent role of epidermal growth factor receptor (EGFR) signaling during productive HSV-1 and VZV infection was identified. Stimulation and inhibition of EGFR leads to increased and decreased virus replication, respectively. Collectively, the comparative temporal analysis of viral and host proteomes in productively HSV-1 and VZV-infected cells provides a valuable resource for future studies aimed to identify target(s) for antiviral therapy development.
Collapse
Affiliation(s)
- Werner J. D. Ouwendijk
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Werner J. D. Ouwendijk,
| | | | - Henk-Jan van den Ham
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
- Enpicom B.V., ‘s-Hertogenbosch, Netherlands
| | - Tihana Lenac Rovis
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Erik S. Haefner
- Experimental and Translational Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stipan Jonjic
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jürgen Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
11
|
Dunbar CA, Rayaprolu V, Wang JCY, Brown CJ, Leishman E, Jones-Burrage S, Trinidad JC, Bradshaw HB, Clemmer DE, Mukhopadhyay S, Jarrold MF. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infect Dis 2019; 5:892-902. [PMID: 30986033 DOI: 10.1021/acsinfecdis.8b00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sindbis virus (SINV) is an enveloped, single-stranded RNA virus, which is transmitted via mosquitos to a wide range of vertebrate hosts. SINV produced by vertebrate, baby hamster kidney (BHK) cells is more than an order of magnitude less infectious than SINV produced from mosquito (C6/36) cells. The cause of this difference is poorly understood. In this study, charge detection mass spectrometry was used to determine the masses of intact SINV particles isolated from BHK and C6/36 cells. The measured masses are substantially different: 52.88 MDa for BHK derived SINV and 50.69 MDa for C6/36 derived. Further analysis using several mass spectrometry-based methods and biophysical approaches indicates that BHK derived SINV has a substantially higher mass than C6/36 derived because in the lipid bilayer, there is a higher portion of lipids containing long chain fatty acids. The difference in lipid composition could influence the organization of the lipid bilayer. As a result, multiple stages of the viral lifecycle may be affected including assembly and budding, particle stability during transmission, and fusion events, all of which could contribute to the differences in infectivity.
Collapse
Affiliation(s)
- Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Vamseedhar Rayaprolu
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Joseph C.-Y. Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Christopher J. Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - Sara Jones-Burrage
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Leemans A, Boeren M, Van der Gucht W, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Res 2019; 266:58-68. [PMID: 31004621 DOI: 10.1016/j.virusres.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization worldwide each year and there is presently no licensed vaccine to prevent severe RSV infections. Two major RSV glycoproteins, attachment (G) and fusion (F) protein, regulate viral replication and both proteins contain potential glycosylation sites which are highly variable for the G protein and conserved for the F protein among virus isolates. The RSV F sequence possesses five N-glycosylation sites located in the F2 subunit (N27 and N70), the p27 peptide (N116 and N126) and the F1 subunit (N500). The importance of RSV F N-glycosylation in virus replication and immunogenicity is not yet fully understood, and a better understanding may provide new insights for vaccine development. By using a BAC-based reverse genetics system, recombinant viruses expressing F proteins with loss of N-glycosylation sites were made. Mutant viruses with single N-glycosylation sites removed could be recovered, while this was not possible with the mutant with all N-glycosylation sites removed. Although the individual RSV F N-glycosylation sites were shown not to be essential for viral replication, they do contribute to the efficiency of in vitro and in vivo viral infection. To evaluate the role of N-glycosylation sites on RSV F antigenicity, serum antibody titers were determined after infection of BALB/c mice with RSV expressing the glycomutant F proteins. Infection with recombinant virus lacking the N-glycosylation site at position N116 (RSV F N116Q) resulted in significant higher neutralizing antibody titers compared to RSV F WT infection, which is surprising since this N-glycan is present in the p27 peptide which is assumed to be absent from the mature F protein in virions. Thus, single or combined RSV F glycomutations which affect virus replication and fusogenicity, and which may induce enhanced antibody responses upon immunization could have the potential to improve the efficacy of RSV LAV approaches.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cell Line, Tumor
- Chlorocebus aethiops
- Female
- Giant Cells/virology
- Glycosylation
- Humans
- Immunization
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Mutation
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/pathology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/growth & development
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Vero Cells
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| |
Collapse
|
13
|
Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus. J Virol 2019; 93:JVI.01887-18. [PMID: 30404793 DOI: 10.1128/jvi.01887-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 02/08/2023] Open
Abstract
Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication in vitro VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes.IMPORTANCE Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.
Collapse
|
14
|
Buckingham EM, Girsch J, Jackson W, Cohen JI, Grose C. Autophagy Quantification and STAT3 Expression in a Human Skin Organ Culture Model for Innate Immunity to Herpes Zoster. Front Microbiol 2018; 9:2935. [PMID: 30568636 PMCID: PMC6290052 DOI: 10.3389/fmicb.2018.02935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
The goal of this project was to document the autophagy response in human neonatal skin organ culture (SOC) after infection with varicella-zoster virus (VZV). The VZV-infected SOC model has attributes of herpes zoster, in that an injection of virus into the skin is analogous to exit of virus from the sensory nerve termini into skin during herpes zoster. Cultures were maintained for 28 days and periodically examined for an autophagy response by quantitation of autophagosomes with Imaris software. Expression of the STAT3 protein was plentiful in the VZV-infected SOC. Abundant autophagy was observed in VZV-infected SOC between 14 and 28 days after infection, while autophagy in mock-infected SOC was minimal (p = 0.0003). The autophagic response after infection of SOC with a recombinant VZV genome containing the herpes simplex virus ICP34.5 neurovirulence gene was similar to wild-type VZV (p = 0.3). These results suggested that the VZV-infected SOC system resembled biopsy data from herpes zoster infection of skin. An enhanced autophagy response has now been reported after infection with two additional alpha herpesviruses besides VZV, namely, pseudorabies virus and duck enteritis herpes virus; both lack the ICP34.5 protein.
Collapse
Affiliation(s)
- Erin M. Buckingham
- Virology Laboratory, Children’s Hospital, University of Iowa, Iowa City, IA, United States
| | - James Girsch
- Virology Laboratory, Children’s Hospital, University of Iowa, Iowa City, IA, United States
| | - Wallen Jackson
- Virology Laboratory, Children’s Hospital, University of Iowa, Iowa City, IA, United States
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Charles Grose
- Virology Laboratory, Children’s Hospital, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Varicella-Zoster Virus ORF9p Binding to Cellular Adaptor Protein Complex 1 Is Important for Viral Infectivity. J Virol 2018; 92:JVI.00295-18. [PMID: 29793951 DOI: 10.1128/jvi.00295-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the μ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.
Collapse
|
16
|
Jarosinski KW, Carpenter JE, Buckingham EM, Jackson W, Knudtson K, Moffat JF, Kita H, Grose C. Cellular Stress Response to Varicella-Zoster Virus Infection of Human Skin Includes Highly Elevated Interleukin-6 Expression. Open Forum Infect Dis 2018; 5:ofy118. [PMID: 30014002 DOI: 10.1093/ofid/ofy118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background The infectious cycle of varicella-zoster virus (VZV) after reactivation from the dorsal root ganglia includes replication and assembly of complete enveloped virions in the human skin to cause the characteristic herpes zoster (shingles). Methods To pursue studies of innate immunity to VZV infection, we have adapted a fetal skin organ culture model to a human neonatal foreskin explant model. Results Abundant expression of VZV IE62, gE, and gC was visualized by confocal microscopy while numerous enveloped virions were observed by electron microscopy in infected skin organ cultures. Microarray experiments demonstrated that the patterns of upregulated transcripts differed between VZV-infected cells and VZV-infected skin explants. One result stood out, namely a >30-fold elevated interleukin (IL)-6 level in the infected skin explant that was not present in the infected monolayer culture. The IL-6 results in the polyermase chain reaction (PCR) assay were reproduced by quantitative PCR testing with newly designed primers. To determine if increased transcription was accompanied by increased IL-6 expression, we quantitated the levels of IL-6 protein in the explant media at increasing intervals after infection. We found a statistically significant increase in IL-6 protein levels secreted into the media from VZV-infected skin explants as compared with mock-infected explants. Conclusions The cellular stress response to VZV infection in neonatal skin explants included highly elevated levels of IL-6 transcription and expression. This skin organ model could be adapted to other viruses with a skin tropism, such as herpes simplex virus.
Collapse
Affiliation(s)
| | - John E Carpenter
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| | - Erin M Buckingham
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| | - Wallen Jackson
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| | - Kevin Knudtson
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa
| | - Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Charles Grose
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
17
|
Ghanem N, Trost M, Sánchez Fontanet L, Harms H, Chatzinotas A, Wick LY. Changes of the Specific Infectivity of Tracer Phages during Transport in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3486-3492. [PMID: 29481067 DOI: 10.1021/acs.est.7b06271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phages (i.e., viruses infecting bacteria) are considered to be good indicators and tracers for fecal pollution, hydraulic flow, or colloidal transport in the subsurface. They are typically quantified as total virus particles (VLP) or plaque forming units (PFU) of infectious phages. As transport may lead to phage deactivation, VLP quantification can overestimate the number of infectious phages. In contrast, PFU counts may underestimate the transport of total virus particles. Using PFU and tunable resistive pulse sensing-based counting for active and total phages, respectively, we quantified the effect of transport through laboratory percolation columns on the specific infectivity (SI). The SI is defined by the ratio of total VLP to PFU and is a measure for the minimum particle numbers needed to create a single infection. Transport of three marine tracer phages and the coli-phage (T4) was described by colloidal filtration theory. We found that apparent collision efficiencies of active and total phages differed. Depending on the phage properties (e.g., morphology or hydrophobicity), passage through a porous medium led to either an increasing or decreasing SI of effluent phages. Our data suggest that both phage mass recovery and the SI should be considered in quantitative phage tracer experiments.
Collapse
Affiliation(s)
- Nawras Ghanem
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Manuel Trost
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Laura Sánchez Fontanet
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Hauke Harms
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e , 04103 Leipzig , Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e , 04103 Leipzig , Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| |
Collapse
|
18
|
Alfson KJ, Avena LE, Delgado J, Beadles MW, Patterson JL, Carrion R, Griffiths A. A Single Amino Acid Change in the Marburg Virus Glycoprotein Arises during Serial Cell Culture Passages and Attenuates the Virus in a Macaque Model of Disease. mSphere 2018; 3:e00401-17. [PMID: 29299527 PMCID: PMC5750385 DOI: 10.1128/msphere.00401-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Marburg virus (MARV) causes disease with high case fatality rates, and there are no approved vaccines or therapies. Licensing of MARV countermeasures will likely require approval via the FDA's Animal Efficacy Rule, which requires well-characterized animal models that recapitulate human disease. This includes selection of the virus used for exposure and ensuring that it retains the properties of the original isolate. The consequences of amplification of MARV for challenge studies are unknown. Here, we serially passaged and characterized MARV through 13 passes from the original isolate. Surprisingly, the viral genome was very stable, except for a single nucleotide change that resulted in an amino acid substitution in the hydrophobic region of the signal peptide of the glycoprotein (GP). The particle/PFU ratio also decreased following passages, suggesting a role for the amino acid in viral infectivity. To determine if amplification introduces a phenotype in an animal model, cynomolgus macaques were exposed to either 100 or 0.01 PFU of low- and high-passage-number MARV. All animals succumbed when exposed to 100 PFU of either passage 3 or 13 viruses, although animals exposed to the high-passage-number virus survived longer. However, none of the passage 13 MARV-exposed animals succumbed to 0.01-PFU exposure compared to 75% of passage 3-exposed animals. This is consistent with other filovirus studies that show some particles that are unable to yield a plaque in cell culture can cause lethal disease in vivo. These results have important consequences for the design of experiments that investigate MARV pathogenesis and that test the efficacy of MARV countermeasures. IMPORTANCE Marburg virus (MARV) causes disease with a high case fatality rate, and there are no approved vaccines or therapies. Serial amplification of viruses in cell culture often results in accumulation of mutations, but the effect of such cell culture passage on MARV is unclear. Serial passages of MARV resulted in a single mutation in the region encoding the glycoprotein (GP). This is a region where mutations can have important consequences on outbreaks and human disease [S. Mahanty and M. Bray, Lancet Infect Dis 4:487-498, 2004, https://doi.org/10.1016/S1473-3099(04)01103-X]. We thus investigated whether this mutation impacted disease by using a cynomolgus macaque model of MARV infection. Monkeys exposed to virus containing the mutation had better clinical outcomes than monkeys exposed to virus without the mutation. We also observed that a remarkably low number of MARV particles was sufficient to cause death. Our results could have a significant impact on how future studies are designed to model MARV disease and test vaccines and therapeutics.
Collapse
Affiliation(s)
- Kendra J. Alfson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Laura E. Avena
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jenny Delgado
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael W. Beadles
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
- University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
19
|
Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection. J Virol 2017; 92:JVI.01108-17. [PMID: 29046461 DOI: 10.1128/jvi.01108-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/03/2017] [Indexed: 12/31/2022] Open
Abstract
Varicella-zoster virus (VZV) is highly cell associated when grown in culture and has a much higher (4,000- to 20,000-fold increased) particle-to-PFU ratio in vitro than herpes simplex virus (HSV). In contrast, VZV is highly infectious in vivo by airborne transmission. Neurons are major targets for VZV in vivo; in neurons, the virus can establish latency and reactivate to produce infectious virus. Using neurons derived from human embryonic stem cells (hESC) and cell-free wild-type (WT) VZV, we demonstrated that neurons are nearly 100 times more permissive for WT VZV infection than very-early-passage human embryonic lung cells or MRC-5 diploid human fibroblasts, the cells used for vaccine production or virus isolation. The peak titers achieved after infection were ∼10-fold higher in human neurons than in MRC-5 cells, and the viral genome copy number-to-PFU ratio for VZV in human neurons was 500, compared with 50,000 for MRC-5 cells. Thus, VZV may not necessarily have a higher particle-to-PFU ratio than other herpesviruses; instead, the cells previously used to propagate virus in vitro may have been suboptimal. Furthermore, based on electron microscopy, neurons infected with VZV produced fewer defective or incomplete viral particles than MRC-5 cells. Our data suggest that neurons derived from hESC may have advantages compared to other cells for studies of VZV pathogenesis, for obtaining stocks of virus with high titers, and for isolating VZV from clinical specimens.IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox and shingles. Cell-free VZV has been difficult to obtain, both for in vitro studies and for vaccine production. While numerous cells lines have been tested for their ability to produce high titers of VZV, the number of total virus particles relative to the number of viral particles that can form plaques in culture has been reported to be extremely high relative to that in other viruses. We show that VZV grows to much higher titers in human neurons than in other cell types in vitro and that the number of total virus genomes relative to the number of viral particles that can form plaques in culture is much lower in human neurons than other cultured cells. These findings indicate that human neurons may be useful for studying VZV in vitro, for growing preparations of virus with high titers, and for isolating the virus from human samples.
Collapse
|
20
|
Fall G, Di Paola N, Faye M, Dia M, Freire CCDM, Loucoubar C, Zanotto PMDA, Faye O, Sall AA. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 2017; 11:e0006078. [PMID: 29117195 PMCID: PMC5695850 DOI: 10.1371/journal.pntd.0006078] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus’ biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation. The West Nile virus (WNV) can cause severe neurological diseases including meningitis, encephalitis, and acute flaccid paralysis. Differences in WNV genetics could play a role in the frequency of neurological symptoms from an infection. For the first time, we observed how geographically similar but genetically distinct lineages grow in cellular environments that agree with the transmission chain of West Nile virus—vertebrate-arthropod-vertebrate. We were able to connect our in vitro and in vivo results with relevant epidemiological and molecular data. Our findings highlight the existence of West African lineages with higher virulence and replicative efficiency in vitro and in vivo compared to lineages similar to circulating strains in the United States and Europe. Our investigation of four West African lineages of West Nile virus will help us better understand the biology of the virus and assess future epidemiological threats.
Collapse
Affiliation(s)
- Gamou Fall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Nicholas Di Paola
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Dia
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Cheikh Loucoubar
- Groupe à 4 ans de Biostatistiques, Bioinformatique et modélisation, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Ousmane Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
21
|
Jiang W, Tang L. Atomic cryo-EM structures of viruses. Curr Opin Struct Biol 2017; 46:122-129. [PMID: 28787658 PMCID: PMC5683926 DOI: 10.1016/j.sbi.2017.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/30/2023]
Abstract
During the development of single particle cryo-EM in past five decades, icosahedral viruses have led the resolution progress owing to their large mass and high symmetry. Many technical advances in cryo-EM were first established with viruses. Since reaching ∼4Å resolution in 2008, it has become a relatively routine task to solve the atomic structure of isolated viruses. The future of structural virology will be increasingly focused on remaining challenges including solving structures of jumbo viruses, intermediate functional states during assembly, maturation, and infection, and in situ structures. Recent demonstrations of near-atomic resolution structure with electron tomography and sub-tomogram averaging opens a new direction for high resolution studies of pleomorphic viruses and the pleomorphic states of icosahedral viruses that have defied past efforts using the single particle cryo-EM approach.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Biological Sciences, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Department of Chemistry, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Markey Center for Structural Biology, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.
| |
Collapse
|
22
|
Herr AE, Hain KS, Taylor MP. Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Blancett CD, Fetterer DP, Koistinen KA, Morazzani EM, Monninger MK, Piper AE, Kuehl KA, Kearney BJ, Norris SL, Rossi CA, Glass PJ, Sun MG. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope. J Virol Methods 2017; 248:136-144. [PMID: 28668710 DOI: 10.1016/j.jviromet.2017.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022]
Abstract
A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter.
Collapse
Affiliation(s)
- Candace D Blancett
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Keith A Koistinen
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Mitchell K Monninger
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Kathleen A Kuehl
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Brian J Kearney
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Sarah L Norris
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Cynthia A Rossi
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States
| | - Mei G Sun
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD, 21702, United States.
| |
Collapse
|
24
|
Varicella-Zoster Virus Infectious Cycle: ER Stress, Autophagic Flux, and Amphisome-Mediated Trafficking. Pathogens 2016; 5:pathogens5040067. [PMID: 27973418 PMCID: PMC5198167 DOI: 10.3390/pathogens5040067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
Varicella-zoster virus (VZV) induces abundant autophagy. Of the nine human herpesviruses, the VZV genome is the smallest (~124 kbp), lacking any known inhibitors of autophagy, such as the herpes simplex virus ICP34.5 neurovirulence gene. Therefore, this review assesses the evidence for VZV-induced cellular stress, endoplasmic-reticulum-associated degradation (ERAD), and autophagic flux during the VZV infectious cycle. Even though VZV is difficult to propagate in cell culture, the biosynthesis of the both N- and O-linked viral glycoproteins was found to be abundant. In turn, this biosynthesis provided evidence of endoplasmic reticulum (ER) stress, including a greatly enlarged ER and a greatly diminished production of cellular glycoproteins. Other signs of ER stress following VZV infection included detection of the alternatively spliced higher-molecular-weight form of XBP1 as well as CHOP. VZV infection in cultured cells leads to abundant autophagosome production, as was visualized by the detection of the microtubule-associated protein 1 light chain 3-II (LC3-II). The degree of autophagy induced by VZV infection is comparable to that induced in uninfected cells by serum starvation. The inhibition of autophagic flux by chemicals such as 3-methyladenine or ATG5 siRNA, followed by diminished virus spread and titers, has been observed. Since the latter observation pointed to the virus assembly/trafficking compartments, we purified VZ virions by ultracentrifugation and examined the virion fraction for components of the autophagy pathway. We detected LC3-II protein (an autophagy marker) as well as Rab11 protein, a component of the endosomal pathway. We also observed that the virion-containing vesicles were single-walled; thus, they are not autophagosomes. These results suggested that some VZ virions after secondary envelopment were transported to the outer cell membrane in a vesicle derived from both the autophagy and endosomal pathways, such as an amphisome. Thus, these results demonstrate that herpesvirus trafficking pathways can converge with the autophagy pathway.
Collapse
|
25
|
Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways. J Virol 2016; 90:8673-85. [PMID: 27440906 PMCID: PMC5021422 DOI: 10.1128/jvi.00915-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) is an extremely cell-associated herpesvirus with limited egress of viral particles. The induction of autophagy in VZV-infected monolayers is easily detectable; inhibition of autophagy leads to decreased VZV glycoprotein biosynthesis and diminished viral titers. To explain how autophagic flux could exert a proviral effect on the VZV infectious cycle, we postulated that the VZV exocytosis pathway following secondary envelopment may converge with the autophagy pathway. This hypothesis depended on known similarities between VZV gE and autophagy-related (Atg) Atg9/Atg16L1 trafficking pathways. Investigations were carried out with highly purified fractions of VZV virions. When the virion fraction was tested for the presence of autophagy and endosomal proteins, microtubule-associated protein 1 light chain (MAP1LC3B) and Ras-like GTPase 11 (Rab11) were detected. By two-dimensional (2D) and 3D imaging after immunolabeling, both proteins also colocalized with VZV gE in a proportion of cytoplasmic vesicles. When purified VZV virions were enumerated after immunoelectron microscopy, gold beads were detected on viruses following incubation with antibodies to VZV gE (∼100%), Rab11 (50%), and LC3B (30%). Examination of numerous electron micrographs demonstrated that enveloped virions were housed in single-membraned vesicles; viral particles were not observed in autophagosomes. Taken together, our data suggested that some viral particles after secondary envelopment accumulated in a heterogeneous population of single-membraned vesicular compartments, which were decorated with components from both the endocytic pathway (Rab11) and the autophagy pathway (LC3B). The latter cytoplasmic viral vesicles resembled an amphisome. IMPORTANCE VZV infection leads to increased autophagic flux, while inhibition of autophagy leads to a marked reduction in virus spread. In this investigation of the proviral role of autophagy, we found evidence for an intersection of viral exocytosis and autophagy pathways. Specifically, both LC3-II and Rab11 proteins copurified with some infectious VZV particles. The results suggested that a subpopulation of VZV particles were carried to the cell surface in single-walled vesicles with attributes of an amphisome, an organelle formed from the fusion of an endosome and an autophagosome. Our results also addressed the interpretation of autophagy/xenophagy results with mutated herpes simplex virus lacking its ICP34.5 neurovirulence gene (HSVΔ34.5). The VZV genome lacks an ICP34.5 ortholog, yet we found no evidence of VZV particles housed in a double-membraned autophagosome. In other words, xenophagy, a degradative process documented after infection with HSVΔ34.5, was not observed in VZV-infected cells.
Collapse
|
26
|
Akpinar F, Timm A, Yin J. High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles. J Virol 2016; 90:1599-612. [PMID: 26608322 PMCID: PMC4719634 DOI: 10.1128/jvi.02190-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Defective interfering particles (DIPs) are virus mutants that lack essential genes for growth. In coinfections with helper virus, the diversion of viral proteins to the replication and packaging of DIP genomes can interfere with virus production. Mounting cases of DIPs and DIP-like genomes in clinical and natural isolates, as well as growing interest in DIP-based therapies, underscore a need to better elucidate how DIPs work. DIP activity is primarily measured by its inhibition of virus infection yield, an endpoint that masks the dynamic and potentially diverse individual cell behaviors. Using vesicular stomatitis virus (VSV) as a model, we coinfected BHK cells with VSV DIPs and recombinant helper virus carrying a gene encoding a red fluorescent protein (RFP) whose expression correlates with the timing and level of virus release. For single cells within a monolayer, 10 DIPs per cell suppressed the reporter expression in only 1.2% of the cells. In most cells, it slowed and reduced viral gene expression, manifested as a shift in mean latent time from 4 to 6 h and reduced virus yields by 10-fold. For single cells isolated in microwells, DIP effects were more pronounced, reducing virus yields by 100-fold and extending latent times to 12 h, including individual instances above 20 h. Together, these results suggest that direct or indirect cell-cell interactions prevent most coinfected cells from being completely suppressed by DIPs. Finally, a gamma distribution model captures well how the infection kinetics quantitatively depends on the DIP dose. Such models will be useful for advancing a predictive biology of DIP-associated virus growth and infection spread. IMPORTANCE During the last century, basic studies in virology have focused on developing a molecular mechanistic understanding of how infectious viruses reproduce in their living host cells. However, over the last 10 years, the advent of deep sequencing and other powerful technologies has revealed in natural and patient infections that viruses do not act alone. Instead, viruses are often accompanied by defective virus-like particles that carry large deletions in their genomes and fail to replicate on their own. Coinfections of viable and defective viruses behave in unpredictable ways, but they often interfere with normal virus growth, potentially enabling infections to evade host immune surveillance. In the current study, controlled levels of defective viruses are coinfected with viable viruses that have been engineered to express a fluorescent reporter protein during infection. Unique profiles of reporter expression acquired from thousands of coinfected cells reveal how interference acts at multiple stages of infection.
Collapse
Affiliation(s)
- Fulya Akpinar
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Timm
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Defensive Perimeter in the Central Nervous System: Predominance of Astrocytes and Astrogliosis during Recovery from Varicella-Zoster Virus Encephalitis. J Virol 2015; 90:379-91. [PMID: 26491149 PMCID: PMC4702565 DOI: 10.1128/jvi.02389-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is a highly neurotropic virus that can cause infections in both the peripheral nervous system and the central nervous system. Several studies of VZV reactivation in the peripheral nervous system (herpes zoster) have been published, while exceedingly few investigations have been carried out in a human brain. Notably, there is no animal model for VZV infection of the central nervous system. In this report, we characterized the cellular environment in the temporal lobe of a human subject who recovered from focal VZV encephalitis. The approach included not only VZV DNA/RNA analyses but also a delineation of infected cell types (neurons, microglia, oligodendrocytes, and astrocytes). The average VZV genome copy number per cell was 5. Several VZV regulatory and structural gene transcripts and products were detected. When colocalization studies were performed to determine which cell types harbored the viral proteins, the majority of infected cells were astrocytes, including aggregates of astrocytes. Evidence of syncytium formation within the aggregates included the continuity of cytoplasm positive for the VZV glycoprotein H (gH) fusion-complex protein within a cellular profile with as many as 80 distinct nuclei. As with other causes of brain injury, these results suggested that astrocytes likely formed a defensive perimeter around foci of VZV infection (astrogliosis). Because of the rarity of brain samples from living humans with VZV encephalitis, we compared our VZV results with those found in a rat encephalitis model following infection with the closely related pseudorabies virus and observed similar perimeters of gliosis. IMPORTANCE Investigations of VZV-infected human brain from living immunocompetent human subjects are exceedingly rare. Therefore, much of our knowledge of VZV neuropathogenesis is gained from studies of VZV-infected brains obtained at autopsy from immunocompromised patients. These are not optimal samples with which to investigate a response by a human host to VZV infection. In this report, we examined both flash-frozen and paraffin-embedded formalin-fixed brain tissue of an otherwise healthy young male with focal VZV encephalitis, most likely acquired from VZV reactivation in the trigeminal ganglion. Of note, the cellular response to VZV infection mimicked the response to other causes of trauma to the brain, namely, an ingress of astrocytes and astrogliosis around an infectious focus. Many of the astrocytes themselves were infected; astrocytes aggregated in clusters. We postulate that astrogliosis represents a successful defense mechanism by an immunocompetent human host to eliminate VZV reactivation within neurons.
Collapse
|
28
|
A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci Rep 2015; 5:13486. [PMID: 26336920 PMCID: PMC4559658 DOI: 10.1038/srep13486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms.
Collapse
|
29
|
Functions of DNA damage machinery in the innate immune response to DNA virus infection. Curr Opin Virol 2015; 15:56-62. [PMID: 26318640 DOI: 10.1016/j.coviro.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
DNA is potently immunostimulatory, and self-DNA is packaged in the nucleus or mitochondria allowing it to remain silent to cell-intrinsic sensors. However, damaged or mislocalised self-DNA is sensed by our innate immune systems, resulting in the production of type I interferons (IFNI), chemokines and inflammatory cytokines. During DNA virus infection the detection of viral DNA genomes by pattern recognition receptors (PRRs) is essential for the initiation of IFNI responses and host defence against these pathogens. It is intriguing that a number of molecular mechanisms have been found to be common to both of these DNA-induced stress responses and this has potentially important consequences for both sides of the host/pathogen arms race.
Collapse
|
30
|
Alfson KJ, Avena LE, Beadles MW, Staples H, Nunneley JW, Ticer A, Dick EJ, Owston MA, Reed C, Patterson JL, Carrion R, Griffiths A. Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques. J Virol 2015; 89:6773-81. [PMID: 25903348 PMCID: PMC4468478 DOI: 10.1128/jvi.00649-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. IMPORTANCE Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks possessing either high or low specific infectivities. Interestingly, some particles that did not yield plaques in cell culture assays were able to result in lethal disease in vivo. Furthermore, the number of PFU needed to induce lethal disease in animals was very low. Our results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures.
Collapse
Affiliation(s)
- Kendra J. Alfson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Laura E. Avena
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael W. Beadles
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Hilary Staples
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jerritt W. Nunneley
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anysha Ticer
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Edward J. Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael A. Owston
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Christopher Reed
- Division of Virology, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
31
|
Le-Trilling VTK, Trilling M. Attack, parry and riposte: molecular fencing between the innate immune system and human herpesviruses. ACTA ACUST UNITED AC 2015; 86:1-13. [DOI: 10.1111/tan.12594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- V. T. K. Le-Trilling
- Institute for Virology; University Hospital Essen, University Duisburg-Essen; Essen Germany
| | - M. Trilling
- Institute for Virology; University Hospital Essen, University Duisburg-Essen; Essen Germany
| |
Collapse
|
32
|
Kennedy PGE, Rovnak J, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation. J Gen Virol 2015; 96:1581-602. [PMID: 25794504 DOI: 10.1099/vir.0.000128] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.
Collapse
Affiliation(s)
- Peter G E Kennedy
- 1Institute of Infection, Immunity and Inflammation, University of Glasgow, Garscube Campus, Glasgow G61 1QH, UK
| | - Joel Rovnak
- 2Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Hussain Badani
- 3Department of Neurology, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Randall J Cohrs
- 3Department of Neurology, University of Colorado Medical School, Aurora, CO 80045, USA 4Department of Microbiology, University of Colorado Medical School, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Rossi CA, Kearney BJ, Olschner SP, Williams PL, Robinson CG, Heinrich ML, Zovanyi AM, Ingram MF, Norwood DA, Schoepp RJ. Evaluation of ViroCyt® Virus Counter for rapid filovirus quantitation. Viruses 2015; 7:857-72. [PMID: 25710889 PMCID: PMC4379551 DOI: 10.3390/v7030857] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 11/16/2022] Open
Abstract
Development and evaluation of medical countermeasures for diagnostics, vaccines, and therapeutics requires production of standardized, reproducible, and well characterized virus preparations. For filoviruses this includes plaque assay for quantitation of infectious virus, transmission electron microscopy (TEM) for morphology and quantitation of virus particles, and real-time reverse transcription PCR for quantitation of viral RNA (qRT-PCR). The ViroCyt® Virus Counter (VC) 2100 (ViroCyt, Boulder, CO, USA) is a flow-based instrument capable of quantifying virus particles in solution. Using a proprietary combination of fluorescent dyes that stain both nucleic acid and protein in a single 30 min step, rapid, reproducible, and cost-effective quantification of filovirus particles was demonstrated. Using a seed stock of Ebola virus variant Kikwit, the linear range of the instrument was determined to be 2.8E+06 to 1.0E+09 virus particles per mL with coefficient of variation ranging from 9.4% to 31.5% for samples tested in triplicate. VC particle counts for various filovirus stocks were within one log of TEM particle counts. A linear relationship was established between the plaque assay, qRT-PCR, and the VC. VC results significantly correlated with both plaque assay and qRT-PCR. These results demonstrated that the VC is an easy, fast, and consistent method to quantify filoviruses in stock preparations.
Collapse
Affiliation(s)
- Cynthia A Rossi
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Brian J Kearney
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Scott P Olschner
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Priscilla L Williams
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Camenzind G Robinson
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Megan L Heinrich
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Ashley M Zovanyi
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Michael F Ingram
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - David A Norwood
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Randal J Schoepp
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
34
|
Akpinar F, Yin J. Characterization of vesicular stomatitis virus populations by tunable resistive pulse sensing. J Virol Methods 2015; 218:71-6. [PMID: 25698465 DOI: 10.1016/j.jviromet.2015.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
Although transmission electron microscopy (TEM) has historically been the method of choice to estimate concentrations of virus and virus-like particles, these measures can often be time-consuming and labor-intensive to perform. Tunable resistive pulse sensing (TRPS) is an emerging method that applies principles of Coulter counting to nanoscale particles and may provide a simpler and higher-throughput alternative to TEM for the quantitation of virus populations. To assess the performance of TRPS compared to TEM, the samples of polymer spheres at a diameter of 100nm and vesicular stomatitis virus (VSV) were characterized using both techniques. TRPS was able to quantify concentrations down to 10(7)particles/ml, providing nearly 50-fold larger measurement range, and more reproducible counts than TEM. Total-to-infectious particle ratio of VSV populations as measured by TRPS and plaque assay suggested that each VSV particle is infectious. In addition to particle counts, TRPS successfully measured particle size distributions based on hundreds of particles. Such high throughput sustained by TRPS can assist quantitative characterization of virus populations.
Collapse
Affiliation(s)
- Fulya Akpinar
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - John Yin
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
35
|
Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection. Proc Natl Acad Sci U S A 2014; 112:256-61. [PMID: 25535384 DOI: 10.1073/pnas.1417878112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.
Collapse
|
36
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
37
|
Halling G, Giannini C, Britton JW, Lee RW, Watson RE, Terrell CL, Parney IF, Buckingham EM, Carpenter JE, Grose C. Focal encephalitis following varicella-zoster virus reactivation without rash in a healthy immunized young adult. J Infect Dis 2014; 210:713-6. [PMID: 24604820 DOI: 10.1093/infdis/jiu137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herein we describe an episode of focal varicella-zoster virus (VZV) encephalitis in a healthy young man with neither rash nor radicular pain. The symptoms began with headaches and seizures, after which magnetic resonance imaging detected a single hyperintense lesion in the left temporal lobe. Because of the provisional diagnosis of a brain tumor, the lesion was excised and submitted for pathological examination. No tumor was found. But the tissue immunostained positively for VZV antigens, and wild-type VZV sequences were detected. In short, this case represents VZV reactivation, most likely in the trigeminal ganglion, in the absence of clinical herpes zoster.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erin M Buckingham
- Division of Infectious Diseases/Virology, University of Iowa Children's Hospital, Iowa City
| | - John E Carpenter
- Division of Infectious Diseases/Virology, University of Iowa Children's Hospital, Iowa City
| | - Charles Grose
- Division of Infectious Diseases/Virology, University of Iowa Children's Hospital, Iowa City
| |
Collapse
|
38
|
Affiliation(s)
- Don Gilden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
39
|
Varicella-zoster virus ORF49 functions in the efficient production of progeny virus through its interaction with essential tegument protein ORF44. J Virol 2013; 88:188-201. [PMID: 24155375 DOI: 10.1128/jvi.02245-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ORF49 tegument protein of varicella-zoster virus (VZV) is one of the core gene products that is conserved among herpesvirus family members. Although ORF49 is known to be a cell-tropic factor, its detailed functions remain elusive. ORF44 is another core gene product reported to be essential, although its characterization and detailed functional analysis have not been reported. These two core gene products form a complex in other herpesviruses beyond the host species and herpesvirus subfamilies. Here, we show that complex formation between ORF44 and ORF49 is conserved in VZV. We serendipitously found that binding is eliminated by an amino acid substitution at position 129 (phenylalanine 129), and four amino acids in the carboxyl-terminal half of the acidic cluster in ORF49 (i.e., aspartate-phenylalanine-aspartate-glutamate from positions 41 to 44 [41DFDE44]) were identified as its binding motif. Alanine substitutions in each domain rendered the ORF44F129A mutation lethal for VZV, similar to deletion of the entire ORF44. The phenotype of the ORF49-41AAAA44 mutation was comparable to that of the ORF49-defective virus, including small-plaque formation, impaired growth, and low infectious virus production. These results suggest that the interaction between ORF44 and ORF49 is essential for their role in VZV infection and that ORF49 is required for the efficient production of infectious progeny virus mediated by the conserved interaction between the two proteins.
Collapse
|
40
|
Goodwin TJ, McCarthy M, Osterrieder N, Cohrs RJ, Kaufer BB. Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection. PLoS Pathog 2013; 9:e1003512. [PMID: 23935496 PMCID: PMC3731237 DOI: 10.1371/journal.ppat.1003512] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022] Open
Abstract
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells. Varicella-zoster virus (VZV), the alphaherpesvirus that typically causes childhood chickenpox and shingles in adults, becomes latent in neurons, thus remaining in the body for a lifetime. Unfortunately, few models are available to study the establishment of VZV latency since the virus infects only humans and establishes persistent infections and latency only in neurons, a slowly proliferating, short-lived cell in culture. We have successfully maintained normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs) in 3-dimensional (3D) cultures for up to 6 months. The 3D NHNP TLAs show some characteristics as those found in the human trigeminal ganglia, the site of VZV latency. NHNP TLAs infected with VZV remain viable for 3 months during which time VZV DNA replicates and remains genetically stable, virus genes are transcribed, and infectious VZV is sporadically released. The ability to maintain VZV infected NHNP cells in culture for extended times provides the unique opportunity to study the molecular interactions between this important human pathogen and neuronal tissue to an extent previously unattainable.
Collapse
Affiliation(s)
- Thomas J. Goodwin
- Disease Modeling/Tissue Analogues Laboratory, NASA Johnson Space Center, Houston, Texas, United States of America
- * E-mail: (TJG); (RJC); (BBK)
| | - Maureen McCarthy
- Disease Modeling/Tissue Analogues Laboratory, NASA Johnson Space Center, Houston, Texas, United States of America
| | | | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail: (TJG); (RJC); (BBK)
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail: (TJG); (RJC); (BBK)
| |
Collapse
|
41
|
Aberrant virion assembly and limited glycoprotein C production in varicella-zoster virus-infected neurons. J Virol 2013; 87:9643-8. [PMID: 23804641 DOI: 10.1128/jvi.01506-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Highly pure (>95%) terminally differentiated neurons derived from pluripotent stem cells appear healthy at 2 weeks after infection with varicella-zoster virus (VZV), and the cell culture medium contains no infectious virus. Analysis of the healthy-appearing neurons revealed VZV DNA, transcripts, and proteins corresponding to the VZV immediate early, early, and late kinetic phases of replication. Herein, we further characterized virus in these neuronal cells, focusing on (i) transcription and expression of late VZV glycoprotein C (gC) open reading frame 14 (ORF14) and (ii) ultrastructural features of virus particles in neurons. The analysis showed that gC was not expressed in most infected neurons and gC expression was markedly reduced in a minority of VZV-infected neurons. In contrast, expression of the early-late VZV gE glycoprotein (ORF68) was abundant. Transcript analysis also showed decreased gC transcription compared with gE. Examination of viral structure by high-resolution transmission electron microscopy revealed fewer viral particles than typically observed in cells productively infected with VZV. Furthermore, viral particles were more aberrant, in that most capsids in the nuclei lacked a dense core and most enveloped particles in the cytoplasm were light particles (envelopes without capsids). Together, these results suggest a considerable deficiency in late-phase replication and viral assembly during VZV infection of neurons in culture.
Collapse
|
42
|
Sloutskin A, Kinchington PR, Goldstein RS. Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. Virology 2013; 443:285-93. [PMID: 23769240 DOI: 10.1016/j.virol.2013.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 12/19/2022]
Abstract
Varicella Zoster virus (VZV) productively infects humans causing varicella upon primary infection and herpes zoster upon reactivation from latency in neurons. In vitro studies using cell-associated VZV infection have demonstrated productive VZV-infection, while a few recent studies of human neurons derived from stem cells incubated with cell-free, vaccine-derived VZV did not result in generation of infectious virus. In the present study, 90%-pure human embryonic stem cell-derived neurons were incubated with recombinant cell-free pOka-derived virus made with an improved method or VZV vaccine. We found that cell-free pOka and vOka at higher multiplicities of infection elicited productive infection in neurons followed by spread of infection, cytopathic effect and release of infectious virus into the medium. These results further validate the use of this unlimited source of human neurons for studying unexplored aspects of VZV interaction with neurons such as entry, latency and reactivation.
Collapse
Affiliation(s)
- Anna Sloutskin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | | | | |
Collapse
|
43
|
Malenovska H. Virus quantitation by transmission electron microscopy, TCID₅₀, and the role of timing virus harvesting: a case study of three animal viruses. J Virol Methods 2013; 191:136-40. [PMID: 23603437 DOI: 10.1016/j.jviromet.2013.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/24/2013] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
Abstract
Quantitation of viruses is practised widely in both basic and applied virology. Infectious titration in cell cultures, the most common approach to it, is quite labour-intensive and alternative protocols are therefore sought. One of the alternatives is transmission electron microscope (TEM) quantitation using latex particles at a known concentration as a reference for counting virus particles. If virus TCID₅₀ is determined in parallel, the ratio of infectious to non-infectious virus particles may be established. This study employs such an approach to compute the number of virus particles and TCID₅₀, and establish their correlation for three viruses: Canine adenovirus 1 (CAdV-1), Feline calicivirus (FCV) and Bovine herpesvirus 1 (BoHV-1). Each of the viruses was grown in five replicates until complete cytopathology was recorded (time 0), then frozen. They were thawed, filter-sterilised and left for additional periods of 16, 32 and 48 h at 37°C. At each time point, the infectious ability of the virus was characterised by TCID50 and the number of virions quantified by TEM, in order to evaluate the influence of timing on virus harvest. The virus particle count determined by TEM did not change for any of the viruses throughout the experiment. The relationship between virus particle counts with TCID₅₀ at time 0 showed good linearity response; their ratio was almost constant. The virus particle-to-TCID₅₀ ratio varied between 146 and 426 (mean±SD: 282±103) for CAdV-1, between 36 and 79 (57±18) for FCV and between 110 and 249 (167±53) for BoHV-1. The proportion of non-infectious particles did not change throughout the experiment for either CAdV-1 or BoHV-1. However, a decrease in virus infectious ability disclosed by TCID₅₀ indicated that the fraction of non-infectious particles in FCV increased 300,000 times when time 0 and 48 h were compared. The quantitation of viruses with TEM is a simple and rapid protocol for virus quantitation but account must be taken of the type of virus and harvesting time as virus counts need not necessarily correlate with virus infectious ability.
Collapse
Affiliation(s)
- Hana Malenovska
- Collection of Animal Pathogenic Microorganisms, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
44
|
Townsend MB, MacNeil A, Reynolds MG, Hughes CM, Olson VA, Damon IK, Karem KL. Evaluation of the Tetracore Orthopox BioThreat® antigen detection assay using laboratory grown orthopoxviruses and rash illness clinical specimens. J Virol Methods 2013; 187:37-42. [PMID: 22981983 PMCID: PMC9534008 DOI: 10.1016/j.jviromet.2012.08.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 08/23/2012] [Accepted: 08/30/2012] [Indexed: 11/18/2022]
Abstract
The commercially available Orthopox BioThreat® Alert assay for orthopoxvirus (OPV) detection is piloted. This antibody-based lateral-flow assay labels and captures OPV viral agents to detect their presence. Serial dilutions of cultured Vaccinia virus (VACV) and Monkeypox virus (MPXV) were used to evaluate the sensitivity of the Tetracore assay by visual and quantitative determinations; specificity was assessed using a small but diverse set of diagnostically relevant blinded samples from viral lesions submitted for routine OPV diagnostic testing. The BioThreat® Alert assay reproducibly detected samples at concentrations of 10(7)pfu/ml for VACV and MPXV and positively identified samples containing 10(6)pfu/ml in 4 of 7 independent experiments. The assay correctly identified 9 of 11 OPV clinical samples and had only one false positive when testing 11 non-OPV samples. Results suggest applicability for use of the BioThreat® Alert assay as a rapid screening assay and point of care diagnosis for suspect human monkeypox cases.
Collapse
Affiliation(s)
- Michael B Townsend
- Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Road NE, Atlanta, GA 30333, United States.
| | | | | | | | | | | | | |
Collapse
|
45
|
COMMENTARY: Significantly less anti-gC antibody detectable in sera collected after varicella vaccination than after the disease varicella. Pediatr Infect Dis J 2012; 31:1153-4. [PMID: 23069796 PMCID: PMC3474975 DOI: 10.1097/inf.0b013e31826ef456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Varicella-zoster virus (VZV) is the first human herpesvirus to be attenuated and then approved in 1995 as a live vaccine for children. Within a few years after its administration in the United States, small outbreaks of breakthrough varicella were observed in vaccinees. Several risk factors were determined. But now a new investigation suggests another risk factor, namely, a deficiency in antibody responses to a specific individual VZV glycoprotein called gC (ORF14; gpV) in the vaccinees. Antibody concentrations to 5 VZV protein antigens were measured in children who had either wild type varicella or varicella vaccination. These proteins included two major glycoproteins called gE (ORF68; gpI) and gC (ORF14), both constituents of the viral envelope and therefore potentially important targets of the adaptive immune response. Of particular interest, the serum antibody responses to VZV gC antigen were significantly lower in vaccinees than in children who had wild type varicella. In contrast, the serum antibody responses to VZV gE antigen were comparable in both groups. These data implied that relatively little gC antigen was produced in children who were immunized. Since abundant gC protein is produced in skin vesicles during wild type varicella, the lack of a vesicular rash after vaccination may limit the amounts of some viral antigens required for an optimal antibody response.
Collapse
|
46
|
Bowles JB, Steain M, Slobedman B, Abendroth A. Inhibition of integrin α6 expression by cell-free varicella-zoster virus. J Gen Virol 2012; 93:1725-1730. [PMID: 22592262 DOI: 10.1099/vir.0.039917-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes chickenpox and shingles. VZV is released from infected cells during natural infection, but remains highly cell-associated during experimental infection, and so most studies have utilized cell-associated infection models. We examined the impact of cell-free VZV infection of primary human foreskin fibroblasts (HFFs) on the receptor integrin α6 (ITGA6). qPCR and flow cytometry demonstrated that both cell-free VZV and cell-free UV-inactivated VZV downregulated transcription and cell-surface protein expression of ITGA6. To establish whether ITGA6 altered VZV infection, VZV transcripts and nuclear DNA levels were measured in HFFs treated with ITGA6 blocking antibody before infection. ITGA6 blocking did not impair virus entry but did negatively impact VZV transcription, and this effect was virus specific as transcription of the related herpes simplex virus type 1 was not similarly inhibited. This study identifies modulation of ITGA6 during cell-free VZV infection, and provides the first evidence linking ITGA6 with post-entry productive VZV gene expression.
Collapse
Affiliation(s)
- Joshua B Bowles
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Barry Slobedman
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Allison Abendroth
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| |
Collapse
|
47
|
Suspène R, Aynaud MM, Koch S, Pasdeloup D, Labetoulle M, Gaertner B, Vartanian JP, Meyerhans A, Wain-Hobson S. Genetic editing of herpes simplex virus 1 and Epstein-Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J Virol 2011; 85:7594-602. [PMID: 21632763 PMCID: PMC3147940 DOI: 10.1128/jvi.00290-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/16/2011] [Indexed: 12/21/2022] Open
Abstract
Human APOBEC3 cytidine deaminases target and edit single-stranded DNA, which can be of viral, mitochondrial, or nuclear origin. Retrovirus genomes, such as human immunodeficiency virus (HIV) genomes deficient in the vif gene and the hepatitis B virus genome, are particularly vulnerable. The genomes of some DNA viruses, such as human papillomaviruses, can be edited in vivo and in transfection experiments. Accordingly, herpesviruses should be no exception. This is indeed the case for herpes simplex virus 1 (HSV-1) in tissue culture, where APOBEC3C (A3C) overexpression can reduce virus titers and the particle/PFU ratio ∼10-fold. Nonetheless, A3A, A3G, and AICDA can edit what is presumably a small fraction of HSV genomes in an experimental setting without seriously impacting the viral titer. Hyperediting was found in HSV genomes recovered from 4/8 uncultured buccal lesions. The phenomenon is not restricted to HSV, since hyperedited Epstein-Barr virus (EBV) genomes were readily recovered from 4/5 established cell lines, indicating that episomes are vulnerable to editing. These findings suggest that the widely expressed A3C cytidine deaminase can function as a restriction factor for some human herpesviruses. That the A3C gene is not induced by type I interferons begs the question whether some herpesviruses encode A3C antagonists.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
- Department of Virology, Saarland University, 66421 Homburg, Germany
| | - Marie-Ming Aynaud
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Stefanie Koch
- Department of Virology, Saarland University, 66421 Homburg, Germany
| | - David Pasdeloup
- Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR 3296, 91198 Gif-sur-Yvette, France
| | - Marc Labetoulle
- Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR 3296, 91198 Gif-sur-Yvette, France
| | - Barbara Gaertner
- Department of Virology, Saarland University, 66421 Homburg, Germany
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Andreas Meyerhans
- Department of Virology, Saarland University, 66421 Homburg, Germany
- ICREA Infection Biology Lab, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
48
|
Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol 2011; 85:9414-24. [PMID: 21752906 DOI: 10.1128/jvi.00281-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a recently recognized component of the life cycle of varicella-zoster virus (VZV). We have documented abundant autophagosome formation in skin vesicles (final site of virion assembly) from randomly selected cases of varicella and zoster. The fact that autophagy was an early event in the VZV replication cycle was documented by finding infected vesicle cells with the VZV IE62 protein confined to the nucleus. Next, we pursued studies in VZV-infected cultured cells to define whether autophagy was preceded by endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). First, we demonstrated that autophagosome formation in infected cells closely resembled that seen after treatment of cells with tunicamycin, a potent initiator of ER stress. Second, we demonstrated a marked expansion of ER size in both VZV-infected cells and cells transfected with the predominant VZV glycoprotein complex gE/gI. An enlarged ER is critical evidence of ER stress, which in turn is relieved by the UPR. To this end, we documented the UPR by detecting the alternatively spliced form of the XBP1 protein as well as CHOP (C/EBP homologous protein), both transcriptional activators of other UPR genes in an ER stress-dependent manner. Because VZV does not encode inhibitors of autophagy, the above results suggested that autophagy was a common event in VZV-infected cells and that it was provoked at least in part by ER stress secondary to overly abundant VZV glycoprotein biosynthesis, which led to UPR activation in an attempt to maintain cellular homeostasis.
Collapse
|
49
|
Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun 2011; 1:146. [PMID: 21266996 PMCID: PMC3079281 DOI: 10.1038/ncomms1145] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/24/2010] [Indexed: 01/12/2023] Open
Abstract
Whether all the infectious herpesvirus particles entering a cell are able to replicate and/or express their genomes is not known. Here, we developed a general method to determine the number of viral genomes expressed in an infected cell. We constructed and analysed fluorophore expression from a recombinant pseudorabies virus (PRV263) carrying a Brainbow cassette (Cre-conditional expression of different fluorophores). Using three isogenic strains derived from PRV263, each expressing a single fluorophore, we analysed the colour composition of cells infected with these three viruses at different multiplicities. We estimate that fewer than seven incoming genomes are expressed per cell. In addition, those templates that are expressed are the genomes selected for replication and packaging into virions. This finite limit on the number of viral genomes that can be expressed is an intrinsic property of the infected cell and may be influenced by viral and cellular factors. The replication of viral genomes in infected cells is required for successful infection. In this study, using Cre-conditional expression of multiple coloured fluorophores, the authors demonstrate that the number of viral genomes expressed and replicated in a cell is surprisingly limited.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
50
|
Sivaraman D, Biswas P, Cella LN, Yates MV, Chen W. Detecting RNA viruses in living mammalian cells by fluorescence microscopy. Trends Biotechnol 2011; 29:307-13. [PMID: 21529975 DOI: 10.1016/j.tibtech.2011.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022]
Abstract
Traditional methods that rely on viral isolation and culture techniques continue to be the gold standards used for detection of infectious viral particles. However, new techniques that rely on visualization of live cells can shed light on understanding virus-host interaction for early stage detection and potential drug discovery. Live-cell imaging techniques that incorporate fluorescent probes into viral components provide opportunities for understanding mRNA expression, interaction, and virus movement and localization. Other viral replication events inside a host cell can be exploited for non-invasive detection, such as single-virus tracking, which does not inhibit viral infectivity or cellular function. This review highlights some of the recent advances made using these novel approaches for visualization of viral entry and replication in live cells.
Collapse
Affiliation(s)
- Divya Sivaraman
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|