1
|
Janova H, Zhao FR, Desai P, Mack M, Thackray LB, Stappenbeck TS, Diamond MS. West Nile virus triggers intestinal dysmotility via T cell-mediated enteric nervous system injury. J Clin Invest 2024; 134:e181421. [PMID: 39207863 PMCID: PMC11527448 DOI: 10.1172/jci181421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus West Nile virus (WNV) and demonstrated intestinal transit defects. Here, we found that within 1 week of WNV infection, enteric neurons and glia became damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damaged the enteric nervous system (ENS) and glia, which led to intestinal dysmotility; these T cells used multiple and redundant effector molecules including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appeared to not require infiltrating monocytes, and damage may have been limited by resident muscularis macrophages. Overall, our experiments support a model in which antigen-specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Collapse
Affiliation(s)
- Hana Janova
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Pianese V, Alvarez-Torres D, Gemez-Mata J, Garcia-Rosado E, Moreno P, Fausto AM, Taddei AR, Picchietti S, Scapigliati G. T-cells and CD45-cells discovery in the central nervous system of healthy and nodavirus-infected teleost fish Dicentrarchus labrax. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109646. [PMID: 38810712 DOI: 10.1016/j.fsi.2024.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
To achieve insights in antiviral immune defense of the central nervous system (CNS), we investigated T cells and CD45 cells in the marine fish model Dicentrarchus labrax infected with the CNS-tropic virus betanodavirus. By employing markers for pan-T cells (mAb DLT15) and CD45-cells (mAb DLT22) in immunofluorescence (IIF) of leukocytes from brain, we obtained 3,7 ± 2.3 % of T cells and 7.3 ± 3.2 % of CD45+ cells. Both IIF and immunoelectron microscopy confirmed a leukocyte/glial morphology for the immunoreactive cells. Quantitative immunohistochemistry (qIHC) of brain/eye sections showed 1.9 ± 0.8 % of T+ cells and 2 ± 0.9 % of CD45+ cells in the brain, and 3.6 ± 1.9 % and 4.1 ± 2.2 % in the eye, respectively. After in vivo RGNNV infection the number of T cells/CD45+ leukocytes in the brain increased to 8.3 ± 2.1 % and 11.6 ± 4.4 % (by IIF), and 26.1 ± 3.4 % and 45.6 ± 5.9 % (by qIHC), respectively. In the eye we counted after infection 8.5 ± 4.4 % of T cells and 10.2 ± 5.8 % of CD45 cells. Gene transcription analysis of brain mRNA revealed a strong increase of gene transcripts coding for: antiviral proteins Mx and ISG-12; T-cell related CD3ε/δ, TcRβ, CD4, CD8α, CD45; and for immuno-modulatory cytokines TNFα, IL-2, IL-10. A RAG-1 gene product was also present and upregulated, suggesting somatic recombination in the fish brain. Similar transcription data were obtained in the eye, albeit with differences. Our findings provide first evidence for a recruitment and involvement of T cells and CD45+ leukocytes in the fish eye-brain axis during antiviral responses and suggest similarities in the CNS immune defense across evolutionary distant vertebrates.
Collapse
Affiliation(s)
- Valeria Pianese
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Daniel Alvarez-Torres
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), 29071, Málaga (E), Spain.
| | - Juan Gemez-Mata
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), Dept. Microbiology, Faculty of Sciences, 29071, Málaga (E), Spain.
| | - Esther Garcia-Rosado
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), Dept. Microbiology, Faculty of Sciences, 29071, Málaga (E), Spain.
| | - Patricia Moreno
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), Dept. Microbiology, Faculty of Sciences, 29071, Málaga (E), Spain.
| | - Anna Maria Fausto
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Anna Rita Taddei
- University of Tuscia, Section Microscopy (CGA), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Simona Picchietti
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Giuseppe Scapigliati
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| |
Collapse
|
3
|
Wang J, Luo L, Meng Z, Ren Y, Tang M, Huang Z, Yang B, Niu Q, Zhou D, Wang M, Li J. Blood and CSF findings of cellular immunity in anti-NMDAR encephalitis. Int Immunopharmacol 2024; 130:111743. [PMID: 38430802 DOI: 10.1016/j.intimp.2024.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES To investigate the immunopathogenic mechanisms of anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) by characterizing the changes of immune cells in both peripheral blood (PB) and cerebrospinal fluid (CSF) of patients with NMDAR-E. METHODS Cytology and flow cytometry were used to explore and compare different immunological parameters in PB and CSF of patients with NMDAR-E, viral encephalitis (VE) and healthy volunteers. Moreover, different models were established to assess the possibility of identifying NMDAR-E patients based on PB and CSF parameters. RESULTS The neutrophil counts and monocyte-to-lymphocyte ratios (MLR) in PB are higher in NMDAR-E patients than in both VEs and controls (P < 0.001, respectively), while the percentages of CD3 + T, CD4 + T lymphocytes, and the leukocytes count in CSF were lower in NMDAR-Es than in VEs (P < 0.01, respectively). The higher percentages of CD8 + T cells in blood and CSF were both correlated with more severe NMDAR-E (P < 0.05, respectively). The poor neurological status group had significantly higher PB leukocytes but lower CSF leukocyte count (P < 0.05). Longitudinal observations in patients with NMDAR-E showed a decreasing trend of leukocyte count, neutrophils count, neutrophil-to-monocyte ratios (NMR), and neutrophil-to-lymphocyte ratios (NLR) with the gradual recovery of neurological function. CONCLUSIONS The expression patterns of T lymphocyte subsets were different in patients with NMDAR-E and viral encephalitis. The changing trends of leukocyte and lymphocyte populations in peripheral blood and cerebrospinal fluid may provide clues for the diagnosis of different types of encephalitides, including NMDARE, and can be used as immunological markers to assess and predict the prognosis.
Collapse
Affiliation(s)
- Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Minjin Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jinmei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Sharma R, Salimi E, D’Assumpcao C, Valdez M, Chaudhry A, Heidari A, Kuran R, Bhandohal J. Catastrophic Case of West Nile Virus Rhombencephalitis in AIDS. J Investig Med High Impact Case Rep 2024; 12:23247096241267132. [PMID: 39077811 PMCID: PMC11289818 DOI: 10.1177/23247096241267132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/31/2024] Open
Abstract
West Nile Virus (WNV) belongs to the Flaviviridae family of viruses. It was first isolated and identified in 1937. Patients typically present with flu-like symptoms or are asymptomatic; however, neuroinvasive West Nile can lead to significant neurological impairment. Herein presented is a catastrophic case of WNV rhombencephalitis in a male patient newly diagnosed with AIDS. This report sheds light on the potential for severe neurological complications in co-infected patients and emphasizes the importance of early recognition.
Collapse
Affiliation(s)
- Rupam Sharma
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elika Salimi
- Western University of Health Sciences, Pomona, CA, USA
| | - Carlos D’Assumpcao
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Valdez
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akriti Chaudhry
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Arash Heidari
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rasha Kuran
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Janpreet Bhandohal
- Kern Medical, Bakersfield, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Grygorczuk S, Osada J, Sulik A, Toczyłowski K, Dunaj-Małyszko J, Czupryna P, Adamczuk J, Moniuszko-Malinowska A. Associations of the cerebrospinal fluid lymphocyte population with a clinical presentation of tick-borne encephalitis. Ticks Tick Borne Dis 2023; 14:102204. [PMID: 37245253 DOI: 10.1016/j.ttbdis.2023.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
In tick-borne encephalitis (TBE), lymphocytes infiltrating central nervous system are indispensable for the infection control, but also potentially immunopathogenic. To clarify their roles, we have evaluated cerebrospinal fluid (CSF) count of the main lymphocyte populations (considered as a proxy of the brain parenchyma lymphocytic infiltrate) in TBE patients and analyzed if they associate with clinical presentation, blood-brain barrier disruption and intrathecal antibody synthesis. We have studied CSF from 96 adults with TBE (50 with meningitis, 40 with meningoencephalitis, 6 with meningoencephalomyelitis), 17 children and adolescents with TBE and 27 adults with non-TBE lymphocytic meningitis. Th CD3+CD4+, Tc CD3+CD8+, double positive T CD3+CD4+CD8+, B CD19+ and NK CD16+/56+ cells were counted cytometrically with a commercial fluorochrome-stained monoclonal antibody set. The associations between the counts and fractions of these cells and clinical parameters were analyzed with non-parametric tests, p<0.05 considered significant. The TBE patients had lower pleocytosis with similar proportions of the lymphocyte populations compared to non-TBE meningitis. The different lymphocyte populations correlated positively with one another, as well as with CSF albumin, IgG and IgM quotients. The higher pleocytosis and expansion of Th, Tc and B cells associated with a more severe disease and neurologic involvement: Th with encephalopathy, myelitis and weakly with cerebellar syndrome, Tc with myelitis and weakly with encephalopathy, B with myelitis and with at least moderately severe encephalopathy. The double-positive T lymphocytes associated with myelitis, but not with other forms of CNS involvement. The fraction of double positive T cells decreased in encephalopathy and the fraction of NK in patients with neurologic deficits. In children with TBE, Tc and B counts were increased at the expense of Th lymphocytes in comparison with adults. The concerted intrathecal immune response, involving the main lymphocyte populations, increases with the clinical severity of TBE, with no evidently protective or pathogenic elements distinguishable. However, the particular populations including B, Th and Tc cells associate with different, though overlapping, spectra of CNS manifestations, suggesting they may be specifically related to TBE manifesting as myelitis, encephalopathy and cerebellitis. The double-positive T and NK cells do not expand evidently with severity and may be most closely associated with the protective anti-TBEV response.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, Białystok 15-540, Poland.
| | - Joanna Osada
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Jerzego Waszyngtona 15A, Białystok 15-269, Poland
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University in Białystok, ul. Jerzego Waszyngtona 17, Białystok 15-274, Poland
| | - Kacper Toczyłowski
- Department of Pediatric Infectious Diseases, Medical University in Białystok, ul. Jerzego Waszyngtona 17, Białystok 15-274, Poland
| | - Justyna Dunaj-Małyszko
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, Białystok 15-540, Poland
| | - Piotr Czupryna
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, Białystok 15-540, Poland
| | - Justyna Adamczuk
- University Hospital in Białystok, ul. Żurawia 14, Białystok 15-540, Poland
| | - Anna Moniuszko-Malinowska
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, Białystok 15-540, Poland
| |
Collapse
|
7
|
Yousaf H, Naz A, Zaman N, Hassan M, Obaid A, Awan FM, Azam SS. Immunoinformatic and reverse vaccinology-based designing of potent multi-epitope vaccine against Marburgvirus targeting the glycoprotein. Heliyon 2023; 9:e18059. [PMID: 37534001 PMCID: PMC10391973 DOI: 10.1016/j.heliyon.2023.e18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Marburg virus (MARV) has been a major concern since its first outbreak in 1967. Although the deadly BSL-4 pathogen has been reported in few individuals with sporadic outbreaks following 1967, its rarity commensurate the degree of disease severity. The virus has been known to cause extreme hemorrhagic fever presenting flu-like symptoms (as implicated in COVID-19) with a 90% case fatality rate (CFR). After a number of plausible evidences, it has been observed that the virus usually originates from African fruit bat, Rousettus aegyptiacus, who themselves do not indicate any signs of illness. Thus, efforts have been made in the recent years for a universal treatment of the infection, but till date, no such vaccine or therapeutics could circumvent the viral pathogenicity. In an attempt to formulate a vaccine design computationally, we have explored the entire proteome of the virus and found a strong correlation of its glycoprotein (GP) in receptor binding and subsequent role in infection progression. The present study, explores the MARV glycoprotein GP1 and GP2 domains for quality epitopes to elicit an extended immune response design potential vaccine construct using appropriate linkers and adjuvants. Finally, the chimeric vaccine wass evaluated for its binding affinity towards the receptors via molecular docking and molecular dynamics simulation studies. The rare, yet deadly zoonotic infection with mild outbreaks in recent years has flustered an alarming future with various challenges in terms of viral diseases. Thus, our study has aimed to provide novel insights to design potential vaccines by using the predictive framework.
Collapse
Affiliation(s)
- Hassan Yousaf
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Spiteri AG, van Vreden C, Ashhurst TM, Niewold P, King NJC. Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS. Front Immunol 2023; 14:1203561. [PMID: 37545511 PMCID: PMC10403146 DOI: 10.3389/fimmu.2023.1203561] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Caryn van Vreden
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M. Ashhurst
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Paula Niewold
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Nicholas J. C. King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Luo H, Wang T. Methods to Study West Nile Virus Infection and the Virus-Induced Inflammation in the Brain in a Murine Model. Methods Mol Biol 2023; 2585:41-49. [PMID: 36331764 DOI: 10.1007/978-1-0716-2760-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV), a mosquito-borne neurotropic flavivirus, has become the leading cause of vector-borne viral encephalitis in the United States for the past decades. The murine model of WNV infection is an effective in vivo experimental model to investigate WNV neuropathogenesis in humans. Here, we describe several laboratory protocols to study WNV infection and the virus-induced inflammation in the brain in both in vitro and in vivo murine models.
Collapse
Affiliation(s)
- Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
Meng R, Yang B, Feng C, Huang J, Wang X, Zhang D. The difference in CD4+ T cell immunity between high- and low-virulence Tembusu viruses is mainly related to residues 151 and 304 in the envelope protein. Front Immunol 2022; 13:890263. [PMID: 36016955 PMCID: PMC9395619 DOI: 10.3389/fimmu.2022.890263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Tembusu virus (TMUV) can result in a severe disease affecting domestic ducks. The role of T cells in protection from TMUV infection and the molecular basis of T cell-mediated protection against TMUV remain largely uncharacterized. Here, we used the high-virulence TMUV strain Y and the low-virulence TMUV strain PS to investigate the protective role for TMUV-specific CD4+ and CD8+ T cells. When tested in a 5-day-old Pekin duck model, Y and PS induced comparable levels of neutralizing antibody, whereas Y elicited significantly stronger cellular immune response relative to PS. Using a duck adoptive transfer model, we showed that both CD4+ and CD8+ T cells provided significant protection from TMUV-related disease, with CD8+ T cell conferring more robust protection to recipient ducklings. For TMUV, CD4+ T cells mainly provided help for neutralizing antibody response, whereas CD8+ T cells mainly mediated viral clearance from infected tissues. The difference in T cell immunity between Y and PS was primarily attributed to CD4+ T cells; adoptive transfer of Y-specific CD4+ T cells resulted in significantly enhanced protective ability, neutralizing antibody response, and viral clearance from the brain relative to PS-specific CD4+ T cells. Further investigations with chimeric viruses, mutant viruses, and their parental viruses identified two mutations (T151A and R304M) in the envelope (E) protein that contributed significantly to TMUV-specific CD4+ T cell-mediated protective ability and neutralizing antibody response, with more beneficial effects being conferred by R304M. These data indicate T cell-mediated immunity is important for protection from disease, for viral clearance from tissues, and for the production of neutralizing antibodies, and that the difference in CD4+T cell immunity between high- and low-virulence TMUV strains is primarily related to residues 151 and 304 in the E protein.
Collapse
|
11
|
Salgado R, Hawks SA, Frere F, Vázquez A, Huang CYH, Duggal NK. West Nile Virus Vaccination Protects against Usutu Virus Disease in Mice. Viruses 2021; 13:2352. [PMID: 34960621 PMCID: PMC8704473 DOI: 10.3390/v13122352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that can cause neuroinvasive disease in humans. WNV and USUV circulate in both Africa and Europe and are closely related. Due to antigenic similarity, WNV-specific antibodies and USUV-specific antibodies have the potential to bind heterologous viruses; however, it is unclear whether this interaction may offer protection against infection. To investigate how prior WNV exposure would influence USUV infection, we used an attenuated WNV vaccine that contains the surface proteins of WNV in the backbone of a dengue virus 2 vaccine strain and protects against WNV disease. We hypothesized that vaccination with this attenuated WNV vaccine would protect against USUV infection. Neutralizing responses against WNV and USUV were measured in vitro using sera following vaccination. Sera from vaccinated CD-1 and Ifnar1-/- mice cross-neutralized with WNV and USUV. All mice were then subsequently challenged with an African or European USUV strain. In CD-1 mice, there was no difference in USUV titers between vaccinated and mock-vaccinated mice. However, in the Ifnar1-/- model, vaccinated mice had significantly higher survival rates and significantly lower USUV viremia compared to mock-vaccinated mice. Our results indicate that exposure to an attenuated form of WNV protects against severe USUV disease in mice and elicits a neutralizing response to both WNV and USUV. Future studies will investigate the immune mechanisms responsible for the protection against USUV infection induced by WNV vaccination, providing critical insight that will be essential for USUV and WNV vaccine development.
Collapse
Affiliation(s)
- Rebecca Salgado
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (R.S.); (S.A.H.); (F.F.)
| | - Seth A. Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (R.S.); (S.A.H.); (F.F.)
| | - Francesca Frere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (R.S.); (S.A.H.); (F.F.)
| | - Ana Vázquez
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), CIBERESP, CIBER Epidemiology and Public Health, 28220 Madrid, Spain;
| | - Claire Y.-H. Huang
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, CO 80521, USA;
| | - Nisha K. Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (R.S.); (S.A.H.); (F.F.)
| |
Collapse
|
12
|
Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021; 95:e0083521. [PMID: 34190599 DOI: 10.1128/jvi.00835-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recruitment of immune cells from the periphery is critical for controlling West Nile virus (WNV) growth in the central nervous system (CNS) and preventing subsequent WNV-induced CNS disease. Neuroinflammatory responses, including the release of proinflammatory cytokines and chemokines by CNS cells, influence the entry and function of peripheral immune cells that infiltrate the CNS. However, these same cytokines and chemokines contribute to tissue damage in other models of CNS injury. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that inhibits neuroinflammation. We used rosiglitazone in WNV-infected ex vivo brain slice cultures (BSC) to investigate the role of neuroinflammation within the CNS in the absence of peripheral immune cells. Rosiglitazone treatment inhibited WNV-induced expression of proinflammatory chemokines and cytokines, interferon beta (IFN-β), and IFN-stimulated genes (ISG) and also decreased WNV-induced activation of microglia. These decreased neuroinflammatory responses were associated with activation of astrocytes, robust viral growth, increased activation of caspase 3, and increased neuronal loss. Rosiglitazone had a similar effect on in vivo WNV infection, causing increased viral growth, tissue damage, and disease severity in infected mice, even though the number of infiltrating peripheral immune cells was higher in rosiglitazone-treated, WNV-infected mice than in untreated, infected controls. These results indicate that local neuroinflammatory responses are capable of controlling viral growth within the CNS and limiting neuronal loss and may function to keep the virus in check prior to the infiltration of peripheral immune cells, limiting both virus- and immune-mediated neuronal damage. IMPORTANCE West Nile virus is the most common cause of epidemic encephalitis in the United States and can result in debilitating CNS disease. There are no effective vaccines or treatments for WNV-induced CNS disease in humans. The peripheral immune response is critical for protection against WNV CNS infections. We now demonstrate that intrinsic immune responses also control viral growth and limit neuronal loss. These findings have important implications for developing new therapies for WNV-induced CNS disease.
Collapse
|
13
|
Funk KE, Arutyunov AD, Desai P, White JP, Soung AL, Rosen SF, Diamond MS, Klein RS. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell 2021; 20:e13412. [PMID: 34327802 PMCID: PMC8373274 DOI: 10.1111/acel.13412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) is an emerging pathogen that causes disease syndromes ranging from a mild flu‐like illness to encephalitis. While the incidence of WNV infection is fairly uniform across age groups, the risk of lethal encephalitis increases with advanced age. Prior studies have demonstrated age‐related, functional immune deficits that limit systemic antiviral immunity and increase mortality; however, the effect of age on antiviral immune responses specifically within the central nervous system (CNS) is unknown. Here, we show that aged mice exhibit increased peripheral organ and CNS tissue viral burden, the latter of which is associated with alterations in activation of both myeloid and lymphoid cells compared with similarly infected younger animals. Aged mice exhibit lower MHCII expression by microglia, and higher levels of PD1 and lower levels of IFNγ expression by WNV‐specific CD8+ T cells in the CNS and CD8+CD45+ cells. These data indicate that the aged CNS exhibits limited local reactivation of T cells during viral encephalitis, which may lead to reduced virologic control at this site.
Collapse
Affiliation(s)
- Kristen E. Funk
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Artem D. Arutyunov
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Pritesh Desai
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - James P. White
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Allison L. Soung
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Sarah F. Rosen
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Michael S. Diamond
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Department of Molecular Microbiology Washington University School of Medicine Saint Louis Missouri USA
- Department of Pathology and Immunology Washington University School of Medicine Saint Louis Missouri USA
| | - Robyn S. Klein
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Department of Pathology and Immunology Washington University School of Medicine Saint Louis Missouri USA
- Department of Neurosciences Washington University School of Medicine Saint Louis Missouri USA
| |
Collapse
|
14
|
Khan MT, Islam R, Jerin TJ, Mahmud A, Khatun S, Kobir A, Islam MN, Akter A, Mondal SI. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS One 2021; 16:e0253393. [PMID: 34138958 PMCID: PMC8211291 DOI: 10.1371/journal.pone.0253393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
West Nile Virus (WNV) is a life threatening flavivirus that causes significant morbidity and mortality worldwide. No preventive therapeutics including vaccines against WNV are available for human use. In this study, immunoinformatics approach was performed to design a multi epitope-based subunit vaccine against this deadly pathogen. Human (HLA) and Mice (H-2) allele specific potential T-cell and B-cell epitopes were shortlisted through a stringent procedure. Molecular docking showed selected epitopes that have stronger binding affinity with human TLR-4. Molecular dynamics simulation confirmed the stable nature of the docked complex. Furthermore, in silico cloning analysis ensures efficient expression of desired gene in the microbial system. Interestingly, previous studies showed that two of our selected epitopes have strong immune response against WNV. Therefore, selected epitopes could be strong vaccine candidates to prevent WNV infections in human. However, further in vitro and in vivo investigations could be strengthening the validation of the vaccine candidate against WNV.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tarhima Jahan Jerin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sahara Khatun
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ahasanul Kobir
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Md Nahidul Islam
- Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- * E-mail: (SIM); (AA)
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- * E-mail: (SIM); (AA)
| |
Collapse
|
15
|
Pathogenesis of Two Western Mediterranean West Nile Virus Lineage 1 Isolates in Experimentally Infected Red-Legged Partridges ( Alectoris rufa). Pathogens 2021; 10:pathogens10060748. [PMID: 34199167 PMCID: PMC8231501 DOI: 10.3390/pathogens10060748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is the most widespread flavivirus in the world with a wide vertebrate host range. Its geographic expansion and activity continue to increase with important human and equine outbreaks and local bird mortality. In a previous experiment, we demonstrated the susceptibility of 7-week-old red-legged partridges (Alectoris rufa) to Mediterranean WNV isolates Morocco/2003 and Spain/2007, which varied in virulence for this gallinaceous species. Here we study the pathogenesis of the infection with these two strains to explain the different course of infection and mortality. Day six post-inoculation was critical in the course of infection, with the highest viral load in tissues, the most widespread virus antigen, and more severe lesions. The most affected organs were the heart, liver, and spleen. Comparing infections with Morocco/2003 and Spain/2007, differences were observed in the viral load, virus antigen distribution, and lesion nature and severity. A more acute and marked inflammatory reaction (characterized by participation of microglia and CD3+ T cells) as well as neuronal necrosis in the brain were observed in partridges infected with Morocco/2003 as compared to those infected with Spain/2007. This suggests a higher neurovirulence of Morocco/2003, probably related to one or more specific molecular determinants of virulence different from Spain/2007.
Collapse
|
16
|
Wang M, Fan Y, Chai Y, Cheng W, Wang K, Cao J, Hu X. Association of Clinical and Immunological Characteristics With Disease Severity and Outcomes in 211 Patients With COVID-19 in Wuhan, China. Front Cell Infect Microbiol 2021; 11:667487. [PMID: 34123873 PMCID: PMC8195246 DOI: 10.3389/fcimb.2021.667487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has posed a great threat to global public health. There remains an urgent need to address the clinical significance of laboratory finding changes in predicting disease progression in COVID-19 patients. We aimed to analyze the clinical and immunological features of severe and critically severe patients with COVID-19 in comparison with non-severe patients and identify risk factors for disease severity and clinical outcome in COVID-19 patients. Methods The consecutive records of 211 patients with COVID-19 who were admitted to Zhongnan Hospital of Wuhan University from December 2019 to February 2020 were retrospectively reviewed. Results Of the 211 patients with COVID-19 recruited, 111 patients were classified as non-severe, 59 as severe, and 41 as critically severe cases. The median age was obviously higher in severe and critically severe cases than in non-severe cases. Severe and critically severe patients showed more underlying comorbidities than non-severe patients. Fever was the predominant presenting symptom in COVID-19 patients, and the duration of fever was longer in critically severe patients. Moreover, patients with increased levels of serum aminotransferases and creatinine (CREA) were at a higher risk for severe and critical COVID-19 presentations. The serum levels of IL-6 in severe and critically severe patients were remarkably higher than in non-severe patients. Lymphopenia was more pronounced in severe and critically severe patients compared with non-severe patients. Lymphocyte subset analysis indicated that severe and critically severe patients had significantly decreased count of lymphocyte subpopulations, such as CD4+ T cells, CD8+ T cells and B cells. A multivariate logistic analysis indicated that older age, male sex, the length of hospital stay, body temperature before admission, comorbidities, higher white blood cell (WBC) counts, lower lymphocyte counts, and increased levels of IL-6 were significantly associated with predicting the progression to severe stage of COVID-19. Conclusion Older age, male sex, underlying illness, sustained fever status, abnormal liver and renal functions, excessive expression of IL-6, lymphopenia, and selective loss of peripheral lymphocyte subsets were related to disease deterioration and clinical outcome in COVID-19 patients. This study would provide clinicians with valuable information for risk evaluation and effective interventions for COVID-19.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yuqiong Chai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wenlin Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
18
|
Antiviral Cytokine Response in Neuroinvasive and Non-Neuroinvasive West Nile Virus Infection. Viruses 2021; 13:v13020342. [PMID: 33671821 PMCID: PMC7927094 DOI: 10.3390/v13020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
Data on the immune response to West Nile virus (WNV) are limited. We analyzed the antiviral cytokine response in serum and cerebrospinal fluid (CSF) samples of patients with WNV fever and WNV neuroinvasive disease using a multiplex bead-based assay for the simultaneous quantification of 13 human cytokines. The panel included cytokines associated with innate and early pro-inflammatory immune responses (TNF-α/IL-6), Th1 (IL-2/IFN-γ), Th2 (IL-4/IL-5/IL-9/IL-13), Th17 immune response (IL-17A/IL-17F/IL-21/IL-22) and the key anti-inflammatory cytokine IL-10. Elevated levels of IFN-γ were detected in 71.7% of CSF and 22.7% of serum samples (p = 0.003). Expression of IL-2/IL-4/TNF-α and Th1 17 cytokines (IL-17A/IL-17F/IL-21) was detected in the serum but not in the CSF (except one positive CSF sample for IL-17F/IL-4). While IL-6 levels were markedly higher in the CSF compared to serum (CSF median 2036.71, IQR 213.82–6190.50; serum median 24.48, IQR 11.93–49.81; p < 0.001), no difference in the IL-13/IL-9/IL-10/IFN-γ/IL-22 levels in serum/CSF was found. In conclusion, increased concentrations of the key cytokines associated with innate and early acute phase responses (IL-6) and Th1 type immune responses (IFN-γ) were found in the CNS of patients with WNV infection. In contrast, expression of the key T-cell growth factor IL-2, Th17 cytokines, a Th2 cytokine IL-4 and the proinflammatory cytokine TNF-α appear to be concentrated mainly in the periphery.
Collapse
|
19
|
Adam A, Fontes-Garfias CR, Sarathy VV, Liu Y, Luo H, Davis E, Li W, Muruato AE, Wang B, Ahatov R, Mahmoud Y, Shan C, Osman SR, Widen SG, Barrett ADT, Shi PY, Wang T. A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. NPJ Vaccines 2021; 6:27. [PMID: 33597526 PMCID: PMC7889622 DOI: 10.1038/s41541-021-00288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yang Liu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily Davis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenqian Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Renat Ahatov
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yoseph Mahmoud
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha R Osman
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Molecular Genomics Core Facility, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
20
|
Chhatbar C, Prinz M. The roles of microglia in viral encephalitis: from sensome to therapeutic targeting. Cell Mol Immunol 2021; 18:250-258. [PMID: 33437050 PMCID: PMC7802409 DOI: 10.1038/s41423-020-00620-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023] Open
Abstract
Viral encephalitis is a devastating disease with high mortality, and survivors often suffer from severe neurological complications. Microglia are innate immune cells of the central nervous system (CNS) parenchyma whose turnover is reliant on local proliferation. Microglia express a diverse range of proteins, which allows them to continuously sense the environment and quickly react to changes. Under inflammatory conditions such as CNS viral infection, microglia promote innate and adaptive immune responses to protect the host. However, during viral infection, a dysregulated microglia-T-cell interplay may result in altered phagocytosis of neuronal synapses by microglia that causes neurocognitive impairment. In this review, we summarize the current knowledge on the role of microglia in viral encephalitis, propose questions to be answered in the future and suggest possible therapeutic targets.
Collapse
Affiliation(s)
- Chintan Chhatbar
- grid.5963.9Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- grid.5963.9Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany ,grid.5963.9Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Kanmogne M, Klein RS. Neuroprotective versus Neuroinflammatory Roles of Complement: From Development to Disease. Trends Neurosci 2020; 44:97-109. [PMID: 33190930 DOI: 10.1016/j.tins.2020.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Complement proteins are ancient components of innate immunity that have emerged as crucial regulators of neural networks. We discuss these roles in the context of the CNS development, acute CNS viral infections, and post-infectious and noninfectious CNS disorders, with an emphasis on microglia-mediated loss of synapses. Despite extensive examples that implicate classical complement proteins and their receptors in CNS dysfunction, recent data suggest that they exert neuroprotective roles in CNS homeostasis through continued refinement of synaptic connections. Thorough understanding of the mechanisms involved in these processes may lead to novel targets for the treatment of CNS diseases involving aberrant complement-mediated synapse loss.
Collapse
Affiliation(s)
- Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Manh DH, Weiss LN, Thuong NV, Mizukami S, Dumre SP, Luong QC, Thanh LC, Thang CM, Huu PT, Phuc LH, Nhung CTH, Mai NT, Truong NQ, Ngu VTT, Quoc DK, Ha TTN, Ton T, An TV, Halhouli O, Quynh LN, Kamel MG, Karbwang J, Huong VTQ, Huy NT, Hirayama K. Kinetics of CD4 + T Helper and CD8 + Effector T Cell Responses in Acute Dengue Patients. Front Immunol 2020; 11:1980. [PMID: 33072068 PMCID: PMC7542683 DOI: 10.3389/fimmu.2020.01980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The protective or pathogenic role of T lymphocytes during the acute phase of dengue virus (DENV) infection has not been fully understood despite its importance in immunity and vaccine development. Objectives: This study aimed to clarify the kinetics of T lymphocyte subsets during the clinical course of acute dengue patients. Study design: In this hospital-based cohort study, 59 eligible Vietnamese dengue patients were recruited and admitted. They were investigated and monitored for T cell subsets and a panel of clinical and laboratory parameters every day until discharged and at post-discharge from the hospital. Results: We described for the first time the kinetics of T cell response during the clinical course of DENV infection. Severe cases showed significantly lower levels of effector CD8+ T cells compared to mild cases at day −1 (p = 0.017) and day 0 (p = 0.033) of defervescence. After defervescence, these cell counts in severe cases increased rapidly to equalize with the levels of mild cases. Our results also showed a decline in total CD4+ T, Th1, Th1/17 cells during febrile phase of dengue patients compared to normal controls or convalescent phase. On the other hand, Th2 cells increased during DENV infection until convalescent phase. Cytokines such as interferon-γ, IL-12p70, IL-5, IL-23, IL-17A showed tendency to decrease on day 0 and 1 compared with convalescence and only IL-5 showed significance indicating the production during acute phase was not systemic. Conclusion: With a rigorous study design, we uncovered the kinetics of T cells in natural DENV infection. Decreased number of effector CD8+ T cells in the early phase of infection and subsequent increment after defervescence day probably associated with the T cell migration in DENV infection.
Collapse
Affiliation(s)
- Dao Huy Manh
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lan Nguyen Weiss
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Van Thuong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Quang Chan Luong
- National Program for Dengue Control, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Le Chi Thanh
- HIV Laboratory, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Cao Minh Thang
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | | | - Cao Thi Hong Nhung
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Mai
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Quang Truong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Vu Thien Thu Ngu
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Do Kien Quoc
- National Program for Dengue Control, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Thi Ngoc Ha
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tran Ton
- HIV Laboratory, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Van An
- Nguyen Dinh Chieu Hospital, Ben Tre, Vietnam
| | - Oday Halhouli
- Faculty of Medicine, The University of Jordan, Amman, Jordan.,Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan
| | - Le Nhat Quynh
- Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Mohamed Gomaa Kamel
- Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, Minia University, Minya, Egypt
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Vu Thi Que Huong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
23
|
O’Ketch M, Williams S, Larson C, Uhrlaub JL, Wong R, Hall B, Deshpande NR, Schenten D. MAVS regulates the quality of the antibody response to West-Nile Virus. PLoS Pathog 2020; 16:e1009009. [PMID: 33104760 PMCID: PMC7644103 DOI: 10.1371/journal.ppat.1009009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
A key difference that distinguishes viral infections from protein immunizations is the recognition of viral nucleic acids by cytosolic pattern recognition receptors (PRRs). Insights into the functions of cytosolic PRRs such as the RNA-sensing Rig-I-like receptors (RLRs) in the instruction of adaptive immunity are therefore critical to understand protective immunity to infections. West Nile virus (WNV) infection of mice deficent of RLR-signaling adaptor MAVS results in a defective adaptive immune response. While this finding suggests a role for RLRs in the instruction of adaptive immunity to WNV, it is difficult to interpret due to the high WNV viremia, associated exessive antigen loads, and pathology in the absence of a MAVS-dependent innate immune response. To overcome these limitations, we have infected MAVS-deficient (MAVSKO) mice with a single-round-of-infection mutant of West Nile virus. We show that MAVSKO mice failed to produce an effective neutralizing antibody response to WNV despite normal antibody titers against the viral WNV-E protein. This defect occurred independently of antigen loads or overt pathology. The specificity of the antibody response in infected MAVSKO mice remained unchanged and was still dominated by antibodies that bound the neutralizing lateral ridge (LR) epitope in the DIII domain of WNV-E. Instead, MAVSKO mice produced IgM antibodies, the dominant isotype controlling primary WNV infection, with lower affinity for the DIII domain. Our findings suggest that RLR-dependent signals are important for the quality of the humoral immune response to WNV.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody Formation
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Female
- Immunity, Humoral
- Immunity, Innate/immunology
- Immunoglobulin M
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Signal Transduction/immunology
- West Nile Fever/immunology
- West Nile Fever/virology
- West Nile virus/pathogenicity
Collapse
Affiliation(s)
- Marvin O’Ketch
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Spencer Williams
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Larson
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel Wong
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| | - Brenna Hall
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominik Schenten
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
24
|
Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020; 8:E485. [PMID: 32872152 PMCID: PMC7563127 DOI: 10.3390/vaccines8030485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Tyler
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
26
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The present review will outline neuroprotective and neurotoxic effects of central nervous system (CNS) infiltrating T cells during viral infections. Evidence demonstrating differential roles for antiviral effector and resident memory T-cell subsets in virologic control and immunopathology in the CNS will be discussed. Potential therapeutic targets emanating from a growing understanding of T-cell-initiated neuropathology that impacts learning and memory will also be delineated. RECENT FINDINGS The critical role for T cells in preventing and clearing CNS infections became incontrovertible during the era of acquired immunodeficiency syndrome. Recent studies have further defined differential roles of T-cell subsets, including resident memory T cells (Trm), in antiviral immunity and, unexpectedly, in postinfectious cognitive dysfunction. Mechanisms of T-cell-mediated effects include differential innate immune signaling within neural cells that are virus-specific. SUMMARY T-cell cytokines that are essential for cell-mediated virologic control during neurotropic viral infections have recently been identified as potential targets to prevent post-infection memory disorders. Further identification of T-cell subsets, their antigen specificity, and postinfection localization of Trm will enhance the efficacy of immunotherapies through minimization of immunopathology.
Collapse
Affiliation(s)
| | - Robyn S. Klein
- Departments of Medicine
- Pathology and Immunology
- Neurosciences Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
29
|
Grygorczuk S, Osada J, Toczyłowski K, Sulik A, Czupryna P, Moniuszko-Malinowska A, Kondrusik M, Świerzbińska R, Dunaj J, Pancewicz S, Dąbrowska M. The lymphocyte populations and their migration into the central nervous system in tick-borne encephalitis. Ticks Tick Borne Dis 2020; 11:101467. [PMID: 32723646 DOI: 10.1016/j.ttbdis.2020.101467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 01/29/2023]
Abstract
In tick-borne encephalitis (TBE) the cerebrospinal fluid (CSF) cytosis is dominated by T CD3+CD4+ and T CD3+CD8+ lymphocytes, but their pathogenetic roles and mechanisms of migration into central nervous system (CNS) are unclear. Currently, we have studied CSF lymphocyte subsets and chemotactic axes in TBE patients stratified according to the clinical presentation. Blood and CSF were obtained from 51 patients with TBE (presenting as meningitis in 30, meningoencephalitis in 18 and meningoencephalomyelitis in 3), 20 with non-TBE meningitis and 11 healthy controls. We have studied: (1) abundances of the main lymphocyte subsets and (2) CXCR3 and CCR5 expression on CD3+CD4+ and CD3+CD8+ lymphocytes cytometrically with fluorochrome-stained monoclonal antibodies; (3) concentrations of chemotactic cytokines: CCL5 (CCR5 ligand), CXCL10 (CXCR3 ligand), IL-16, CCL2, CCL20 and CXCL5 with ELISA. Cytokine concentrations were additionally studied in 8 pediatric TBE patients. Data were analyzed with non-parametric tests, p < 0.05 considered significant. The higher CSF lymphocyte counts were associated with symptoms of CNS involvement, especially with altered consciousness (B, Th and Tc cells) and focal neurologic deficits (B cells). The minor fraction of double-positive T CD4+CD8+ cells was unique in associating negatively with encephalitis and altered consciousness. CSF CD3+CD4+ and CD3+CD8+ lymphocyte population was enriched in CCR5-positive cells and CCL5 concentration in CSF was increased and associated with a milder presentation. Although CXCL10 was vividly up-regulated intrathecally and correlated with CSF T lymphocyte counts, the CXCR3 expression in CSF T lymphocytes was low. Serum and CSF concentrations of CCL2, CXCL5 and IL-16 were increased in adult TBE patients, CCL2 created a chemotactic gradient towards CSF and both CCL2 and IL-16 concentrations correlated positively with CSF lymphocyte counts. The particular lymphoid cell populations in CSF associate differently with the clinical presentation of TBE, suggesting their distinct roles in pathogenesis. CCR5/CCL5 axis probably contributes to T lymphocyte migration into CNS. CXCL10 mediates the intrathecal immune response, but is probably not directly responsible for T cell migration. Additional chemotactic factors must be involved, probably including CCL2 and IL-16.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Joanna Osada
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Waszyngtona 15A, 15-269 Białystok, Poland.
| | - Kacper Toczyłowski
- Department of Pediatric Infectious Diseases, Medical University in Białystok, ul. Waszyngtona 17, 15-274 Białystok, Poland.
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University in Białystok, ul. Waszyngtona 17, 15-274 Białystok, Poland.
| | - Piotr Czupryna
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Anna Moniuszko-Malinowska
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Maciej Kondrusik
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Renata Świerzbińska
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Justyna Dunaj
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Sławomir Pancewicz
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Milena Dąbrowska
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Waszyngtona 15A, 15-269 Białystok, Poland.
| |
Collapse
|
30
|
Kobayashi S, Kaneko C, Kawakami R, Hasebe R, Sawa H, Yoshii K, Kariwa H. Amino acid 159 of the envelope protein affects viral replication and T-cell infiltration by West Nile virus in intracranial infection. Sci Rep 2020; 10:7168. [PMID: 32346055 PMCID: PMC7189269 DOI: 10.1038/s41598-020-64199-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
West Nile virus (WNV) is an important cause of viral encephalitis in birds and animals, including humans. Amino acid 159 of the envelope (E) protein is reportedly implicated in the different levels of neurovirulence in mice infected with WNV NY99 or Eg101. We investigated the role of amino acid 159 of the E protein in the pathogenesis of WNV infection. We produced recombinant WNV with the structural proteins of the NY99 or Eg101 strain (NY-WT or EgCME-WT) and mutant viruses with substitutions of amino acid 159 of the E protein (NY-E-V159I or EgCME-E-I159V). The NY-WT and NY-E-V159I or EgCME-WT and EgCME-E-I159V titers in culture supernatant were similar. The mortality rate and viral titer in the brains of mice inoculated intraperitoneally with NY-WT or NY-E-V159I were also similar. In contrast, the mortality rate and viral titer in the brains of mice inoculated intracranially with EgCME-E-I159V were significantly higher than those of mice inoculated with EgCME-WT. The numbers of CD3-positive and CD8-positive T cells were greater in brains inoculated with EgCME-E-I159V than in those inoculated with EgCME-WT. Therefore, amino acid 159 of the E protein modulates the pathogenicity of WNV by affecting viral replication and T-cell infiltration in the brain.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Chisato Kaneko
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryoko Kawakami
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-0815, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, MD, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
31
|
Vittor AY, Long M, Chakrabarty P, Aycock L, Kollu V, DeKosky ST. West Nile Virus-Induced Neurologic Sequelae-Relationship to Neurodegenerative Cascades and Dementias. CURRENT TROPICAL MEDICINE REPORTS 2020; 7:25-36. [PMID: 32775145 DOI: 10.1007/s40475-020-00200-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose of Review West Nile virus (WNV) emerged from Central Africa in the 1990s and is now endemic throughout much of the world. Twenty years after its introduction in the USA, it is becoming apparent that neurological impairments can persist for years following infection. Here, we review the epidemiological data in support of such long-term deficits and discuss possible mechanisms that drive these persistent manifestations. Recent Findings Focusing on the recently discovered antimicrobial roles of amyloid and alpha-synuclein, we connect WNV late pathology to overlapping features encountered in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. We also summarize new research on microglial activation and engulfment of neural synapses seen in recovered WNV as well as in neurodegenerative diseases, and discuss how loss of integrity of the blood-brain barrier (BBB) may exacerbate this process. Summary Neuroinvasive viral infections such as WNV may be linked epidemiologically and mechanistically to neurodegeneration. This may open doors to therapeutic options for hitherto untreatable infectious sequelae; additionally, it may also shed light on the possible infectious etiologies of age-progressive neurodegenerative dementias.
Collapse
Affiliation(s)
- Amy Y Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen Long
- College of Veterinary Medicine, Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Diseases, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lauren Aycock
- School of Medicine, University of Florida, Gainesville, FL, USA
| | - Vidya Kollu
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Li G, Adam A, Luo H, Shan C, Cao Z, Fontes-Garfias CR, Sarathy VV, Teleki C, Winkelmann ER, Liang Y, Sun J, Bourne N, Barrett ADT, Shi PY, Wang T. An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. NPJ Vaccines 2019; 4:48. [PMID: 31815005 PMCID: PMC6883050 DOI: 10.1038/s41541-019-0143-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4+ and CD8+ T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3'-UTR (ZIKV-3'UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zengguo Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Camila R. Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Vanessa V. Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Cody Teleki
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Evandro R. Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Alan D. T. Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
34
|
Dokalis N, Prinz M. Resolution of neuroinflammation: mechanisms and potential therapeutic option. Semin Immunopathol 2019; 41:699-709. [PMID: 31705317 DOI: 10.1007/s00281-019-00764-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) is comprised by an elaborate neural network that is under constant surveillance by tissue-intrinsic factors for maintenance of its homeostasis. Invading pathogens or sterile injuries might compromise vitally the CNS integrity and function. A prompt anti-inflammatory response is therefore essential to contain and repair the local tissue damage. Although the origin of the insults might be different, the principles of tissue backlashes, however, share striking similarities. CNS-resident cells, such as microglia and astrocytes, together with peripheral immune cells orchestrate an array of events that aim to functional restoration. If the acute inflammatory event remains unresolved, it becomes toxic leading to progressive CNS degeneration. Therefore, the cellular, molecular, and biochemical processes that regulate inflammation need to be on a fine balance with the intrinsic CNS repair mechanisms that influence tissue healing. The purpose of this review is to highlight aspects that facilitate the resolution of CNS inflammation, promote tissue repair, and functional recovery after acute injury and infection that could potentially contribute as therapeutic interventions.
Collapse
Affiliation(s)
- Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
35
|
Bai F, Thompson EA, Vig PJS, Leis AA. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019; 8:pathogens8040193. [PMID: 31623175 PMCID: PMC6963678 DOI: 10.3390/pathogens8040193] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the most common mosquito-borne virus in North America. WNV-associated neuroinvasive disease affects all ages, although elderly and immunocompromised individuals are particularly at risk. WNV neuroinvasive disease has killed over 2300 Americans since WNV entered into the United States in the New York City outbreak of 1999. Despite 20 years of intensive laboratory and clinical research, there are still no approved vaccines or antivirals available for human use. However, rapid progress has been made in both understanding the pathogenesis of WNV and treatment in clinical practices. This review summarizes our current understanding of WNV infection in terms of human clinical manifestations, host immune responses, neuroinvasion, and therapeutic interventions.
Collapse
Affiliation(s)
- Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - E Ashley Thompson
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Parminder J S Vig
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - A Arturo Leis
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| |
Collapse
|
36
|
McGuckin Wuertz K, Treuting PM, Hemann EA, Esser-Nobis K, Snyder AG, Graham JB, Daniels BP, Wilkins C, Snyder JM, Voss KM, Oberst A, Lund J, Gale M. STING is required for host defense against neuropathological West Nile virus infection. PLoS Pathog 2019; 15:e1007899. [PMID: 31415679 DOI: 10.1371/journal.ppat.1007899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV), an emerging and re-emerging RNA virus, is the leading source of arboviral encephalitic morbidity and mortality in the United States. WNV infections are acutely controlled by innate immunity in peripheral tissues outside of the central nervous system (CNS) but WNV can evade the actions of interferon (IFN) to facilitate CNS invasion, causing encephalitis, encephalomyelitis, and death. Recent studies indicate that STimulator of INterferon Gene (STING), canonically known for initiating a type I IFN production and innate immune response to cytosolic DNA, is required for host defense against neurotropic RNA viruses. We evaluated the role of STING in host defense to control WNV infection and pathology in a murine model of infection. When challenged with WNV, STING knock out (-/-) mice displayed increased morbidity and mortality compared to wild type (WT) mice. Virologic analysis and assessment of STING activation revealed that STING signaling was not required for control of WNV in the spleen nor was WNV sufficient to mediate canonical STING activation in vitro. However, STING-/- mice exhibited a clear trend of increased viral load and virus dissemination in the CNS. We found that STING-/- mice exhibited increased and prolonged neurological signs compared to WT mice. Pathological examination revealed increased lesions, mononuclear cellular infiltration and neuronal death in the CNS of STING-/- mice, with sustained pathology after viral clearance. We found that STING was required in bone marrow derived macrophages for early control of WNV replication and innate immune activation. In vivo, STING-/- mice developed an aberrant T cell response in both the spleen and brain during WNV infection that linked with increased and sustained CNS pathology compared to WT mice. Our findings demonstrate that STING plays a critical role in immune programming for the control of neurotropic WNV infection and CNS disease.
Collapse
Affiliation(s)
- Kathryn McGuckin Wuertz
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America.,Department of Defense; United States Army Medical Department, San Antonio, TX, United States of America
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Emily A Hemann
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Annelise G Snyder
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States of America
| | - Courtney Wilkins
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Kathleen M Voss
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jennifer Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Michael Gale
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
37
|
Hassert M, Harris MG, Brien JD, Pinto AK. Identification of Protective CD8 T Cell Responses in a Mouse Model of Zika Virus Infection. Front Immunol 2019; 10:1678. [PMID: 31379867 PMCID: PMC6652237 DOI: 10.3389/fimmu.2019.01678] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022] Open
Abstract
Many flaviviruses including dengue (DENV), and Zika (ZIKV) have attracted significant attention in the past few years. As many flaviviruses are spread by arthropods, most of the world's population is at risk of encountering a flavivirus, and infection with these viruses has created a significant disease burden worldwide. Vaccination against flaviviruses is thought to be one of the most promising avenues for reducing the disease burden associated with these viruses. The optimism surrounding a vaccine approach is supported by the highly successful vaccines for yellow fever and Japanese encephalitis. Central to the development of new successful vaccines is the understanding of the correlates of protection that will be necessary to engineer into new vaccines. To aid in this endeavor we have directed our efforts to identify correlates of protection that will reduce the disease burden associated with ZIKV and DENV. Within this study we have identified a novel murine ZIKV specific CD8+ T cell epitope, and shown that the ZIKV epitope specific CD8+ T cell response has a distinct immunodominance hierarchy present during acute infection and is detectible as part of the memory T cell responses. Our studies confirm that ZIKV-specific CD8+ T cells are an important correlate of protection for ZIKV and demonstrate that both naïve and ZIKV immune CD8+ T cells are sufficient for protection against a lethal ZIKV infection. Overall this study adds to the body of literature demonstrating a role for CD8+ T cells in controlling flavivirus infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Madison G Harris
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
38
|
Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses. PLoS One 2019; 14:e0218928. [PMID: 31242236 PMCID: PMC6594639 DOI: 10.1371/journal.pone.0218928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a critical innate immune signaling protein that directs the actions of the RIG-I-like receptor (RLR) signaling pathway of RNA virus recognition and initiation of anti-viral immunity against West Nile virus (WNV). In the absence of MAVS, mice die more rapidly after infection with the pathogenic WNV-Texas (TX) strain, but also produce elevated WNV-specific IgG concomitant with increased viral burden. Here we investigated whether there was a B cell intrinsic role for MAVS during the development of protective humoral immunity following WNV infection. MAVS-/- mice survived infection from the non-pathogenic WNV-Madagascar (MAD) strain, with limited signs of disease. Compared to wildtype (WT) controls, WNV-MAD-infected MAVS-/- mice had elevated serum neutralizing antibodies, splenic germinal center B cells, plasma cells and effector T cells. We found that when rechallenged with the normally lethal WNV-TX, MAVS-/- mice previously infected with WNV-MAD were protected from disease. Thus, protective humoral and cellular immune responses can be generated in absence of MAVS. Mice with a conditional deletion of MAVS only in CD11c+ dendritic cells phenocopied MAVS whole body knockout mice in their humoral responses to WNV-MAD, displaying elevated virus titers and neutralizing antibodies. Conversely, a B cell-specific deletion of MAVS had no effect on immune responses to WNV-MAD compared to WT controls. Thus, MAVS in dendritic cells is required to control WNV replication and thereby regulate downstream humoral immune responses.
Collapse
|
39
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
40
|
Funk KE, Klein RS. CSF1R antagonism limits local restimulation of antiviral CD8 + T cells during viral encephalitis. J Neuroinflammation 2019; 16:22. [PMID: 30704498 PMCID: PMC6354430 DOI: 10.1186/s12974-019-1397-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Microglia are resident macrophages of the central nervous system (CNS) locally maintained through colony-stimulating factor 1 receptor (CSF1R) signaling. Microglial depletion via CSF1R inactivation improves cognition in mouse models of neuroinflammation, but limits virologic control in the CNS of mouse models of neurotropic infections by unknown mechanisms. We hypothesize that CSF1R plays a critical role in myeloid cell responses that restrict viral replication and locally restimulate recruited antiviral T cells within the CNS. METHODS The impact of CSF1R signaling during West Nile virus infection was assessed in vivo using a mouse model of neurotropic infection. Pharmacological inactivation of CSF1R was achieved using PLX5622 prior to infection with virulent or attenuated strains of West Nile virus (WNV), an emerging neuropathogen. The subsequent effect of CSF1R antagonism on virologic control was assessed by measuring mortality and viral titers in the CNS and peripheral organs. Immune responses were assessed by flow cytometric-based phenotypic analyses of both peripheral and CNS immune cells. RESULTS Mice treated with CSF1R antagonist prior to infection exhibited higher susceptibility to lethal WNV infection and lack of virologic control in both the CNS and periphery. CSFR1 antagonism reduced B7 co-stimulatory signals on peripheral and CNS antigen-presenting cells (APCs) by depleting CNS cellular sources, which limited local reactivation of CNS-infiltrating virus-specific T cells and reduced viral clearance. CONCLUSIONS Our results demonstrate the impact of CSF1R antagonism on APC activation in the CNS and periphery and the importance of microglia in orchestrating the CNS immune response following neurotropic viral infection. These data will be an important consideration when assessing the benefit of CSF1R antagonism, which has been investigated as a therapeutic for neurodegenerative conditions, in which neuroinflammation is a contributing factor.
Collapse
Affiliation(s)
- Kristen E. Funk
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63110 USA
| | - Robyn S. Klein
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110 USA
- Department of Neurosciences, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
41
|
Chen T, He X, Zhang P, Yuan Y, Lang X, Yu J, Qin Z, Li X, Zhang Q, Zhu L, Zhang B, Wu Q, Zhao W. Research advancements in the neurological presentation of flaviviruses. Rev Med Virol 2019; 29:e2021. [PMID: 30548722 PMCID: PMC6590462 DOI: 10.1002/rmv.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022]
Abstract
Owing to the large-scale epidemic of Zika virus disease and its association with microcephaly, properties that allow flaviviruses to cause nervous system diseases are an important area of investigation. At present, although potential pathogenic mechanisms of flaviviruses in the nervous system have been examined, they have not been completely elucidated. In this paper, we review the possible mechanisms of blood-brain barrier penetration, the pathological effects on neurons, and the association between virus mutations and neurotoxicity. A hypothesis on neurotoxicity caused by the Zika virus is presented. Clarifying the mechanisms of virulence of flaviviruses will be helpful in finding better antiviral drugs and optimizing the treatment of symptoms.
Collapse
Affiliation(s)
- Tingting Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Peiru Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Yawen Yuan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xinyue Lang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xujuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
42
|
Elong Ngono A, Young MP, Bunz M, Xu Z, Hattakam S, Vizcarra E, Regla-Nava JA, Tang WW, Yamabhai M, Wen J, Shresta S. CD4+ T cells promote humoral immunity and viral control during Zika virus infection. PLoS Pathog 2019; 15:e1007474. [PMID: 30677097 PMCID: PMC6345435 DOI: 10.1371/journal.ppat.1007474] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Several Zika virus (ZIKV) vaccines designed to elicit protective antibody (Ab) responses are currently under rapid development, but the underlying mechanisms that control the magnitude and quality of the Ab response remain unclear. Here, we investigated the CD4+ T cell response to primary intravenous and intravaginal infection with ZIKV. Using the LysMCre+Ifnar1fl/fl (myeloid type I IFN receptor-deficient) C57BL/6 mouse models, we identified six I-Ab-restricted ZIKV epitopes that stimulated CD4+ T cells with a predominantly cytotoxic Th1 phenotype in mice primed with ZIKV. Intravenous and intravaginal infection with ZIKV effectively induced follicular helper and regulatory CD4+ T cells. Treatment of mice with a CD4+ T cell-depleting Ab reduced the plasma cell, germinal center B cell, and IgG responses to ZIKV without affecting the CD8+ T cell response. CD4+ T cells were required to protect mice from a lethal dose of ZIKV after infection intravaginally, but not intravenously. However, adoptive transfer and peptide immunization experiments showed a role for memory CD4+ T cells in ZIKV clearance in mice challenged intravenously. These results demonstrate that CD4+ T cells are required mainly for the generation of a ZIKV-specific humoral response but not for an efficient CD8+ T cell response. Thus, CD4+ T cells could be important mediators of protection against ZIKV, depending on the infection or vaccination context.
Collapse
Affiliation(s)
- Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Matthew P Young
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Maximilian Bunz
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Zhigang Xu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sararat Hattakam
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Edward Vizcarra
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - William W Tang
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Montarop Yamabhai
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jinsheng Wen
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
43
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
44
|
Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, Gao J, Peng BH, Bopp NE, Cromer C, Shan C, Xie G, Li G, Tesh R, Popov VL, Shi PY, Sun SC, Wu P, Klein RS, Tang SJ, Zhang W, Aguilar PV, Wang T. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest 2018; 128:4980-4991. [PMID: 30247157 PMCID: PMC6205407 DOI: 10.1172/jci99902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Pellino 1 (Peli1) is a microglia-specific mediator of autoimmune encephalomyelitis. Its role in neurotropic flavivirus infection is largely unknown. Here, we report that mice deficient in Peli1 (Peli1-/-) were more resistant to lethal West Nile virus (WNV) infection and exhibited reduced viral loads in tissues and attenuated brain inflammation. Peli1 mediates chemokine and proinflammatory cytokine production in microglia and promotes T cell and macrophage infiltration into the CNS. Unexpectedly, Peli1 was required for WNV entry and replication in mouse macrophages and mouse and human neurons and microglia. It was also highly expressed on WNV-infected neurons and adjacent inflammatory cells from postmortem patients who died of acute WNV encephalitis. WNV passaged in Peli1-/- macrophages or neurons induced a lower viral load and impaired activation in WT microglia and thereby reduced lethality in mice. Smaducin-6, which blocks interactions between Peli1 and IRAK1, RIP1, and IKKε, did not inhibit WNV-triggered microglia activation. Collectively, our findings suggest a nonimmune regulatory role for Peli1 in promoting microglia activation during WNV infection and identify a potentially novel host factor for flavivirus cell entry and replication.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology and Immunology
| | | | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences
| | - Wenjuan Ru
- Department of Neuroscience, Cell Biology and Anatomy, and
| | | | - Jesus A. Silvas
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Lauren L. Vollmer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Courtney Cromer
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, and
| | - Guorui Xie
- Department of Microbiology and Immunology
| | - Guangyu Li
- Department of Microbiology and Immunology
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shao-Jun Tang
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences,,Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology and Immunology,,Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| |
Collapse
|
45
|
CD4 T cells control development and maintenance of brain-resident CD8 T cells during polyomavirus infection. PLoS Pathog 2018; 14:e1007365. [PMID: 30372487 PMCID: PMC6224182 DOI: 10.1371/journal.ppat.1007365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Tissue-resident memory CD8 T (TRM) cells defend against microbial reinfections at mucosal barriers; determinants driving durable TRM cell responses in non-mucosal tissues, which often harbor opportunistic persistent pathogens, are unknown. JC polyomavirus (JCPyV) is a ubiquitous constituent of the human virome. With altered immunological status, JCPyV can cause the oft-fatal brain demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV is a human-only pathogen. Using the mouse polyomavirus (MuPyV) encephalitis model, we demonstrate that CD4 T cells regulate development of functional antiviral brain-resident CD8 T cells (bTRM) and renders their maintenance refractory to systemic CD8 T cell depletion. Acquired CD4 T cell deficiency, modeled by delaying systemic CD4 T cell depletion until MuPyV-specific CD8 T cells have infiltrated the brain, impacted the stability of CD8 bTRM, impaired their effector response to reinfection, and rendered their maintenance dependent on circulating CD8 T cells. This dependence of CD8 bTRM differentiation on CD4 T cells was found to extend to encephalitis caused by vesicular stomatitis virus. Together, these findings reveal an intimate association between CD4 T cells and homeostasis of functional bTRM to CNS viral infection.
Collapse
|
46
|
Li G, Teleki C, Wang T. Memory T Cells in Flavivirus Vaccination. Vaccines (Basel) 2018; 6:E73. [PMID: 30340377 PMCID: PMC6313919 DOI: 10.3390/vaccines6040073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Flaviviruses include many medically important viruses, such as Dengue virus (DENV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV), West Nile (WNV), yellow fever (YFV), and Zika viruses (ZIKV). Currently, there are licensed human vaccines for DENV, JEV, TBEV and YFV, but not for WNV or ZIKV. Memory T cells play a central role in adaptive immunity and are important for host protection during flavivirus infection. In this review, we discuss recent findings from animal models and clinical trials and provide new insights into the role of memory T cells in host protective immunity upon vaccination with the licensed flavivirus vaccines.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Cody Teleki
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
47
|
Aberle JH, Koblischke M, Stiasny K. CD4 T cell responses to flaviviruses. J Clin Virol 2018; 108:126-131. [PMID: 30312909 DOI: 10.1016/j.jcv.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
Flaviviruses pose an increasing threat to global health with their potential to cause severe disease in millions of people. Protective and long-lived immunity is closely linked to the generation of CD4 T cells, which provide B cell help and support high affinity neutralizing antibody responses. Research performed during the last years revealed important new insights into the antigen specificities and diverse effector functions of CD4 T cell responses to flaviviruses. Moreover, the identification of mechanisms involved in the regulation of T cell specificity and function provides significant advances in our understanding of how durable protective immunity is established. Here, we summarize what is known about human CD4 T cell responses to flaviviruses, with a special emphasis on CD4 T cells that provide direct help to B cells producing neutralizing and protective antibodies. We review recent progress in the identification of epitope sites in the context of the atomic structures of flavivirus proteins and highlight specific influences that shape the human CD4 T cell response in the context of infection or vaccination. Finally, we discuss challenges facing vaccine efforts to generate appropriate CD4 T cell responses, as well as recent strategies to enhance T cell-mediated antibody responses.
Collapse
Affiliation(s)
- Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Lesteberg KE, Beckham JD. Immunology of West Nile Virus Infection and the Role of Alpha-Synuclein as a Viral Restriction Factor. Viral Immunol 2018; 32:38-47. [PMID: 30222521 DOI: 10.1089/vim.2018.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
West Nile virus (WNV) is a single-stranded RNA flavivirus and is a major cause of viral encephalitis worldwide. Experimental models of WNV infection in mice are commonly used to define acute neuroinflammatory responses in the brain. Alpha-synuclein (Asyn) is a protein of primarily neuronal origin and is a major cause of Parkinson's disease (PD), a disorder characterized by loss of dopaminergic neurons. Both WNV and PD pathologies are largely mediated by inflammation of the central nervous system (neuroinflammation) and have overlapping inflammatory pathways. In this review, we highlight the roles of the immune system in both diseases while comparing and contrasting both protective and pathogenic roles of immune cells and their effector proteins. Additionally, we review the current literature showing that Asyn is an important mediator of the immune response with diverging roles in PD (pathogenic) and WNV disease (neuroprotective).
Collapse
Affiliation(s)
- Kelsey E Lesteberg
- 1 Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - John David Beckham
- 1 Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado.,2 Division of Neuroimmunology and Neurological Infections, Department of Neurology, University of Colorado School of Medicine , Aurora, Colorado.,3 Veterans Administration, Eastern Colorado Health System , Denver, Colorado
| |
Collapse
|
49
|
Hassert M, Wolf KJ, Schwetye KE, DiPaolo RJ, Brien JD, Pinto AK. CD4+T cells mediate protection against Zika associated severe disease in a mouse model of infection. PLoS Pathog 2018; 14:e1007237. [PMID: 30212537 PMCID: PMC6136803 DOI: 10.1371/journal.ppat.1007237] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) has gained worldwide attention since it emerged, and a global effort is underway to understand the correlates of protection and develop diagnostics to identify rates of infection. As new therapeutics and vaccine approaches are evaluated in clinical trials, additional effort is focused on identifying the adaptive immune correlates of protection against ZIKV disease. To aid in this endeavor we have begun to dissect the role of CD4+T cells in the protection against neuroinvasive ZIKV disease. We have identified an important role for CD4+T cells in protection, demonstrating that in the absence of CD4+T cells mice have more severe neurological sequela and significant increases in viral titers in the central nervous system (CNS). The transfer of CD4+T cells from ZIKV immune mice protect type I interferon receptor deficient animals from a lethal challenge; showing that the CD4+T cell response is necessary and sufficient for control of ZIKV disease. Using a peptide library spanning the complete ZIKV polyprotein, we identified both ZIKV-encoded CD4+T cell epitopes that initiate immune responses, and ZIKV specific CD4+T cell receptors that recognize these epitopes. Within the ZIKV antigen-specific TCRβ repertoire, we uncovered a high degree of diversity both in response to a single epitope and among different mice responding to a CD4+T cell epitope. Overall this study identifies a novel role for polyfunctional and polyclonal CD4+T cells in providing protection against ZIKV infection and highlights the need for vaccines to develop robust CD4+T cell responses to prevent ZIKV neuroinvasion and limit replication within the CNS.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD4-Positive T-Lymphocytes/immunology
- Central Nervous System/immunology
- Central Nervous System/virology
- Disease Models, Animal
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Genes, T-Cell Receptor beta
- Humans
- Immunity, Cellular
- Liver/immunology
- Liver/virology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Viral Vaccines/immunology
- Virus Replication/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus/pathogenicity
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - Kyle J. Wolf
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - Katherine E. Schwetye
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| |
Collapse
|
50
|
Zhao D, Han K, Zhang L, Wang H, Tian Y, Huang X, Liu Q, Yang J, Liu Y, Li Y. Identification and immunogenic evaluation of T cell epitopes based on tembusu virus envelope protein in ducks. Virus Res 2018; 257:74-81. [DOI: 10.1016/j.virusres.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|