1
|
Liu DJ, Zhong XQ, Ru YX, Zhao SL, Liu CC, Tang YB, Wu X, Zhang YS, Zhang HH, She JY, Wan MY, Li YW, Zheng HP, Deng L. Disulfide-stabilized trimeric hemagglutinin ectodomains provide enhanced heterologous influenza protection. Emerg Microbes Infect 2024; 13:2389095. [PMID: 39101691 PMCID: PMC11334750 DOI: 10.1080/22221751.2024.2389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan-Xia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Bo Tang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Shuai Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yao-Wang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - He-Ping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
- Beijing Weimiao Biotechnology Co., Ltd., Beijing, People’s Republic of China
| |
Collapse
|
2
|
Yang Q, Park SW, Saad-Roy CM, Ahmad I, Viboud C, Arinaminpathy N, Grenfell BT. Assessing population-level target product profiles of universal human influenza A vaccines. Epidemics 2024; 48:100776. [PMID: 38944025 DOI: 10.1016/j.epidem.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Influenza A has two hemagglutinin groups, with stronger cross-immunity to reinfection within than between groups. Here, we explore the implications of this heterogeneity for proposed cross-protective influenza vaccines that may offer broad, but not universal, protection. While the development goal for the breadth of human influenza A vaccine is to provide cross-group protection, vaccines in current development stages may provide better protection against target groups than non-target groups. To evaluate vaccine formulation and strategies, we propose a novel perspective: a vaccine population-level target product profile (PTPP). Under this perspective, we use dynamical models to quantify the epidemiological impacts of future influenza A vaccines as a function of their properties. Our results show that the interplay of natural and vaccine-induced immunity could strongly affect seasonal subtype dynamics. A broadly protective bivalent vaccine could lower the incidence of both groups and achieve elimination with sufficient vaccination coverage. However, a univalent vaccine at low vaccination rates could permit a resurgence of the non-target group when the vaccine provides weaker immunity than natural infection. Moreover, as a proxy for pandemic simulation, we analyze the invasion of a variant that evades natural immunity. We find that a future vaccine providing sufficiently broad and long-lived cross-group protection at a sufficiently high vaccination rate, could prevent pandemic emergence and lower the pandemic burden. This study highlights that as well as effectiveness, breadth and duration should be considered in epidemiologically informed TPPs for future human influenza A vaccines.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA.
| | - Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA
| | - Chadi M Saad-Roy
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA; Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Isa Ahmad
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Nimalan Arinaminpathy
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA; School of Public and International Affairs, Princeton University, NJ, USA
| |
Collapse
|
3
|
Wu NC, Ellebedy AH. Targeting neuraminidase: the next frontier for broadly protective influenza vaccines. Trends Immunol 2024; 45:11-19. [PMID: 38103991 PMCID: PMC10841738 DOI: 10.1016/j.it.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023]
Abstract
Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
4
|
Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun 2023; 14:7745. [PMID: 38008801 PMCID: PMC10679120 DOI: 10.1038/s41467-023-43339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Koen Chiers
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| |
Collapse
|
5
|
Mooij P, Mortier D, Aartse A, Murad AB, Correia R, Roldão A, Alves PM, Fagrouch Z, Eggink D, Stockhofe N, Engelhardt OG, Verschoor EJ, van Gils MJ, Bogers WM, Carrondo MJT, Remarque EJ, Koopman G. Vaccine-induced neutralizing antibody responses to seasonal influenza virus H1N1 strains are not enhanced during subsequent pandemic H1N1 infection. Front Immunol 2023; 14:1256094. [PMID: 37691927 PMCID: PMC10484506 DOI: 10.3389/fimmu.2023.1256094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
The first exposure to influenza is presumed to shape the B-cell antibody repertoire, leading to preferential enhancement of the initially formed responses during subsequent exposure to viral variants. Here, we investigated whether this principle remains applicable when there are large genetic and antigenic differences between primary and secondary influenza virus antigens. Because humans usually have a complex history of influenza virus exposure, we conducted this investigation in influenza-naive cynomolgus macaques. Two groups of six macaques were immunized four times with influenza virus-like particles (VLPs) displaying either one (monovalent) or five (pentavalent) different hemagglutinin (HA) antigens derived from seasonal H1N1 (H1N1) strains. Four weeks after the final immunization, animals were challenged with pandemic H1N1 (H1N1pdm09). Although immunization resulted in robust virus-neutralizing responses to all VLP-based vaccine strains, there were no cross-neutralization responses to H1N1pdm09, and all animals became infected. No reductions in viral load in the nose or throat were detected in either vaccine group. After infection, strong virus-neutralizing responses to H1N1pdm09 were induced. However, there were no increases in virus-neutralizing titers against four of the five H1N1 vaccine strains; and only a mild increase was observed in virus-neutralizing titer against the influenza A/Texas/36/91 vaccine strain. After H1N1pdm09 infection, both vaccine groups showed higher virus-neutralizing titers against two H1N1 strains of intermediate antigenic distance between the H1N1 vaccine strains and H1N1pdm09, compared with the naive control group. Furthermore, both vaccine groups had higher HA-stem antibodies early after infection than the control group. In conclusion, immunization with VLPs displaying HA from antigenically distinct H1N1 variants increased the breadth of the immune response during subsequent H1N1pdm09 challenge, although this phenomenon was limited to intermediate antigenic variants.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Alexandre B. Murad
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Correia
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Norbert Stockhofe
- Wageningen Bioveterinary Research/Wageningen University & Research, Lelystad, Netherlands
| | - Othmar G. Engelhardt
- Vaccines, Science, Research and Innovation Group, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, United Kingdom
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Willy M. Bogers
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Edmond J. Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
6
|
Aartse A, Mortier D, Mooij P, Hofman S, van Haaren MM, Corcoran M, Karlsson Hedestam GB, Eggink D, Claireaux M, Bogers WMJM, van Gils MJ, Koopman G. Primary antibody response after influenza virus infection is first dominated by low-mutated HA-stem antibodies followed by higher-mutated HA-head antibodies. Front Immunol 2022; 13:1026951. [PMID: 36405682 PMCID: PMC9670313 DOI: 10.3389/fimmu.2022.1026951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Several studies have shown that the first encounter with influenza virus shapes the immune response to future infections or vaccinations. However, a detailed analysis of the primary antibody response is lacking as this is difficult to study in humans. It is therefore not known what the frequency and dynamics of the strain-specific hemagglutinin (HA) head- and stem-directed antibody responses are directly after primary influenza virus infection. Here, sera of twelve H1N1pdm2009 influenza virus-infected cynomolgus macaques were evaluated for HA-head and HA-stem domain antibody responses. We observed an early induction of HA-stem antibody responses, which was already decreased by day 56. In contrast, responses against the HA-head domain were low early after infection and increased at later timepoint. The HA-specific B cell repertoires in each animal showed diverse VH-gene usage with preferred VH-gene and JH-gene family usage for HA-head or HA-stem B cells but a highly diverse allelic variation within the VH-usage. HA-head B cells had shorter CDRH3s and higher VH-gene somatic hyper mutation levels relative to HA-stem B cells. In conclusion, our data suggest that HA-stem antibodies are the first to react to the infection while HA-head antibodies show a delayed response, but a greater propensity to enter the germinal center and undergo affinity maturation.
Collapse
Affiliation(s)
- Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marlies M. van Haaren
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet (KI), Stockholm, Sweden
| | | | - Dirk Eggink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
7
|
Maier I. Engineering recombinantly expressed lectin-based antiviral agents. Front Cell Infect Microbiol 2022; 12:990875. [PMID: 36211961 PMCID: PMC9539805 DOI: 10.3389/fcimb.2022.990875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Cyanovirin-N (CV-N), a lectin from Nostoc ellipsosporum was found an infusion inhibitory protein for human immunodeficiency virus (HIV)-1. A tandem-repeat of the engineered domain-swapped dimer bound specific sites at hemagglutinin (HA), Ebola and HIV spike glycoproteins as well as dimannosylated HA peptide, N-acetyl-D-glucosamine and high-mannose containing oligosaccharides. Among these, CV-N bound the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein at a dissociation constant (KD) of 18.6 µM (and KD=260 µM to RBD), which was low-affinity carbohydrate-binding as compared with the recognition of the other viral spikes. Binding of dimannosylated peptide to homo-dimeric CVN2 and variants of CVN2 that were pairing Glu-Arg residues sterically located close to its high-affinity carbohydrate binding sites, was measured using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Binding affinity increased with polar interactions, when the mutated residues were used to substitute a single, or two disulfide bonds, in CVN2. Site-specific N-linked glycans on spikes were mediating the infection with influenza virus by broadly neutralizing antibodies to HA and lectin binding to HA was further investigated via modes of saturation transfer difference (STD)-NMR. Our findings showed that stoichiometry and the lectin’s binding affinity were revealed by an interaction of CVN2 with dimannose units and either the high- or low-affinity binding site. To understand how these binding mechanisms add to viral membrane fusion we compare our tested HA-derived peptides in affinity with SARS-CoV-2 glycoprotein and review lectins and their mechanisms of binding to enveloped viruses for a potential use to simulate neutralization ability.
Collapse
|
8
|
Goll JB, Jain A, Jensen TL, Assis R, Nakajima R, Jasinskas A, Coughlan L, Cherikh SR, Gelber CE, Khan S, Huw Davies D, Meade P, Stadlbauer D, Strohmeier S, Krammer F, Chen WH, Felgner PL. The antibody landscapes following AS03 and MF59 adjuvanted H5N1 vaccination. NPJ Vaccines 2022; 7:103. [PMID: 36042229 PMCID: PMC9427073 DOI: 10.1038/s41541-022-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Current seasonal and pre-pandemic influenza vaccines induce short-lived predominantly strain-specific and limited heterosubtypic responses. To better understand how vaccine adjuvants AS03 and MF59 may provide improved antibody responses to vaccination, we interrogated serum from subjects who received 2 doses of inactivated monovalent influenza A/Indonesia/05/2005 vaccine with or without AS03 or MF59 using hemagglutinin (HA) microarrays (NCT01317758 and NCT01317745). The arrays were designed to reflect both full-length and globular head HA derived from 17 influenza A subtypes (H1 to H16 and H18) and influenza B strains. We observed significantly increased strain-specific and broad homo- and heterosubtypic antibody responses with both AS03 and MF59 adjuvanted vaccination with AS03 achieving a higher titer and breadth of IgG responses relative to MF59. The adjuvanted vaccine was also associated with the elicitation of stalk-directed antibody. We established good correlation of the array antibody responses to H5 antigens with standard HA inhibition and microneutralization titers.
Collapse
Affiliation(s)
| | - Aarti Jain
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | | | - Rafael Assis
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - Rie Nakajima
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - Algis Jasinskas
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - Lynda Coughlan
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - S Khan
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - D Huw Davies
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount. Sinai, New York City, NY, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount. Sinai, New York City, NY, USA
- Moderna Inc., Cambridge, MA, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount. Sinai, New York City, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount. Sinai, New York City, NY, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip L Felgner
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Zhang A, Chaudhari H, Agung Y, D'Agostino MR, Ang JC, Tugg Y, Miller MS. Hemagglutinin stalk-binding antibodies enhance effectiveness of neuraminidase inhibitors against influenza via Fc-dependent effector functions. Cell Rep Med 2022; 3:100718. [PMID: 35977467 PMCID: PMC9418849 DOI: 10.1016/j.xcrm.2022.100718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/09/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ali Zhang
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hanu Chaudhari
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yonathan Agung
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael R D'Agostino
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jann C Ang
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yona Tugg
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
10
|
Folschweiller N, Vanden Abeele C, Chu L, Van Damme P, García-Sastre A, Krammer F, Nachbagauer R, Palese P, Solórzano A, Bi D, David MP, Friel D, Innis BL, Koch J, Mallett CP, Rouxel RN, Salaun B, Vantomme V, Verheust C, Struyf F. Reactogenicity, safety, and immunogenicity of chimeric haemagglutinin influenza split-virion vaccines, adjuvanted with AS01 or AS03 or non-adjuvanted: a phase 1–2 randomised controlled trial. THE LANCET INFECTIOUS DISEASES 2022; 22:1062-1075. [DOI: 10.1016/s1473-3099(22)00024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
|
11
|
Vandoorn E, Parys A, Chepkwony S, Chiers K, Van Reeth K. Efficacy of the NS1-truncated live attenuated influenza virus vaccine for swine against infection with viruses of major North American and European H3N2 lineages. Vaccine 2022; 40:2723-2732. [PMID: 35367071 DOI: 10.1016/j.vaccine.2022.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Control of swine influenza A virus (swIAV) in North America and Europe is complicated because multiple antigenically distinct swIAV strains co-circulate in the field, and no vaccine is available that can provide broad cross-protection against all these swIAVs. In 2017, the first live attenuated influenza vaccine (LAIV) for swine was licensed in the US. The non-structural protein 1 (NS1)-truncated cluster I H3N2 strain A/swine/Texas/4199-2/98 NS1del126 (TX98 LAIV) in this vaccine provides partial cross-protection against heterologous North American cluster II and IV H3N2 swIAV strains. Its efficacy against European or more recent North American H3N2 lineages remains to be investigated. In this study, we evaluated the level of cross-protection against heterologous IAVs representative of the major H3N2 swIAV lineages in Europe and North America. TX98 LAIV prevented both nasal shedding and replication in the lungs of a North American cluster IV H3N2 swIAV for 2/4 pigs, prevented considerable nasal shedding of a North American novel human-like H3N2 swIAV for 2/4 pigs, and reduced replication of a European H3N2 swIAV in the lower respiratory tract to minimal titers for 1/3 pigs. Although TX98 LAIV elicited neutralizing antibodies against the homologous virus in serum and to a lesser extent in nose and lungs, no significant cross-reactive antibody titers against the heterologous swIAVs were detected. Partial cross-protection therefore likely relies on cellular and mucosal immune responses against conserved parts of the swIAV proteins. Since TX98 LAIV can offer partial protection against a broad range of H3N2 swIAVs, it might be a suitable priming vaccine for use in a heterologous prime-boost vaccination strategy.
Collapse
Affiliation(s)
- Elien Vandoorn
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Anna Parys
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sharon Chepkwony
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
12
|
Doelger J, Kardar M, Chakraborty AK. Inferring the intrinsic mutational fitness landscape of influenzalike evolving antigens from temporally ordered sequence data. Phys Rev E 2022; 105:024401. [PMID: 35291059 DOI: 10.1103/physreve.105.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
There still are no effective long-term protective vaccines against viruses that continuously evolve under immune pressure such as seasonal influenza, which has caused, and can cause, devastating epidemics in the human population. To find such a broadly protective immunization strategy, it is useful to know how easily the virus can escape via mutation from specific antibody responses. This information is encoded in the fitness landscape of the viral proteins (i.e., knowledge of the viral fitness as a function of sequence). Here we present a computational method to infer the intrinsic mutational fitness landscape of influenzalike evolving antigens from yearly sequence data. We test inference performance with computer-generated sequence data that are based on stochastic simulations mimicking basic features of immune-driven viral evolution. Although the numerically simulated model does create a phylogeny based on the allowed mutations, the inference scheme does not use this information. This provides a contrast to other methods that rely on reconstruction of phylogenetic trees. Our method just needs a sufficient number of samples over multiple years. With our method, we are able to infer single as well as pairwise mutational fitness effects from the simulated sequence time series for short antigenic proteins. Our fitness inference approach may have potential future use for the design of immunization protocols by identifying intrinsically vulnerable immune target combinations on antigens that evolve under immune-driven selection. In the future, this approach may be applied to influenza and other novel viruses such as SARS-CoV-2, which evolves and, like influenza, might continue to escape the natural and vaccine-mediated immune pressures.
Collapse
Affiliation(s)
- Julia Doelger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Abstract
The germinal centre (GC) response is critical for the generation of affinity-matured plasma cells and memory B cells capable of mediating long-term protective immunity. Understanding whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination elicits a GC response has profound implications for the capacity of responding B cells to contribute to protection against infection. However, direct assessment of the GC response in humans remains a major challenge. Here we summarize emerging evidence for the importance of the GC response in the establishment of durable and broad immunity against SARS-CoV-2 and discuss new approaches to modulate the GC response to better protect against newly emerging SARS-CoV-2 variants. We also discuss new findings showing that the GC B cell response persists in the draining lymph nodes for at least 6 months in some individuals following vaccination with SARS-CoV-2 mRNA-based vaccines.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
14
|
Zhou F, Hansen L, Pedersen G, Grødeland G, Cox R. Matrix M Adjuvanted H5N1 Vaccine Elicits Broadly Neutralizing Antibodies and Neuraminidase Inhibiting Antibodies in Humans That Correlate With In Vivo Protection. Front Immunol 2021; 12:747774. [PMID: 34887855 PMCID: PMC8650010 DOI: 10.3389/fimmu.2021.747774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The highly pathogenic avian influenza H5N1 viruses constantly evolve and give rise to novel variants that have caused widespread zoonotic outbreaks and sporadic human infections. Therefore, vaccines capable of eliciting broadly protective antibody responses are desired and under development. We here investigated the magnitude, kinetics and protective efficacy of the multi-faceted humoral immunity induced by vaccination in healthy adult volunteers with a Matrix M adjuvanted virosomal H5N1 vaccine. Vaccinees were given escalating doses of adjuvanted vaccine (1.5μg, 7.5μg, or 30μg), or a non-adjuvanted vaccine (30μg). An evaluation of sera from vaccinees against pseudotyped viruses covering all (sub)clades isolated from human H5N1 infections demonstrated that the adjuvanted vaccines (7.5μg and 30μg) could elicit rapid and robust increases of broadly cross-neutralizing antibodies against all clades. In addition, the adjuvanted vaccines also induced multifaceted antibody responses including hemagglutinin stalk domain specific, neuraminidase inhibiting, and antibody-dependent cellular cytotoxicity inducing antibodies. The lower adjuvanted dose (1.5µg) showed delayed kinetics, whilst the non-adjuvanted vaccine induced overall lower levels of antibody responses. Importantly, we demonstrate that human sera post vaccination with the adjuvanted (30μg) vaccine provided full protection against a lethal homologous virus challenge in mice. Of note, when combining our data from mice and humans we identified the neutralizing and neuraminidase inhibiting antibody titers as correlates of in vivo protection.
Collapse
Affiliation(s)
- Fan Zhou
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lena Hansen
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gabriel Pedersen
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gunnveig Grødeland
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rebecca Cox
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Javaid W, Ehni J, Gonzalez-Reiche AS, Carreño JM, Hirsch E, Tan J, Khan Z, Kriti D, Ly T, Kranitzky B, Barnett B, Cera F, Prespa L, Moss M, Albrecht RA, Mustafa A, Herbison I, Hernandez MM, Pak TR, Alshammary HA, Sebra R, Smith ML, Krammer F, Gitman MR, Sordillo EM, Simon V, van Bakel H. Real-Time Investigation of a Large Nosocomial Influenza A Outbreak Informed by Genomic Epidemiology. Clin Infect Dis 2021; 73:e4375-e4383. [PMID: 33252647 PMCID: PMC8653627 DOI: 10.1093/cid/ciaa1781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nosocomial respiratory virus outbreaks represent serious public health challenges. Rapid and precise identification of cases and tracing of transmission chains is critical to end outbreaks and to inform prevention measures. METHODS We combined conventional surveillance with influenza A virus (IAV) genome sequencing to identify and contain a large IAV outbreak in a metropolitan healthcare system. A total of 381 individuals, including 91 inpatients and 290 healthcare workers (HCWs), were included in the investigation. RESULTS During a 12-day period in early 2019, infection preventionists identified 89 HCWs and 18 inpatients as cases of influenza-like illness (ILI), using an amended definition without the requirement for fever. Sequencing of IAV genomes from available nasopharyngeal specimens identified 66 individuals infected with a nearly identical strain of influenza A H1N1pdm09 (43 HCWs, 17 inpatients, and 6 with unspecified affiliation). All HCWs infected with the outbreak strain had received the seasonal influenza virus vaccination. Characterization of 5 representative outbreak viral isolates did not show antigenic drift. In conjunction with IAV genome sequencing, mining of electronic records pinpointed the origin of the outbreak as a single patient and a few interactions in the emergency department that occurred 1 day prior to the index ILI cluster. CONCLUSIONS We used precision surveillance to delineate a large nosocomial IAV outbreak, mapping the source of the outbreak to a single patient rather than HCWs as initially assumed based on conventional epidemiology. These findings have important ramifications for more-effective prevention strategies to curb nosocomial respiratory virus outbreaks.
Collapse
Affiliation(s)
- Waleed Javaid
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Infection Prevention, Mount Sinai Beth Israel, New York, New York, USA
| | - Jordan Ehni
- Department of Infection Prevention, Mount Sinai Beth Israel, New York, New York, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elena Hirsch
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thanh Ly
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bethany Kranitzky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Barnett
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Freddy Cera
- Clinical Laboratory, Mount Sinai Beth Israel, New York, New York, USA
| | - Lenny Prespa
- Clinical Laboratory, Mount Sinai Beth Israel, New York, New York, USA
| | - Marie Moss
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ala Mustafa
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ilka Herbison
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew M Hernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Theodore R Pak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hala A Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa R Gitman
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
McMillan CLD, Cheung STM, Modhiran N, Barnes J, Amarilla AA, Bielefeldt-Ohmann H, Lee LYY, Guilfoyle K, van Amerongen G, Stittelaar K, Jakon V, Lebas C, Reading P, Short KR, Young PR, Watterson D, Chappell KJ. Development of molecular clamp stabilized hemagglutinin vaccines for Influenza A viruses. NPJ Vaccines 2021; 6:135. [PMID: 34750396 PMCID: PMC8575991 DOI: 10.1038/s41541-021-00395-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Influenza viruses cause a significant number of infections and deaths annually. In addition to seasonal infections, the risk of an influenza virus pandemic emerging is extremely high owing to the large reservoir of diverse influenza viruses found in animals and the co-circulation of many influenza subtypes which can reassort into novel strains. Development of a universal influenza vaccine has proven extremely challenging. In the absence of such a vaccine, rapid response technologies provide the best potential to counter a novel influenza outbreak. Here, we demonstrate that a modular trimerization domain known as the molecular clamp allows the efficient production and purification of conformationally stabilised prefusion hemagglutinin (HA) from a diverse range of influenza A subtypes. These clamp-stabilised HA proteins provided robust protection from homologous virus challenge in mouse and ferret models and some cross protection against heterologous virus challenge. This work provides a proof-of-concept for clamp-stabilised HA vaccines as a tool for rapid response vaccine development against future influenza A virus pandemics.
Collapse
Affiliation(s)
- Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - James Barnes
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072 and 4029, Australia.,School of Veterinary Science, The University of Queensland Gatton Campus, Gatton, QLD, 4343, Australia
| | - Leo Yi Yang Lee
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Kate Guilfoyle
- Viroclinics Xplore, Landerd Campus, Nistelrooise Baan 3, 5374 RE, Schaijk, The Netherlands
| | - Geert van Amerongen
- Viroclinics Xplore, Landerd Campus, Nistelrooise Baan 3, 5374 RE, Schaijk, The Netherlands
| | - Koert Stittelaar
- Viroclinics Xplore, Landerd Campus, Nistelrooise Baan 3, 5374 RE, Schaijk, The Netherlands
| | - Virginie Jakon
- Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-Les-Ouates, Geneva, Switzerland
| | - Celia Lebas
- Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-Les-Ouates, Geneva, Switzerland
| | - Patrick Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3000, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072 and 4029, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072 and 4029, Australia. .,The Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072 and 4029, Australia. .,The Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072 and 4029, Australia. .,The Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
17
|
Guthmiller JJ, Utset HA, Wilson PC. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021; 13:965. [PMID: 34067435 PMCID: PMC8224597 DOI: 10.3390/v13060965] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses.
Collapse
Affiliation(s)
- Jenna J. Guthmiller
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Henry A. Utset
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Patrick C. Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Dhar N, Kwatra G, Nunes MC, Cutland C, Izu A, Nachbagauer R, Krammer F, Madhi SA. Hemagglutinin Stalk Antibody Responses Following Trivalent Inactivated Influenza Vaccine Immunization of Pregnant Women and Association With Protection From Influenza Virus Illness. Clin Infect Dis 2021; 71:1072-1079. [PMID: 31565750 PMCID: PMC7428398 DOI: 10.1093/cid/ciz927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The conserved, immuno-subdominant influenza virus hemagglutinin (HA) stalk region is a potential universal group-specific influenza virus vaccine epitope. We analyzed antibody responses to H1 hemagglutinin stalk domain (H1/stalk) following trivalent influenza inactivated vaccine (IIV3) immunization in pregnant women, and association with protection against influenza virus illness. METHODS One hundred forty-five human immunodeficiency virus (HIV)-uninfected pregnant women (68 IIV3 and 77 placebo recipients) and 140 pregnant women with HIV infection (72 IIV3 and 68 placebo recipients) were independently randomized in placebo-controlled efficacy trials of IIV3. Plasma samples were tested for H1/stalk immunoglobulin G (IgG) and hemagglutination inhibition (HAI) antibodies prevaccination and 1 month postvaccination. Women had weekly surveillance for influenza illness, confirmed by polymerase chain reaction. RESULTS Increases in H1/stalk IgG (and HAI) antibody levels were elicited post-IIV3, with responses being higher in HIV-uninfected women than in women living with HIV. Among HIV-uninfected vaccinees, there was no correlation (postvaccination) between H1/stalk and HAI antibody responses, whereas a strong correlation was observed in vaccinees with HIV. The H1/stalk IgG concentration was lower among women developing A/H1N1 illness (85.3 arbitrary units [AU]/mL) than those without A/H1N1 illness (219.6 AU/mL; P = .001). H1/stalk IgG concentration ≥215 AU/mL was associated with 90% lower odds (odds ratio, 0.09; P = .005) of A/H1N1 illness. Also, H1/stalk IgG was significantly lower among women with influenza B illness (93.9 AU/mL) than among their counterparts (215.5 AU/mL) (P = .04); however, no association was observed after adjusting for HAI titers. CONCLUSIONS H1/stalk IgG concentration was associated with lower odds for A/H1N1 influenza virus illness, indicating its potential as an epitope for a universal vaccine against group 1 influenza virus.
Collapse
Affiliation(s)
- Nisha Dhar
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare Cutland
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shabir A Madhi
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Lu Y, Jiang R, Freyn AW, Wang J, Strohmeier S, Lederer K, Locci M, Zhao H, Angeletti D, O’Connor KC, Kleinstein SH, Nachbagauer R, Craft J. CD4+ follicular regulatory T cells optimize the influenza virus-specific B cell response. J Exp Med 2021; 218:e20200547. [PMID: 33326020 PMCID: PMC7748821 DOI: 10.1084/jem.20200547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
CD4+ follicular regulatory T (Tfr) cells control B cell responses through the modulation of follicular helper T (Tfh) cells and germinal center development while suppressing autoreactivity; however, their role in the regulation of productive germinal center B cell responses and humoral memory is incompletely defined. We show that Tfr cells promote antigen-specific germinal center B cell responses upon influenza virus infection. Following viral challenge, we found that Tfr cells are necessary for robust generation of virus-specific, long-lived plasma cells, antibody production against both hemagglutinin (HA) and neuraminidase (NA), the two major influenza virus glycoproteins, and appropriate regulation of the BCR repertoire. To further investigate the functional relevance of Tfr cells during viral challenge, we used a sequential immunization model with repeated exposure of antigenically partially conserved strains of influenza viruses, revealing that Tfr cells promote recall antibody responses against the conserved HA stalk region. Thus, Tfr cells promote antigen-specific B cell responses and are essential for the development of long-term humoral memory.
Collapse
Affiliation(s)
- Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Roy Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
| | - Alec W. Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiawei Wang
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Katlyn Lederer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongyu Zhao
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Davide Angeletti
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Kevin C. O’Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine (Rheumatology, Allergy, and Immunology), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
20
|
Démoulins T, Ruggli N, Gerber M, Thomann-Harwood LJ, Ebensen T, Schulze K, Guzmán CA, McCullough KC. Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs. Front Immunol 2021; 11:622385. [PMID: 33584723 PMCID: PMC7877248 DOI: 10.3389/fimmu.2020.622385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3’,5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.
Collapse
Affiliation(s)
- Thomas Démoulins
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus Gerber
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa J Thomann-Harwood
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kenneth C McCullough
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
22
|
Wang Q, Sun Z, Li J, Qin T, Ma H, Chen S, Peng D, Liu X. Identification of a universal antigen epitope of influenza A virus using peptide microarray. BMC Vet Res 2021; 17:22. [PMID: 33413356 PMCID: PMC7792037 DOI: 10.1186/s12917-020-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein. Results Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14–4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN. Conclusion The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02725-5.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhihao Sun
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
23
|
Han J, Schmitz AJ, Richey ST, Dai YN, Turner HL, Mohammed BM, Fremont DH, Ellebedy AH, Ward AB. Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Rep 2021; 34:108682. [PMID: 33503432 PMCID: PMC7888560 DOI: 10.1016/j.celrep.2020.108682] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022] Open
Abstract
Novel influenza A virus (IAV) strains elicit recall immune responses to conserved epitopes, making them favorable antigenic choices for universal influenza virus vaccines. Evaluating these immunogens requires a thorough understanding of the antigenic sites targeted by the polyclonal antibody (pAb) response, which single-particle electron microscopy (EM) can sensitively detect. In this study, we employ EM polyclonal epitope mapping (EMPEM) to extensively characterize the pAb response to hemagglutinin (HA) after H5N1 immunization in humans. Cross-reactive pAbs originating from memory B cells immediately bound the stem of HA and persisted for more than a year after vaccination. In contrast, de novo pAb responses to multiple sites on the head of HA, targeting previously determined key neutralizing sites on H5 HA, expanded after the second immunization and waned quickly. Thus, EMPEM provides a robust tool for comprehensively tracking the specificity and durability of immune responses elicited by novel universal influenza vaccine candidates.
Collapse
Affiliation(s)
- Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bassem M Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Nachbagauer R, Feser J, Naficy A, Bernstein DI, Guptill J, Walter EB, Berlanda-Scorza F, Stadlbauer D, Wilson PC, Aydillo T, Behzadi MA, Bhavsar D, Bliss C, Capuano C, Carreño JM, Chromikova V, Claeys C, Coughlan L, Freyn AW, Gast C, Javier A, Jiang K, Mariottini C, McMahon M, McNeal M, Solórzano A, Strohmeier S, Sun W, Van der Wielen M, Innis BL, García-Sastre A, Palese P, Krammer F. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat Med 2021; 27:106-114. [PMID: 33288923 DOI: 10.1038/s41591-020-1118-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/02/2020] [Indexed: 11/09/2022]
Abstract
Seasonal influenza viruses constantly change through antigenic drift and the emergence of pandemic influenza viruses through antigenic shift is unpredictable. Conventional influenza virus vaccines induce strain-specific neutralizing antibodies against the variable immunodominant globular head domain of the viral hemagglutinin protein. This necessitates frequent re-formulation of vaccines and handicaps pandemic preparedness. In this completed, observer-blind, randomized, placebo-controlled phase I trial (NCT03300050), safety and immunogenicity of chimeric hemagglutinin-based vaccines were tested in healthy, 18-39-year-old US adults. The study aimed to test the safety and ability of the vaccines to elicit broadly cross-reactive antibodies against the hemagglutinin stalk domain. Participants were enrolled into five groups to receive vaccinations with live-attenuated followed by AS03-adjuvanted inactivated vaccine (n = 20), live-attenuated followed by inactivated vaccine (n = 15), twice AS03-adjuvanted inactivated vaccine (n = 16) or placebo (n = 5, intranasal followed by intramuscular; n = 10, twice intramuscular) 3 months apart. Vaccination was found to be safe and induced a broad, strong, durable and functional immune response targeting the conserved, immunosubdominant stalk of the hemagglutinin. The results suggest that chimeric hemagglutinins have the potential to be developed as universal vaccines that protect broadly against influenza viruses.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Moderna, Cambridge, MA, USA
| | - Jodi Feser
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Abdollah Naficy
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - David I Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Guptill
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick C Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
- The Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Disha Bhavsar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carly Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Capuano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carine Claeys
- GSK, Wavre, Belgium
- Spmt-Arista Asbl, Brussels, Belgium
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Gast
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Andres Javier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Mariottini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pfizer, Pearl River, NY, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
H1 Hemagglutinin Priming Provides Long-Lasting Heterosubtypic Immunity against H5N1 Challenge in the Mouse Model. mBio 2020; 11:mBio.02090-20. [PMID: 33323511 PMCID: PMC7773984 DOI: 10.1128/mbio.02090-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Current studies point out that an HA-mediated immunological imprint is established early in life during the first exposure to influenza viruses, which critically shapes and biases future immune responses. However, these findings have not been confirmed in animal models, and the precise mechanisms of this phenomenon are not clearly understood. Influenza virus infections leave a signature of immune memory that influences future responses to infections with antigenically related strains. It has been hypothesized that the first exposure in life to H1N1 influenza virus imprints the host immune system, potentially resulting in protection from severe infection with H5N1 later in life through hemagglutinin (HA) stalk-specific antibodies. To study the specific role of the HA on protection against infection without interference of cellular immunity or humoral antineuraminidase immunity, we primed mice with influenza B viruses that express an H1 HA (group 1; B-H1), H3 HA (group 2; B-H3), or wild-type influenza B virus and subsequently challenged them at different time points with an H5N1 virus. Weight loss and survival monitoring showed that the B-H1-primed mice exhibited better protection against H5N1 compared to the control mice. Analysis of H5-specific serum IgG, before and 21 days after H5N1 challenge, evidenced the presence of anti-stalk H5 cross-reactive antibodies in the BH-1 group that were boosted by H5N1 infection. The increased immune responses and protection induced by priming with the B-H1 viruses lasted at least up to 1 year. Hence, a single HA priming based on natural infection induces long-lasting protective immunity against heterosubtypic strains from the same phylogenetic HA group in mice. This study gives mechanistic support to the earlier finding in humans that imprinting by H1 HA protects against H5N1 infections and that highly conserved regions on the HA, like the stalk, are involved in this phenomenon.
Collapse
|
26
|
Carreño JM, McDonald JU, Hurst T, Rigsby P, Atkinson E, Charles L, Nachbagauer R, Behzadi MA, Strohmeier S, Coughlan L, Aydillo T, Brandenburg B, García-Sastre A, Kaszas K, Levine MZ, Manenti A, McDermott AB, Montomoli E, Muchene L, Narpala SR, Perera RAPM, Salisch NC, Valkenburg SA, Zhou F, Engelhardt OG, Krammer F. Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies. Vaccines (Basel) 2020; 8:vaccines8040666. [PMID: 33182279 PMCID: PMC7712758 DOI: 10.3390/vaccines8040666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A “pooled serum” (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the development of a serum standard for antibodies to the HA stalk domain of phylogenetic group 1.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Jacqueline U. McDonald
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Tara Hurst
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Peter Rigsby
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (P.R.); (E.A.)
| | - Eleanor Atkinson
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (P.R.); (E.A.)
| | - Lethia Charles
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | - Boerries Brandenburg
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | - Krisztian Kaszas
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Min Z. Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | | | - Adrian B. McDermott
- Vaccine Immunology Program (VIP), Vaccine Research Center (VRC), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (A.B.M.); (S.R.N.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Leacky Muchene
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Sandeep R. Narpala
- Vaccine Immunology Program (VIP), Vaccine Research Center (VRC), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (A.B.M.); (S.R.N.)
| | - Ranawaka A. P. M. Perera
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (R.A.P.M.P.); (S.A.V.)
| | - Nadine C. Salisch
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Sophie A. Valkenburg
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (R.A.P.M.P.); (S.A.V.)
| | - Fan Zhou
- Influenza Center, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- K.G. Jebsen Center for influenza vaccines, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Othmar G. Engelhardt
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
- Correspondence: (O.G.E.); (F.K.)
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Correspondence: (O.G.E.); (F.K.)
| |
Collapse
|
27
|
Rockman S, Laurie KL, Parkes S, Wheatley A, Barr IG. New Technologies for Influenza Vaccines. Microorganisms 2020; 8:microorganisms8111745. [PMID: 33172191 PMCID: PMC7694987 DOI: 10.3390/microorganisms8111745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Vaccine development has been hampered by the long lead times and the high cost required to reach the market. The 2020 pandemic, caused by a new coronavirus (SARS-CoV-2) that was first reported in late 2019, has seen unprecedented rapid activity to generate a vaccine, which belies the traditional vaccine development cycle. Critically, much of this progress has been leveraged off existing technologies, many of which had their beginnings in influenza vaccine development. This commentary outlines the most promising of the next generation of non-egg-based influenza vaccines including new manufacturing platforms, structure-based antigen design/computational biology, protein-based vaccines including recombinant technologies, nanoparticles, gene- and vector-based technologies, as well as an update on activities around a universal influenza vaccine.
Collapse
Affiliation(s)
- Steven Rockman
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Karen L. Laurie
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Correspondence:
| | - Simone Parkes
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
| | - Adam Wheatley
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Ian G. Barr
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| |
Collapse
|
28
|
Comprehensive Analysis of Antibodies Induced by Vaccination with 4 Kinds of Avian Influenza H5N1 Pre-Pandemic Vaccines. Int J Mol Sci 2020; 21:ijms21197422. [PMID: 33050014 PMCID: PMC7582428 DOI: 10.3390/ijms21197422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Four kinds of avian-derived H5N1 influenza virus, A/Vietnam/1194/2004 (Clade 1), A/Indonesia/5/2005 (Clade 2.1), A/Qinghai/1A/2005 (Clade 2.2), and A/Anhui/1/2005 (Clade 2.3), have been stocked in Japan for use as pre-pandemic vaccines. When a pandemic occurs, these viruses would be used as vaccines in the hope of inducing immunity against the pandemic virus. We analyzed the specificity of antibodies (Abs) produced by B lymphocytes present in the blood after immunization with these vaccines. Eighteen volunteers took part in this project. After libraries of Ab-encoding sequences were constructed using blood from subjects vaccinated with these viruses, a large number of clones that encoded Abs that bound to the virus particles used as vaccines were isolated. These clones were classified into two groups according to the hemagglutination inhibition (HI) activity of the encoded Abs. While two-thirds of the clones were HI positive, the encoded Abs exhibited only restricted strain specificity. On the other hand, half of the HI-negative clones encoded Abs that bound not only to the H5N1 virus but also to the H1N1 virus; with a few exceptions, these Abs appeared to be encoded by memory B cells present before vaccination. The HI-negative clones included those encoding broadly cross-reactive Abs, some of which were encoded by non-VH1-69 germline genes. However, although this work shows that various kinds of anti-H5N1 Abs are encoded by volunteers vaccinated with pre-pandemic vaccines, broad cross-reactivity was seen only in a minority of clones, raising concern regarding the utility of these H5N1 vaccine viruses for the prevention of H5N1 pandemics.
Collapse
|
29
|
Rioux M, McNeil M, Francis ME, Dawe N, Foley M, Langley JM, Kelvin AA. The Power of First Impressions: Can Influenza Imprinting during Infancy Inform Vaccine Design? Vaccines (Basel) 2020; 8:E546. [PMID: 32961707 PMCID: PMC7563765 DOI: 10.3390/vaccines8030546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza virus infection causes severe respiratory illness in people worldwide, disproportionately affecting infants. The immature respiratory tract coupled with the developing immune system, and lack of previous exposure to the virus is thought to synergistically play a role in the increased disease severity in younger age groups. No influenza vaccines are available for those under six months, although maternal influenza immunization is recommended. In children aged six months to two years, vaccine immunogenicity is dampened compared to older children and adults. Unlike older children and adults, the infant immune system has fewer antigen-presenting cells and soluble immune factors. Paradoxically, we know that a person's first infection with the influenza virus during infancy or childhood leads to the establishment of life-long immunity toward that particular virus strain. This is called influenza imprinting. We contend that by understanding the influenza imprinting event in the context of the infant immune system, we will be able to design more effective influenza vaccines for both infants and adults. Working through the lens of imprinting, using infant influenza animal models such as mice and ferrets which have proven useful for infant immunity studies, we will gain a better understanding of imprinting and its implications regarding vaccine design. This review examines literature regarding infant immune and respiratory development, current vaccine strategies, and highlights the importance of research into the imprinting event in infant animal models to develop more effective and protective vaccines for all including young children.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Mara McNeil
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Magen E. Francis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| | - Nicholas Dawe
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Mary Foley
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Joanne M. Langley
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada;
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K 6R8, Canada
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada;
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K 6R8, Canada
| |
Collapse
|
30
|
Li Z, Zaiser SA, Shang P, Heiden DL, Hajovsky H, Katwal P, DeVries B, Baker J, Richt JA, Li Y, He B, Fang Y, Huber VC. A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly protective immunity against genetically divergent influenza a H1 viruses in swine. Vet Microbiol 2020; 250:108859. [PMID: 33039727 PMCID: PMC7500346 DOI: 10.1016/j.vetmic.2020.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
An HA-based vaccine candidate, created by DNA shuffling (HA-113), can be immunogenic when recombinant antigen is expressed by PIV5 (PIV5-113). Immunity induced by the PIV5-113 vaccine can protect mice against infection with 4 of 5 parental HAs used to create the vaccine. Immunity induced by PIV5-113 can protect pigs against infection with an influenza virus isolate that is known to be infectious in pigs.
Pigs are an important reservoir for human influenza viruses, and influenza causes significant economic loss to the swine industry. As demonstrated during the 2009 H1N1 pandemic, control of swine influenza virus infection is a critical step toward blocking emergence of human influenza virus. An effective vaccine that can induce broadly protective immunity against heterologous influenza virus strains is critically needed. In our previous studies [McCormick et al., 2015; PLoS One, 10(6):e0127649], we used molecular breeding (DNA shuffling) strategies to increase the breadth of the variable and conserved epitopes expressed within a single influenza A virus chimeric hemagglutinin (HA) protein. Chimeric HAs were constructed using parental HAs from the 2009 pandemic virus and swine influenza viruses that had a history of zoonotic transmission to humans. In the current study, we used parainfluenza virus 5 (PIV-5) as a vector to express one of these chimeric HA antigens, HA-113. Recombinant PIV-5 expressing HA-113 (PIV5-113) were rescued, and immunogenicity and protective efficacy were tested in both mouse and pig models. The results showed that PIV5-113 can protect mice and pigs against challenge with viruses expressing parental HAs. The protective immunity was extended against other genetically diversified influenza H1-expressing viruses. Our work demonstrates that PIV5-based influenza vaccines are efficacious as vaccines for pigs. The PIV5 vaccine vector and chimeric HA-113 antigen are discussed in the context of the development of universal influenza vaccines and the potential contribution of PIV5-113 as a candidate universal vaccine.
Collapse
Affiliation(s)
- Zhuo Li
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States
| | - Sarah A Zaiser
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pengcheng Shang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Dustin L Heiden
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Heather Hajovsky
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pratik Katwal
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Baylor DeVries
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Jack Baker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Juergen A Richt
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Yanhua Li
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Biao He
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States.
| | - Ying Fang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States.
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States.
| |
Collapse
|
31
|
Nath Neerukonda S, Vassell R, Weiss CD. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Vaccines (Basel) 2020; 8:E382. [PMID: 32664628 PMCID: PMC7563823 DOI: 10.3390/vaccines8030382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza continues to be a public health threat despite the availability of annual vaccines. While vaccines are generally effective at inducing strain-specific immunity, they are sub-optimal or ineffective when drifted or novel pandemic strains arise due to sequence changes in the major surface glycoprotein hemagglutinin (HA). The discovery of a large number of antibodies targeting the highly conserved stem region of HAs that are capable of potently neutralizing a broad range of virus strains and subtypes suggests new ways to protect against influenza. The structural characterization of HA stem epitopes and broadly neutralizing antibody paratopes has enabled the design of novel proteins, mini-proteins, and peptides targeting the HA stem, thus providing a foundation for the design of new vaccines. In this narrative, we comprehensively review the current knowledge about stem-directed broadly neutralizing antibodies and the structural features contributing to virus neutralization.
Collapse
Affiliation(s)
| | | | - Carol D. Weiss
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.N.N.); (R.V.)
| |
Collapse
|
32
|
Wong PT, Goff PH, Sun RJ, Ruge MJ, Ermler ME, Sebring A, O'Konek JJ, Landers JJ, Janczak KW, Sun W, Baker JR. Combined Intranasal Nanoemulsion and RIG-I Activating RNA Adjuvants Enhance Mucosal, Humoral, and Cellular Immunity to Influenza Virus. Mol Pharm 2020; 18:679-698. [PMID: 32491861 DOI: 10.1021/acs.molpharmaceut.0c00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced TH1/TH2/TH17 response when administered intranasally. RIG-I agonists included RNAs derived from Sendai and influenza viral defective interfering RNAs (IVT DI, 3php, respectively) and RIG-I/TLR3 agonist, poly(I:C) (pIC), which induce IFN-Is and TH1-polarized responses. NE/RNA combined adjuvants potentially allow for costimulation of multiple innate immune receptor pathways, more closely mimicking patterns of activation occurring during natural viral infection. Mice intranasally immunized with inactivated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjuvanted with NE/IVT DI or NE/3php (but not NE/pIC) showed synergistic enhancement of systemic PR/8-specific IgG with significantly greater avidity and virus neutralization activity than the individual adjuvants. Notably, NE/IVT DI induced protective neutralizing titers after a single immunization. Hemagglutinin stem-specific antibodies were also improved, allowing recognition of heterologous and heterosubtypic hemagglutinins. All NE/RNAs elicited substantial PR/8-specific sIgA. Finally, a unique cellular response with enhanced TH1/TH17 immunity was induced with the NE/RNAs. These results demonstrate that the enhanced immunogenicity of the adjuvant combinations was synergistic and not simply additive, highlighting the potential value of a combined adjuvant approach for improving the efficacy of vaccination against the influenza virus.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter H Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Rachel J Sun
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Matthew J Ruge
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Megan E Ermler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Alyssa Sebring
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jeffrey J Landers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Katarzyna W Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - James R Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Ross TM. Universal Influenza Vaccine Approaches Using Full-Length or Head-Only Hemagglutinin Proteins. J Infect Dis 2020; 219:S57-S61. [PMID: 30715379 DOI: 10.1093/infdis/jiz004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently an unmet need to develop an effective broadly reactive or universal vaccine against influenza viruses capable of conferring protection against both seasonal and prepandemic strains. Influenza vaccines elicit immune responses that are protective against antigenically similar viruses within a subtype. These vaccines elicit antibodies that target the surface viral glycoproteins hemagglutinin and neuraminidase. If there is an antigenic mismatch between these proteins in the influenza vaccines and cocirculating influenza isolates, there is a decrease in the vaccine effectiveness in vaccinated persons. Various novel influenza vaccine candidates are being evaluated in animal studies and clinical human trials. This article focuses on the advantages and potential shortcomings of broadly reactive or universal vaccine candidates based on the hemagglutinin globular head and the thoughts about using this antigen as the basis for future influenza vaccine strategies.
Collapse
Affiliation(s)
- Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens.,Department of Infectious Diseases, University of Georgia, Athens
| |
Collapse
|
34
|
Kubo M, Miyauchi K. Breadth of Antibody Responses during Influenza Virus Infection and Vaccination. Trends Immunol 2020; 41:394-405. [PMID: 32265127 DOI: 10.1016/j.it.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Influenza viruses are a major public health problem, causing severe respiratory diseases. Vaccines offer the effective protective strategy against influenza virus infection. However, the systemic and adaptive immune responses to infection and vaccination are quite different. Inactivated vaccines are the best available countermeasure to induce effective antibodies against the emerged virus, but the response is narrow compared with potential breadth of virus infection. There is solid evidence to indicate that antibody responses to natural infection are relatively broad and exhibit quite different immunodominance patterns. Furthermore, T follicular helper cells (TFH) and germinal center (GC) responses play a central role in generating broad protective antibodies. In this review, we discuss recent advances on the contribution of TFH and GC responses to the breadth of antibody responses.
Collapse
Affiliation(s)
- Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan.
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
35
|
Matsuda K, Huang J, Zhou T, Sheng Z, Kang BH, Ishida E, Griesman T, Stuccio S, Bolkhovitinov L, Wohlbold TJ, Chromikova V, Cagigi A, Leung K, Andrews S, Cheung CSF, Pullano AA, Plyler J, Soto C, Zhang B, Yang Y, Joyce MG, Tsybovsky Y, Wheatley A, Narpala SR, Guo Y, Darko S, Bailer RT, Poole A, Liang CJ, Smith J, Alexander J, Gurwith M, Migueles SA, Koup RA, Golding H, Khurana S, McDermott AB, Shapiro L, Krammer F, Kwong PD, Connors M. Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Sci Immunol 2020; 4:4/34/eaau2710. [PMID: 31004012 DOI: 10.1126/sciimmunol.aau2710] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Induction of an antibody response capable of recognizing highly diverse strains is a major obstacle to the development of vaccines for viruses such as HIV and influenza. Here, we report the dynamics of B cell expansion and evolution at the single-cell level after vaccination with a replication-competent adenovirus type 4 recombinant virus expressing influenza H5 hemagglutinin. Fluorescent H1 or H5 probes were used to quantitate and isolate peripheral blood B cells and their antigen receptors. We observed increases in H5-specific antibody somatic hypermutation and potency for several months beyond the period of active viral replication that was not detectable at the serum level. Individual broad and potent antibodies could be isolated, including one stem-specific antibody that is part of a new multidonor class. These results demonstrate prolonged evolution of the B cell response for months after vaccination and should be considered in efforts to evaluate or boost vaccine-induced immunity.
Collapse
Affiliation(s)
- Kenta Matsuda
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jinghe Huang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY 10032, USA
| | - Byong H Kang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elise Ishida
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Trevor Griesman
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Stuccio
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lyuba Bolkhovitinov
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Teddy J Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Crystal S F Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alyssa A Pullano
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jason Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Adam Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics, Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY 10032, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - April Poole
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jon Smith
- Emergent Biosolutions Inc., Gaithersburg, MD 20879, USA
| | | | - Marc Gurwith
- Emergent Biosolutions Inc., Gaithersburg, MD 20879, USA
| | - Stephen A Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Admnistration, Silver Spring, MD 20993, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Admnistration, Silver Spring, MD 20993, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY 10032, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark Connors
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
37
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
38
|
Kongchanagul A, Samnuan K, Wirachwong P, Surichan S, Puthavathana P, Pitisuttithum P, Boonnak K. A live attenuated H5N2 prime- inactivated H5N1 boost vaccination induces influenza virus hemagglutinin stalk specific antibody responses. Vaccine 2020; 38:852-858. [PMID: 31708176 DOI: 10.1016/j.vaccine.2019.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The emergence and spread of highly pathogenic avian influenza (H5N1) viruses have raised global concerns of a possible human pandemic, spurring efforts towards H5N1 influenza vaccine development and improvements in vaccine administration methods. We previously showed that a prime-boost vaccination strategy induces robust and broadly cross-reactive antibody responses against the hemagglutinin globular head domain. Here, we specifically measure antibodies against the conserved hemagglutinin stem region in serum samples obtained from the prior study to determine whether stalk-reactive antibodies can also be induced by the prime-boost regimen. METHOD Serum samples collected from 60 participants before vaccination and on days 7, 28 and 90 following boosting vaccination were used in this study. 40 participants received two doses of live attenuated H5N2 vaccine (LAIV H5N2) followed by one dose of inactivated H5N1 vaccine a year later, while 20 participants received only the inactivated H5N1 vaccine. We tested these serum samples for stalk-reactive antibodies via enzyme-linked immunosorbent (ELISA) and microneutralization assays. RESULTS Stalk-specific antibody levels measured by both assays were found to be significantly higher in primed individuals than the unprimed group. ELISA results showed that 22.5, 70.5 and 57.5% of primed participants had a four-fold or more increase in stalk antibody titers on days 7, 28 and 90 following boosting vaccination, respectively; whereas the unprimed group had no increase. Peak geometric mean titers (GMT) for stalk antibodies in the LAIV H5N2 experienced group (24,675 [95% CI; 19,531-31,174]) were significantly higher than those who received only the inactivated H5N1 vaccine (8877 [7140-11,035]; p < 0·0001). Moreover, stalk antibodies displaying neutralizing activity also increased in primed participants, but not in the unprimed group. CONCLUSION Our finding emphasizes the importance of prime-boost vaccination for effectively inducing stalk antibodies, which is an attractive target for developing vaccines that induce stalk reactive antibodies.
Collapse
Affiliation(s)
| | - Karnyart Samnuan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | | | | | - Punnee Pitisuttithum
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand; Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand.
| |
Collapse
|
39
|
Bernstein DI, Guptill J, Naficy A, Nachbagauer R, Berlanda-Scorza F, Feser J, Wilson PC, Solórzano A, Van der Wielen M, Walter EB, Albrecht RA, Buschle KN, Chen YQ, Claeys C, Dickey M, Dugan HL, Ermler ME, Freeman D, Gao M, Gast C, Guthmiller JJ, Hai R, Henry C, Lan LYL, McNeal M, Palm AKE, Shaw DG, Stamper CT, Sun W, Sutton V, Tepora ME, Wahid R, Wenzel H, Wohlbold TJ, Innis BL, García-Sastre A, Palese P, Krammer F. Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:80-91. [PMID: 31630990 PMCID: PMC6928577 DOI: 10.1016/s1473-3099(19)30393-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Influenza viruses cause substantial annual morbidity and mortality globally. Current vaccines protect against influenza only when well matched to the circulating strains. However, antigenic drift can cause considerable mismatches between vaccine and circulating strains, substantially reducing vaccine effectiveness. Moreover, current seasonal vaccines are ineffective against pandemic influenza, and production of a vaccine matched to a newly emerging virus strain takes months. Therefore, there is an unmet medical need for a broadly protective influenza virus vaccine. We aimed to test the ability of chimeric H1 haemagglutinin-based universal influenza virus vaccine candidates to induce broadly cross-reactive antibodies targeting the stalk domain of group 1 haemagglutinin-expressing influenza viruses. METHODS We did a randomised, observer-blinded, phase 1 study in healthy adults in two centres in the USA. Participants were randomly assigned to one of three prime-boost, chimeric haemagglutinin-based vaccine regimens or one of two placebo groups. The vaccine regimens included a chimeric H8/1, intranasal, live-attenuated vaccine on day 1 followed by a non-adjuvanted, chimeric H5/1, intramuscular, inactivated vaccine on day 85; the same regimen but with the inactivated vaccine being adjuvanted with AS03; and an AS03-adjuvanted, chimeric H8/1, intramuscular, inactivated vaccine followed by an AS03-adjuvanted, chimeric H5/1, intramuscular, inactivated vaccine. In this planned interim analysis, the primary endpoints of reactogenicity and safety were assessed by blinded study group. We also assessed anti-H1 haemagglutinin stalk, anti-H2, anti-H9, and anti-H18 IgG antibody titres and plasmablast and memory B-cell responses in peripheral blood. This trial is registered with ClinicalTrials.gov, number NCT03300050. FINDINGS Between Oct 10, 2017, and Nov 27, 2017, 65 participants were enrolled and randomly assigned. The adjuvanted inactivated vaccine, but not the live-attenuated vaccine, induced a substantial serum IgG antibody response after the prime immunisation, with a seven times increase in anti-H1 stalk antibody titres on day 29. After boost immunisation, all vaccine regimens induced detectable anti-H1 stalk antibody (2·2-5·6 times induction over baseline), cross-reactive serum IgG antibody, and peripheral blood plasmablast responses. An unsolicited adverse event was reported for 29 (48%) of 61 participants. Solicited local adverse events were reported in 12 (48%) of 25 participants following prime vaccination with intramuscular study product or placebo, in 12 (33%) of 36 after prime immunisation with intranasal study product or placebo, and in 18 (32%) of 56 following booster doses of study product or placebo. Solicited systemic adverse events were reported in 14 (56%) of 25 after prime immunisation with intramuscular study product or placebo, in 22 (61%) of 36 after immunisation with intranasal study product or placebo, and in 21 (38%) of 56 after booster doses of study product or placebo. Disaggregated safety data were not available at the time of this interim analysis. INTERPRETATION The tested chimeric haemagglutinin-based, universal influenza virus vaccine regimens elicited cross-reactive serum IgG antibodies that targeted the conserved haemagglutinin stalk domain. This is the first proof-of-principle study to show that high anti-stalk titres can be induced by a rationally designed vaccine in humans and opens up avenues for further development of universal influenza virus vaccines. On the basis of the blinded study group, the vaccine regimens were tolerable and no safety concerns were observed. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- David I Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Guptill
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Abdollah Naficy
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jodi Feser
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Patrick C Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA; The Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emmanuel B Walter
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen N Buschle
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yao-Qing Chen
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Michelle Dickey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Haley L Dugan
- The Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Megan E Ermler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; GlaxoSmithKline, Collegeville, PA, USA
| | - Debra Freeman
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Min Gao
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Christopher Gast
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Jenna J Guthmiller
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rong Hai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Carole Henry
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Linda Yu-Ling Lan
- The Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna-Karin E Palm
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Dustin G Shaw
- The Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Sutton
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Micah E Tepora
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rahnuma Wahid
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Heather Wenzel
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Teddy John Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts. NPJ Vaccines 2019; 4:51. [PMID: 31839997 PMCID: PMC6898674 DOI: 10.1038/s41541-019-0147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023] Open
Abstract
Licensed influenza virus vaccines target the head domain of the hemagglutinin (HA) glycoprotein which undergoes constant antigenic drift. The highly conserved HA stalk domain is an attractive target to increase immunologic breadth required for universal influenza virus vaccines. We tested the hypothesis that immunization with a pandemic influenza virus vaccine boosts pre-existing anti-stalk antibodies. We used chimeric cH6/1, full length H2 and H18 HA antigens in an ELISA to measure anti-stalk antibodies in recipients participating in clinical trials of A/H1N1, A/H5N1 and A/H9N2 vaccines. The vaccines induced high titers of anti-H1 stalk antibodies in adults and children, with higher titers elicited by AS03-adjuvanted vaccines. We also observed cross-reactivity to H2 and H18 HAs. The A/H9N2 vaccine elicited plasmablast and memory B-cell responses. Post-vaccination serum from vaccinees protected mice against lethal challenge with cH6/1N5 and cH5/3N4 viruses. These findings support the concept of a chimeric HA stalk-based universal influenza virus vaccine. clinicaltrials.gov: NCT02415842. The head domain of influenza virus hemagglutinin (HA), the main target of licensed influenza virus vaccines, undergoes constant antigenic drift. The HA stalk domain, on the other hand, is highly conserved and is thus an attractive target for developing universal influenza vaccine formulations. Raffael Nachbagauer and colleagues now show that vaccination with pandemic influenza virus vaccines boosts pre-existing antibody responses to HA stalk domains in pediatric cohorts. Analysis of serum from individuals immunized with pandemic vaccines A/H1N1, A/H5N1 and A/H9N2, revealed basal levels of anti-stalk antibodies that were increased following immunization. The elicited antibodies had neutralization properties, and plasmablast responses from peripheral blood immune cells recovered from vaccinated individuals were also recorded. These findings support pandemic vaccines as a potential strategy towards universal influenza virus vaccines by expanding pre-existing antibodies against conserved HA stalk structures.
Collapse
|
41
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
42
|
Abstract
Influenza viruses remain a severe burden to human health because of their contribution to overall morbidity and mortality. Current seasonal influenza virus vaccines do not provide sufficient protection to alleviate the annual impact of influenza and cannot confer protection against potentially pandemic influenza viruses. The lack of protection is due to rapid changes of the viral epitopes targeted by the vaccine and the often suboptimal immunogenicity of current immunization strategies. Major efforts to improve vaccination approaches are under way. The development of a universal influenza virus vaccine may be possible by combining the lessons learned from redirecting the immune response toward conserved viral epitopes, as well as the use of adjuvants and novel vaccination platforms.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| |
Collapse
|
43
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Generation of a protective murine monoclonal antibody against the stem of influenza hemagglutinins from group 1 viruses and identification of resistance mutations against it. PLoS One 2019; 14:e0222436. [PMID: 31513662 PMCID: PMC6742228 DOI: 10.1371/journal.pone.0222436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023] Open
Abstract
Vaccines that elicit broadly cross-neutralizing antibodies, including antibodies that target the conserved stem of hemagglutinin (HA), are being developed as a strategy for next-generation influenza vaccines that protect against influenza across multiple years. However, efficient induction of cross-neutralizing antibodies remains a challenge, and potential escape mutations have not been well characterized. Here we elicited cross-neutralizing antibodies by immunizing animals with the hemagglutinins from H5 and H9 subtype influenza A viruses that are sensitive to neutralization by stem antibodies. We further isolated and characterized an HA stem monoclonal antibody 4C2 that broadly neutralizes group 1 influenza viruses and identified HA mutations that reduced sensitivity to stem antibodies. Our results offer insights for next-generation influenza vaccine strategies for inducing cross-neutralizing antibodies.
Collapse
|
45
|
Zhang X, Xia Y, Yang L, He J, Li Y, Xia C. Brevilin A, a Sesquiterpene Lactone, Inhibits the Replication of Influenza A Virus In Vitro and In Vivo. Viruses 2019; 11:E835. [PMID: 31500389 PMCID: PMC6783993 DOI: 10.3390/v11090835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
With the emergence of drug-resistant strains of influenza A viruses (IAV), new antivirals are needed to supplement the existing counter measures against IAV infection. We have previously shown that brevilin A, a sesquiterpene lactone isolated from C. minima, suppresses the infection of influenza A/PR/8/34 (H1N1) in vitro. Here, we further investigate the antiviral activity and mode of action of brevilin A against different IAV subtypes. Brevilin A inhibited the replication of influenza A H1N1, H3N2, and H9N2 viruses in vitro. The suppression effect of brevilin A was observed as early as 4-8 hours post infection (hpi). Furthermore, we determined that brevilin A inhibited viral replication in three aspects, including viral RNA (vRNA) synthesis, expression of viral mRNA, and protein encoded from the M and NS segments, and nuclear export of viral ribonucleoproteins (vRNPs). The anti-IAV activity of brevilin A was further confirmed in mice. A delayed time-to-death with 50% surviving up to 14 days post infection was obtained with brevilin A (at a dose of 25 mg/kg) treated animals compared to the control cohorts. Together, these results are encouraging for the exploration of sesquiterpene lactones with similar structure to brevilin A as potential anti-influenza therapies.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Crotonates/administration & dosage
- Female
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H9N2 Subtype/drug effects
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/physiology
- Influenza, Human/drug therapy
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Sesquiterpenes/administration & dosage
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Yiping Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Li Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yaolan Li
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
46
|
Tesini BL, Kanagaiah P, Wang J, Hahn M, Halliley JL, Chaves FA, Nguyen PQT, Nogales A, DeDiego ML, Anderson CS, Ellebedy AH, Strohmeier S, Krammer F, Yang H, Bandyopadhyay S, Ahmed R, Treanor JJ, Martinez-Sobrido L, Golding H, Khurana S, Zand MS, Topham DJ, Sangster MY. Broad Hemagglutinin-Specific Memory B Cell Expansion by Seasonal Influenza Virus Infection Reflects Early-Life Imprinting and Adaptation to the Infecting Virus. J Virol 2019; 93:e00169-19. [PMID: 30728266 PMCID: PMC6450111 DOI: 10.1128/jvi.00169-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Memory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection "imprints" for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCE Rapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.
Collapse
Affiliation(s)
- Brenda L Tesini
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Preshetha Kanagaiah
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jiong Wang
- Division of Nephrology Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Megan Hahn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica L Halliley
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Phuong Q T Nguyen
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher S Anderson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ali H Ellebedy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John J Treanor
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hana Golding
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Surender Khurana
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Martin S Zand
- Division of Nephrology Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
47
|
Age-specific differences in the dynamics of protective immunity to influenza. Nat Commun 2019; 10:1660. [PMID: 30971703 PMCID: PMC6458119 DOI: 10.1038/s41467-019-09652-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022] Open
Abstract
Influenza A viruses evolve rapidly to escape host immunity, causing reinfection. The form and duration of protection after each influenza virus infection are poorly understood. We quantify the dynamics of protective immunity by fitting individual-level mechanistic models to longitudinal serology from children and adults. We find that most protection in children but not adults correlates with antibody titers to the hemagglutinin surface protein. Protection against circulating strains wanes to half of peak levels 3.5–7 years after infection in both age groups, and wanes faster against influenza A(H3N2) than A(H1N1)pdm09. Protection against H3N2 lasts longer in adults than in children. Our results suggest that influenza antibody responses shift focus with age from the mutable hemagglutinin head to other epitopes, consistent with the theory of original antigenic sin, and might affect protection. Imprinting, or primary infection with a subtype, has modest to no effect on the risk of non-medically attended infections in adults. Protective immunity after influenza virus infection is poorly understood. Here, the authors quantify the dynamics of immunity against influenza A virus infections by fitting individual-level mechanistic models to longitudinal serology, and find that the form and dynamics of protection differ between children and adults.
Collapse
|
48
|
Liu WC, Nachbagauer R, Stadlbauer D, Solórzano A, Berlanda-Scorza F, García-Sastre A, Palese P, Krammer F, Albrecht RA. Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Front Immunol 2019; 10:756. [PMID: 31105689 PMCID: PMC6499175 DOI: 10.3389/fimmu.2019.00756] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Due to continuous antigenic drift and occasional antigenic shift, influenza viruses escape from human adaptive immunity resulting in significant morbidity and mortality in humans. Therefore, to avoid the need for annual reformulation and readministration of seasonal influenza virus vaccines, we are developing a novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccine, which is comprised of sequential immunization with antigens containing a conserved stalk domain derived from a circulating pandemic H1N1 strain in combination with “exotic” head domains. Here, we show that this prime-boost sequential immunization strategy redirects antibody responses toward the conserved stalk region. We compared the vaccine efficacy elicited by distinct vaccination approaches in the preclinical ferret model of influenza. All ferrets immunized with cHA-based vaccines developed stalk-specific and broadly cross-reactive antibody responses. Two consecutive vaccinations with live-attenuated influenza viruses (LAIV-LAIV) conferred superior protection against pH1N1 and H6N1 challenge infection. Sequential immunization with LAIV followed by inactivated influenza vaccine (LAIV-IIV regimen) also induced robust antibody responses. Importantly, the LAIV-LAIV immunization regimen also induced HA stalk-specific CD4+IFN-γ+ and CD8+IFN-γ+ effector T cell responses in peripheral blood that were recalled by pH1N1 viral challenge. The findings from this preclinical study suggest that an LAIV-LAIV vaccination regimen would be more efficient in providing broadly protective immunity against influenza virus infection as compared to other approaches tested here.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
49
|
Holzer B, Martini V, Edmans M, Tchilian E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front Immunol 2019; 10:98. [PMID: 30804933 PMCID: PMC6371849 DOI: 10.3389/fimmu.2019.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza viruses are an ongoing threat to humans and are endemic in pigs, causing considerable economic losses to farmers. Pigs are also a source of new viruses potentially capable of initiating human pandemics. Many tools including monoclonal antibodies, recombinant cytokines and chemokines, gene probes, tetramers, and inbred pigs allow refined analysis of immune responses against influenza. Recent advances in understanding of the pig innate system indicate that it shares many features with that of humans, although there is a larger gamma delta component. The fine specificity and mechanisms of cross-protective T cell immunity have yet to be fully defined, although it is clear that the local immune response is important. The repertoire of pig antibody response to influenza has not been thoroughly explored. Here we review current understanding of adaptive immune responses against influenza in pigs and the use of the pig as a model to study human disease.
Collapse
Affiliation(s)
- Barbara Holzer
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Veronica Martini
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Matthew Edmans
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Elma Tchilian
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| |
Collapse
|
50
|
Francis ME, King ML, Kelvin AA. Back to the Future for Influenza Preimmunity-Looking Back at Influenza Virus History to Infer the Outcome of Future Infections. Viruses 2019; 11:v11020122. [PMID: 30704019 PMCID: PMC6410066 DOI: 10.3390/v11020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The influenza virus-host interaction is a classic arms race. The recurrent and evolving nature of the influenza virus family allows a single host to be infected several times. Locked in co-evolution, recurrent influenza virus infection elicits continual refinement of the host immune system. Here we give historical context of circulating influenza viruses to understand how the individual immune history is mirrored by the history of influenza virus circulation. Original Antigenic Sin was first proposed as the negative influence of the host’s first influenza virus infection on the next and Imprinting modernizes Antigenic Sin incorporating both positive and negative outcomes. Building on imprinting, we refer to preimmunity as the continual refinement of the host immune system with each influenza virus infection. We discuss imprinting and the interplay of influenza virus homology, vaccination, and host age establishing preimmunity. We outline host signatures and outcomes of tandem infection according to the sequence of virus and classify these relationships as monosubtypic homologous, monosubtypic heterologous, heterosubtypic, or heterotypic sequential infections. Finally, the preimmunity knowledge gaps are highlighted for future investigation. Understanding the effects of antigenic variable recurrent influenza virus infection on immune refinement will advance vaccination strategies, as well as pandemic preparedness.
Collapse
Affiliation(s)
- Magen Ellen Francis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
| | - Morgan Leslie King
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
| | - Alyson Ann Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
- Canadian Centre for Vaccinology, IWK Health Centre, Halifax NS B3K 6R8, Canada.
| |
Collapse
|