1
|
Kraft CN, Bissinger DW, McNulty EE, Denkers ND, Mathiason CK. Enhanced detection of chronic wasting disease in muscle tissue harvested from infected white-tailed deer employing combined prion amplification assays. PLoS One 2024; 19:e0309918. [PMID: 39441867 PMCID: PMC11498690 DOI: 10.1371/journal.pone.0309918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024] Open
Abstract
Zoonotic transmission of bovine spongiform encephalopathy or mad cow disease, by presumed consumption of infected beef, has increased awareness of the public health risk associated with prion diseases. Chronic wasting disease (CWD) affects moose, elk, and deer, all of which are frequently consumed by humans. Clear evidence of CWD transmission to humans has not been demonstrated, yet, establishing whether CWD prions are present in muscle tissue preferentially consumed by humans is of increasing interest. Conventional assays including immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) lack the sensitivity to detect low concentrations of prions presumed to be present outside neural or lymphatic tissues. Here we combined two prion amplification assays, the product of protein misfolding cyclic amplification (PMCA) applied directly into real-time quaking induced conversion (RT-QuIC) [denoted now as PQ] to demonstrate the presence of prion seeding activity (i.e. prions) in ~55% of hamstring muscles harvested from CWD-positive white-tailed deer. This compares to prion detection in only 10% of the same samples employing standard RT-QuIC. To determine the extent of CWD dissemination within muscle tissues commonly consumed we tested 7 additional muscles from a subset of deer by PQ. Tongue demonstrated the highest level of prions with ~92% positive. All negative controls remained negative in all PMCA and RT-QuIC assays. We conclude that the combination of PMCA with RT-QuIC readout permits detection of low prion concentrations present in muscle tissue of CWD-infected deer. These findings further demonstrate the utility of amplification assays as tools to detect very low levels of prion burden and supports their use to fill knowledge gaps in our understanding of CWD pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Caitlyn N. Kraft
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David W. Bissinger
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
2
|
Simmons SM, Bartz JC. Strain-Specific Targeting and Destruction of Cells by Prions. BIOLOGY 2024; 13:57. [PMID: 38275733 PMCID: PMC10813089 DOI: 10.3390/biology13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Prion diseases are caused by the disease-specific self-templating infectious conformation of the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is tropism within and between tissues. A defining feature of prion strains is the regional distribution of PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical target areas are prion strain-specific populations of neurons within the CNS that are susceptible to neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific, this has led to the hypothesis that the distribution of prion formation cofactors can influence prion tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a unified theory has yet to emerge.
Collapse
Affiliation(s)
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
3
|
Sweetland GD, Eggleston C, Bartz JC, Mathiason CK, Kincaid AE. Expression of the cellular prion protein by mast cells in the human carotid body. Prion 2023; 17:67-74. [PMID: 36943020 PMCID: PMC10038025 DOI: 10.1080/19336896.2023.2193128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Prion diseases are fatal neurologic disorders that can be transmitted by blood transfusion. The route for neuroinvasion following exposure to infected blood is not known. Carotid bodies (CBs) are specialized chemosensitive structures that detect the concentration of blood gasses and provide feedback for the neural control of respiration. Sensory cells of the CB are highly perfused and densely innervated by nerves that are synaptically connected to the brainstem and thoracic spinal cord, known to be areas of early prion deposition following oral infection. Given their direct exposure to blood and neural connections to central nervous system (CNS) areas involved in prion neuroinvasion, we sought to determine if there were cells in the human CB that express the cellular prion protein (PrPC), a characteristic that would support CBs serving as a route for prion neuroinvasion. We collected CBs from cadaver donor bodies and determined that mast cells located in the carotid bodies express PrPC and that these cells are in close proximity to blood vessels, nerves, and nerve terminals that are synaptically connected to the brainstem and spinal cord.
Collapse
Affiliation(s)
- Gregory D. Sweetland
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Connor Eggleston
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anthony E. Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
4
|
Sola D, Betancor M, Marco Lorente PA, Pérez Lázaro S, Barrio T, Sevilla E, Marín B, Moreno B, Monzón M, Acín C, Bolea R, Badiola JJ, Otero A. Diagnosis in Scrapie: Conventional Methods and New Biomarkers. Pathogens 2023; 12:1399. [PMID: 38133284 PMCID: PMC10746075 DOI: 10.3390/pathogens12121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Scrapie, a naturally occurring prion disease affecting goats and sheep, comprises classical and atypical forms, with classical scrapie being the archetype of transmissible spongiform encephalopathies. This review explores the challenges of scrapie diagnosis and the utility of various biomarkers and their potential implications for human prion diseases. Understanding these biomarkers in the context of scrapie may enable earlier prion disease diagnosis in humans, which is crucial for effective intervention. Research on scrapie biomarkers bridges the gap between veterinary and human medicine, offering hope for the early detection and improved management of prion diseases.
Collapse
Affiliation(s)
- Diego Sola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Paula A. Marco Lorente
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Sonia Pérez Lázaro
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Tomás Barrio
- Unité Mixte de Recherche de l’Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement1225 Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, 31076 Toulouse, France
| | - Eloisa Sevilla
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Bernardino Moreno
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| |
Collapse
|
5
|
Gamez N, Bravo-Alegria J, Huang Y, Perez-Urrutia N, Dongarwar D, Soto C, Morales R. Altering Brain Amyloidosis by Intra-Lingual and Extra-Nasal Exposure of Aβ Aggregates. Cells 2022; 11:3442. [PMID: 36359840 PMCID: PMC9654398 DOI: 10.3390/cells11213442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Extensive experimental and human-derived evidence suggest that misfolded Aβ particles spread similarly to infectious prions. Moreover, peripheral administration of Aβ seeds accelerates brain amyloidosis in both susceptible experimental animals and humans. The mechanisms and elements governing the transport of misfolded Aβ from the periphery to the brain are not fully understood, although circulation and retrograde axonal transport have been proposed. Here, we demonstrate that injection of Aβ seeds in the tongue, a highly innervated organ, substantially accelerates the appearance of plaques in Tg2576 mice. In addition, the extra-nasal exposure of Aβ aggregates increased amyloid pathology in the olfactory bulb. Our results show that exposing highly innervated tissues to Aβ seeds accelerates AD-like pathological features, and suggest that Aβ seeds can be transported from peripheral compartments to the brain by retrograde axonal transport. Research in this direction may be relevant on different fronts, including disease mechanisms, diagnosis, and risk-evaluation of potential iatrogenic transmission of Aβ misfolding.
Collapse
Affiliation(s)
- Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad of Malaga, 29010 Malaga, Spain
| | - Javiera Bravo-Alegria
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7620001, Chile
| | - Yumeng Huang
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Nelson Perez-Urrutia
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1456, Concepcion 4080871, Chile
| | - Deepa Dongarwar
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| |
Collapse
|
6
|
Gamez N, Morales R. The Role of Circulating Aβ Seeds in the Progression of Cerebral Amyloidosis. Neurosci Insights 2022; 17:26331055221123072. [PMID: 36158163 PMCID: PMC9493672 DOI: 10.1177/26331055221123072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
While understudied, it is suspected that peripheral Aβ peptides affect Alzheimer's disease (AD)-associated pathological changes in the brain. The peripheral sink hypothesis postulates that the central and peripheral pools of Aβ co-exist in equilibrium. As such, cerebral amyloid levels may be modulated by intervening circulating Aβ. In this commentary, we discuss relevant literature supporting the potential role of peripheral Aβ in exacerbating brain amyloidosis in both humans and mouse models of AD. Moreover, we highlight the need to further understand the mechanisms by which circulating Aβ peptides may reach the brain and contribute to neuropathology. Finally, we discuss the implications of targeting peripheral Aβ as a therapeutic approach in treating AD.
Collapse
Affiliation(s)
- Nazaret Gamez
- Department of Neurology, The
University of Texas Health Science Center at Houston, Houston, TX, USA
- Dpto. Biología Celular, Genética
y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad
de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Rodrigo Morales
- Department of Neurology, The
University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y
Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago,
Chile
| |
Collapse
|
7
|
Koshy SM, Kincaid AE, Bartz JC. Transport of Prions in the Peripheral Nervous System: Pathways, Cell Types, and Mechanisms. Viruses 2022; 14:630. [PMID: 35337037 PMCID: PMC8954800 DOI: 10.3390/v14030630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Prion diseases are transmissible protein misfolding disorders that occur in animals and humans where the endogenous prion protein, PrPC, undergoes a conformational change into self-templating aggregates termed PrPSc. Formation of PrPSc in the central nervous system (CNS) leads to gliosis, spongiosis, and cellular dysfunction that ultimately results in the death of the host. The spread of prions from peripheral inoculation sites to CNS structures occurs through neuroanatomical networks. While it has been established that endogenous PrPC is necessary for prion formation, and that the rate of prion spread is consistent with slow axonal transport, the mechanistic details of PrPSc transport remain elusive. Current research endeavors are primarily focused on the cellular mechanisms of prion transport associated with axons. This includes elucidating specific cell types involved, subcellular machinery, and potential cofactors present during this process.
Collapse
Affiliation(s)
- Sam M. Koshy
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Anthony E. Kincaid
- Department of Pharmacy Science, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA;
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
8
|
Deletion of Kif5c Does Not Alter Prion Disease Tempo or Spread in Mouse Brain. Viruses 2021; 13:v13071391. [PMID: 34372599 PMCID: PMC8310152 DOI: 10.3390/v13071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
In prion diseases, the spread of infectious prions (PrPSc) is thought to occur within nerves and across synapses of the central nervous system (CNS). However, the mechanisms by which PrPSc moves within axons and across nerve synapses remain undetermined. Molecular motors, including kinesins and dyneins, transport many types of intracellular cargo. Kinesin-1C (KIF5C) has been shown to transport vesicles carrying the normal prion protein (PrPC) within axons, but whether KIF5C is involved in PrPSc axonal transport is unknown. The current study tested whether stereotactic inoculation in the striatum of KIF5C knock-out mice (Kif5c−/−) with 0.5 µL volumes of mouse-adapted scrapie strains 22 L or ME7 would result in an altered rate of prion spreading and/or disease timing. Groups of mice injected with each strain were euthanized at either pre-clinical time points or following the development of prion disease. Immunohistochemistry for PrP was performed on brain sections and PrPSc distribution and tempo of spread were compared between mouse strains. In these experiments, no differences in PrPSc spread, distribution or survival times were observed between C57BL/6 and Kif5c−/− mice.
Collapse
|
9
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
10
|
Mammadova N, West Greenlee MH, Moore SJ, Hwang S, Lehmkuhl AD, Nicholson EM, Greenlee JJ. Evaluation of Antemortem Diagnostic Techniques in Goats Naturally Infected With Scrapie. Front Vet Sci 2020; 7:517862. [PMID: 33240943 PMCID: PMC7677257 DOI: 10.3389/fvets.2020.517862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) that affects sheep and goats. Sheep and goats can be infected with scrapie as lambs or kids via contact with the placenta or placental fluids, or from ingestion of prions shed in the environment and/or bodily fluids (e.g., saliva, urine, and feces). Like other TSEs, scrapie is generally not diagnosed before extensive and irreversible brain damage has occurred. Therefore, a reliable method to screen animals may facilitate diagnosis. Additionally, while natural scrapie in sheep has been widely described, naturally acquired goat scrapie is less well-characterized. The purpose of this study was to better understand natural goat scrapie in regard to disease phenotype (i.e., incubation period, clinical signs, neuroanatomical deposition patterns of PrPSc, and molecular profile as detected by Western blot) and to evaluate the efficacy of antemortem tests to detect scrapie-positive animals in a herd of goats. Briefly, 28 scrapie-exposed goats were removed from a farm depopulated due to previous diagnoses of scrapie on the premises and observed daily for 30 months. Over the course of the observation period, antemortem biopsies of recto-anal mucosa-associated lymphoid tissue (RAMALT) were taken and tested using immunohistochemistry and real-time quaking-induced conversion (RT-QuIC), and retinal thickness was measured in vivo using optical coherence tomography (OCT). Following the observation period, immunohistochemistry and Western blot were performed to assess neuroanatomical deposition patterns of PrPSc and molecular profile. Our results demonstrate that antemortem rectal biopsy was 77% effective in identifying goats naturally infected with scrapie and that a positive antemortem rectal biopsy was associated with the presence of clinical signs of neurologic disease and a positive dam status. We report that changes in retinal thickness are not detectable over the course of the observation period in goats naturally infected with scrapie. Finally, our results indicate that the accumulation of PrPSc in central nervous system (CNS) and non-CNS tissues is consistent with previous reports of scrapie in sheep and goats.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Aaron D Lehmkuhl
- National Veterinary Services Laboratories (NVSL) Diagnostic Bacteriology and Pathology Laboratory, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
11
|
Mammadova N, Cassmann E, Greenlee JJ. Efficient transmission of classical scrapie agent x124 by intralingual route to genetically susceptible sheep with a low dose inoculum. Res Vet Sci 2020; 132:217-220. [PMID: 32610171 DOI: 10.1016/j.rvsc.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022]
Abstract
Scrapie is a naturally occurring prion disease of sheep and goats that results in accumulation of the misfolded prion protein (PrPSc) and progressive neurodegeneration. After inoculation with classical scrapie isolate x124, susceptibility and incubation period are associated with valine at codon 136 (V136) of the prion protein: VRQ/VRQ had the shortest incubation periods, followed by VRQ/ARQ sheep, while ARQ/ARQ sheep only developed disease after inoculation via the intracerebral route. Intralingual inoculation of TSE agents effectively transmits disease similar to intracranial inoculation; therefore, it is possible that oral lesions may facilitate susceptibility to scrapie transmission. In this study, investigated the infectivity of decreasing doses of the x124 scrapie agent (100 mg, 50 mg, 20 mg, and 10 mg) on incubation time and attack rate after experimental intralingual inoculation into VRQ/ARQ sheep. The lowest inoculum dose tested in this study effectively transmitted the x124 scrapie agent in VRQ/ARQ sheep with a 100% attack rate and no significant difference in incubation times among sheep inoculated with varying doses. Moreover, immunohistochemistry and western blot analysis revealed similar biochemical and immunohistochemical features among the four cohorts of sheep irrespective of inoculum dose. This study provides a starting point for further investigation to determine the minimum infectious dose of x124 scrapie in sheep and its effect on attack rate and incubation time, central for assessing the potential risk of scrapie occurrence in sheep flock.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Eric Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
12
|
Freeze B, Maia P, Pandya S, Raj A. Network mediation of pathology pattern in sporadic Creutzfeldt-Jakob disease. Brain Commun 2020; 2:fcaa060. [PMID: 32954308 PMCID: PMC7425363 DOI: 10.1093/braincomms/fcaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022] Open
Abstract
Sporadic Creutzfeldt–Jakob disease is a rare fatal rapidly progressive dementia caused by the accumulation and spread of pathologically misfolded prions. Evidence from animal models and in vitro experiments suggests that prion pathology propagates along neural connectivity pathways, with the transmission of misfolded prions initiating a corruptive templating process in newly encountered brain regions. Although particular regional patterns of disease have been recognized in humans, the underlying mechanistic basis of these patterns remains poorly understood. Here, we demonstrate that the spatial pattern of disease derived from publicly available human diffusion-weighted MRI data demonstrates stereotypical features across patient cohorts and can be largely explained by intrinsic connectivity properties of the human structural brain network. Regional diffusion-weighted MRI signal abnormalities are predicted by graph theoretical measures of centrality, with highly affected regions such as cingulate gyrus demonstrating strong structural connectivity to other brain regions. We employ network diffusion modelling to demonstrate that the spatial pattern of disease can be predicted by a diffusion process originating from a single regional pathology seed and operating on the structural connectome. The most likely seeds correspond to the most highly affected brain regions, suggesting that pathological prions could originate in a single brain region and spread throughout the brain to produce the regional distribution of pathology observed on MRI. Further investigation of top seed regions and associated connectivity pathways may be a useful strategy for developing therapeutic approaches.
Collapse
Affiliation(s)
- Benjamin Freeze
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Pedro Maia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sneha Pandya
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashish Raj
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
14
|
Bernis ME, Tamgüney G. Bioluminescence Imaging of Neuroinflammation in a Mouse Model of Parkinson's Disease. Methods Mol Biol 2020; 2081:147-159. [PMID: 31721123 DOI: 10.1007/978-1-4939-9940-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In Parkinson's disease (PD) and related disorders pathological alpha-synuclein has been discussed to propagate via a prion-like mechanism in the CNS. The application of exogenous alpha-synuclein fibrils via injection to animal models of PD has been shown to be a useful method to study prion-like propagation of pathological alpha-synuclein and of transmission pathways that play a critical role in recapitulating characteristics of synucleinopathies. Using bigenic mice expressing mutant human alpha-synuclein in neurons and firefly luciferase in astrocytes we showed that transmission via the tongue and the peritoneum represent entrance points for pathological alpha-synuclein to invade the CNS. Here we present a method to quantify astrogliosis by bioluminescence imaging in an animal model of PD. This method allows noninvasive tracking of the neuroinflammatory process that often precedes neurological signs of disease and represents an alternative to behavioral or histological and biochemical analysis to detect disease.
Collapse
Affiliation(s)
| | - Gültekin Tamgüney
- Institute of Complex Systems - Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
15
|
Cassmann ED, Moore SJ, Smith JD, Greenlee JJ. Sheep Are Susceptible to the Bovine Adapted Transmissible Mink Encephalopathy Agent by Intracranial Inoculation and Have Evidence of Infectivity in Lymphoid Tissues. Front Vet Sci 2019; 6:430. [PMID: 31850385 PMCID: PMC6895770 DOI: 10.3389/fvets.2019.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Transmissible mink encephalopathy (TME) is a food borne prion disease. Epidemiological and experimental evidence suggests similarities between the agents of TME and L-BSE. This experiment demonstrates the susceptibility of four different genotypes of sheep to the bovine adapted TME agent by intracranial inoculation. The four genotypes of sheep used in this experiment had polymorphisms corresponding to codons 136, 154, and 171 of the prion gene: V136R154Q171/VRQ, VRQ/ARQ, ARQ/ARQ, and ARQ/ARR. All intracranially inoculated sheep without comorbidities (15/15) developed clinical signs and had detectable PrPSc by immunohistochemistry, western blot, and enzyme immunoassay (EIA). The mean incubation periods in sheep with bovine adapted TME correlated with their relative genotypic susceptibility. There was peripheral distribution of PrPSc in the trigeminal ganglion and neuromuscular spindles; however, unlike classical scrapie and C-BSE in sheep, sheep inoculated with the bovine TME agent did not have immunohistochemically detectable PrPSc in the lymphoid tissue. To rule out the presence of infectivity, the lymph nodes of two sheep genotypes, VRQ/VRQ, and ARQ/ARQ, were bioassayed in transgenic mice expressing ovine prion protein. Mice intracranially inoculated with retropharyngeal lymph node from a VRQ/VRQ sheep were EIA positive (3/17) indicating that sheep inoculated with the bovine TME agent harbor infectivity in their lymph nodes despite a lack of detection with conventional immunoassays. Western blot analysis demonstrated similarities in the migration patterns between bovine TME in sheep, the bovine adapted TME inoculum, and L-BSE. Overall, these results demonstrate that sheep are susceptible to the bovine adapted TME agent, and the tissue distribution of PrPSc in sheep with bovine TME is distinct from classical scrapie.
Collapse
Affiliation(s)
- Eric D Cassmann
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - Jodi D Smith
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
16
|
Oral and intravenous transmission of α-synuclein fibrils to mice. Acta Neuropathol 2019; 138:515-533. [PMID: 31230104 PMCID: PMC6778172 DOI: 10.1007/s00401-019-02037-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease and related disorders are neuropathologically characterized by cellular deposits of misfolded and aggregated α-synuclein in the CNS. Disease-associated α-synuclein adopts a conformation that causes it to form oligomers and fibrils, which have reduced solubility, become hyperphosphorylated, and contribute to the spatiotemporal spreading of pathology in the CNS. The infectious properties of disease-associated α-synuclein, e.g., by which peripheral route and with which efficiency it can be transmitted, are not fully understood. Here, we investigated the potential of α-synuclein fibrils to induce neurological disease in TgM83+/− mice expressing the A53T mutant of human α-synuclein after oral or intravenous challenge and compared it to intraperitoneal and intracerebral challenge. Oral challenge with 50 µg of α-synuclein fibrils caused neurological disease in two out of eight mice in 220 days and 350 days, and challenge with 500 µg in four out of eight mice in 384 ± 131 days, respectively. Intravenous challenge with 50 µg of α-synuclein fibrils led to disease in 208 ± 20 days in 10 out of 10 mice and was in duration comparable to intraperitoneal challenge with 50 µg of α-synuclein fibrils, which caused disease in 10 out of 10 mice in 202 ± 35 days. Ten out of 10 mice that were each intracerebrally challenged with 10 µg or 50 µg of α-synuclein fibrils developed disease in 156 ± 20 days and 133 ± 4 days, respectively. The CNS of diseased mice displayed aggregates of sarkosyl-insoluble and phosphorylated α-synuclein, which colocalized with ubiquitin and p62 and were accompanied by gliosis indicative of neuroinflammation. In contrast, none of the control mice that were challenged with bovine serum albumin via the same routes developed any neurological disease or neuropathology. These findings are important, because they show that α-synuclein fibrils can neuroinvade the CNS after a single oral or intravenous challenge and cause neuropathology and disease.
Collapse
|
17
|
Moore SJ, Smith JD, Richt JA, Greenlee JJ. Raccoons accumulate PrP Sc after intracranial inoculation of the agents of chronic wasting disease or transmissible mink encephalopathy but not atypical scrapie. J Vet Diagn Invest 2019; 31:200-209. [PMID: 30694116 DOI: 10.1177/1040638718825290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prion diseases are neurodegenerative diseases characterized by the accumulation of misfolded prion protein (PrPSc) in the brain and other tissues. Animal prion diseases include scrapie in sheep, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy (TME) in ranch-raised mink. We investigated the susceptibility of raccoons to various prion disease agents and compared the clinicopathologic features of the resulting disease. Raccoon kits were inoculated intracranially with the agents of raccoon-passaged TME (TMERac), bovine-passaged TME (TMEBov), hamster-adapted drowsy (TMEDY) or hyper TME (TMEHY), CWD from white-tailed deer (CWDWtd) or elk (CWDElk), or atypical (Nor98) scrapie. Raccoons were euthanized when they developed clinical signs of prion disease or at study endpoint (<82 mo post-inoculation). Brain was examined for the presence of spongiform change, and disease-associated PrPSc was detected using an enzyme immunoassay, western blot, and immunohistochemistry. All raccoons inoculated with the agents of TMERac and TMEBov developed clinical disease at ~6.6 mo post-inoculation, with widespread PrPSc accumulation in central nervous system tissues. PrPSc was detected in the brain of 1 of 4 raccoons in each of the CWDWtd-, CWDElk-, and TMEHY-inoculated groups. None of the raccoons inoculated with TMEDY or atypical scrapie agents developed clinical disease or detectable PrPSc accumulation. Our results indicate that raccoons are highly susceptible to infection with raccoon- and bovine-passaged TME agents, whereas CWD isolates from white-tailed deer or elk and hamster-adapted TMEHY transmit poorly. Raccoons appear to be resistant to infection with hamster-adapted TMEDY and atypical scrapie agents.
Collapse
Affiliation(s)
- S Jo Moore
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jodi D Smith
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jürgen A Richt
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Justin J Greenlee
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| |
Collapse
|
18
|
Stone T, Brimacombe J, Keller C, Kelley D, Clery G. Residual Protein Contamination of ProSeal™ Laryngeal Mask Airways after Two Washing Protocols. Anaesth Intensive Care 2019; 32:390-3. [PMID: 15264736 DOI: 10.1177/0310057x0403200315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The risk of prion protein cross-infection has focussed attention on the potential hazards of protein contamination of re-usable medical devices. This study determined the frequency of protein contamination of ProSeal™ laryngeal mask airways (PLMA) after two cleaning procedures and tested the hypothesis that the combination of hand- and machine-washing removes protein contamination more effectively than hand-washing alone. After clinical use fifty-four PLMAs were randomly allocated to be washed by hand or by hand then machine. All PLMAs were then autoclaved at 134°C for 4 minutes. After processing, each PLMA was immersed in a 1.2% solution of erythrosin B and examined for uptake of stain. The site (outer surface, bowl and edges of the cuff, airway and drain tube, finger strap) and severity (nil/mild/moderate/severe) of staining was scored by a blinded observer. There were no differences in the site or severity of staining between the two cleaning procedures. Staining was detected on 89% of PLMAs that were hand-washed and 78% of PLMAs that were hand-, then machine-washed (P=0.27). When staining occurred, it was mild in 98%, moderate in 2% and was never severe. Staining was more frequent on the edge than at any other location (all comparisons: P≤0.01). The strap never had any staining. We conclude that residual contamination of PLMAs with protein deposits is common even when machine-washing is used to augment hand-washing before autoclaving. The infection risk associated with these deposits remains to be determined.
Collapse
Affiliation(s)
- T Stone
- Departments of Anaesthesia and Intensive Care, Cairns Base Hospital, James Cook University, Cairns, Queensland
| | | | | | | | | |
Collapse
|
19
|
Woerman AL, Kazmi SA, Patel S, Freyman Y, Oehler A, Aoyagi A, Mordes DA, Halliday GM, Middleton LT, Gentleman SM, Olson SH, Prusiner SB. MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 2018; 135:49-63. [PMID: 28849371 DOI: 10.1007/s00401-017-1762-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.
Collapse
|
20
|
Diack AB, Bartz JC. Experimental models of human prion diseases and prion strains. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:69-84. [PMID: 29887156 DOI: 10.1016/b978-0-444-63945-5.00004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prion strains occur in natural prion diseases, including prion diseases of humans. Prion strains can correspond with differences in the clinical signs and symptoms of disease and the distribution of prion infectivity in the host and are hypothesized to be encoded by strain-specific differences in the conformation of the disease-specific isoform of the host-encoded prion protein, PrPTSE. Prion strains can differ in biochemical properties of PrPTSE that can include the relative sensitivity to digestion with proteinase K and conformational stability in denaturants. These strain-specific biochemical properties of field isolates are maintained upon transmission to experimental animal models of prion disease. Experimental human models of prion disease include traditional and gene-targeted mice that express endogenous PrPC. Transgenic mice that express different polymorphs of human PrPC or mutations in human PrPC that correspond with familial forms of human prion disease have been generated that can recapitulate the clinical, pathologic, and biochemical features of disease. These models aid in understanding disease pathogenesis, evaluating zoonotic potential of animal prion diseases, and assessing human-to-human transmission of disease. Models of sporadic or familial forms of disease offer an opportunity to define mechanisms of disease, identify key neurodegenerative pathways, and assess therapeutic interventions.
Collapse
Affiliation(s)
- Abigail B Diack
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
21
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
22
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
23
|
Bett C, Lawrence J, Kurt TD, Orru C, Aguilar-Calvo P, Kincaid AE, Surewicz WK, Caughey B, Wu C, Sigurdson CJ. Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathol Commun 2017; 5:32. [PMID: 28431576 PMCID: PMC5399838 DOI: 10.1186/s40478-017-0430-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 11/10/2022] Open
Abstract
Infectious prion aggregates can propagate from extraneural sites into the brain with remarkable efficiency, likely transported via peripheral nerves. Yet not all prions spread into the brain, and the physical properties of a prion that is capable of transit within neurons remain unclear. We hypothesized that small, diffusible aggregates spread into the CNS via peripheral nerves. Here we used a structurally diverse panel of prion strains to analyze how the prion conformation impacts transit into the brain. Two prion strains form fibrils visible ultrastructurally in the brain in situ, whereas three strains form diffuse, subfibrillar prion deposits and no visible fibrils. The subfibrillar strains had significantly higher levels of soluble prion aggregates than the fibrillar strains. Primary neurons internalized both the subfibrillar and fibril-forming prion strains by macropinocytosis, and both strain types were transported from the axon terminal to the cell body in vitro. However in mice, only the predominantly soluble, subfibrillar prions, and not the fibrillar prions, were efficiently transported from the tongue to the brain. Sonicating a fibrillar prion strain increased the solubility and enabled prions to spread into the brain in mice, as evident by a 40% increase in the attack rate, indicating that an increase in smaller particles enhances prion neuroinvasion. Our data suggest that the small, highly soluble prion particles have a higher capacity for transport via nerves. These findings help explain how prions that predominantly assemble into subfibrillar states can more effectively traverse into and out of the CNS, and suggest that promoting fibril assembly may slow the neuron-to-neuron spread of protein aggregates.
Collapse
|
24
|
Breid S, Bernis ME, Tachu JB, Garza MC, Wille H, Tamgüney G. Bioluminescence Imaging of Neuroinflammation in Transgenic Mice After Peripheral Inoculation of Alpha-Synuclein Fibrils. J Vis Exp 2017. [PMID: 28448035 DOI: 10.3791/55503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To study the prion-like behavior of misfolded alpha-synuclein, mouse models are needed that allow fast and simple transmission of alpha-synuclein prionoids, which cause neuropathology within the central nervous system (CNS). Here we describe that intraglossal or intraperitoneal injection of alpha-synuclein fibrils into bigenic Tg(M83+/-:Gfap-luc+/-) mice, which overexpress human alpha-synuclein with the A53T mutation from the prion protein promoter and firefly luciferase from the promoter for glial fibrillary acidic protein (Gfap), is sufficient to induce neuropathologic disease. In comparison to homozygous Tg(M83+/+) mice that develop severe neurologic symptoms beginning at an age of 8 months, heterozygous Tg(M83+/-:Gfap-luc+/-) animals remain free of spontaneous disease until they reach an age of 22 months. Interestingly, injection of alpha-synuclein fibrils via the intraperitoneal route induced neurologic disease with paralysis in four of five Tg(M83+/-:Gfap-luc+/-) mice with a median incubation time of 229 ±17 days. Diseased animals showed severe deposits of phosphorylated alpha-synuclein in their brains and spinal cords. Accumulations of alpha-synuclein were sarkosyl-insoluble and colocalized with ubiquitin and p62, and were accompanied by an inflammatory response resulting in astrocytic gliosis and microgliosis. Surprisingly, inoculation of alpha-synuclein fibrils into the tongue was less effective in causing disease with only one of five injected animals showing alpha-synuclein pathology after 285 days. Our findings show that inoculation via the intraglossal route and more so via the intraperitoneal route is suitable to induce neurologic illness with relevant hallmarks of synucleinopathies in Tg(M83+/-:Gfap-luc+/-) mice. This provides a new model for studying prion-like pathogenesis induced by alpha-synuclein prionoids in greater detail.
Collapse
Affiliation(s)
- Sara Breid
- German Center for Neurodegenerative Diseases (DZNE)
| | | | | | - Maria C Garza
- Centre for Prions and Protein Folding Diseases & Department of Biochemistry, University of Alberta
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases & Department of Biochemistry, University of Alberta
| | | |
Collapse
|
25
|
Shikiya RA, Langenfeld KA, Eckland TE, Trinh J, Holec SAM, Mathiason CK, Kincaid AE, Bartz JC. PrPSc formation and clearance as determinants of prion tropism. PLoS Pathog 2017; 13:e1006298. [PMID: 28355274 PMCID: PMC5386299 DOI: 10.1371/journal.ppat.1006298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 11/19/2022] Open
Abstract
Prion strains are characterized by strain-specific differences in neuropathology but can also differ in incubation period, clinical disease, host-range and tissue tropism. The hyper (HY) and drowsy (DY) strains of hamster-adapted transmissible mink encephalopathy (TME) differ in tissue tropism and susceptibility to infection by extraneural routes of infection. Notably, DY TME is not detected in the secondary lymphoreticular system (LRS) tissues of infected hosts regardless of the route of inoculation. We found that similar to the lymphotropic strain HY TME, DY TME crosses mucosal epithelia, enters draining lymphatic vessels in underlying laminae propriae, and is transported to LRS tissues. Since DY TME causes disease once it enters the peripheral nervous system, the restriction in DY TME pathogenesis is due to its inability to establish infection in LRS tissues, not a failure of transport. To determine if LRS tissues can support DY TME formation, we performed protein misfolding cyclic amplification using DY PrPSc as the seed and spleen homogenate as the source of PrPC. We found that the spleen environment can support DY PrPSc formation, although at lower rates compared to lymphotropic strains, suggesting that the failure of DY TME to establish infection in the spleen is not due to the absence of a strain-specific conversion cofactor. Finally, we provide evidence that DY PrPSc is more susceptible to degradation when compared to PrPSc from other lymphotrophic strains. We hypothesize that the relative rates of PrPSc formation and clearance can influence prion tropism.
Collapse
Affiliation(s)
- Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Katie A. Langenfeld
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Thomas E. Eckland
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jonathan Trinh
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Sara A. M. Holec
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anthony E. Kincaid
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- Department of Pharmacy Science, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Prion diseases have recently emerged as a significant challenge to health-care workers, including those involved in dentistry. Abnormal prion proteins are resistant to complete inactivation by conventional sterilization techniques. In the last decade, a new form of prion disease emerged in the UK, termed "variant CJD", thought to be acquired by consumption of bovine spongiform encephalopathy-contaminated food products. At present, CJD is an invariably fatal disease with no immediate prospect of treatment or vaccination. Of concern with the variant form of CJD, unlike the more classic forms of the disease, is the appearance of significant levels of infectivity outside the central nervous system. This raises concerns for the potential transmission of prion proteins via surgical procedures from individuals in the asymptomatic stage of the disease. This article reviews the existing knowledge base on the nature of prions, their distribution in oral tissues, and the implications for dental treatment.
Collapse
Affiliation(s)
- A J Smith
- Infection Research Group, Glasgow Dental Hospital & School, 378 Sauchiehall Street, Glasgow G2 3JZ, Scotland, UK.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Prion diseases affect a wide range of mammal species and are caused by a misfolded self-propagating isoform (PrPSc) of the normal prion protein (PrPC). Distinct strains of prions exist and are operationally defined by differences in a heritable phenotype under controlled experimental transmission conditions. Prion strains can differ in incubation period, clinical signs of disease, tissue tropism, and host range. The mechanism by which a protein-only pathogen can encode strain diversity is only beginning to be understood. The prevailing hypothesis is that prion strain diversity is encoded by strain-specific conformations of PrPSc; however, strain-specific cellular cofactors have been identified in vitro that may also contribute to prion strain diversity. Although much progress has been made on understanding the etiological agent of prion disease, the relationship between the strain-specific properties of PrPSc and the resulting phenotype of disease in animals is poorly understood.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
28
|
Watts JC, Giles K, Bourkas MEC, Patel S, Oehler A, Gavidia M, Bhardwaj S, Lee J, Prusiner SB. Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 2016; 132:593-610. [PMID: 27350609 DOI: 10.1007/s00401-016-1585-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/27/2022]
Abstract
Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Marta Gavidia
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
29
|
Neuroinvasion of α-Synuclein Prionoids after Intraperitoneal and Intraglossal Inoculation. J Virol 2016; 90:9182-93. [PMID: 27489279 PMCID: PMC5044858 DOI: 10.1128/jvi.01399-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022] Open
Abstract
α-Synuclein is a soluble, cellular protein that in a number of neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, forms pathological deposits of protein aggregates. Because misfolded α-synuclein has some characteristics that resemble those of prions, we investigated its potential to induce disease after intraperitoneal or intraglossal challenge injection into bigenic Tg(M83+/−:Gfap-luc+/−) mice, which express the A53T mutant of human α-synuclein and firefly luciferase. After a single intraperitoneal injection with α-synuclein fibrils, four of five mice developed paralysis and α-synuclein pathology in the central nervous system, with a median incubation time of 229 ± 17 days. Diseased mice accumulated aggregates of Sarkosyl-insoluble and phosphorylated α-synuclein in the brain and spinal cord, which colocalized with ubiquitin and p62 and were accompanied by gliosis. In contrast, only one of five mice developed α-synuclein pathology in the central nervous system after intraglossal injection with α-synuclein fibrils, after 285 days. These findings are novel and important because they show that, similar to prions, α-synuclein prionoids can neuroinvade the central nervous system after intraperitoneal or intraglossal injection and can cause neuropathology and disease.
IMPORTANCE Synucleinopathies are neurodegenerative diseases that are characterized by the pathological presence of aggregated α-synuclein in cells of the nervous system. Previous studies have shown that α-synuclein aggregates made of recombinant protein or derived from brains of patients can spread in the central nervous system in a spatiotemporal manner when inoculated into the brains of animals and can induce pathology and neurologic disease, suggesting that misfolded α-synuclein can behave similarly to prions. Here we show that α-synuclein inoculation into the peritoneal cavity or the tongue in mice overexpressing α-synuclein causes neurodegeneration after neuroinvasion from the periphery, which further corroborates the prionoid character of misfolded α-synuclein.
Collapse
|
30
|
Eraña H, Venegas V, Moreno J, Castilla J. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins. Biochem Biophys Res Commun 2016; 483:1125-1136. [PMID: 27590581 DOI: 10.1016/j.bbrc.2016.08.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species. Its causative agent, disease-associated prion protein (PrPd), is a self-propagating β-sheet rich aberrant conformation of the cellular prion protein (PrPC) with neurotoxic and aggregation-prone properties, capable of inducing misfolding of PrPC molecules. PrPd is the major constituent of prions and, most importantly, is the first known example of a protein with infectious attributes. It has been suggested that similar molecular mechanisms could be shared by other proteins implicated in diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or systemic amyloidoses. Accordingly, several terms have been proposed to collectively group all these disorders. Through the stringent evaluation of those aspects that characterise TSE-causing prions, in particular propagation and spread, strain variability or transmissibility, we will discuss whether terms such as "prion", "prion-like", "prionoid" or "propagon" can be used when referring to the aetiological agents of the above other disorders. Moreover, it will also be discussed whether the term "infectious", which defines a prion essential trait, is currently misused when referring to the other misfolded proteins.
Collapse
Affiliation(s)
- Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Jorge Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Bizkaia, Spain.
| |
Collapse
|
31
|
Moore SJ, Smith JD, Greenlee MHW, Nicholson EM, Richt JA, Greenlee JJ. Comparison of Two US Sheep Scrapie Isolates Supports Identification as Separate Strains. Vet Pathol 2016; 53:1187-1196. [DOI: 10.1177/0300985816629712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. There are different strains of sheep scrapie that are associated with unique molecular, transmission, and phenotype characteristics. However, in the United States, very little is known about the potential presence of scrapie strains. Scrapie strain and PRNP genotype could both affect susceptibility, potential for transmission, incubation period (IP), and control measures required for eliminating scrapie from a flock. The investigators evaluated 2 US scrapie isolates, No. 13-7 and x124, after intranasal inoculation to compare clinical signs, IPs, spongiform lesions, and patterns of PrPSc deposition in sheep with scrapie-susceptible PRNP genotypes (QQ171). After inoculation with x124, susceptibility and IP were associated with valine at codon 136 (V136) of the prion protein: VV136 sheep had short IPs (6.9 months), those in AV136 sheep were 11.9 months, and AA136 sheep did not develop scrapie. All No. 13-7 inoculated sheep developed scrapie, with IPs of 20.1 months for AA136 sheep, 22.8 months for AV136 sheep, and 26.7 months for VV136 sheep. Patterns of immunoreactivity in the brain were influenced by inoculum isolate and host genotype. Differences in PrPSc profiles versus isolate were most striking when examining brains from sheep with the VV136 genotype. Inoculation into C57BL/6 mice resulted in markedly different attack rates (90.5% for x124 and 5.9% for No. 13-7). Taken together, these data demonstrate that No. 13-7 and x124 represent 2 distinct strains of scrapie with different IPs, genotype susceptibilities, and PrPSc deposition profiles.
Collapse
Affiliation(s)
- S. J. Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA
| | - J. D. Smith
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA
| | - M. H. West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - E. M. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA
| | - J. A. Richt
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA
| | - J. J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA
| |
Collapse
|
32
|
Incongruity between Prion Conversion and Incubation Period following Coinfection. J Virol 2016; 90:5715-23. [PMID: 27053546 DOI: 10.1128/jvi.00409-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED When multiple prion strains are inoculated into the same host, they can interfere with each other. Strains with long incubation periods can suppress conversion of strains with short incubation periods; however, nothing is known about the conversion of the long-incubation-period strain during strain interference. To investigate this, we inoculated hamsters in the sciatic nerve with long-incubation-period strain 139H prior to superinfection with the short-incubation-period hyper (HY) strain of transmissible mink encephalopathy (TME). First, we found that 139H is transported along the same neuroanatomical tracks as HY TME, adding to the growing body of evidence indicating that PrP(Sc) favors retrograde transneuronal transport. In contrast to a previous report, we found that 139H interferes with HY TME infection, which is likely due to both strains targeting the same population of neurons following sciatic nerve inoculation. Under conditions where 139H blocked HY TME from causing disease, the strain-specific properties of PrP(Sc) corresponded with the strain that caused disease, consistent with our previous findings. In the groups of animals where incubation periods were not altered, we found that the animals contained a mixture of 139H and HY TME PrP(Sc) This finding expands the definition of strain interference to include conditions where PrP(Sc) formation is altered yet disease outcome is unaltered. Overall, these results contradict the premise that prion strains are static entities and instead suggest that strain mixtures are dynamic regardless of incubation period or clinical outcome of disease. IMPORTANCE Prions can exist as a mixture of strains in naturally infected animals, where they are able to interfere with the conversion of each other and to extend incubation periods. Little is known, however, about the dynamics of strain conversion under conditions where incubation periods are not affected. We found that inoculation of the same animal with two strains can result in the alteration of conversion of both strains under conditions where the resulting disease was consistent with infection with only a single strain. These data challenge the idea that prion strains are static and suggests that strain mixtures are more dynamic than previously appreciated. This observation has significant implications for prion adaptation.
Collapse
|
33
|
Carroll JA, Striebel JF, Rangel A, Woods T, Phillips K, Peterson KE, Race B, Chesebro B. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains. PLoS Pathog 2016; 12:e1005551. [PMID: 27046083 PMCID: PMC4821575 DOI: 10.1371/journal.ppat.1005551] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. Accumulation of aggregates of misfolded protein in brain is a common feature of the damage seen in several neurodegenerative diseases including prion disease, Alzheimer’s disease and Parkinson’s disease. In the present work three strains of prion disease differed in accumulation of the disease-associated prion protein (PrPSc) on neurons and astroglial cells. These patterns were first detectable in the thalamus at 40–60 days after inoculation. This coincided with initial detection of gliosis and PrPSc deposition, but was far in advance of clinical signs or spongiform pathology. In spite of the different patterns of cellular PrPSc deposition, these three strains had similar patterns of expression of a large number of genes known to be active during neuroinflammatory responses and gliosis. However, the gene upregulation in scrapie differed markedly from that seen in two neurovirulent viral diseases, which also had abundant glial responses similar to those observed with prion infection.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alejandra Rangel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tyson Woods
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Aggregation of misfolded host proteins in the central nervous system is believed to be important in the pathogenic process in several neurodegenerative diseases of humans, including prion diseases, Alzheimer’s disease, and Parkinson’s disease. In these diseases, protein misfolding and aggregation appear to expand through a process of seeded polymerization. Prion diseases occur in both humans and animals and are experimentally transmissible orally or by injection, thus providing a controllable model of other neurodegenerative protein misfolding diseases. In rodents and ruminants, prion disease has a slow course, lasting months to years. Although prion infectivity has been detected in brain tissue at 3 to 4 weeks postinfection (p.i.), the details of early prion replication in the brain are not well understood. Here we studied the localization and quantitation of PrPSc generation in vivo starting at 30 min postmicroinjection of scrapie into the brain. In C57BL mice at 3 days p.i., generation of new PrPSc was detected by immunohistochemistry and immunoblot assays, and at 7 days p.i., new generation was confirmed by real-time quaking-induced conversion assay. The main site of new PrPSc generation was near the outer basement membrane of small and medium blood vessels. The finding and localization of replication at this site so early after injection have not been reported previously. This predominantly perivascular location suggested that structural components of the blood vessel basement membrane or perivascular astrocytes might act as cofactors in the initial generation of PrPSc. The location of PrPSc replication at the basement membrane also implies a role for the brain interstitial fluid drainage in the early infection process. Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and prion diseases, of humans are characterized by misfolding and aggregation of certain proteins, resulting in the destruction of brain tissue. In these diseases, the damage process spreads progressively within the central nervous system, but only prion diseases are known to be transmissible between individuals. Here we used microinjection of infectious prion protein (PrPSc) into the mouse brain to model early events of iatrogenic prion transmission via surgical instruments or tissue grafts. At 3 and 7 days postinjection, we detected the generation of new PrPSc, mostly on the outer walls of blood vessels near the injection site. This location and very early replication were surprising and unique. Perivascular prion replication suggested the transport of injected PrPSc via brain interstitial fluid to the basement membranes of blood vessels, where interactions with possible cofactors made by astrocytes or endothelia might facilitate the earliest cycles of prion infection.
Collapse
|
35
|
Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 2015; 112:E5308-17. [PMID: 26324905 PMCID: PMC4586853 DOI: 10.1073/pnas.1514475112] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.
Collapse
Affiliation(s)
- Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143; Department of Neurology, University of California, San Francisco, CA 94143; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
| | - Amanda L Woerman
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143
| | - Daniel A Mordes
- C. S. Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143; Department of Neurology, University of California, San Francisco, CA 94143
| | - Ryan Rampersaud
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143
| | - David B Berry
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143
| | - Abby Oehler
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Jennifer K Lowe
- Center for Neurobehavioral Genetics, Center for Autism Research and Treatment, and Department of Neurology, University of California, Los Angeles, CA 90095
| | - Stephanie N Kravitz
- Center for Neurobehavioral Genetics, Center for Autism Research and Treatment, and Department of Neurology, University of California, Los Angeles, CA 90095
| | - Daniel H Geschwind
- Center for Neurobehavioral Genetics, Center for Autism Research and Treatment, and Department of Neurology, University of California, Los Angeles, CA 90095; Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Glenda M Halliday
- School of Medical Science, Faculty of Medicine, University of New South Wales, and Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Lefkos T Middleton
- Ageing Research Unit, School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steve M Gentleman
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lea T Grinberg
- Department of Neurology, University of California, San Francisco, CA 94143; Memory and Aging Center, University of California, San Francisco, CA 94143
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143; Department of Neurology, University of California, San Francisco, CA 94143
| |
Collapse
|
36
|
Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype. J Virol 2015; 89:10427-41. [PMID: 26246570 DOI: 10.1128/jvi.01586-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrP(Sc) conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrP(Sc) polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrP(Sc) differed for the CWD strains in a host-dependent manner. WST CWD produced PrP(Sc) amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrP(Sc) from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrP(Sc) properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrP(Sc) conformation of certain prion strains, leading to changes in the biophysical properties of PrP(Sc), neuropathology, and clinical prion disease. IMPORTANCE Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In the present study, we investigated prion diversity in two hosts species that express the same prion protein gene. While prior reports have demonstrated that prion strain properties are stable upon infection of the same host species and prion protein genotype, our findings indicate that certain prion strains can undergo dramatic changes in biological properties that are not dependent on the prion protein. Therefore, host factors independent of the prion protein can affect prion diversity. Understanding how host pathways can modify prion disease phenotypes may provide clues on how to alter prion formation and lead to treatments for prion, and other, human neurodegenerative diseases of protein misfolding.
Collapse
|
37
|
Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons. PLoS One 2015; 10:e0119863. [PMID: 25822718 PMCID: PMC4379011 DOI: 10.1371/journal.pone.0119863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/17/2015] [Indexed: 11/29/2022] Open
Abstract
Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.
Collapse
|
38
|
Clouse MD, Shikiya RA, Bartz JC, Kincaid AE. Nasal associated lymphoid tissue of the Syrian golden hamster expresses high levels of PrPC. PLoS One 2015; 10:e0117935. [PMID: 25642714 PMCID: PMC4314084 DOI: 10.1371/journal.pone.0117935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
The key event in the pathogenesis of the transmissible spongiform encephalopathies is a template-dependent misfolding event where an infectious isoform of the prion protein (PrPSc) comes into contact with native prion protein (PrPC) and changes its conformation to PrPSc. In many extraneurally inoculated models of prion disease this PrPC misfolding event occurs in lymphoid tissues prior to neuroinvasion. The primary objective of this study was to compare levels of total PrPC in hamster lymphoid tissues involved in the early pathogenesis of prion disease. Lymphoid tissues were collected from golden Syrian hamsters and Western blot analysis was performed to quantify PrPC levels. PrPC immunohistochemistry (IHC) of paraffin embedded tissue sections was performed to identify PrPC distribution in tissues of the lymphoreticular system. Nasal associated lymphoid tissue contained the highest amount of total PrPC followed by Peyer’s patches, mesenteric and submandibular lymph nodes, and spleen. The relative levels of PrPC expression in IHC processed tissue correlated strongly with the Western blot data, with high levels of PrPC corresponding with a higher percentage of PrPC positive B cell follicles. High levels of PrPC in lymphoid tissues closely associated with the nasal cavity could contribute to the relative increased efficiency of the nasal route of entry of prions, compared to other routes of infection.
Collapse
Affiliation(s)
- Melissa D. Clouse
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Anthony E. Kincaid
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
UNLABELLED Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrP(Sc), was observed in nerve fibers of the tongue approximately 2 weeks prior to PrP(Sc) deposition in skeletal muscle. Initially, PrP(Sc) deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrP(Sc) was widely distributed in muscle cells, but <10% of prion-infected cells exhibited PrP(Sc) deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrP(Sc) was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrP(Sc)-bound endosomes can lead to membrane recycling in which PrP(Sc) is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrP(Sc) formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into muscle cells. Since early prion spread is anterograde and endosome-lysosomal movement within axons is primarily retrograde, these findings suggest that endosome-bound prions may have an alternate fate that directs prions to the peripheral synapse.
Collapse
|
40
|
Rangel A, Race B, Phillips K, Striebel J, Kurtz N, Chesebro B. Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathol Commun 2014; 2:8. [PMID: 24447368 PMCID: PMC3904166 DOI: 10.1186/2051-5960-2-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
Background In humans and animals, prion protein (PrP) is usually expressed as a glycophosphatidylinositol (GPI)-anchored membrane protein, but anchorless PrP may be pathogenic in humans with certain familial prion diseases. Anchored PrP expressed on neurons mediates spread of prions along axons in the peripheral and central nervous systems. However, the mechanism of prion spread in individuals expressing anchorless PrP is poorly understood. Here we studied prion spread within brain of mice expressing anchorless or anchored PrP. Results To create a localized initial point of infection, we microinjected scrapie in a 0.5 microliter volume in the striatum. In this experiment, PrPres and gliosis were first detected in both types of mice at 40 days post-inoculation near the needle track. In mice with anchored PrP, PrPres appeared to spread via neurons to distant connected brain areas by the clinical endpoint at 150 days post-inoculation. This PrPres was rarely associated with blood vessels. In contrast, in mice with anchorless PrP, PrPres spread did not follow neuronal circuitry, but instead followed a novel slower pattern utilizing the drainage system of the brain interstitial fluid (ISF) including perivascular areas adjacent to blood vessels, subependymal areas and spaces between axons in white matter tracts. Conclusions In transgenic mice expressing anchorless PrP small amyloid-seeding PrPres aggregates appeared to be transported in the ISF, thus spreading development of cerebral amyloid angiopathy (CAA) throughout the brain. Spread of amyloid seeding by ISF may also occur in multiple human brain diseases involving CAA.
Collapse
|
41
|
Role of palatine tonsils as a prion entry site in classical and atypical experimental sheep scrapie. J Virol 2013; 88:1065-70. [PMID: 24198416 DOI: 10.1128/jvi.02750-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical and classical scrapie-infected sheep brain tissue was monolaterally injected into the tonsils of lambs to investigate their role as a prion entry point. We first detected classical PrP(Sc) within the inoculated tonsil and in the ipsilateral retropharyngeal lymph node at 3 months postinoculation (p.i.). At 7 months p.i., PrP(Sc) colonized other lymphoid tissues bilaterally, including ileal Peyer's patches. The earliest PrP(Sc) deposition within the brain was ipsilaterally observed at 9 months p.i. in the substantia reticularis of the medulla oblongata. At 12 months p.i., PrP(Sc) deposition was present bilaterally in the nucleus parasympathicus nervi vagi, as well as in the intermediolateral cell column of the thoracolumbar spinal cord. No PrP(Sc) was detected in the lambs inoculated with atypical scrapie. These findings suggest that neuroinvasion may naturally occur from the tonsil after a widespread prion replication within the lymphoid tissues during classical scrapie only, thus mimicking the pathogenesis after oral ingestion.
Collapse
|
42
|
Identical pathogenesis and neuropathological phenotype of scrapie in valine, arginine, glutamine/valine, arginine, glutamine sheep infected experimentally by the oral and conjunctival routes. J Comp Pathol 2013; 150:47-56. [PMID: 24035191 DOI: 10.1016/j.jcpa.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/02/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
Abstract
The pathogenesis of scrapie in sheep after natural or oral exposure to the infectious agent generally involves the early accumulation of disease-associated prion protein (PrP(d)) in the lymphoreticular system (LRS). This phase is followed by neuroinvasion, for which two routes, ascending neural and haematogenous, have been postulated. The present study reports the use of immunohistochemistry to track the tissue progression of PrP(d) deposition in sheep of a single, highly scrapie-susceptible PrP genotype administered by the oral or conjunctival routes. Regardless of the route of infection, the earliest detection of PrP(d) was in gut- and pharynx-associated LRS tissues. Subsequently, the brain became PrP(d) positive simultaneously with other LRS tissues, but before the spinal cord and peripheral nervous tissues of the enteric, parasympathetic and sympathetic systems. The sites of initial PrP(d) accumulation in the brain were the dorsal motor nucleus of the vagus and the hypothalamus and their related circumventricular organs (the area postrema and the median eminence, respectively). These were the same for both routes of infection. Rapid progression to clinical disease was observed in sheep infected orally or conjunctivally, with definite signs of scrapie recorded at around 6 and 8 months after infection, respectively. Longer incubation periods in sheep infected by the conjunctival route were probably due to them receiving a lower dose than those infected orally. Irrespective of the route of infection, clinically affected sheep showed the same pathological phenotype (PrP(d) profile) and PrP(d) distribution throughout the brain. The identical peripheral and central pathogenesis observed in sheep of both groups suggests early dissemination of the infectious agent in the bloodstream and a common neuroinvasion pathway. The late involvement of the enteric and autonomic nervous system supports a haematogenous route of infection to the brain.
Collapse
|
43
|
Kraus A, Groveman BR, Caughey B. Prions and the potential transmissibility of protein misfolding diseases. Annu Rev Microbiol 2013; 67:543-64. [PMID: 23808331 DOI: 10.1146/annurev-micro-092412-155735] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prions, or infectious proteins, represent a major frontier in the study of infectious agents. The prions responsible for mammalian transmissible spongiform encephalopathies (TSEs) are due primarily to infectious self-propagation of misfolded prion proteins. TSE prion structures remain ill-defined, other than being highly structured, self-propagating, and often fibrillar protein multimers with the capacity to seed, or template, the conversion of their normal monomeric precursors into a pathogenic form. Purified TSE prions usually take the form of amyloid fibrils, which are self-seeding ultrastructures common to many serious protein misfolding diseases such as Alzheimer's, Parkinson's, Huntington's and Lou Gehrig's (amytrophic lateral sclerosis). Indeed, recent reports have now provided evidence of prion-like propagation of several misfolded proteins from cell to cell, if not from tissue to tissue or individual to individual. These findings raise concerns that various protein misfolding diseases might have spreading, prion-like etiologies that contribute to pathogenesis or prevalence.
Collapse
Affiliation(s)
- Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | | | | |
Collapse
|
44
|
Abstract
Domestic and nondomestic cats have been shown to be susceptible to feline spongiform encephalopathy (FSE), almost certainly caused by consumption of bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and free-ranging nondomestic felids scavenge cervid carcasses, including those in areas affected by chronic wasting disease (CWD), we evaluated the susceptibility of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5 cats each were inoculated intracerebrally (i.c.) or orally (p.o.) with CWD-infected deer brain. At 40 and 42 months postinoculation, two i.c.-inoculated cats developed signs consistent with prion disease, including a stilted gait, weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail tremors, and ataxia, and the cats progressed to terminal disease within 5 months. Brains from these two cats were pooled and inoculated into cohorts of cats by the i.c., p.o., and intraperitoneal and subcutaneous (i.p./s.c.) routes. Upon subpassage, feline CWD was transmitted to all i.c.-inoculated cats with a decreased incubation period of 23 to 27 months. Feline-adapted CWD (Fel(CWD)) was demonstrated in the brains of all of the affected cats by Western blotting and immunohistochemical analysis. Magnetic resonance imaging revealed abnormalities in clinically ill cats, which included multifocal T2 fluid attenuated inversion recovery (FLAIR) signal hyperintensities, ventricular size increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4 i.p./s.c.- and 2 of 4 p.o. secondary passage-inoculated cats have developed abnormal behavior patterns consistent with the early stage of feline CWD. These results demonstrate that CWD can be transmitted and adapted to the domestic cat, thus raising the issue of potential cervid-to-feline transmission in nature.
Collapse
|
45
|
Risk factors for variant Creutzfeldt-Jakob disease in dental practice: a case-control study. Br Dent J 2012; 213:E19. [DOI: 10.1038/sj.bdj.2012.1089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 11/08/2022]
|
46
|
Bradford BM, Mabbott NA. Prion disease and the innate immune system. Viruses 2012; 4:3389-419. [PMID: 23342365 PMCID: PMC3528271 DOI: 10.3390/v4123389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 02/06/2023] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|
47
|
Tamgüney G, Richt JA, Hamir AN, Greenlee JJ, Miller MW, Wolfe LL, Sirochman TM, Young AJ, Glidden DV, Johnson NL, Giles K, DeArmond SJ, Prusiner SB. Salivary prions in sheep and deer. Prion 2012; 6:52-61. [PMID: 22453179 DOI: 10.4161/pri.6.1.16984] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID₅₀ U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID₅₀ U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID₅₀ units for sheep and 7.0 log ID₅₀ units for deer. These estimates are similar to 7.9 log ID₅₀ units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.
Collapse
Affiliation(s)
- Gültekin Tamgüney
- Institute for Neurodegenerative Diseases, Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schneider DA, Harrington RD, Zhuang D, Yan H, Truscott TC, Dassanayake RP, O'Rourke KI. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy. J Comp Pathol 2012; 147:508-21. [PMID: 22595634 DOI: 10.1016/j.jcpa.2012.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/13/2012] [Accepted: 03/31/2012] [Indexed: 11/18/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are diagnosed by immunodetection of disease-associated prion protein (PrP(d)). The distribution of PrP(d) within the body varies with the time-course of infection and between species, during interspecies transmission, as well as with prion strain. Mink are susceptible to a form of TSE known as transmissible mink encephalopathy (TME), presumed to arise due to consumption of feed contaminated with a single prion strain of ruminant origin. After extended passage of TME isolates in hamsters, two strains emerge, HY and DY, each of which is associated with unique structural isoforms of PrP(TME) and of which only the HY strain is associated with accumulation of PrP(TME) in lymphoid tissues. Information on the structural nature and lymphoid accumulation of PrP(TME) in mink is limited. In this study, 13 mink were challenged by intracerebral inoculation using late passage TME inoculum, after which brain and lymphoid tissues were collected at preclinical and clinical time points. The distribution and molecular nature of PrP(TME) was investigated by techniques including blotting of paraffin wax-embedded tissue and epitope mapping by western blotting. PrP(TME) was detected readily in the brain and retropharyngeal lymph node during preclinical infection, with delayed progression of accumulation within other lymphoid tissues. For comparison, three mink were inoculated by the oral route and examined during clinical disease. Accumulation of PrP(TME) in these mink was greater and more widespread, including follicles of rectoanal mucosa-associated lymphoid tissue. Western blot analyses revealed that PrP(TME) accumulating in the brain of mink is structurally most similar to that accumulating in the brain of hamsters infected with the DY strain. Collectively, the results of extended passage in mink are consistent with the presence of only a single strain of TME, the DY strain, capable of inducing accumulation of PrP(TME) in the lymphoid tissues of mink but not in hamsters. Thus, mink are a relevant animal model for further study of this unique strain, which ultimately may have been introduced through consumption of a TSE of ruminant origin.
Collapse
Affiliation(s)
- D A Schneider
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.
Collapse
|
50
|
Biochemical properties of highly neuroinvasive prion strains. PLoS Pathog 2012; 8:e1002522. [PMID: 22319450 PMCID: PMC3271082 DOI: 10.1371/journal.ppat.1002522] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022] Open
Abstract
Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS. Prion diseases are fatal neurodegenerative disorders that are also infectious. Prions are composed of a misfolded, aggregated form of a normal cellular protein that is highly expressed in neurons. Prion- infected individuals show variability in the clinical signs and brain regions that selectively accumulate prions, even within the same species expressing the same prion protein sequence. The basis of these divergent disease phenotypes is unclear, but is thought to be due to different conformations of the misfolded prion protein, known as strains. Here we characterized the neuropathology and biochemical properties of prion strains that efficiently or poorly invade the CNS from their peripheral entry site. We show that prion strains that efficiently invade the CNS also cause a rapidly terminal disease after an intracerebral exposure. These rapidly lethal strains were unstable when exposed to denaturants or high temperatures, and efficiently accumulated misfolded prion protein over a short incubation period in vivo. Our findings indicate that the most invasive, rapidly spreading strains are also the least conformationally stable.
Collapse
|