1
|
Liu S, Zhao R, Zang Y, Huang P, Zhang Q, Fan X, Bai J, Zheng X, Zhao S, Kuai D, Gao C, Wang Y, Xue F. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol Cell Biochem 2024:10.1007/s11010-024-05179-7. [PMID: 39690293 DOI: 10.1007/s11010-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59 ± 23.72 pg/mL) compared to the control group (27.47 ± 8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, 313002, Zhejiang, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Qingdao Municipal Hospital, Shandong, 266071, China
| | - Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junyi Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Li J, Qin Z, Li Y, Huang B, Xiao Q, Chen P, Luo Y, Zheng W, Zhang T, Zhang Z. Phosphorylation of IDH1 Facilitates Progestin Resistance in Endometrial Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310208. [PMID: 38582508 PMCID: PMC11187910 DOI: 10.1002/advs.202310208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
The progestin regimen is one of the main therapeutic strategies for women with endometrial cancer who undergo conservative management. Although many patients respond well to initial therapy, progestin-refractory disease inevitably emerges, and the molecular basis underlying progestin resistance has not been comprehensively elucidated. Herein, they demonstrated progestin results in p38-dependent IDH1 Thr 77 phosphorylation (pT77-IDH1). pT77-IDH1 translocates into the nucleus and is recruited to chromatin through its interaction with OCT6. IDH1-produced α-ketoglutarate (αKG) then facilitates the activity of OCT6 to promote focal adhesion related target gene transcription to confer progestin resistance. Pharmacological inhibition of p38 or focal adhesion signaling sensitizes endometrial cancer cells to progestin in vivo. The study reveals p38-dependent pT77-IDH1 as a key mediator of progestin resistance and a promising target for improving the efficacy of progestin therapy.
Collapse
Affiliation(s)
- Jingjie Li
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Zuoshu Qin
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yunqi Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Baozhu Huang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Qimeng Xiao
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Peiqin Chen
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yifan Luo
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Wenxin Zheng
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Simon Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Zhenbo Zhang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Reproductive Medicine CenterDepartment of Obstetrics and GynecologyTongji hospitalSchool of MedicineTongji UniversityShanghai200065China
| |
Collapse
|
3
|
Cheng JN, Frye JB, Whitman SA, Ehsani S, Ali S, Funk JL. Interrogating Estrogen Signaling Pathways in Human ER-Positive Breast Cancer Cells Forming Bone Metastases in Mice. Endocrinology 2024; 165:bqae038. [PMID: 38715255 PMCID: PMC11076418 DOI: 10.1210/endocr/bqae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 05/12/2024]
Abstract
Breast cancer bone metastases (BMET) are incurable, primarily osteolytic, and occur most commonly in estrogen receptor-α positive (ER+) breast cancer. ER+ human breast cancer BMET modeling in mice has demonstrated an estrogen (E2)-dependent increase in tumor-associated osteolysis and bone-resorbing osteoclasts, independent of estrogenic effects on tumor proliferation or bone turnover, suggesting a possible mechanistic link between tumoral ERα-driven osteolysis and ER+ bone progression. To explore this question, inducible secretion of the osteolytic factor, parathyroid hormone-related protein (PTHrP), was utilized as an in vitro screening bioassay to query the osteolytic potential of estrogen receptor- and signaling pathway-specific ligands in BMET-forming ER+ human breast cancer cells expressing ERα, ERß, and G protein-coupled ER. After identifying genomic ERα signaling, also responsibility for estrogen's proliferative effects, as necessary and sufficient for osteolytic PTHrP secretion, in vivo effects of a genomic-only ER agonist, estetrol (E4), on osteolytic ER+ BMET progression were examined. Surprisingly, while pharmacologic effects of E4 on estrogen-dependent tissues, including bone, were evident, E4 did not support osteolytic BMET progression (vs robust E2 effects), suggesting an important role for nongenomic ER signaling in ER+ metastatic progression at this site. Because bone effects of E4 did not completely recapitulate those of E2, the relative importance of nongenomic ER signaling in tumor vs bone cannot be ascertained here. Nonetheless, these intriguing findings suggest that targeted manipulation of estrogen signaling to mitigate ER+ metastatic progression in bone may require a nuanced approach, considering genomic and nongenomic effects of ER signaling on both sides of the tumor/bone interface.
Collapse
Affiliation(s)
- Julia N Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | - Jennifer B Frye
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| | - Susan A Whitman
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| | - Sima Ehsani
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK
| | - Janet L Funk
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| |
Collapse
|
4
|
Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett 2023; 26:530. [PMID: 38020303 PMCID: PMC10644365 DOI: 10.3892/ol.2023.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Endometrial carcinoma (EC) is a group of endometrial epithelial malignancies, most of which are adenocarcinomas and occur in perimenopausal and postmenopausal women. It is one of the most common carcinomas of the female reproductive system. It has been shown that the occurrence and development of EC is closely associated with the interaction between estrogen (estradiol, E2) and estrogen receptors (ERs), particularly ERα. As a key nuclear transcription factor, ERα is a carcinogenic factor in EC. Its interactions with upstream and downstream effectors and co-regulators have important implications for the proliferation, metastasis, invasion and inhibition of apoptosis of EC. In the present review, the structure of ERα and the regulation of ERα in multiple dimensions are described. In addition, the classical E2/ERα signaling pathway and the crosstalk between ERα and other EC regulators are elucidated, as well as the therapeutic targeting of ERα, which may provide a new direction for clinical applications of ERα in the future.
Collapse
Affiliation(s)
- Yidong Ge
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoqi Ni
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jingyun Li
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
5
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
6
|
Repeated exposure to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) accelerates ligand-independent activation of estrogen receptors in long-term estradiol-deprived MCF-7 cells. Toxicol Lett 2023; 378:31-38. [PMID: 36863540 DOI: 10.1016/j.toxlet.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
It was previously identified that there may be an active metabolite of bisphenol A (BPA), 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). An in vitro system was developed to detect MBP toxicity to the Michigan Cancer Foundation-7 (MCF-7) cells that had been repeatedly exposed to a low dose of the metabolite. MBP profoundly activated estrogen receptor (ER)-dependent transcription as a ligand, with an EC50 of 2.8 nM. Women are continuously exposed to numerous estrogenic environmental chemicals; but their susceptibility to these chemicals may be significantly altered after menopause. Long-term estrogen-deprived (LTED) cells, which display ligand-independent ER activation, are a postmenopausal breast cancer model derived from MCF-7 cells. In this study, we investigated the estrogenic effects of MBP on LTED cells in a repeated exposure in vitro model. The results suggest that i) nanomolar levels of MBP reciprocally disrupt the balanced expression of ERα and ERβ proteins, leading to the dominant expression of ERβ, ii) MBP stimulates ERs-mediated transcription without acting as an ERβ ligand, and iii) MBP utilizes mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling to evoke its estrogenic action. Moreover, the repeated exposure strategy was effective for detecting low-dose estrogenic-like effects caused by MBP in LTED cells.
Collapse
|
7
|
Horkeby K, Farman HH, Movérare-Skrtic S, Lionikaite V, Wu J, Henning P, Windahl S, Sjögren K, Ohlsson C, Lagerquist MK. Phosphorylation of S122 in ERα is important for the skeletal response to estrogen treatment in male mice. Sci Rep 2022; 12:22449. [PMID: 36575297 PMCID: PMC9794719 DOI: 10.1038/s41598-022-26939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor alpha (ERα) signaling has beneficial skeletal effects in males. ERα signaling also affects other tissues, and to find bone-specific treatments, more knowledge regarding tissue-specific ERα signaling is needed. ERα is subjected to posttranslational modifications, including phosphorylation, which can influence ERα function in a tissue-specific manner. To determine the importance of phosphorylation site S122 (corresponding to human ERα site S118) for the skeleton and other tissues, male mice with a S122A mutation were used. Total areal bone mineral density was similar between gonadal intact S122A and WT littermates followed up to 12 months of age, and weights of estrogen-responsive organs normalized for body weight were unchanged between S122A and WT males at both 3 and 12 months of age. Interestingly, 12-month-old S122A males had decreased body weight compared to WT. To investigate if site S122 affects the estrogen response in bone and other tissues, 12-week-old S122A and WT males were orchidectomized (orx) and treated with estradiol (E2) or placebo pellets for four weeks. E2 increased cortical thickness in tibia in both orx WT (+ 60%, p < 0.001) and S122A (+ 45%, p < 0.001) males. However, the E2 effect on cortical thickness was significantly decreased in orx S122A compared to WT mice (- 24%, p < 0.05). In contrast, E2 affected trabecular bone and organ weights similarly in orx S122A and WT males. Thus, ERα phosphorylation site S122 is required for a normal E2 response specifically in cortical bone in male mice, a finding that may have implications for development of future treatments against male osteoporosis.
Collapse
Affiliation(s)
- Karin Horkeby
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Helen H. Farman
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Sofia Movérare-Skrtic
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Vikte Lionikaite
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Jianyao Wu
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Petra Henning
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Sara Windahl
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden ,grid.4714.60000 0004 1937 0626Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Klara Sjögren
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Claes Ohlsson
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden ,grid.1649.a000000009445082XDepartment of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marie K. Lagerquist
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| |
Collapse
|
8
|
Soni M, Saatci O, Gupta G, Patel Y, Keerthi Raja MR, Li J, Liu X, Xu P, Wang H, Fan D, Sahin O, Chen H. miR-489 Confines Uncontrolled Estrogen Signaling through a Negative Feedback Mechanism and Regulates Tamoxifen Resistance in Breast Cancer. Int J Mol Sci 2022; 23:ijms23158086. [PMID: 35897675 PMCID: PMC9331933 DOI: 10.3390/ijms23158086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor-positive tumors and are associated with a better prognosis due to response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen-resistant cell lines suggested the potential role of miR-489 in the regulation of estrogen signaling and development of tamoxifen resistance. Our in vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance, while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen-regulated miRNA that negatively regulates estrogen receptor signaling by using at least the following two mechanisms: (i) modulation of the ER phosphorylation status by inhibiting MAPK and AKT kinase activities; (ii) regulation of nuclear-to-cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 can break the positive feed-forward loop between the estrogen-Erα axis and p38 MAPK in breast cancer cells, which is necessary for its function as a transcription factor. Overall, our study unveiled the underlying molecular mechanism by which miR-489 regulates an estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers.
Collapse
Affiliation(s)
- Mithil Soni
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (O.S.); (P.X.); (O.S.)
| | - Gourab Gupta
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Yogin Patel
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Manikanda Raja Keerthi Raja
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29201, USA;
| | - Xinfeng Liu
- Department of Mathematics, University of South Carolina, Columbia, SC 29201, USA;
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (O.S.); (P.X.); (O.S.)
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA;
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (O.S.); (P.X.); (O.S.)
| | - Hexin Chen
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
- Correspondence: ; Tel.: +1-803-777-2928; Fax: +1-803-777-4002
| |
Collapse
|
9
|
Yang Q, Wang W. The Nuclear Translocation of Heme Oxygenase-1 in Human Diseases. Front Cell Dev Biol 2022; 10:890186. [PMID: 35846361 PMCID: PMC9277552 DOI: 10.3389/fcell.2022.890186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/10/2022] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), free iron and biliverdin, which could then be converted to bilirubin by biliverdin reductase. HO-1 exhibits cytoprotective effects of anti-apoptosis, anti-oxidation, and anti-inflammation via these byproducts generated during the above process. In the last few years, despite the canonical function of HO-1 and possible biological significance of its byproducts, a noncanonical function, through which HO-1 exhibits functions in diseases independent of its enzyme activity, also has been reported. In this review, the noncanonical functions of HO-1 and its translocation in other subcellular compartments are summarized. More importantly, we emphasize the critical role of HO-1 nuclear translocation in human diseases. Intriguingly, this translocation was linked to tumorigenesis and tumor progression in lung, prostate, head, and neck squamous cell carcinomas and chronic myeloid leukemia. Given the importance of HO-1 nuclear translocation in human diseases, nuclear HO-1 as a novel target might be attractive for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenqian Wang,
| |
Collapse
|
10
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
11
|
Saatci O, Huynh-Dam KT, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med (Berl) 2021; 99:1691-1710. [PMID: 34623477 PMCID: PMC8611518 DOI: 10.1007/s00109-021-02136-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA.
| |
Collapse
|
12
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
13
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
14
|
Perez Kerkvliet C, Dwyer AR, Diep CH, Oakley RH, Liddle C, Cidlowski JA, Lange CA. Glucocorticoid receptors are required effectors of TGFβ1-induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer. Breast Cancer Res 2020; 22:39. [PMID: 32357907 PMCID: PMC7193415 DOI: 10.1186/s13058-020-01277-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Altered signaling pathways typify breast cancer and serve as direct inputs to steroid hormone receptor sensors. We previously reported that phospho-Ser134-GR (pS134-GR) species are elevated in triple-negative breast cancer (TNBC) and cooperate with hypoxia-inducible factors, providing a novel avenue for activation of GR in response to local or cellular stress. METHODS We probed GR regulation by factors (cytokines, growth factors) that are rich within the tumor microenvironment (TME). TNBC cells harboring endogenous wild-type (wt) or S134A-GR species were created by CRISPR/Cas knock-in and subjected to transwell migration, invasion, soft-agar colony formation, and tumorsphere assays. RNA-seq was employed to identify pS134-GR target genes that are regulated both basally (intrinsic) or by TGFβ1 in the absence of exogenously added GR ligands. Regulation of selected basal and TGFβ1-induced pS134-GR target genes was validated by qRT-PCR and chromatin immunoprecipitation assays. Bioinformatics tools were used to probe public data sets for expression of pS134-GR 24-gene signatures. RESULTS In the absence of GR ligands, GR is transcriptionally activated via p38-dependent phosphorylation of Ser134 as a mechanism of homeostatic stress-sensing and regulated upon exposure of TNBC cells to TME-derived agents. The ligand-independent pS134-GR transcriptome encompasses TGFβ1 and MAPK signaling gene sets associated with TNBC cell survival and migration/invasion. Accordingly, pS134-GR was essential for TNBC cell anchorage-independent growth in soft-agar, migration, invasion, and tumorsphere formation, an in vitro readout of cancer stemness properties. Both pS134-GR and expression of the MAPK-scaffolding molecule 14-3-3ζ were essential for a functionally intact p38 MAPK signaling pathway downstream of MAP3K5/ASK1, indicative of a feedforward signaling loop wherein self-perpetuated GR phosphorylation enables cancer cell autonomy. A 24-gene pS134-GR-dependent signature induced by TGFβ1 predicts shortened overall survival in breast cancer patients. CONCLUSIONS Phospho-S134-GR is a critical downstream effector of p38 MAPK signaling and TNBC migration/invasion, survival, and stemness properties. Our studies define a ligand-independent role for GR as a homeostatic "sensor" of intrinsic stimuli as well as extrinsic factors rich within the TME (TGFβ1) that enable potent activation of the p38 MAPK stress-sensing pathway and nominate pS134-GR as a therapeutic target in aggressive TNBC.
Collapse
Affiliation(s)
- Carlos Perez Kerkvliet
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Amy R. Dwyer
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Caroline H. Diep
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Robert H. Oakley
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Darlington, NSW 2006 Australia
| | - John A. Cidlowski
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Carol A. Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
Effects of 17β-Estradiol combined with cyclical compressive stress on the proliferation and differentiation of mandibular condylar chondrocytes. Arch Oral Biol 2020; 109:104570. [DOI: 10.1016/j.archoralbio.2019.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/29/2023]
|
16
|
Gkotinakou IM, Befani C, Simos G, Liakos P. ERK1/2 phosphorylates HIF-2α and regulates its activity by controlling its CRM1-dependent nuclear shuttling. J Cell Sci 2019; 132:jcs225698. [PMID: 30962349 DOI: 10.1242/jcs.225698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor 2 (HIF-2) is a principal component of the cellular response to oxygen deprivation (hypoxia). Its inducible subunit, HIF-2α (also known as EPAS1), is controlled by oxygen-dependent as well as oxygen-independent mechanisms, such as phosphorylation. We show here that HIF-2α is phosphorylated under hypoxia (1% O2) by extracellular signal-regulated protein kinases 1 and 2 (ERK1/2; also known as MAPK3 and MAPK1, respectively) at serine residue 672, as identified by in vitro phosphorylation assays. Mutation of this site to an alanine residue or inhibition of the ERK1/2 pathway decreases HIF-2 transcriptional activity and causes HIF-2α to mislocalize to the cytoplasm without changing its protein expression levels. Localization, reporter gene and immunoprecipitation experiments further show that HIF-2α associates with the exportin chromosomal maintenance 1 (CRM1, also known as XPO1) in a phosphorylation-sensitive manner and identify two critical leucine residues as part of an atypical CRM1-dependent nuclear export signal (NES) neighboring serine 672. Inhibition of CRM1 or mutation of these residues restores nuclear accumulation and activity of HIF-2α lacking the ERK1/2-mediated modification. In summary, we reveal a novel regulatory mechanism of HIF-2, involving ERK1/2-dependent phosphorylation of HIF-2α, which controls its nucleocytoplasmic shuttling and the HIF-2 transcriptional activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada, H4A 3T2
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| |
Collapse
|
17
|
Kiss A, Koppel AC, Murphy E, Sall M, Barlas M, Kissling G, Efimova T. Cell Type-Specific p38δ Targeting Reveals a Context-, Stage-, and Sex-Dependent Regulation of Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20071532. [PMID: 30934690 PMCID: PMC6479675 DOI: 10.3390/ijms20071532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022] Open
Abstract
Activation and/or upregulated expression of p38δ are demonstrated in human skin malignancies including cutaneous squamous cell carcinoma, suggesting a role for p38δ in skin carcinogenesis. We previously reported that mice with germline deletion of the p38δ gene are significantly protected from chemical skin carcinogenesis. Here, we investigated the effects of cell-selective targeted ablation of p38δ in keratinocytes and in immune (myeloid) cells on skin tumor development in a two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical mouse skin carcinogenesis model. Conditional keratinocyte-specific p38δ ablation (p38δ-cKO∆K) did not influence the latency, incidence, or multiplicity of chemically-induced skin tumors, but led to increased tumor volume in females during the TPA promotion stage, and reduced malignant progression in males and females relative to their wild-type counterparts. In contrast, conditional myeloid cell-specific p38δ deletion (p38δ-cKO∆M) inhibited DMBA/TPA-induced skin tumorigenesis in male but not female mice. Thus, tumor onset was delayed, and tumor incidence, multiplicity, and volume were reduced in p38δ-cKO∆M males compared with control wild-type males. Moreover, the percentage of male mice with malignant tumors was decreased in the p38δ-cKO∆M group relative to their wild-type counterparts. Collectively, these results reveal that cell-specific p38δ targeting modifies susceptibility to chemical skin carcinogenesis in a context-, stage-, and sex-specific manner.
Collapse
Affiliation(s)
- Alexi Kiss
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- The George Washington Cancer Center, 800 22nd Street NW, Science and Engineering Hall 8160, Washington, DC 20052, USA.
| | - Aaron C Koppel
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Emily Murphy
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Suite 2B-430, Washington, DC 20037, USA.
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington, DC 20007, USA.
| | - Maxwell Sall
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Meral Barlas
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Grace Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Tatiana Efimova
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- The George Washington Cancer Center, 800 22nd Street NW, Science and Engineering Hall 8160, Washington, DC 20052, USA.
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Suite 2B-430, Washington, DC 20037, USA.
| |
Collapse
|
18
|
Sialic Acid-Binding Lectin from Bullfrog Eggs Exhibits an Anti-Tumor Effect Against Breast Cancer Cells Including Triple-Negative Phenotype Cells. Molecules 2018; 23:molecules23102714. [PMID: 30347895 PMCID: PMC6222625 DOI: 10.3390/molecules23102714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023] Open
Abstract
Sialic acid-binding lectin from Rana catesbeiana eggs (cSBL) is a multifunctional protein that has lectin and ribonuclease activity. In this study, the anti-tumor activities of cSBL were assessed using a panel of breast cancer cell lines. cSBL suppressed the cell growth of all cancer cell lines tested here at a concentration that is less toxic, or not toxic at all, to normal cells. The growth suppressive effect was attributed to the cancer-selective induction of apoptosis. We assessed the expressions of several key molecules associated with the breast cancer phenotype after cSBL treatment by western blotting. cSBL decreased the expression level of estrogen receptor (ER) α, while it increased the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). cSBL also suppressed the expression of the progesterone receptor (PgR) and human epidermal growth factor receptor type 2 (HER2). Furthermore, it was revealed that cSBL decreases the expression of the epidermal growth factor receptor (EGFR/HER1) in triple-negative breast cancer cells. These results indicate that cSBL induces apoptosis with decreasing ErbB family proteins and may have great potential for breast cancer chemotherapy, particularly in triple-negative phenotype cells.
Collapse
|
19
|
Ito K, Park SH, Katsyv I, Zhang W, De Angelis C, Schiff R, Irie HY. PTK6 regulates growth and survival of endocrine therapy-resistant ER+ breast cancer cells. NPJ Breast Cancer 2017; 3:45. [PMID: 29167821 PMCID: PMC5694002 DOI: 10.1038/s41523-017-0047-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022] Open
Abstract
The non-receptor tyrosine kinase, PTK6/BRK, is highly expressed in multiple tumor types, including prostate, ovarian, and breast cancers, and regulates oncogenic phenotypes such as proliferation, migration, and survival. PTK6 inhibition also overcomes targeted therapy resistance of HER2+ breast cancer. Although PTK6 is highly expressed in ER+ Luminal breast cancers, the role of PTK6 in this subtype has not been elucidated. In this study, we investigated the functions of PTK6 in ER+ Luminal breast cancer cells, including those that are relatively resistant to estrogen deprivation or targeted endocrine therapies used in the treatment of ER+ cancers. Enhanced expression of PTK6 in ER+ breast cancer cells enhances growth of ER+ breast cancer cells, including tamoxifen-treated cells. Downregulation of PTK6 in ER+ breast cancer cells, including those resistant to tamoxifen, fulvestrant, and estrogen deprivation, induces apoptosis, as evidenced by increased levels of cleaved PARP, and an increase in the AnnexinV+ population. PTK6 downregulation impairs growth of these cells in 3D MatrigelTM cultures, and virtually abrogates primary tumor growth of both tamoxifen-sensitive and resistant MCF-7 xenografts. Finally, we show that p38 MAPK activation is critical for PTK6 downregulation-induced apoptosis, a mechanism that we previously reported for survival of HER2+ breast cancer cells, highlighting conserved mechanisms of survival regulation by PTK6 across breast cancer subtypes. In conclusion, our studies elucidate critical functions of PTK6 in ER+ Luminal breast cancers and support PTK6 as an attractive therapeutic target for ER+ breast cancers. Drugs that target a tumor-promoting enzyme called protein tyrosine kinase 6 (PTK6) could help treat hormone-receptor positive breast cancer. A team led by Hanna Irie from the Icahn School of Medicine at Mount Sinai in New York, NY, USA, investigated the role of PTK6, also known as breast tumor kinase, in breast cancer cells that grow in response to the hormone estrogen. They boosted the enzyme’s expression in estrogen receptor-expressing breast cancer cells and saw enhanced growth. Conversely, downregulating PTK6 levels led to cell death, including in tumor cells that were resistant to tamoxifen
and other therapies commonly used to treat estrogen-receptor positive breast cancer. The researchers showed that this effect was dependent on the activation of a signaling pathway previously found to be important in another subtype of breast cancer, highlighting a conserved mechanism of cell survival regulation by PTK6.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY USA
| | - Sun Hee Park
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA.,Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA.,Department of Medicine, Baylor College of Medicine, Houston, TX USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY USA.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY USA
| |
Collapse
|
20
|
Quarni W, Lungchukiet P, Tse A, Wang P, Sun Y, Kasiappan R, Wu JY, Zhang X, Bai W. RIPK1 binds to vitamin D receptor and decreases vitamin D-induced growth suppression. J Steroid Biochem Mol Biol 2017; 173:157-167. [PMID: 28159673 PMCID: PMC5538941 DOI: 10.1016/j.jsbmb.2017.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/07/2017] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Receptor interacting protein kinase 1 (RIPK1) is an enzyme acting downstream of tumor necrosis factor alpha to control cell survival and death. RIPK1 expression has been reported to cause drug resistance in cancer cells, but so far, no published studies have investigated the role of RIPK1 in vitamin D signaling. In the present study, we investigated whether RIPK1 plays any roles in 1,25-dihydroxyvitamin D3 (1,25D3)-induced growth suppression. In our studies, RIPK1 decreased the transcriptional activity of vitamin D receptor (VDR) in luciferase reporter assays independent of its kinase activity, suggesting a negative role of RIPK1 in 1,25D3 action. RIPK1 also formed a complex with VDR, and deletion analyses mapped the RIPK1 binding region to the C-terminal ligand-binding domain of the VDR. Subcellular fractionation analyses indicated that RIPK1 increased VDR retention in the cytoplasm, which may account for its inhibition of VDR transcriptional activity. Consistent with the reporter analyses, 1,25D3-induced growth suppression was more pronounced in RIPK1-null MEFs and RIPK1-knockdown ovarian cancer cells than in control cells. Our studies have defined RIPK1 as a VDR repressor, projecting RIPK1 depletion as a potential strategy to increase the potency of 1,25D3 and its analogs for cancer intervention.
Collapse
Affiliation(s)
- Waise Quarni
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Panida Lungchukiet
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Anfernee Tse
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Pei Wang
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Yuefeng Sun
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Ravi Kasiappan
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Jheng-Yu Wu
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Wenlong Bai
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States; Oncological Sciences, University of South Florida College of Medicine, Tampa, FL 33612, United States; Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States.
| |
Collapse
|
21
|
Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017; 8:55684-55714. [PMID: 28903453 PMCID: PMC5589692 DOI: 10.18632/oncotarget.18264] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacques Huot
- Le Centre de Recherche du CHU de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| |
Collapse
|
22
|
Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell Signal 2017; 34:121-132. [PMID: 28341599 DOI: 10.1016/j.cellsig.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70% cases of breast cancers exhibit high expression and activity levels of estrogen receptor alpha (ERα), a transcription regulator that induces the expression of genes associated with cellular proliferation and survival. These nuclear functions of the receptor are associated with the development of breast cancer. However, ERα localization is not static, but rather, dynamic with continuous shuttling between the nucleus and the cytoplasm. Interestingly, both the nuclear import and export of ERα are modulated by several stimuli that include estradiol, antiestrogens, and growth factors. As ERα nuclear accumulation is critical to the regulation of gene expression, nuclear export of this receptor modulates the intensity and duration of its transcriptional activity. Thus, the subcellular spatial distribution of ERα ensures tight modulation of its concentration in cellular compartments, as well as of its nuclear and extranuclear functions. In this review, we will discuss current findings regarding the biological importance of molecular mechanisms of, and proteins responsible for, the nuclear import and export of ERα in breast cancer cells.
Collapse
|
23
|
Saczko J, Michel O, Chwiłkowska A, Sawicka E, Mączyńska J, Kulbacka J. Estrogen Receptors in Cell Membranes: Regulation and Signaling. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 227:93-105. [PMID: 28980042 DOI: 10.1007/978-3-319-56895-9_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Estrogens can stimulate the development, proliferation, migration, and survival of target cells. These biological effects are mediated through their action upon the plasma membrane estrogen receptors (ERs). ERs regulate transcriptional processes by nuclear translocation and binding to specific response elements, which leads to the regulation of gene expression. This effect is termed genomic or nuclear. However, estrogens may exert their biological activity also without direct binding to DNA and independently of gene transcription or protein synthesis. This action is called non-genomic or non-nuclear. Through non-genomic mechanisms, estrogens can modify regulatory cascades such as MAPK, P13K, and tyrosine cascade as well as membrane-associated molecules such as ion channels and G-protein-coupled receptors. The recent studies on the mechanisms of estrogen action provide an evidence that non-genomic and genomic effects converge. An example of such convergence is the potential possibility to modulate gene expression through these two independent pathways. The understanding of the plasma membrane estrogen receptors is crucial for the development of novel drugs and therapeutic protocols targeting specific receptor actions.
Collapse
Affiliation(s)
- Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland.
| | - Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Agnieszka Chwiłkowska
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Ewa Sawicka
- Department of Toxicology, Wroclaw Medical University, Borowska 211, 50-552, Wroclaw, Poland
| | - Justyna Mączyńska
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| |
Collapse
|
24
|
Pangou E, Befani C, Mylonis I, Samiotaki M, Panayotou G, Simos G, Liakos P. HIF-2α phosphorylation by CK1δ promotes erythropoietin secretion in liver cancer cells under hypoxia. J Cell Sci 2016; 129:4213-4226. [PMID: 27686097 DOI: 10.1242/jcs.191395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Hypoxia inducible factor 2 (HIF-2) is a transcriptional activator implicated in the cellular response to hypoxia. Regulation of its inducible subunit, HIF-2α (also known as EPAS1), involves post-translational modifications. Here, we demonstrate that casein kinase 1δ (CK1δ; also known as CSNK1D) phosphorylates HIF-2α at Ser383 and Thr528 in vitro We found that disruption of these phosphorylation sites, and silencing or chemical inhibition of CK1δ, reduced the expression of HIF-2 target genes and the secretion of erythropoietin (EPO) in two hepatic cancer cell lines, Huh7 and HepG2, without affecting the levels of HIF-2α protein expression. Furthermore, when CK1δ-dependent phosphorylation of HIF-2α was inhibited, we observed substantial cytoplasmic mislocalization of HIF-2α, which was reversed upon the addition of the nuclear protein export inhibitor leptomycin B. Taken together, these data suggest that CK1δ enhances EPO secretion from liver cancer cells under hypoxia by modifying HIF-2α and promoting its nuclear accumulation. This modification represents a new mechanism of HIF-2 regulation that might allow HIF isoforms to undertake differing functions.
Collapse
Affiliation(s)
- Evanthia Pangou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Martina Samiotaki
- Protein Chemistry Laboratory, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - George Panayotou
- Protein Chemistry Laboratory, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
25
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Ma S, Yin N, Qi X, Pfister SL, Zhang MJ, Ma R, Chen G. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget 2016; 6:13320-33. [PMID: 26079946 PMCID: PMC4537017 DOI: 10.18632/oncotarget.3645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.
Collapse
Affiliation(s)
- Shao Ma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Ning Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mei-Jie Zhang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rong Ma
- Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, USA
| |
Collapse
|
27
|
Zhu Y, Xu J, Li Z, Xie S, Zhou J, Guo X, Zhou X, Li G, Zhong R, Ma A. Ginsenoside Rh2 suppresses growth of uterine leiomyoma in vitro and in vivo and may regulate ERα/c-Src/p38 MAPK activity. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
28
|
The sequence Pro295-Thr311 of the hinge region of oestrogen receptor α is involved in ERK1/2 activation via GPR30 in leiomyoma cells. Biochem J 2015; 472:97-109. [PMID: 26371374 DOI: 10.1042/bj20150744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
The ERα (oestrogen receptor α)-derived peptide ERα17p activates rapid signalling events in breast carcinoma cells under steroid-deprived conditions. In the present study, we investigated its effects in ELT3 leiomyoma cells under similar conditions. We show that it activates ERK1/2 (extracellular-signal-regulated kinase 1/2), the Gαi protein, the trans-activation of EGFR (epidermal growth factor receptor) and, finally, cell proliferation. It is partially internalized in cells and induces membrane translocation of β-arrestins. The activation of ERK1/2 is abolished by the GPR30 (G-protein-coupled receptor 30) antagonist G15 and GPR30 siRNA. When ERα is down-regulated by prolonged treatment with E2 (oestradiol) or specific ERα siRNA, the peptide response is blunted. Thus the simultaneous presence of GPR30 and ERα is required for the action of ERα17p. In addition, its PLM sequence, which interferes with the formation of the ERα-calmodulin complex, appears to be requisite for the phosphorylation of ERK1/2 and cell proliferation. Hence ERα17p is, to our knowledge, the first known peptide targeting ERα-GPR30 membrane cross-talk and the subsequent receptor-mediated biological effects.
Collapse
|
29
|
Daniel JM, Witty CF, Rodgers SP. Long-term consequences of estrogens administered in midlife on female cognitive aging. Horm Behav 2015; 74:77-85. [PMID: 25917862 PMCID: PMC4573273 DOI: 10.1016/j.yhbeh.2015.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/15/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Many of the biochemical, structural, and functional changes that occur as the female brain ages are influenced by changes in levels of estrogens. Administration of estrogens begun during a critical window near menopause is hypothesized to prevent or delay age-associated cognitive decline. However, due to potential health risks women often limit use of estrogen therapy to a few years to treat menopausal symptoms. The long-term consequences for the brain of short-term use of estrogens are unknown. Interestingly, there are preliminary data to suggest that short-term use of estrogens during the menopausal transition may afford long-term cognitive benefits to women as they age. Thus, there is the intriguing possibility that short-term estrogen therapy may provide lasting benefits to the brain and cognition. The focus of the current review is an examination of the long-term impact for cognition of midlife use of estrogens. We review data from our lab and others indicating that the ability of midlife estrogens to impact estrogen receptors in the hippocampus may contribute to its ability to exert lasting impacts on cognition in aging females.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology, Tulane University New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University New Orleans, LA 70118, USA.
| | - Christine F Witty
- Program in Neuroscience, Tulane University New Orleans, LA 70118, USA
| | | |
Collapse
|
30
|
Sun Y, Tang S, Xiao X. The Effect of GADD45a on Furazolidone-Induced S-Phase Cell-Cycle Arrest in Human Hepatoma G2 Cells. J Biochem Mol Toxicol 2015; 29:489-495. [DOI: 10.1002/jbt.21719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/13/2015] [Accepted: 05/20/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Yu Sun
- Department of Veterinary Public Health; China Animal Disease Control Center; Beijing 102600 People's Republic of China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine; China Agricultural University; Beijing 100193 People's Republic of China
| | - Xilong Xiao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine; China Agricultural University; Beijing 100193 People's Republic of China
| |
Collapse
|
31
|
Bratton MR, Martin EC, Elliott S, Rhodes LV, Collins-Burow BM, McLachlan JA, Wiese TE, Boue SM, Burow ME. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. J Steroid Biochem Mol Biol 2015; 150:17-23. [PMID: 25771071 PMCID: PMC4424142 DOI: 10.1016/j.jsbmb.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha (α) phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER signaling, specifically we demonstrate an inhibition of ribosomal protein S6 kinase, 70 kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ERα through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Steven Elliott
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Lyndsay V Rhodes
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - John A McLachlan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States
| | - Thomas E Wiese
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Stephen M Boue
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, LA, United States
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
32
|
Bruce MC, McAllister D, Murphy LC. The kinome associated with estrogen receptor-positive status in human breast cancer. Endocr Relat Cancer 2014; 21:R357-70. [PMID: 25056177 DOI: 10.1530/erc-14-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor alpha (ERα) regulates and is regulated by kinases involved in several functions associated with the hallmarks of cancer. The following literature review strongly suggests that distinct kinomes exist for ERα-positive and -negative human breast cancers. Importantly, consistent with the known heterogeneity of ERα-positive cancers, different subgroups exist, which can be defined by different kinome signatures, which in turn are correlated with clinical outcome. Strong evidence supports the interplay of kinase networks, suggesting that targeting a single node may not be sufficient to inhibit the network. Therefore, identifying the important hubs/nodes associated with each clinically relevant kinome in ER+ tumors could offer the ability to implement the best therapy options at diagnosis, either endocrine therapy alone or together with other targeted therapies, for improved overall outcome.
Collapse
Affiliation(s)
- M Christine Bruce
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Danielle McAllister
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Leigh C Murphy
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| |
Collapse
|
33
|
Xu XB, He Y, Song C, Ke X, Fan SJ, Peng WJ, Tan R, Kawata M, Matsuda KI, Pan BX, Kato N. Bisphenol a regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus 2014; 24:1570-80. [DOI: 10.1002/hipo.22336] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Xiao-Bin Xu
- Laboratory of Fear and Anxiety Disorder; Institute of Life Science, Nanchang University; Nanchang 330031 China
| | - Ye He
- Laboratory of Fear and Anxiety Disorder; Institute of Life Science, Nanchang University; Nanchang 330031 China
- Department of Pharmacology; Nanchang University; Nanchang 330031 China
| | - Chen Song
- Laboratory of Fear and Anxiety Disorder; Institute of Life Science, Nanchang University; Nanchang 330031 China
| | - Xin Ke
- Laboratory of Fear and Anxiety Disorder; Institute of Life Science, Nanchang University; Nanchang 330031 China
| | - Shi-Jun Fan
- Laboratory of Fear and Anxiety Disorder; Institute of Life Science, Nanchang University; Nanchang 330031 China
| | - Wei-Jie Peng
- Department of Pharmacology; Nanchang University; Nanchang 330031 China
| | - Ruei Tan
- Department of Psychiatry; School of Medicine; Showa University. 6-11-11; Tokyo 157-8577 Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kyoto 602-8566 Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kyoto 602-8566 Japan
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorder; Institute of Life Science, Nanchang University; Nanchang 330031 China
| | - Nobumasa Kato
- Department of Psychiatry; School of Medicine; Showa University. 6-11-11; Tokyo 157-8577 Japan
| |
Collapse
|
34
|
Li J, Kang Y, Wei L, Liu W, Tian Y, Chen B, Lin X, Li Y, Feng GS, Lu Z. Tyrosine phosphatase Shp2 mediates the estrogen biological action in breast cancer via interaction with the estrogen extranuclear receptor. PLoS One 2014; 9:e102847. [PMID: 25048202 PMCID: PMC4105620 DOI: 10.1371/journal.pone.0102847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
The extranuclear estrogen receptor pathway opens up novel perspectives in many physiological and pathological processes, especially in breast carcinogenesis. However, its function and mechanisms are not fully understood. Herein we present data identifying Shp2, a SH2-containing tyrosine phosphatase, as a critical component of extranuclear ER pathway in breast cancer. The research checked that the effect of Shp2 on the tumor formation and growth in animal model and investigated the regulation of Shp2 on the bio-effect and signaling transduction of estrogen in breast cancer cell lines. The results showed that Shp2 was highly expressed in more than 60% of total 151 breast cancer cases. The inhibition of Shp2 activity by PHPS1 (a Shp2 inhibitor) delayed the development of dimethylbenz(a)anthracene (DMBA)-induced tumors in the rat mammary gland and also blocked tumor formation in MMTV-pyvt transgenic mice. Estradiol (E2) stimulated protein expression and phosphorylation of Shp2, and induced Shp2 binding to ERα and IGF-1R around the membrane to facilitate the phosphorylation of Erk and Akt in breast cancer cells MCF7. Shp2 was also involved in several biological effects of the extranuclear ER-initiated pathway in breast cancer cells. Specific inhibitors (phps1, phps4 and NSC87877) or small interference RNAs (siRNA) of Shp2 remarkably suppressed E2-induced gene transcription (Cyclin D1 and trefoil factor 1 (TFF1)), rapid DNA synthesis and late effects on cell growth. These results introduced a new mechanism for Shp2 oncogenic action and shed new light on extranuclear ER-initiated action in breast tumorigenesis by identifying a novel associated protein, Shp2, for extranuclear ER pathway, which might benefit the therapy of breast cancer.
Collapse
Affiliation(s)
- Jun Li
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yujia Kang
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Longgang Wei
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjie Liu
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baozhen Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China
| | - Yang Li
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gen-Sheng Feng
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhongxian Lu
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
35
|
Abstract
Mitogen-activated protein kinases (MAPKs) mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the main subgroups, the p38 MAP kinases, has been implicated in a wide range of complex biologic processes, such as cell proliferation, cell differentiation, cell death, cell migration, and invasion. Dysregulation of p38 MAPK levels in patients are associated with advanced stages and short survival in cancer patients (e.g., prostate, breast, bladder, liver, and lung cancer). p38 MAPK plays a dual role as a regulator of cell death, and it can either mediate cell survival or cell death depending not only on the type of stimulus but also in a cell type specific manner. In addition to modulating cell survival, an essential role of p38 MAPK in modulation of cell migration and invasion offers a distinct opportunity to target this pathway with respect to tumor metastasis. The specific function of p38 MAPK appears to depend not only on the cell type but also on the stimuli and/or the isoform that is activated. p38 MAPK signaling pathway is activated in response to diverse stimuli and mediates its function by components downstream of p38. Extrapolation of the knowledge gained from laboratory findings is essential to address the clinical significance of p38 MAPK signaling pathways. The goal of this review is to provide an overview on recent progress made in defining the functions of p38 MAPK pathways with respect to solid tumor biology and generate testable hypothesis with respect to the role of p38 MAPK as an attractive target for intervention of solid tumors.
Collapse
Affiliation(s)
- Hari K Koul
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA ; Feist-Weiller Cancer Center, Shreveport, LA, USA ; Veterans Administration Medical Center, Shreveport, LA, USA
| | - Mantu Pal
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA ; Veterans Administration Medical Center, Shreveport, LA, USA
| | - Sweaty Koul
- Feist-Weiller Cancer Center, Shreveport, LA, USA ; Department of Urology, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
36
|
Guo L, Zhang Y, Zhang W, Yilamu D. Correlation between estrogen receptor β expression and the curative effect of endocrine therapy in breast cancer patients. Exp Ther Med 2014; 7:1568-1572. [PMID: 24926345 PMCID: PMC4043576 DOI: 10.3892/etm.2014.1634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/11/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the association between the expression levels of estrogen receptor (ER)β and the curative effect of endocrine therapy in breast cancer patients. Cancer tissues were collected from 583 breast cancer patients between January 2000 and December 2010 and used for analysis. ERβ expression levels were determined using immunohistochemical staining. The Kaplan-Meier method was used for survival analysis and the log-rank test was conducted for difference analysis between survival times. In addition, Cox multivariate analysis was performed to analyze prognostic factors for breast cancer. In the immunohistochemical staining assay, a positive ERβ expression rate of <10% was defined as ERβ low expression, while >10% was defined as ERβ high expression. In patients expressing low levels of ERβ, the median tumor-free survival time of the patients who received endocrine therapy was significantly higher compared with that of the patients who did not receive endocrine therapy. By contrast, in patients with high ERβ expression levels, there was no significant difference in the median tumor-free survival time between the patients who received endocrine therapy and those who did not. In addition, compared with ERβ low expression patients, ERβ high expression patients had a significantly lower median tumor-free survival time. Furthermore, ERβ expression, human epidermal growth factor receptor 2 expression, tumor size, lymph node metastasis, postoperative chemotherapy, radiotherapy and endocrine therapy were identified to be independent prognostic factors for breast cancer. Therefore, high ERβ expression in breast cancer indicates poor prognosis for endocrine therapy.
Collapse
Affiliation(s)
- Liying Guo
- Department of Breast Cancer, Digestive and Vascular Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yu Zhang
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Dilimina Yilamu
- Department of Breast Cancer, Digestive and Vascular Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
37
|
Sun Y, Kasiappan R, Tang J, Webb PL, Quarni W, Zhang X, Bai W. A novel function of the Fe65 neuronal adaptor in estrogen receptor action in breast cancer cells. J Biol Chem 2014; 289:12217-31. [PMID: 24619425 DOI: 10.1074/jbc.m113.526194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fe65 is a multidomain adaptor with established functions in neuronal cells and neurodegeneration diseases. It binds to the C terminus of the Aβ amyloid precursor protein and is involved in regulating gene transcription. The present studies show that Fe65 is expressed in breast cancer (BCa) cells and acts as an ERα transcriptional coregulator that is recruited by 17β-estradiol to the promoters of estrogen target genes. Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2 (PTB2). Ectopic Fe65 increased the transcriptional activity of the ERα in a PTB2-dependent manner in reporter assays. Fe65 knockdown decreased, whereas its stable expression increased the transcriptional activity of endogenous ERα in BCa cells and the ability of estrogens to stimulate target gene expression, ERα, and coactivator recruitment to target gene promoters and cell growth. Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen (TAM), suggesting a role for Fe65 in TAM resistance. Overall, the studies define a novel role for the neuronal adaptor in estrogen actions in BCa cells.
Collapse
Affiliation(s)
- Yuefeng Sun
- From the Departments of Pathology and Cell Biology and
| | | | | | | | | | | | | |
Collapse
|
38
|
La Rosa P, Pellegrini M, Totta P, Acconcia F, Marino M. Xenoestrogens alter estrogen receptor (ER) α intracellular levels. PLoS One 2014; 9:e88961. [PMID: 24586459 PMCID: PMC3930606 DOI: 10.1371/journal.pone.0088961] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/17/2014] [Indexed: 12/14/2022] Open
Abstract
17β-estradiol (E2)-dependent estrogen receptor (ER) α intracellular concentration is a well recognized critical step in the pleiotropic effects elicited by E2 in several target tissues. Beside E2, a class of synthetic and plant-derived chemicals collectively named endocrine disruptors (EDs) or xenoestrogens bind to and modify both nuclear and extra-nuclear ERα activities. However, at the present no information is available on the ability of EDs to hamper ERα intracellular concentration. Here, the effects of bisphenol A (BPA) and naringenin (Nar), prototypes of synthetic and plant-derived ERα ligands, have been evaluated on ERα levels in MCF-7 cells. Both EDs mimic E2 in triggering ERα Ser118 phosphorylation and gene transcription. However, only E2 or BPA induce an increase of cell proliferation; whereas 24 hrs after Nar stimulation a dose-dependent decrease in cell number is reported. E2 or BPA treatment reduces ERα protein and mRNA levels after 24 hrs. Contrarily, Nar stimulation does not alter ERα content but reduces ERα mRNA levels like other ligands. Co-stimulation experiments indicate that 48 hrs of Nar treatment prevents the E2-induced ERα degradation and hijacks the physiological ability of E2:ERα complex to regulate gene transcription. Mechanistically, Nar induces ERα protein accumulation by preventing proteasomal receptor degradation via persistent activation of p38/MAPK pathway. As a whole these data demonstrate that ERα intracellular concentration is an important target through which EDs hamper the hormonal milieu of E2 target cells driving cells to different outcomes or mimicking E2 even in the absence of the hormone.
Collapse
Affiliation(s)
| | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
39
|
Elevated expression of TANK-binding kinase 1 enhances tamoxifen resistance in breast cancer. Proc Natl Acad Sci U S A 2014; 111:E601-10. [PMID: 24449872 DOI: 10.1073/pnas.1316255111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Resistance to antiestrogens is one of the major challenges in breast cancer treatment. Although phosphorylation of estrogen receptor α (ERα) is an important factor in endocrine resistance, the contributions of specific kinases in endocrine resistance are still not fully understood. Here, we report that an important innate immune response kinase, the IκB kinase-related TANK-binding kinase 1 (TBK1), is a crucial determinant of resistance to tamoxifen therapies. We show that TBK1 increases ERα transcriptional activity through phosphorylation modification of ERα at the Ser-305 site. Ectopic TBK1 expression impairs the responsiveness of breast cancer cells to tamoxifen. By studying the specimens from patients with breast cancer, we find a strong positive correlation of TBK1 with ERα, ERα Ser-305, and cyclin D1. Notably, patients with tumors highly expressing TBK1 respond poorly to tamoxifen treatment and show high potential for relapse. Therefore, our findings suggest that TBK1 contributes to tamoxifen resistance in breast cancer via phosphorylation modification of ERα.
Collapse
|
40
|
Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 2014; 14:26-38. [PMID: 24505618 DOI: 10.1038/nrc3622] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oestrogen receptor-α (ERα) is a master transcription factor that regulates cell proliferation and homeostasis in many tissues. Despite beneficial ERα functions, sustained oestrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Oestrogen–ERα interaction can trigger post-translational ERα modifications through crosstalk with signalling pathways to promote transcriptional activation and ubiquitin-mediated ERα proteolysis, with co-activators that have dual roles as ubiquitin ligases. These processes are reviewed herein. The elucidation of mechanisms whereby oestrogen drives both ERα transactivation and receptor proteolysis might have important therapeutic implications not only for breast cancer but also potentially for other hormone-regulated cancers.
Collapse
|
41
|
Riggins RB. The pERK of being a target: Kinase regulation of the orphan nuclear receptor ERRγ. RECEPTORS & CLINICAL INVESTIGATION 2014; 1:e207. [PMID: 26005698 PMCID: PMC4440692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Estrogen-related receptors (ERRs) are orphan members of the nuclear receptor superfamily that are important regulators of mitochondrial metabolism with emerging roles in cancer. In the absence of an endogenous ligand, ERRs are reliant upon other regulatory mechanisms that include protein/protein interactions and post-translational modification, though the cellular and clinical significance of this latter mechanism is unclear. We recently published a study in which we establish estrogen-related receptor gamma (ERRγ) as a target for extracellular signal-regulated kinase (ERK), and show that regulation of ERRγ by ERK has important consequences for the function of this receptor in cellular models of estrogen receptor-positive (ER+) breast cancer. In this Research Highlight, we discuss the implications of these findings from a molecular and clinical perspective.
Collapse
Affiliation(s)
- Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 USA
| |
Collapse
|
42
|
Merlin JL, Harlé A, Lion M, Ramacci C, Leroux A. Expression and activation of P38 MAP kinase in invasive ductal breast cancers: correlation with expression of the estrogen receptor, HER2 and downstream signaling phosphorylated proteins. Oncol Rep 2013; 30:1943-8. [PMID: 23900300 DOI: 10.3892/or.2013.2645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/28/2013] [Indexed: 11/06/2022] Open
Abstract
MAP kinase signaling proteins have major implications in the molecular oncogenesis of breast cancers and have been extensively investigated as putative targets for therapy. This study reports the investigation of the expression of P38 MAPK and its phosphorylated form (p-P38 MAPK) in clinical specimens of invasive breast carcinomas and their correlation with estrogen receptor (ER) and HER2 expression, as well as MAPK and PI3 kinase-AKT pathway signaling phosphorylated proteins. Expression levels of P38 MAPK and p-P38 MAPK as well as p-AKT, p-GSK3β, p-S6 kinase, p-MEK1 and p-ERK1/2 were quantitatively assessed using multiplex bead immunoassay in frozen specimens from 45 invasive ductal breast cancers. Twenty-nine specimens were ER+, 15 were HER2+ and 10 were triple‑negative breast cancers (TNBCs). P38 MAPK was found to be expressed in all tumor specimens and was significantly (P=0.002) overexpressed in ER+ tumors. P38 MAPK expression was lower in TNBCs than in all of the other tumors. The median expression of p-P38 MAPK was also higher in ER+ tumors while lower in the TNBCs. HER2 status had no effect on P38 MAPK and p-P38 MAPK expression. No variation in the phosphorylation rate of P38 MAPK was observed in relation with ER, HER2 or TNBC status. Significantly higher (P=0.0048) expression of p-AKT was observed in HER2+ tumors. No significant difference in p-MEK1, p-GSK3β and p-S6K expression was found in any other comparisons based on ER and HER2 expression subtypes. Investigation of the expression of multiple phosphorylated signaling proteins can be used for personalized targeted therapy. In invasive breast cancer, the overexpression of P38 MAPK may serve as a biomarker for the evaluation of P38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jean-Louis Merlin
- Department of Biopathology, Institut de Cancérologie de Lorraine, 54519 Vandoeuvre les Nancy, France
| | | | | | | | | |
Collapse
|
43
|
Brasseur K, Leblanc V, Fabi F, Parent S, Descôteaux C, Bérubé G, Asselin E. ERα-targeted therapy in ovarian cancer cells by a novel estradiol-platinum(II) hybrid. Endocrinology 2013; 154:2281-95. [PMID: 23677930 DOI: 10.1210/en.2013-1083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As we previously showed, we have synthesized a new family of 17β-estradiol-platinum(II) hybrids. Earlier studies revealed the VP-128 hybrid to show high efficiency compared with cisplatin toward hormone-dependent breast cancer cells. In the present research, we have studied the antitumor activity of VP-128 in vitro and in vivo against ovarian cancer. In nude mice with ovarian xenografts, VP-128 displayed selective activity toward hormone-dependent tumors and showed higher efficiency than cisplatin to inhibit tumor growth. Similarly, in vitro, transient transfection of estrogen receptor (ER)-α in ERα-negative A2780 cells increased their sensitivity to VP-128-induced apoptosis, confirming the selectivity of VP-128 toward hormone-dependent tumor cells. In agreement, Western blot analysis revealed that VP-128 induced higher caspase-9, caspase-3, and poly (ADP-ribose) polymerase cleavage compared with cisplatin. The activation of caspase-independent apoptosis was also observed in ERα-negative A2780 cells, in which VP-128 rapidly induced the translocation of apoptosis-inducing factor to the nucleus. Conversely, subcellular localization of apoptosis-inducing factor was not modified in ERα-positive Ovcar-3 cells. We also discovered that VP-128 induces autophagy in ovarian cancer cells because of the formation of acidic vesicular organelles (AVOs) and increase of Light Chain 3B-II protein responsible for the formation of autophagosomes; pathways related to autophagy (AKT and mammalian target of rapamycin) were also down-regulated, supporting this mechanism. Finally, the inhibition of autophagy using chloroquine increased VP-128 efficiency, indicating a possible combination therapy. Altogether these results highlight the beneficial value of VP-128 for the treatment of hormone-dependent ovarian cancers and provide preliminary proof of concept for the efficient targeting of ERα- by 17β-estradiol-Pt(II)-linked chemotherapeutic hybrids in these tumors.
Collapse
Affiliation(s)
- K Brasseur
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | | | | | |
Collapse
|
44
|
Bhat-Nakshatri P, Song EK, Collins NR, Uversky VN, Dunker AK, O'Malley BW, Geistlinger TR, Carroll JS, Brown M, Nakshatri H. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing. BMC Med Genomics 2013; 6:21. [PMID: 23758675 PMCID: PMC3687557 DOI: 10.1186/1755-8794-6-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/03/2013] [Indexed: 02/07/2023] Open
Abstract
Background Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. Methods MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. Results We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ERα-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ERα-dependent isoform switching, which correlated with altered response to KGF. Conclusion E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens.
Collapse
Affiliation(s)
- Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, 980 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Surazynski A, Miltyk W, Prokop I, Palka J. The effect of estrogen on prolidase-dependent regulation of HIF-1α expression in breast cancer cells. Mol Cell Biochem 2013; 379:29-36. [PMID: 23549681 PMCID: PMC3666129 DOI: 10.1007/s11010-013-1623-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/20/2013] [Indexed: 01/09/2023]
Abstract
The role of estrogen in breast cancer progression and activation of prolidase activity and HIF-1α led us to study the effect of estrogen on nuclear HIF-1α expression in breast cancer estrogen-dependent MCF-7 and estrogen-independent MDA-MB-231 cells. We have found that in MCF-7 cells (expressing α and β estrogen receptor) cultured without estrogen receptor activator (phenol red, estradiol), HIF-1α was down-regulated, compared to the cells cultured with estrogen receptor activator. This effect was not observed in MDA-MB-231 cells (expressing only β estrogen receptor), suggesting that α estrogen receptor is involved in down-regulation of HIF-1α. However, in MDA-MB-231 cells (expressing high prolidase activity) cultured in the presence of prolidase substrates, Gly-Pro or Gly-HyPro, HIF-1α expression was induced in a dose-dependent manner, independently of estrogen receptor activation. In MCF-7 cells (with constitutively low prolidase activity) the effect of studied iminodipeptides on HIF-1α expression was much less pronounced but it was estrogen-dependent, showing importance of prolidase activity in mechanism of this process. The data were supported by confocal microscopy bio-imaging of HIF-1α in nucleus of MCF-7 and MDA-MB-231 cells that were cultured in the presence and absence of estrogen activator and prolidase substrates. It suggests that estrogen receptor may represent important therapeutic target in pharmacotherapy of estrogen receptor positive breast cancer, while ECM degradation enzymes, including prolidase may represent target in pharmacotherapy of estrogen receptor negative breast cancers.
Collapse
Affiliation(s)
- Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | | | | | | |
Collapse
|
46
|
Manavathi B, Dey O, Gajulapalli VNR, Bhatia RS, Bugide S, Kumar R. Derailed estrogen signaling and breast cancer: an authentic couple. Endocr Rev 2013; 34:1-32. [PMID: 22947396 PMCID: PMC3565105 DOI: 10.1210/er.2011-1057] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, Gachibowli, Prof. CR Rao Road, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012; 14:108-45. [PMID: 23344024 PMCID: PMC3565254 DOI: 10.3390/ijms14010108] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients.
Collapse
|
49
|
Cañas A, López-Sánchez LM, Valverde-Estepa A, Hernández V, Fuentes E, Muñoz-Castañeda JR, López-Pedrera C, De La Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Maintenance of S-nitrosothiol homeostasis plays an important role in growth suppression of estrogen receptor-positive breast tumors. Breast Cancer Res 2012; 14:R153. [PMID: 23216744 PMCID: PMC4053140 DOI: 10.1186/bcr3366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction Protein denitrosylation by thioredoxin reductase (TrxR) is key for maintaining S-nitrosothiol (SNO) homeostasis, although its role in tumor progression is unknown. Therefore, the present study aimed to assess the role of altered SNO homeostasis in breast cancer cells. Methods The impairment of SNO homeostasis in breast cancer cells was achieved with the highly specific TrxR inhibitor auranofin and/or exposure to S-nitroso-L-cysteine. S-nitrosylated proteins were detected using the biotin switch assay. Estrogen receptor (ER) alpha knockdown was achieved using RNA silencing technologies and subcellular localization of ERα was analyzed by confocal microscopy. The Oncomine database was explored for TrxR1 (TXNRD1) expression in breast tumors and TrxR1, ER and p53 expression was analyzed by immunohistochemistry in a panel of breast tumors. Results The impairment of SNO homeostasis enhanced cell proliferation and survival of ER+ MCF-7 cells, but not of MDA-MB-231 (ER-, mut p53) or BT-474 (ER+, mut p53) cells. This enhanced cell growth and survival was associated with Akt, Erk1/2 phosphorylation, and augmented cyclin D1 expression and was abolished by the ER antagonist fulvestrant or the p53 specific inhibitor pifithrin-α. The specific silencing of ERα expression in MCF-7 cells also abrogated the growth effect of TrxR inhibition. Estrogenic deprivation in MCF-7 cells potentiated the pro-proliferative effect of impaired SNO homeostasis. Moreover, the subcellular distribution of ERα was altered, with a predominant nuclear localization associated with phosphorylation at Thr311 in those cells with impaired SNO homeostasis. The impairment of SNO homeostasis also expanded a cancer stem cell-like subpopulation in MCF-7 cells, as indicated by the increase of percentage of CD44+ cells and the augmented capability to form mammospheres in vitro. Notably, ER+ status in breast tumors was significantly associated with lower TXNDR1 mRNA expression and immunohistochemical studies confirmed this association, particularly when p53 abnormalities were absent. Conclusion The ER status in breast cancer may dictate tumor response to different nitrosative environments. Impairment of SNO homeostasis confers survival advantages to ER+ breast tumors, and these molecular mechanisms may also participate in the development of resistance against hormonal therapies that arise in this type of mammary tumors.
Collapse
|
50
|
Sun Y, Tang S, Jin X, Zhang C, Zhao W, Xiao X. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells. J Appl Toxicol 2012; 33:1500-5. [PMID: 23112108 DOI: 10.1002/jat.2829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/02/2012] [Accepted: 09/05/2012] [Indexed: 01/28/2023]
Abstract
Given the previously described essential role for the p38 mitogen-activation protein kinase (p38 MAPK) signaling pathway in human hepatoma G2 cells (HepG2), we undertook the present study to investigate the role of the p38 MAPK signaling pathway in cell-cycle arrest induced by Furazolidone (FZD). The aim of this study was to determine the effects of FZD on HepG2 cells by activating and inhibiting the p38 MAPK signaling pathway. The cell cycle and proliferation of HepG2 cells treated with FZD were detected by flow cytometry and MTT assay in the presence or absence of p38 MAPK inhibitors (SB203580), respectively. Cyclin D1, cyclin D3 and CDK6 were detected by quantitative real-time PCR and western blot analysis. Our data showed that p38 MAPK became phosphorylated after stimulation with FZD. Activation of p38 MAPK could arise S-phase cell-cycle arrest and suppress cell proliferation. Simultaneously, inhibition of the p38 MAPK signaling pathway significantly prevented S-phase cell-cycle arrest, increased the percentage of cell viability and decreased the expression of cyclin D1, cyclin D3 and CDK6. These results demonstrated that FZD arose S-phase cell-cycle arrest via activating the p38 MAPK signaling pathway in HepG2 cells. Cyclin D1, cyclin D3 and CDK6 are target genes functioning at the downstream of p38 MAPK in HepG2 cells induced by FZD.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|