1
|
Camperi J, Roper B, Freund E, Leylek R, Nissenbaum A, Galan C, Caothien R, Hu Z, Ko P, Lee A, Chatla K, Ayalew L, Yang F, Lippold S, Guilbaud A. Exploring the Impact of In Vitro-Transcribed mRNA Impurities on Cellular Responses. Anal Chem 2024; 96:17789-17799. [PMID: 39445393 PMCID: PMC11542617 DOI: 10.1021/acs.analchem.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Advances in mRNA technology have enabled mRNA-based therapies to enter a new era of medicine. Such therapies benefit from a single, standardized in vitro transcription (IVT) manufacturing process applicable to a wide range of targets. This process includes several downstream purification steps, which aim to eliminate impurities that potentially affect safety and efficacy. However, it is not fully understood which impurities are the most critical; hence, some efforts are still needed to establish the correlation between RNA impurities and their role in limiting therapeutic efficacy. To study this relationship, we produced in vitro-transcribed mRNAs using several bacteriophage T7 RNA polymerases, including one wild-type and four engineered variants. Important attributes of the mRNA such as integrity, purity, and functional activity were then measured using advanced physicochemical and cellular assays. For impurities including abortive transcripts, mRNAs containing partial poly(A) tails, and double-stranded (ds)RNA byproducts, structure-function relationships have been established by tracking cellular responses (i.e., protein expression, reactogenicity) in multiple cell models. By varying the T7 RNA polymerase, different levels of sense-antisense dsRNA byproducts were measured by mass photometry, contributing directly to immunological reactogenicity in bone marrow-derived dendritic cells. T7 RNA polymerase differences with regard to short (<20 nucleotides) 3'-loopback dsRNA byproducts were also further investigated using native mass spectrometry by precisely resolving these impurities at the nucleotide level. Overall, this study highlights the importance of developing sensitive and advanced analytical methods to characterize IVT mRNA impurities and understand their interaction with cellular machinery in order to ensure quality control of RNA-based therapies.
Collapse
Affiliation(s)
- Julien Camperi
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Roper
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Emily Freund
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Leylek
- Department
of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ariane Nissenbaum
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carolina Galan
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Roger Caothien
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhilan Hu
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peggy Ko
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Allison Lee
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kamalakar Chatla
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Luladey Ayalew
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Feng Yang
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steffen Lippold
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Axel Guilbaud
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | | | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Zhu X, Xu M, Leu NA, Morrisey EE, Millar SE. FZD2 regulates limb development by mediating β-catenin-dependent and -independent Wnt signaling pathways. Dis Model Mech 2023; 16:dmm049876. [PMID: 36867021 PMCID: PMC10073008 DOI: 10.1242/dmm.049876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Human Robinow syndrome (RS) and dominant omodysplasia type 2 (OMOD2), characterized by skeletal limb and craniofacial defects, are associated with heterozygous mutations in the Wnt receptor FZD2. However, as FZD2 can activate both canonical and non-canonical Wnt pathways, its precise functions and mechanisms of action in limb development are unclear. To address these questions, we generated mice harboring a single-nucleotide insertion in Fzd2 (Fzd2em1Smill), causing a frameshift mutation in the final Dishevelled-interacting domain. Fzd2em1Smill mutant mice had shortened limbs, resembling those of RS and OMOD2 patients, indicating that FZD2 mutations are causative. Fzd2em1Smill mutant embryos displayed decreased canonical Wnt signaling in developing limb mesenchyme and disruption of digit chondrocyte elongation and orientation, which is controlled by the β-catenin-independent WNT5A/planar cell polarity (PCP) pathway. In line with these observations, we found that disruption of FZD function in limb mesenchyme caused formation of shortened bone elements and defects in Wnt/β-catenin and WNT5A/PCP signaling. These findings indicate that FZD2 controls limb development by mediating both canonical and non-canonical Wnt pathways and reveal causality of pathogenic FZD2 mutations in RS and OMOD2 patients.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E. Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Pecori R, Chillón I, Lo Giudice C, Arnold A, Wüst S, Binder M, Marcia M, Picardi E, Papavasiliou FN. ADAR RNA editing on antisense RNAs results in apparent U-to-C base changes on overlapping sense transcripts. Front Cell Dev Biol 2023; 10:1080626. [PMID: 36684421 PMCID: PMC9852825 DOI: 10.3389/fcell.2022.1080626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Despite hundreds of RNA modifications described to date, only RNA editing results in a change in the nucleotide sequence of RNA molecules compared to the genome. In mammals, two kinds of RNA editing have been described so far, adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. Recent improvements in RNA sequencing technologies have led to the discovery of a continuously growing number of editing sites. These methods are powerful but not error-free, making routine validation of newly-described editing sites necessary. During one of these validations on DDX58 mRNA, along with A-to-I RNA editing sites, we encountered putative U-to-C editing. These U-to-C edits were present in several cell lines and appeared regulated in response to specific environmental stimuli. The same findings were also observed for the human long intergenic non-coding RNA p21 (hLincRNA-p21). A more in-depth analysis revealed that putative U-to-C edits result from A-to-I editing on overlapping antisense RNAs that are transcribed from the same loci. Such editing events, occurring on overlapping genes transcribed in opposite directions, have recently been demonstrated to be immunogenic and have been linked with autoimmune and immune-related diseases. Our findings, also confirmed by deep transcriptome data, demonstrate that such loci can be recognized simply through the presence of A-to-I and U-to-C mismatches within the same locus, reflective A-to-I editing both in the sense-oriented transcript and in the cis-natural antisense transcript (cis-NAT), implying that such clusters could be a mark of functionally relevant ADAR1 editing events.
Collapse
Affiliation(s)
- Riccardo Pecori
- Division of Immune Diversity, German Cancer Research Centre (DKFZ), Research Program Immunology and Cancer, Heidelberg, Germany,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany,*Correspondence: Riccardo Pecori, ; Fotini Nina Papavasiliou,
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Claudio Lo Giudice
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Annette Arnold
- Division of Immune Diversity, German Cancer Research Centre (DKFZ), Research Program Immunology and Cancer, Heidelberg, Germany
| | - Sandra Wüst
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response,” German Cancer Research Centre (DKFZ), Research Program Infection, Inflammation and Cancer, Division Virus Associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response,” German Cancer Research Centre (DKFZ), Research Program Infection, Inflammation and Cancer, Division Virus Associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Fotini Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Centre (DKFZ), Research Program Immunology and Cancer, Heidelberg, Germany,*Correspondence: Riccardo Pecori, ; Fotini Nina Papavasiliou,
| |
Collapse
|
6
|
Sakaguchi S, Urayama SI, Takaki Y, Hirosuna K, Wu H, Suzuki Y, Nunoura T, Nakano T, Nakagawa S. NeoRdRp: A Comprehensive Dataset for Identifying RNA-dependent RNA Polymerases of Various RNA Viruses from Metatranscriptomic Data. Microbes Environ 2022; 37. [PMID: 36002304 PMCID: PMC9530720 DOI: 10.1264/jsme2.me22001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA viruses are distributed throughout various environments, and most have recently been identified by metatranscriptome sequencing. However, due to the high nucleotide diversity of RNA viruses, it is still challenging to identify novel RNA viruses from metatranscriptome data. To overcome this issue, we created a dataset of RNA-dependent RNA polymerase (RdRp) domains that are essential for all RNA viruses belonging to Orthornavirae. Genes with RdRp domains from various RNA viruses were clustered based on amino acid sequence similarities. A multiple sequence alignment was generated for each cluster, and a hidden Markov model (HMM) profile was created when the number of sequences was greater than three. We further refined 426 HMM profiles by detecting RefSeq RNA virus sequences and subsequently combined the hit sequences with the RdRp domains. As a result, 1,182 HMM profiles were generated from 12,502 RdRp domain sequences, and the dataset was named NeoRdRp. The majority of NeoRdRp HMM profiles successfully detected RdRp domains, specifically in the UniProt dataset. Furthermore, we compared the NeoRdRp dataset with two previously reported methods for RNA virus detection using metatranscriptome sequencing data. Our methods successfully identified the majority of RNA viruses in the datasets; however, some RNA viruses were not detected, similar to the other two methods. NeoRdRp may be repeatedly improved by the addition of new RdRp sequences and is applicable as a system for detecting various RNA viruses from diverse metatranscriptome data.
Collapse
Affiliation(s)
- Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba
| | - Yoshihiro Takaki
- Super-cuttingedge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | - Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine
| |
Collapse
|
7
|
Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev 2022; 122:14066-14084. [PMID: 35863749 PMCID: PMC9344915 DOI: 10.1021/acs.chemrev.1c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
The global spread
of SARS-CoV-2 has proceeded at an unprecedented
rate. Remarkably, characterization of the virus using modern tools
in structural biology has also progressed at exceptional speed. Advances
in electron-based imaging techniques, combined with decades of foundational
studies on related viruses, have enabled the research community to
rapidly investigate structural aspects of the novel coronavirus from
the level of individual viral proteins to imaging the whole virus
in a native context. Here, we provide a detailed review of the structural
biology and pathobiology of SARS-CoV-2 as it relates to all facets
of the viral life cycle, including cell entry, replication, and three-dimensional
(3D) packaging based on insights obtained from X-ray crystallography,
cryo-electron tomography, and single-particle cryo-electron microscopy.
The structural comparison between SARS-CoV-2 and the related earlier
viruses SARS-CoV and MERS-CoV is a common thread throughout this review.
We conclude by highlighting some of the outstanding unanswered structural
questions and underscore areas that are under rapid current development
such as the design of effective therapeutics that block viral infection.
Collapse
Affiliation(s)
- James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Gandeeva Therapeutics Inc., Vancouver, British Columbia, Canada, V5C 6N5
| |
Collapse
|
8
|
de Faria IJS, Aguiar ERGR, Olmo RP, Alves da Silva J, Daeffler L, Carthew RW, Imler JL, Marques JT. Invading viral DNA triggers dsRNA synthesis by RNA polymerase II to activate antiviral RNA interference in Drosophila. Cell Rep 2022; 39:110976. [PMID: 35732126 PMCID: PMC10041815 DOI: 10.1016/j.celrep.2022.110976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022] Open
Abstract
dsRNA sensing triggers antiviral responses against RNA and DNA viruses in diverse eukaryotes. In Drosophila, Invertebrate iridescent virus 6 (IIV-6), a large DNA virus, triggers production of small interfering RNAs (siRNAs) by the dsRNA sensor Dicer-2. Here, we show that host RNA polymerase II (RNAPII) bidirectionally transcribes specific AT-rich regions of the IIV-6 DNA genome to generate dsRNA. Both replicative and naked IIV-6 genomes trigger production of dsRNA in Drosophila cells, implying direct sensing of invading DNA. Loquacious-PD, a Dicer-2 co-factor essential for the biogenesis of endogenous siRNAs, is dispensable for processing of IIV-6-derived dsRNAs, which suggests that they are distinct. Consistent with this finding, inhibition of the RNAPII co-factor P-TEFb affects the synthesis of endogenous, but not virus-derived, dsRNA. Altogether, our results suggest that a non-canonical RNAPII complex recognizes invading viral DNA to synthesize virus-derived dsRNA, which activates the antiviral siRNA pathway in Drosophila.
Collapse
Affiliation(s)
- Isaque J S de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), 45662-900 Ilhéus, Brazil
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - Juliana Alves da Silva
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Laurent Daeffler
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France.
| |
Collapse
|
9
|
Pielhop TP, Popp C, Knierim D, Margaria P, Maiß E. Three new mycoviruses identified in the apple replant disease (ARD)-associated fungus Rugonectria rugulosa. Virus Genes 2022; 58:423-435. [PMID: 35841525 PMCID: PMC9477930 DOI: 10.1007/s11262-022-01924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
In this study, three new mycoviruses were identified co-infecting the apple replant disease (ARD)-associated root endophyte Rugonectria rugulosa. After dsRNA extraction, six viral fragments were visualized. Four fragments belong to a quadrivirus, which has a genome size of 17,166 bp. Each of the fragments of this quadrivirus has a single ORF encoding a protein. Two of these proteins are coat protein subunits, one ORF encodes the RdRp, and one protein has an unknown function. This virus was tentatively named rugonectria rugulosa quadrivirus 1 (RrQV1) as a member of the proposed new species Quadrivirus rugonectria. Another fragment represents the dsRNA intermediate form of a + ssRNA mitovirus with a genome size of 2410 nt. This virus encodes an RdRp and is tentatively called rugonectria rugulosa mitovirus 1 (RrMV1). RrMV1 is suggested as a member of a new species with the proposed name Mitovirus rugonectria. The sixth fragment belongs to the genome of an unclassified dsRNA virus tentatively called rugonectria rugulosa dsRNA virus 1 (RrV1). The monopartite dsRNA genome of RrV1 has a length of 8964 bp and contains two ORFs encoding a structure/gag protein and an RdRp. Full genomic sequences were determined and the genome structure as well as molecular properties are presented. After phylogenetic studies and sequence identity analyses, all three isolates are proposed as new mycoviruses. The results help to improve the understanding of the complexity of the factors involved in ARD and support the interest in mycoviral research. Subsequent analyses need to focus on the impact of mycoviruses on the biology and pathogenicity of ARD-associated fungi. The results of such studies could contribute to the development of mitigation strategies against the disease.
Collapse
Affiliation(s)
- Tom P. Pielhop
- Institute of Horticultural Production Systems, Department of Phytomedicine, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Carolin Popp
- Institute of Horticultural Production Systems, Department of Phytomedicine, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Dennis Knierim
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124 Brunswick, Germany
| | - Paolo Margaria
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124 Brunswick, Germany
| | - Edgar Maiß
- Institute of Horticultural Production Systems, Department of Phytomedicine, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
10
|
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm Genome 2021; 33:293-311. [PMID: 34724117 PMCID: PMC9114089 DOI: 10.1007/s00335-021-09927-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24–35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.
Collapse
|
11
|
Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2021; 12:5970. [PMID: 34645830 PMCID: PMC8514520 DOI: 10.1038/s41467-021-26233-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.
Collapse
|
12
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
13
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
14
|
Kim D, Garza LA. Hypothesis: Wound-induced TLR3 activation stimulates endogenous retinoic acid synthesis and signalling during regeneration. Exp Dermatol 2020; 28:450-452. [PMID: 30927295 DOI: 10.1111/exd.13931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Although the mechanism is unclear, it has been shown that genetically normal adult mice with a large wound form de novo morphogenesis of hair follicles in wound-induced hair neogenesis (WIHN)(1). We focused on how tissues recognize damage signals and identified that double-stranded RNA (dsRNA)-mediated toll-like receptor 3 (TLR3) activation stimulates WIHN. Here, we propose a hypothesis that TLR3 stimulates retinoic acid synthesis and signalling to allow for regeneration, suggesting that common clinical methods of facial rejuvenation in human subjects through damage (such as lasers or dermabrasion), and the use of topical retinoids reflect the same biologic pathway.
Collapse
Affiliation(s)
- Dongwon Kim
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Soleimanian S, Yaghobi R. Harnessing Memory NK Cell to Protect Against COVID-19. Front Pharmacol 2020; 11:1309. [PMID: 32973527 PMCID: PMC7468462 DOI: 10.3389/fphar.2020.01309] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide struggle against the coronavirus disease 2019 (COVID-19) as a public health crisis continues to sweep across the globe. Up to now, effective antiviral treatment against COVID-19 is not available. Therefore, throughout virus infections, a thorough clarification of the virus-host immune system interactions will be most probably helpful to encounter these challenges. Emerging evidence suggests that just like SARS and MERS, COVID-19 primarily suppresses the innate immune system, enabling its stable propagation during the early stage of infection. Consequently, proinflammatory cytokines and chemokines have been increasing during infection progression associated with severe lung pathology. It is imperative to consider hyper inflammation in vaccine designing, as vaccine-induced immune responses must have a protective role against infection without leading to immunopathology. Among the front-line responders to viral infections, Natural Killer (NK) cells have immense therapeutic potential, forming a bridge between innate and adaptive responses. A subset of NK cells exhibits putatively increased effector functions against viruses following pathogen-specific and immunization. Memory NK cells have higher cytotoxicity and effector activity, compared with the conventional NK cells. As a pioneering strategy, prompt accumulation and long-term maintenance of these memory NK cells could be an efficacious viral treatment. According to the high prevalence of human cytomegalovirus (HCMV) infection in the world, it remains to be determined whether HCMV adaptive NK cells could play a protective role against this new emerging virus. In addition, the new adaptive-like KIR+NKG2C+ NK cell subset (the adaptive-like lung tissue residue [tr]NK cell) in the context of the respiratory infection at this site could specifically exhibit the expansion upon COVID-19. Another aspect of NK cells we should note, utilizing modified NK cells such as allogeneic off-the-shelf CAR-NK cells as a state-of-the-art strategy for the treatment of COVID-19. In this line, we speculate introducing NKG2C into chimeric antigen receptors in NK cells might be a potential approach in future viral immunotherapy for emerging viruses. In this contribution, we will briefly discuss the current status and future perspective of NK cells, which provide to successfully exploit NK cell-mediated antiviral activity that may offer important new tools in COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Tiwari B, Habermann K, Arif MA, Weil HL, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:298. [PMID: 32600430 PMCID: PMC7325139 DOI: 10.1186/s12870-020-02511-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.
Collapse
Affiliation(s)
- Bhavika Tiwari
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristin Habermann
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - M. Asif Arif
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Antoni Garcia-Molina
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Wolfgang Frank
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
18
|
Chen CH, Pan CY, Lin WC. Overlapping protein-coding genes in human genome and their coincidental expression in tissues. Sci Rep 2019; 9:13377. [PMID: 31527706 PMCID: PMC6746723 DOI: 10.1038/s41598-019-49802-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023] Open
Abstract
The completion of human genome sequences and the advancement of next-generation sequencing technologies have engendered a clear understanding of all human genes. Overlapping genes are usually observed in compact genomes, such as those of bacteria and viruses. Notably, overlapping protein-coding genes do exist in human genome sequences. Accordingly, we used the current Ensembl gene annotations to identify overlapping human protein-coding genes. We analysed 19,200 well-annotated protein-coding genes and determined that 4,951 protein-coding genes overlapped with their adjacent genes. Approximately a quarter of all human protein-coding genes were overlapping genes. We observed different clusters of overlapping protein-coding genes, ranging from two genes (paired overlapping genes) to 22 genes. We also divided the paired overlapping protein-coding gene groups into four subtypes. We found that the divergent overlapping gene subtype had a stronger expression association than did the subtypes of 5'-tandem overlapping and 3'-tandem overlapping genes. The majority of paired overlapping genes exhibited comparable coincidental tissue expression profiles; however, a few overlapping gene pairs displayed distinctive tissue expression association patterns. In summary, we have carefully examined the genomic features and distributions about human overlapping protein-coding genes and found coincidental expression in tissues for most overlapping protein-coding genes.
Collapse
Affiliation(s)
- Chao-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chao-Yu Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan R.O.C.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan R.O.C
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan R.O.C.. .,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan R.O.C..
| |
Collapse
|
19
|
Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O, Bastard P, Dobbs K, Hernandez N, Goudin N, Hasek ML, García Reino EJ, Lafaille FG, Lorenzo L, Luthra P, Kochetkov T, Bigio B, Boucherit S, Rozenberg F, Vedrinne C, Keller MD, Itan Y, García-Sastre A, Celard M, Orange JS, Ciancanelli MJ, Meyts I, Zhang Q, Abel L, Notarangelo LD, Snoeck HW, Casanova JL, Zhang SY. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med 2019; 216:2038-2056. [PMID: 31217193 PMCID: PMC6719423 DOI: 10.1084/jem.20181621] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Autosomal recessive IRF7 and IRF9 deficiencies impair type I and III IFN immunity and underlie severe influenza pneumonitis. We report three unrelated children with influenza A virus (IAV) infection manifesting as acute respiratory distress syndrome (IAV-ARDS), heterozygous for rare TLR3 variants (P554S in two patients and P680L in the third) causing autosomal dominant (AD) TLR3 deficiency. AD TLR3 deficiency can underlie herpes simplex virus-1 (HSV-1) encephalitis (HSE) by impairing cortical neuron-intrinsic type I IFN immunity to HSV-1. TLR3-mutated leukocytes produce normal levels of IFNs in response to IAV. In contrast, TLR3-mutated fibroblasts produce lower levels of IFN-β and -λ, and display enhanced viral susceptibility, upon IAV infection. Moreover, the patients' iPSC-derived pulmonary epithelial cells (PECs) are susceptible to IAV. Treatment with IFN-α2b or IFN-λ1 rescues this phenotype. AD TLR3 deficiency may thus underlie IAV-ARDS by impairing TLR3-dependent, type I and/or III IFN-mediated, PEC-intrinsic immunity. Its clinical penetrance is incomplete for both IAV-ARDS and HSE, consistent with their typically sporadic nature.
Collapse
Affiliation(s)
- Hye Kyung Lim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Sarah X L Huang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY.,Department of Medicine, Columbia University Medical Center, New York, NY.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Texas, Houston, TX
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Department of Infectious Diseases, Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Olivier Gilliaux
- Laboratory of Experimental Medicine (ULB222), Medicine Faculty, Libre de Bruxelles University, Brussels, Belgium.,Department of Pediatrics, University Hospital Center of Charleroi, Charleroi, Belgium
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nicolas Goudin
- Cell Imaging Platform Structure Fédérative de Recherche Necker, Institut National de la Santé et de la Recherche Médicale US 24, Paris, France
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Eduardo Javier García Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Fabien G Lafaille
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Priya Luthra
- Department of Microbiology, Global Health and Emerging Pathogens Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tatiana Kochetkov
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Virology, Cochin-Saint-Vincent de Paul Hospital, Paris Descartes University, Paris, France
| | - Catherine Vedrinne
- Department of Anesthesia and Intensive Care Medicine in Cardiovascular Surgery, Louis Pradel Cardiological Hospital, Lyon, France
| | - Michael D Keller
- Division of Allergy and Immunology, Center for Cancer and Immunology Research, Children's National Health System, Washington, DC
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo García-Sastre
- Department of Microbiology, Global Health and Emerging Pathogens Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marie Celard
- National Center for Staphylococcus, Lyon Civil Hospital, Lyon, France
| | - Jordan S Orange
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Immunology, Microbiology, and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hans-Willem Snoeck
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY.,Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Immuno-Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| |
Collapse
|
20
|
Isobe T, Tange S, Tasaki H, Kanamori K, Kato A, Nakanishi A. Upregulation of CHOP participates in caspase activation and virus release in human astrovirus-infected cells. J Gen Virol 2019; 100:778-792. [PMID: 30912739 DOI: 10.1099/jgv.0.001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human astroviruses (HAstVs), non-enveloped RNA viruses with positive-sense RNA genomes, are an important cause of acute gastroenteritis in young children, although the processes that produce infectious virions are not clearly defined. To track the viral replication complex (RC) upon HAstV1 infection, the subcellular distribution of double-stranded (ds) RNA and of ORF1b, a viral RNA polymerase, was examined by immunocytochemistry. Foci that were positive for dsRNA and for ORF1b were co-localized, and both foci were also co-localized with resident proteins of the endoplasmic reticulum (ER). Focusing on the association between the HAstV RC and ER, we examined the expression of unfolded protein response (UPR) markers and found that targets of eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4), including CCAAT/enhancer-binding protein homologous protein (CHOP), a proapoptotic transcription factor, were upregulated at the late phase in HAstV-infected cells. Consistently, eIF2α was phosphorylated at the late phase of HAstV infection. The formation of foci resembling stress granules, another known downstream response to eIF2α phosphorylation, was also observed at the same period. Phosphorylation of eIF2α was attenuated in protein kinase R (PKR)-knockdown cells, suggesting that, unlike the canonical ER stress response, PKR was involved in eIF2α phosphorylation in response to HAstV infection. Studies have indicated that immature HAstV capsid protein is processed by caspases, and caspase cleavage is integral to particle release. Inhibition of CHOP upregulation reduced caspase activation and the release of HAstV RNA from cells during HAstV infection. Our results suggest that the eIF2α-ATF4-CHOP pathway participates in HAstV propagation.
Collapse
Affiliation(s)
- Tomoyasu Isobe
- 1Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| | - Shoichiro Tange
- 2Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, 060-8556, Japan
| | | | - Kumiko Kanamori
- 1Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| | - Akiko Kato
- 4Laboratory of Radiation Safety, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| | - Akira Nakanishi
- 1Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan.,4Laboratory of Radiation Safety, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| |
Collapse
|
21
|
Barman P, Reddy D, Bhaumik SR. Mechanisms of Antisense Transcription Initiation with Implications in Gene Expression, Genomic Integrity and Disease Pathogenesis. Noncoding RNA 2019; 5:ncrna5010011. [PMID: 30669611 PMCID: PMC6468509 DOI: 10.3390/ncrna5010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Non-coding antisense transcripts arise from the strand opposite the sense strand. Over 70% of the human genome generates non-coding antisense transcripts while less than 2% of the genome codes for proteins. Antisense transcripts and/or the act of antisense transcription regulate gene expression and genome integrity by interfering with sense transcription and modulating histone modifications or DNA methylation. Hence, they have significant pathological and physiological relevance. Indeed, antisense transcripts were found to be associated with various diseases including cancer, diabetes, cardiac and neurodegenerative disorders, and, thus, have promising potentials for prognostic and diagnostic markers and therapeutic development. However, it is not clearly understood how antisense transcription is initiated and epigenetically regulated. Such knowledge would provide new insights into the regulation of antisense transcription, and hence disease pathogenesis with therapeutic development. The recent studies on antisense transcription initiation and its epigenetic regulation, which are limited, are discussed here. Furthermore, we concisely describe how antisense transcription/transcripts regulate gene expression and genome integrity with implications in disease pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Divya Reddy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
22
|
Zhang R, Wei Y, Zhu L, Huang L, Wei Y, Chen G, Dang Y, Feng Z. LncRNA UCHL1-AS1 prevents cell mobility of hepatocellular carcinoma: a study based on in vitro and bioinformatics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2270-2280. [PMID: 31938339 PMCID: PMC6958276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 06/10/2023]
Abstract
We set out to investigate biological functions and potential molecular mechanisms of long non-coding RNA (lncRNA) in hepatocellular carcinoma (HCC). HCC cell line Bel-7404 was cultured and transfected with antisense to the ubiquitin carboxyl-terminal hydrolase L1 (UCHL1-AS1). Viability and mobility were detected by MTT and wound healing assays. Additionally, enrichment analysis and functional networks of UCHL1-AS1 related genes in HCC were performed. Results showed that high level UCHL1-AS1 could effectively inhibit HCC cell migration. However, there was no significant correlation between overexpressed UCHL1-AS1 and HCC proliferation. Meanwhile, BMP4, CALM3, and HRAS were selected from 204 genes that related to UCHL1-AS1. All of these hub genes play critical roles in HCC occurrence and development. Thus, underlying molecular mechanisms among hub genes and UCHL1-AS1 in HCC might be valuable for prognosis and treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yichen Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li'ou Zhu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
23
|
Olivares AM, Jelcick AS, Reinecke J, Leehy B, Haider A, Morrison MA, Cheng L, Chen DF, DeAngelis MM, Haider NB. Multimodal Regulation Orchestrates Normal and Complex Disease States in the Retina. Sci Rep 2017; 7:690. [PMID: 28386079 PMCID: PMC5429617 DOI: 10.1038/s41598-017-00788-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
Collapse
Affiliation(s)
- A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - A S Jelcick
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - J Reinecke
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - B Leehy
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - A Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M A Morrison
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - L Cheng
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M M DeAngelis
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
24
|
Sun YH, Xie LH, Zhuo X, Chen Q, Ghoneim D, Zhang B, Jagne J, Yang C, Li XZ. Domestic chickens activate a piRNA defense against avian leukosis virus. eLife 2017; 6. [PMID: 28384097 PMCID: PMC5383398 DOI: 10.7554/elife.24695] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 12/12/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) protect the germ line by targeting transposable elements (TEs) through the base-pair complementarity. We do not know how piRNAs co-evolve with TEs in chickens. Here we reported that all active TEs in the chicken germ line are targeted by piRNAs, and as TEs lose their activity, the corresponding piRNAs erode away. We observed de novo piRNA birth as host responds to a recent retroviral invasion. Avian leukosis virus (ALV) has endogenized prior to chicken domestication, remains infectious, and threatens poultry industry. Domestic fowl produce piRNAs targeting ALV from one ALV provirus that was known to render its host ALV resistant. This proviral locus does not produce piRNAs in undomesticated wild chickens. Our findings uncover rapid piRNA evolution reflecting contemporary TE activity, identify a new piRNA acquisition modality by activating a pre-existing genomic locus, and extend piRNA defense roles to include the period when endogenous retroviruses are still infectious. DOI:http://dx.doi.org/10.7554/eLife.24695.001 Viruses called retroviruses can infect animal cells and merge their genetic information with those of the animal causing damage to the animal’s genetic blueprints. Once retroviruses are integrated into a cell they can sometimes get passed down through the generations over the centuries. Almost half of the human genetic code, for example, is made from ancient retroviruses and other foreign sequences. Over time many of these ancient viruses lost the ability to infect other cells and became trapped within cells but they can still jump out and damage the animal’s genetic code under certain circumstances. These trapped foreign sequences are called transposable elements. Animal cells produce molecules called piRNAs to shut down transposable elements. Most piRNAs are produced from genetic information that originally came from integrated retroviruses and that has been hijacked to defend the cell, a similar strategy as Crisper system in bacteria. Domestic chickens produce piRNAs against a virus called avian leukosis virus (or ALV for short) – which commonly infects domestic fowl. The virus also infected the wild ancestors of chickens, known as red jungle fowl, but these birds do not produce piRNAs. This provides an ideal setting to study the evolution of piRNAs in an animal that is not too distantly related to humans (chickens and humans both have backbones, and are therefore both warm-blooded vertebrates). Sun et al. examined cells from the testicles of domestic chickens and red jungle fowl as an example of the role of piRNAs in protecting genetic information in vertebrates. The investigation revealed that piRNAs against all previously trapped viruses in the chicken’s genetic code are produced in chickens to stop them from causing more damage. Sun et al. also observed the creation of piRNAs in chickens in response to ALV that had not yet become trapped in the chicken’s genetic code. Importantly, the piRNAs could control these retroviruses while they were still infectious. The experiments also revealed that piRNAs against ALV are produced from a single copy of ALV that is found in both domestic and wild chickens. The results showed that cells can produce new piRNAs using these pre-existing viral copies within their own genetics. This illustrates that production of piRNA from existing genetic material can be activated in response to certain cues. Further work will seek to discover how existing genetic information becomes a source of piRNAs. In the United States, 8 billion domestic chickens are consumed each year, and a better understanding of how these birds defend themselves against viral infections could increase the productivity of the poultry industry around the world. Moreover, because other viruses trapped in the chicken’s genetic code are related to similar viruses in humans, future discoveries made in this area could help to guide research that will benefit human health as well. DOI:http://dx.doi.org/10.7554/eLife.24695.002
Collapse
Affiliation(s)
- Yu Huining Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Li Huitong Xie
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Xiaoyu Zhuo
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States
| | - Qiang Chen
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Dalia Ghoneim
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, United States
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, United States
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
25
|
Adeola OA. Treatment of Influenza: Prospects of Post-Transcriptional Gene Silencing Through Synthetic siRNAs. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:1-2. [DOI: 10.14218/erhm.2016.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Wang W, Wang WH, Azadzoi KM, Dai P, Wang Q, Sun JB, Zhang WT, Shu Y, Yang JH, Yan Z. Alu RNA accumulation in hyperglycemia augments oxidative stress and impairs eNOS and SOD2 expression in endothelial cells. Mol Cell Endocrinol 2016; 426:91-100. [PMID: 26891959 DOI: 10.1016/j.mce.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 11/16/2022]
Abstract
Endothelial dysfunction resulting from oxidative stress and inflammation plays a dominant role in hyperglycemia-induced vasculopathy. While double-stranded RNA (dsRNA) accumulates in redox and inflammatory conditions, its precise role in hyperglycemia-associated endothelial dysfunction remains unclear. This study aimed to investigate whether and how endogenous dsRNA contributes to endothelial dysfunction via oxidative stress. We used a dsRNA-specific antibody J2 to detect and immunoprecipitate cellular dsRNA. Acquired dsRNA was recognized by cDNA library construction and DNA sequencing. Quantitative PCR, ELISA and immunoassays were performed to identify changes induced by acquired dsRNA in primary human umbilical vein endothelial cells (HUVEC). Our data showed that endogenous dsRNA homologous to Alu Sc subfamily accumulated in hyperglycemic HUVEC. Comparing Alu-transfected HUVEC with high-glucose treated HUVEC, we found that Alu RNA elicited the production of reactive oxygen species (ROS) and up-regulated interleukin-1β (IL-1β) expression and secretion in a similar manner as high-glucose treatment. Moreover, Alu RNA impeded the expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase 2 (SOD2), increased ROS production and activated nuclear factor NFκB by chemically scavenging ROS and inactivation of NFκB. The repressed expression of eNOS and SOD2 resulted from Alu RNA-mediated negative regulatory mechanisms. Our study uncovered endogenous Alu RNA accumulation in hyperglycemic endothelial cells that provoked endothelial oxidative stress and dysfunction by suppressing SOD2 and eNOS expression at both transcription and translation levels via NFκB signaling pathway. These findings suggest a novel regulatory mechanism that involves endogenous dsRNA in endothelial oxidative stress and dysfunction.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Hua Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Kazem M Azadzoi
- Departments of Urology and Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA
| | - Peng Dai
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Qin Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Bin Sun
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Tao Zhang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Shu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Hua Yang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China; Departments of Urology and Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA.
| | - Zhen Yan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Wang W, Wang WH, Azadzoi KM, Su N, Dai P, Sun J, Wang Q, Liang P, Zhang W, Lei X, Yan Z, Yang JH. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci Rep 2016; 6:22550. [PMID: 26935990 PMCID: PMC4776105 DOI: 10.1038/srep22550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy.
Collapse
Affiliation(s)
- Wei Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei-Hua Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kazem M Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA
| | - Ning Su
- Departments of Neurosurgery and Oncology, Xijing and Tangdu Hospital, Xi'an, China.,Cancer Research Center, Shandong University School of Medicine, Jinan, 250012, China
| | - Peng Dai
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jianbin Sun
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qin Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Liang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wentao Zhang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Lei
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Yan
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Hua Yang
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA.,Cancer Research Center, Shandong University School of Medicine, Jinan, 250012, China
| |
Collapse
|
28
|
Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA, Bellon A. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 2015; 8:57. [PMID: 26483630 PMCID: PMC4588008 DOI: 10.3389/fnmol.2015.00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023] Open
Abstract
Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.
Collapse
Affiliation(s)
- Veronica Merelo
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Dante Durand
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Adam R Lescallette
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| | - Kent E Vrana
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences University of Miami, Miller School of Medicine Miami, FL, USA
| | - Alfredo Bellon
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| |
Collapse
|
29
|
Plauzolles A, Lucas M, Gaudieri S. Influence of host resistance on viral adaptation: hepatitis C virus as a case study. Infect Drug Resist 2015; 8:63-74. [PMID: 25897250 PMCID: PMC4396509 DOI: 10.2147/idr.s49891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and cellular studies have shown that the host’s innate and adaptive immune responses are an important correlate of viral infection outcome. The features of the host’s immune response (host resistance) reflect the coevolution between hosts and pathogens that has occurred over millennia, and that has also resulted in a number of strategies developed by viruses to improve fitness and survival within the host (viral adaptation). In this review, we discuss viral adaptation to host immune pressure via protein–protein interactions and sequence-specific mutations. Specifically, we will present the “state of play” on viral escape mutations to host T-cell responses in the context of the hepatitis C virus, and their influence on infection outcome.
Collapse
Affiliation(s)
- Anne Plauzolles
- Centre for Forensic Science, University of Western Australia, Perth, WA, Australia
| | - Michaela Lucas
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Perth, WA, Australia ; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
30
|
Nellimarla S, Mossman KL. Extracellular dsRNA: its function and mechanism of cellular uptake. J Interferon Cytokine Res 2015; 34:419-26. [PMID: 24905198 DOI: 10.1089/jir.2014.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Double-stranded RNA (dsRNA) is arguably the most potent viral trigger of innate immune signaling. Its activity has been recognized for over 5 decades, first as a toxin, then as a central component of the interferon system, as an efficient activator of antiviral responses and an immunomodulator for therapeutic applications. Nucleic acid sensing is the main basis for antiviral defense systems throughout the diverse forms of life from bacteria to plants and animals. Pattern recognition receptors of the host defense system not only sense viral dsRNA as a pathogen-associated molecular pattern in infected cells, but also recognize circulating endogenous dsRNA, a nonmicrobial signal, as a danger-associated molecular pattern, often leading to autoimmunity. Despite the effects of extracellular viral and host dsRNA associated with infection and autoimmunity, respectively, the understanding of cellular mechanisms for its recognition and uptake has only been appreciated in recent years. This review presents an overview of this unique form of nucleic acid, addressing its roles in infection, autoimmunity, and host sensing mechanisms. The goal of this review is to highlight the novel findings with a focus on extracellular recognition and uptake by the cell.
Collapse
Affiliation(s)
- Srinivas Nellimarla
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | | |
Collapse
|
31
|
Henke C, Strissel PL, Schubert MT, Mitchell M, Stolt CC, Faschingbauer F, Beckmann MW, Strick R. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon--derived family during mouse placentogenesis. Retrovirology 2015; 12:9. [PMID: 25888968 PMCID: PMC4340606 DOI: 10.1186/s12977-015-0138-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/07/2015] [Indexed: 01/12/2023] Open
Abstract
Background LTR-retrotransposons became functional neogenes through evolution by acquiring promoter sequences, regulatory elements and sequence modification. Mammalian retrotransposon transcripts (Mart1-9), also called sushi-ichi-related retrotransposon-homolog (SIRH) genes, are a class of Ty3/gypsy LTR-retroelements showing moderate homology to the sushi-ichi LTR-retrotransposon in pufferfish. Rtl1/Mart1 and Peg10/Mart2 expression in mouse placenta and demonstration of their functional roles during placental development exemplifies their importance in cellular processes. In this study, we analyzed all eleven mouse Mart genes from the blastocyst stage and throughout placentogenesis in order to gain information about their expression and regulation. Results Quantitative PCR, in situ hybridization (ISH) and immunoblotting showed various expression patterns of the 11 mouse Mart genes through different placental stages. Zcchc5/Mart3, Zcchc16/ Mart4 and Rgag1/Mart9 expression was undetectable. Rtl1/Mart1, Peg10/Mart2, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a gene expression was very low at the blastocyst stage. Later placental stages showed an increase of expression for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a, the latter up to 1,489 molecules/ng cDNA at E9.5. From our recently published findings Peg10/Mart2 was the most highly expressed Mart gene. ISH demonstrated sense and antisense transcript co-localization of Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a in trophoblast subtypes at the junctional zone, with an accumulation of antisense transcripts in the nuclei. To validate these results, we developed a TAG-aided sense/antisense transcript detection (TASA-TD) method, which verified sense and antisense transcripts for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a. Except for Rtl1/Mart1 and Cxx1a,b/Mart8b,c all other Mart genes showed a reduced amount of antisense transcripts. Northern blot and 5′ and 3′ RACE confirmed both sense and antisense transcripts for Ldoc1/Mart7 and Cxx1a,b,c/Mart8b,c,a. Immunoblotting demonstrated a single protein throughout all placental stages for Ldoc1/Mart7, but for Cxx1a,b,c/Mart8b,c,a a switch occurred from a 57 kDa protein at E10.5 and E14.5 to a 25 kDa protein at E16.5 and E18.5. Conclusions RNA and protein detection of mouse Mart genes support neo-functionalization of retrotransposons in mammalian genomes. Undetectable expression of Zcchc5/Mart3, Zcchc16/Mart4 and Rgag1/Mart9 indicate no role during mouse placentogenesis. Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a gene expression support a role for differentiation from the ectoplacental cone. Mart antisense transcripts and protein alterations predict unique and complex molecular regulation in a time directed manner throughout mouse placentogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Henke
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Pamela L Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Maria-Theresa Schubert
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Megan Mitchell
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Claus C Stolt
- Institute of Biochemistry, D-91054, Erlangen, Germany.
| | - Florian Faschingbauer
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| |
Collapse
|
32
|
Li DD, Liu ZC, Huang L, Jiang QL, Zhang K, Qiao HL, Jiao ZJ, Yao LG, Liu RY, Kan YC. The expression analysis of silk gland-enriched intermediate-size non-coding RNAs in silkworm Bombyx mori. INSECT SCIENCE 2014; 21:429-438. [PMID: 24124013 DOI: 10.1111/1744-7917.12063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
Small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. Silkworm is an important model for studies on insect genetics and control of Lepidopterous pests. We have previously identified 189 novel intermediate-size ncRNAs in silkworm Bombyx mori, including 40 ncRNAs that showed altered expression in different developmental stages. Here we characterized the functions of these 40 ncRNAs by measuring their expressions in six tissues of the fifth instar larvae using Northern blot and real-time polymerase chain reaction assays. We identified nine ncRNAs (four small nucleolar RNAs and five unclassified ncRNAs) that were enriched in silk gland, including four ncRNAs that showed silk gland-specific expression. We further showed that three of nine silk gland-enriched ncRNAs were predominantly expressed in the anterior silk gland, whereas another three ncRNAs were highly accumulated in the posterior silk gland, suggesting that they may play different roles in fibroin synthesis. Furthermore, an unclassified ncRNA, Bm-152, exhibited converse expression pattern with its antisense host gene gartenzwerg in diverse tissues, and might regulate the expression of gartenzwerg through RNA-protein complex. In addition, two silk gland-enriched ncRNAs Bm-102 and Bm-159 can be found in histone modification complex, which indicated that they might play roles through epigenetic modifications. Taken together, we provided the first expression and preliminary functional analysis of silk gland-enriched ncRNAs, which will help understand the molecular mechanism of silk gland-development and fibroin synthesis.
Collapse
Affiliation(s)
- Dan-Dan Li
- China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e104. [PMID: 23839098 PMCID: PMC3731886 DOI: 10.1038/mtna.2013.33] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022]
Abstract
Small noncoding antisense RNAs (sasRNAs) guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.
Collapse
|
35
|
Mechanisms of antisense transcription initiation from the 3' end of the GAL10 coding sequence in vivo. Mol Cell Biol 2013; 33:3549-67. [PMID: 23836882 DOI: 10.1128/mcb.01715-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of the important regulatory functions of antisense transcripts in gene expression, it remains unknown how antisense transcription is initiated. Recent studies implicated RNA polymerase II in initiation of antisense transcription. However, how RNA polymerase II is targeted to initiate antisense transcription has not been elucidated. Here, we have analyzed the association of RNA polymerase II with the antisense initiation site at the 3' end of the GAL10 coding sequence in dextrose-containing growth medium that induces antisense transcription. We find that RNA polymerase II is targeted to the antisense initiation site at GAL10 by Reb1p activator as well as general transcription factors (e.g., TFIID, TFIIB, and Mediator) for antisense transcription initiation. Intriguingly, while GAL10 antisense transcription is dependent on TFIID, its sense transcription does not require TFIID. Further, the Gal4p activator that promotes GAL10 sense transcription is dispensable for antisense transcription. Moreover, the proteasome that facilitates GAL10 sense transcription does not control its antisense transcription. Taken together, our results reveal that GAL10 sense and antisense transcriptions are regulated differently and shed much light on the mechanisms of antisense transcription initiation.
Collapse
|
36
|
Liang KH, Yeh CT. A gene expression restriction network mediated by sense and antisense Alu sequences located on protein-coding messenger RNAs. BMC Genomics 2013; 14:325. [PMID: 23663499 PMCID: PMC3655826 DOI: 10.1186/1471-2164-14-325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 05/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Alus are primate-specific retrotransposons which account for 10.6% of the human genome. A large number of protein-coding mRNAs are encoded with sense or antisense Alus in the un-translated regions. Results We postulated that mRNAs carrying Alus in the two opposite directions can generate double stranded RNAs, capable of regulating the levels of other Alu-carrying mRNAs post-transcriptionally. A gene expression profiling assay showed that the levels of antisense and sense Alus-carrying mRNAs were suppressed in a reversible manner by over-expression of exogenous sense and antisense Alus derived from mRNAs (Family-wise error rate P= 0.0483 and P < 0.0001 respectively). Screening through human mRNAs on the NCBI-RefSeq database, it was found that sense and antisense Alu-carrying transcripts were enriched in distinct cellular functions. Antisense Alu-carrying genes were particularly enriched in neurological and developmental processes, while sense Alu-carrying genes were enriched in immunological functions. Conclusions Taken together, we proposed a novel Alu-mediated regulation network capable of stabilizing Alu-carrying mRNA levels in different cell types and restricting the activated expression levels of protein-coding, Alu-carrying mRNAs.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Liver Research Center, Chang Gung Memorial Hospital, and Molecular Medicine Research Center, Chang Gung University School of Medicine, Taipei, Taiwan
| | | |
Collapse
|
37
|
Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 2013; 50:67-81. [PMID: 23523368 PMCID: PMC3671569 DOI: 10.1016/j.molcel.2013.02.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feedforward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals.
Collapse
Affiliation(s)
- Xin Zhiguo Li
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 2012; 109:E3604-13. [PMID: 23151511 DOI: 10.1073/pnas.1207213109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response, in which viral replication intermediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus infections are controlled by the RNAi pathway remains to be determined. Here, we analyzed the role of RNAi in DNA virus infection using Drosophila melanogaster infected with Invertebrate iridescent virus 6 (IIV-6) as a model. We show that Dcr-2 and Argonaute-2 mutant flies are more sensitive to virus infection, suggesting that vsiRNAs contribute to the control of DNA virus infection. Indeed, small RNA sequencing of IIV-6-infected WT and RNAi mutant flies identified abundant vsiRNAs that were produced in a Dcr-2-dependent manner. We observed a highly uneven distribution with strong clustering of vsiRNAs to small defined regions (hotspots) and modest coverage at other regions (coldspots). vsiRNAs mapped in similar proportions to both strands of the viral genome, suggesting that long dsRNA derived from convergent overlapping transcripts serves as a substrate for Dcr-2. In agreement, strand-specific RT-PCR and Northern blot analyses indicated that antisense transcripts are produced during infection. Moreover, we show that vsiRNAs are functional in silencing reporter constructs carrying fragments of the IIV-6 genome. Together, our data indicate that RNAi provides antiviral defense against dsDNA viruses in animals. Thus, RNAi is the predominant antiviral defense mechanism in insects that provides protection against all major classes of viruses.
Collapse
|
39
|
Kim DS, Kim DW, Kim MY, Nam SH, Choi SH, Kim RN, Kang A, Kim A, Park HS. CACG: a database for comparative analysis of conjoined genes. Genomics 2012; 100:14-7. [PMID: 22584068 DOI: 10.1016/j.ygeno.2012.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022]
Abstract
A conjoined gene is defined as one formed at the time of transcription by combining at least part of one exon from each of two or more distinct genes that lie on the same chromosome, in the same or opposite orientation, which translate independently into different proteins. We comparatively studied the extent of conjoined genes in thirteen genomes by analyzing the public databases of expressed sequence tags and mRNA sequences using a set of computational tools designed to identify conjoined genes on the same DNA strand or opposite DNA strands of the same genomic locus. The CACG database, available at http://cgc.kribb.re.kr/map/, includes a number of conjoined genes (7131-human, 2-chimpanzee, 5-orangutan, 57-chicken, 4-rhesus monkey, 651-cow, 27-dog, 2512-mouse, 263-rat, 1482-zebrafish, 5-horse, 29-sheep, and 8-medaka) and is very effective and easy to use to analyze the evolutionary process of conjoined genes when comparing different species.
Collapse
Affiliation(s)
- Dae-Soo Kim
- Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chiappinelli KB, Haynes BC, Brent MR, Goodfellow PJ. Reduced DICER1 elicits an interferon response in endometrial cancer cells. Mol Cancer Res 2012; 10:316-25. [PMID: 22252463 DOI: 10.1158/1541-7786.mcr-11-0520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DICER1 is essential for the generation of mature miRNAs and other short noncoding RNAs. Several lines of investigation implicate DICER1 as a tumor suppressor. Reduced DICER1 levels and changes in miRNA abundance have been associated with aggressive tumor phenotypes. The global effects of reduced DICER1 on mRNA transcript abundance in tumor cells remain largely unknown. We used short hairpin RNA to stably knock down DICER1 in endometrial cancer cell lines to begin to determine how reduced DICER1 activity contributes to tumor phenotypes. DICER1 knockdown did not affect cell proliferation but caused enhanced cell migration and growth in soft agar. miRNA and mRNA profiling in KLE cells revealed overall decreases in miRNA levels and changes in the relative abundance of many mRNAs. One of the most striking changes in mRNA levels was the upregulation of IFN-stimulated genes (ISG), the majority of which lack known miRNA target sequences. IFNβ, a key upstream regulator of the IFN response, was significantly increased in DICER1 knockdowns in the AN3CA, Ishikawa, and KLE endometrial cancer cell lines and in the normal endometrial cell line EM-E6/E7/TERT. IFNβ secreted in media from KLE and EM-E6/E7/TERT shDcr cells was sufficient to activate an IFN response in HT29 cells. The reduced miRNA processing in DICER1 knockdowns was associated with increases in pre-miRNAs in the cytoplasm. Our findings suggest that elevated pre-miRNA levels trigger the IFN response to double-stranded RNA. We thus report a novel effect of reduced DICER1 function in cancer cells.
Collapse
Affiliation(s)
- Katherine B Chiappinelli
- Department of Surgery, Division of Gynecologic Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
41
|
Zou GM, Yoder MC. Application of RNA interference to study stem cell function: current status and future perspectives. Biol Cell 2012; 97:211-9. [PMID: 15715526 DOI: 10.1042/bc20040084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-stranded RNA molecules. In the six years since the initial report, RNA interference has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. An equally popular topic over the past six years has been the proposal to utilize embryonic stem cells or adult stem cells as cell-based therapies for human diseases. The aim of this review is to provide a general overview of how RNA interference suppresses gene expression and to examine some published RNA interference approaches that have resulted in changes in stem cell function and suggest the possible clinical relevance of this work.
Collapse
Affiliation(s)
- Gang-Ming Zou
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
42
|
Lam JKW, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev 2012; 64:1-15. [PMID: 21356260 PMCID: PMC7103329 DOI: 10.1016/j.addr.2011.02.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/15/2011] [Accepted: 02/19/2011] [Indexed: 11/25/2022]
Abstract
Small interfering RNA (siRNA) has a huge potential for the treatment or prevention of various lung diseases. Once the RNA molecules have successfully entered the target cells, they could inhibit the expression of specific gene sequence through RNA interference (RNAi) mechanism and generate therapeutic effects. The biggest obstacle to translating siRNA therapy from the laboratories into the clinics is delivery. An ideal delivery agent should protect the siRNA from enzymatic degradation, facilitate cellular uptake and promote endosomal escape inside the cells, with negligible toxicity. Lung targeting could be achieved by systemic delivery or pulmonary delivery. The latter route of administration could potentially enhance siRNA retention in the lungs and reduce systemic toxic effects. However the presence of mucus, the mucociliary clearance actions and the high degree branching of the airways present major barriers to targeted pulmonary delivery. The delivery systems need to be designed carefully in order to maximize the siRNA deposition to the diseased area of the airways. In most of the pulmonary siRNA therapy studies in vivo, siRNA was delivered either intratracheally or intranasally. Very limited work was done on the formulation of siRNA for inhalation which is believed to be the direction for future development. This review focuses on the latest development of pulmonary delivery of siRNA for the treatment of various lung diseases.
Collapse
Affiliation(s)
- Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong.
| | | | | |
Collapse
|
43
|
Castillo AF, Fan J, Papadopoulos V, Podestá EJ. Hormone-dependent expression of a steroidogenic acute regulatory protein natural antisense transcript in MA-10 mouse tumor Leydig cells. PLoS One 2011; 6:e22822. [PMID: 21829656 PMCID: PMC3148237 DOI: 10.1371/journal.pone.0022822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/03/2011] [Indexed: 01/17/2023] Open
Abstract
Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3′-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5′ and 3′ RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis.
Collapse
Affiliation(s)
- Ana Fernanda Castillo
- Department of Human Biochemistry, School of Medicine, Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), University of Buenos Aires, Buenos Aires, Argentina
| | - Jinjiang Fan
- Department of Medicine and The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Vassilios Papadopoulos
- Department of Medicine and The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Ernesto J. Podestá
- Department of Human Biochemistry, School of Medicine, Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
44
|
Gai WW, Zhang Y, Zhou DH, Chen YQ, Yang JY, Yan HM. PIKA provides an adjuvant effect to induce strong mucosal and systemic humoral immunity against SARS-CoV. Virol Sin 2011; 26:81-94. [PMID: 21468931 PMCID: PMC7091335 DOI: 10.1007/s12250-011-3183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/18/2011] [Indexed: 12/30/2022] Open
Abstract
Severe Acute Respiratory Syndrome (SARS) is a deadly infectious disease caused by SARS Coronavirus (SARS-CoV). Inactivated SARS-CoV has been explored as a vaccine against SARS-CoV. However, safe and potent adjuvants, especially with more efficient and economical needle-free vaccination are always needed more urgently in a pandemic. The development of a safe and effective mucosal adjuvant and vaccine for prevention of emergent infectious diseases such as SARS will be an important advancement. PIKA, a stabilized derivative of Poly (I:C), was previously reported to be safe and potent as adjuvant in mouse models. In the present study, we demonstrated that the intraperitoneal and intranasal co-administration of inactivated SARS-CoV vaccine together with this improved Poly (I:C) derivative induced strong anti-SARS-CoV mucosal and systemic humoral immune responses with neutralizing activity against pseudotyped virus. Although intraperitoneal immunization of inactivated SARS-CoV vaccine alone could induce a certain level of neutralizing activity in serum as well as in mucosal sites, co-administration of inactivated SARS-CoV vaccine with PIKA as adjuvant could induce a much higher neutralizing activity. When intranasal immunization was used, PIKA was obligatorily for inducing neutralizing activity in serum as well as in mucosal sites and was correlated with both mucosal IgA and mucosal IgG response. Overall, PIKA could be a good mucosal adjuvant candidate for inactivated SARS-CoV vaccine for use in possible future pandemic.
Collapse
Affiliation(s)
- Wei-wei Gai
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
45
|
Li D, Wang Y, Zhang K, Jiao Z, Zhu X, Skogerboe G, Guo X, Chinnusamy V, Bi L, Huang Y, Dong S, Chen R, Kan Y. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 2011; 39:3792-805. [PMID: 21227919 PMCID: PMC3089462 DOI: 10.1093/nar/gkq1317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution.
Collapse
Affiliation(s)
- Dandan Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Characterization of specific cDNA background synthesis introduced by reverse transcription in RT-PCR assays. Biochimie 2010; 92:1839-46. [DOI: 10.1016/j.biochi.2010.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 11/23/2022]
|
47
|
Wu X, Hong H, Yue J, Wu Y, Li X, Jiang L, Li L, Li Q, Gao G, Yang X. Inhibitory effect of small interfering RNA on dengue virus replication in mosquito cells. Virol J 2010; 7:270. [PMID: 20946645 PMCID: PMC2965154 DOI: 10.1186/1743-422x-7-270] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue viruses (DENs) are the wildest transmitted mosquito-borne pathogens throughout tropical and sub-tropical regions worldwide. Infection with DENs can cause severe flu-like illness and potentially fatal hemorrhagic fever. Although RNA interference triggered by long-length dsRNA was considered a potent antiviral pathway in the mosquito, only limited studies of the value of small interfering RNA (siRNA) have been conducted. RESULTS A 21 nt siRNA targeting the membrane glycoprotein precursor gene of DEN-1 was synthesized and transfected into mosquito C6/36 cells followed by challenge with DEN. The stability of the siRNA in cells was monitored by flow cytometry. The antiviral effect of siRNA was evaluated by measurement of cell survival rate using the MTT method and viral RNA was quantitated with real-time RT-PCR. The presence of cells containing siRNA at 0.25, 1, 3, 5, 7 days after transfection were 66.0%, 52.1%, 32.0%, 13.5% and 8.9%, respectively. After 7 days incubation with DEN, there was reduced cytopathic effect, increased cell survival rate (76.9 ± 4.5% vs 23.6 ± 14.6%) and reduced viral RNA copies (Ct value 19.91 ± 0.63 vs 14.56 ± 0.39) detected in transfected C6/36 cells. CONCLUSIONS Our data showed that synthetic siRNA against the DEN-1 membrane glycoprotein precursor gene effectively inhibited DEN-1 viral RNA replication and increased C6/36 cell survival rate. siRNA may offer a potential new strategy for prevention and treatment of DEN infection.
Collapse
Affiliation(s)
- Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 23 Zhongshan 3rd Road, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen LL, Yang L, Carmichael GG. Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells. Cell Cycle 2010; 9:3552-64. [PMID: 20814227 PMCID: PMC3047619 DOI: 10.4161/cc.9.17.12792] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
The introduction of double stranded RNA (dsRNA) into the cytoplasm of mammalian cells usually leads to a potent antiviral response resulting in the rapid induction of interferon beta (IFNβ). This response can be mediated by a number of dsRNA sensors, including TLR3, MDA5, RIG-I and PKR. We show here that pluripotent human cells (human embryonic stem (hES) cells and induced pluripotent (iPS) cells) do not induce interferon in response to cytoplasmic dsRNA, and we have used a variety of approaches to learn the underlying basis for this phenomenon. Two major cytoplasmic dsRNA sensors, TLR3 and MDA5, are not expressed in hES cells and iPS cells. PKR is expressed in hES cells, but is not activated by transfected dsRNA. In addition, RIG-I is expressed, but fails to respond to dsRNA because its signaling adapter, MITA/STING, is not expressed. Finally, the interferon-inducible RNAse L and oligoadenylate synthetase enzymes are also expressed at very low levels. Upon differentiation of hES cells into trophoblasts, cells acquire the ability to respond to dsRNA and this correlates with a significant induction of expression of TLR3 and its adaptor protein TICAM-1/TRIF. Taken together, our results reveal that the lack of an interferon response may be a general characteristic of pluripotency and that this results from the systematic downregulation of a number of genes involved in cytoplasmic dsRNA signaling.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, Farmington, CT, USA.
| | | | | |
Collapse
|
49
|
Ling KH, Hewitt CA, Beissbarth T, Hyde L, Cheah PS, Smyth GK, Tan SS, Hahn CN, Thomas T, Thomas PQ, Scott HS. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. ACTA ACUST UNITED AC 2010; 21:683-97. [PMID: 20693275 DOI: 10.1093/cercor/bhq141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Nrgn and Camk2n1 are highly expressed in the brain and play an important role in synaptic long-term potentiation via regulation of Ca(2+)/calmodulin-dependent protein kinase II. We have shown that the gene loci for these 2 proteins are actively transcribed in the adult cerebral cortex and feature multiple overlapping transcripts in both the sense and antisense orientations with alternative polyadenylation. These transcripts were upregulated in the adult compared with embryonic and P1.5 mouse cerebral cortices, and transcripts with different 3' untranslated region lengths showed differing expression profiles. In situ hybridization (ISH) analysis revealed spatiotemporal regulation of the Nrgn and Camk2n1 sense and natural antisense transcripts (NATs) throughout cerebral corticogenesis. In addition, we also demonstrated that the expression of these transcripts was organ-specific. Both Nrgn and Camk2n1 sense and NATs were also upregulated in differentiating P19 teratocarcinoma cells. RNA fluorescent ISH analysis confirmed the capability of these NATs to form double-stranded RNA aggregates with the sense transcripts in the cytoplasm of cells obtained from the brain. We propose that the differential regulation of multiple sense and novel overlapping NATs at the Nrgn and Camk2n1 loci will increase the diversity of posttranscriptional regulation, resulting in cell- and time-specific regulation of their gene products during cerebral corticogenesis and function.
Collapse
Affiliation(s)
- King-Hwa Ling
- Department of Molecular Pathology, The Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fahey ME, Moore TF, Higgins DG. Overlapping antisense transcription in the human genome. Comp Funct Genomics 2010; 3:244-53. [PMID: 18628857 PMCID: PMC2447278 DOI: 10.1002/cfg.173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Accepted: 04/11/2002] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence indicates an important role for non-coding RNA molecules in
eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense
transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of
the corresponding sense transcript. The prevalence of this phenomenon is unknown, but
there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics
approach, we systematically searched a human mRNA database (RefSeq) for complementary
regions that might facilitate pairing with other transcripts. We report 56 pairs
of overlapping transcripts, in which each member of the pair is transcribed from the same
locus. This allows us to make an estimate of 1000 for the minimum number of such
transcript pairs in the entire human genome. This is a surprisingly large number of
overlapping gene pairs and, clearly, some of the overlaps may not be functionally
significant. Nonetheless, this may indicate an important general role for overlapping
antisense control in gene regulation. EST databases were also investigated in order to
address the prevalence of cases of imprinted genes with associated non-coding overlapping,
antisense transcripts. However, EST databases were found to be completely inappropriate
for this purpose.
Collapse
Affiliation(s)
- M E Fahey
- Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland
| | | | | |
Collapse
|