1
|
Chen YM, Tang KT, Liu HJ, Huang ST, Liao TL. tRF-His-GTG-1 enhances NETs formation and interferon-α production in lupus by extracellular vesicle. Cell Commun Signal 2024; 22:354. [PMID: 38972975 PMCID: PMC11229248 DOI: 10.1186/s12964-024-01730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE. METHODS We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay. RESULTS Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1β, IL-8, and interferon-α upregulation, respectively. CONCLUSIONS The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Ting Huang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
2
|
Cohen JR, Brych SR, Prabhu S, Bi V, Elbaradei A, Tokuda JM, Xiang C, Hokom M, Cui X, Ly C, Amos N, Sun J, Calamba D, Herskovitz J, Capili A, Nourbakhsh K, Merlo A, Carreon J, Wypych J, Narhi LO, Jawa V, Joubert MK. A High Threshold of Biotherapeutic Aggregate Numbers is Needed to Induce an Immunogenic Response In Vitro, In Vivo, and in the Clinic. Pharm Res 2024; 41:651-672. [PMID: 38519817 DOI: 10.1007/s11095-024-03678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND PURPOSE There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.
Collapse
Affiliation(s)
- Joseph R Cohen
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| | - Stephen R Brych
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Siddharth Prabhu
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Vivian Bi
- The Department of Biosimilars, Amgen Inc, Thousand Oaks, CA, 91320, USA
| | - Ahmed Elbaradei
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Joshua M Tokuda
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Cathie Xiang
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Martha Hokom
- The Department of Clinical Immunology, Amgen Inc, Thousand Oaks, CA, 91320, USA
- Department of BioAnalytical Sciences, Genentech, Inc, South San Francisco, CA, 94080, USA
| | - Xiaohong Cui
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Claudia Ly
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Nathan Amos
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jilin Sun
- Translational Safety and Bioanalytical Sciences, Amgen Inc, Thousand Oaks, CA, 91320, USA
| | - Dominador Calamba
- Translational Safety and Bioanalytical Sciences, Amgen Inc, Thousand Oaks, CA, 91320, USA
| | - Jonathan Herskovitz
- The Department of Clinical Immunology, Amgen Inc, Thousand Oaks, CA, 91320, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Allyson Capili
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Kimya Nourbakhsh
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Anthony Merlo
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Julia Carreon
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jette Wypych
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Linda O Narhi
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Vibha Jawa
- The Department of Clinical Immunology, Amgen Inc, Thousand Oaks, CA, 91320, USA
- Department of Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Princeton, NJ, 08543, USA
| | - Marisa K Joubert
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
3
|
Huang T, Pi C, Xu X, Feng Y, Zhang J, Gu H, Fang J. Effect of BAFF blockade on the B cell receptor repertoire and transcriptome in a mouse model of systemic lupus erythematosus. Front Immunol 2024; 14:1307392. [PMID: 38264661 PMCID: PMC10803406 DOI: 10.3389/fimmu.2023.1307392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Anti-B-cell-activating factor (BAFF) therapy effectively depletes B cells and reduces SLE disease activity. This research aimed to evaluate the effect of BAFF blockade on B cell receptor (BCR) repertoire and gene expression. Methods Through next-generation sequencing, we analyzed gene expression and BCR repertoire in MRL/lpr mice that received long-term anti-BAFF therapy. Based on gene expression profiles, we predicted the relative proportion of immune cells using ImmuCellAI-mouse, validating our predictions via flow cytometry and FluoroSpot. Results The loss of BCR repertoire diversity and richness, along with increased clonality and differential frequency distribution of the immunoglobulin heavy chain variable (IGHV) segment gene usage, were observed in BAFF-blockade mice. Meanwhile, the distribution of complementarity-determining region 3 (CDR3) length and CDR3 amino acid usage remained unaffected. BAFF blockade resulted in extensive changes in gene expression, particularly that of genes related to B cells and immunoglobulins. Besides, the tumor necrosis factor (TNF)-α responses and interferon (IFN)-α/γ were downregulated, consistent with the decrease in IFN-γ and TNF-α serum levels following anti-BAFF therapy. In addition, BAFF blockade significantly reduced B cell subpopulations and plasmacytoid dendritic cells, and caused the depletion of antibody-secreting cells. Discussion Our comparative BCR repertoire and transcriptome analyses of MRL/lpr mice subjected to BAFF blockade provide innovative insights into the molecular pathophysiology of SLE.
Collapse
Affiliation(s)
- Tao Huang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenyu Pi
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yan Feng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingming Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hua Gu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, China
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
4
|
He J, Ma C, Tang D, Zhong S, Yuan X, Zheng F, Zeng Z, Chen Y, Liu D, Hong X, Dai W, Yin L, Dai Y. Absolute quantification and characterization of oxylipins in lupus nephritis and systemic lupus erythematosus. Front Immunol 2022; 13:964901. [PMID: 36275708 PMCID: PMC9582137 DOI: 10.3389/fimmu.2022.964901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multi-organ inflammation and defect, which is linked to many molecule mediators. Oxylipins as a class of lipid mediator have not been broadly investigated in SLE. Here, we applied targeted mass spectrometry analysis to screen the alteration of oxylipins in serum of 98 SLE patients and 106 healthy controls. The correlation of oxylipins to lupus nephritis (LN) and SLE disease activity, and the biomarkers for SLE classification, were analyzed. Among 128 oxylipins analyzed, 92 were absolutely quantified and 26 were significantly changed. They were mainly generated from the metabolism of several polyunsaturated fatty acids, including arachidonic acid (AA), linoleic acid (LA), docosahexanoic acid (DHA), eicosapentanoic acid (EPA) and dihomo-γ-linolenic acid (DGLA). Several oxylipins, especially those produced from AA, showed different abundance between patients with and without lupus nephritis (LN). The DGLA metabolic activity and DGLA generated PGE1, were significantly associated with SLE disease activity. Random forest-based machine learning identified a 5-oxylipin combination as potential biomarker for SLE classification with high accuracy. Seven individual oxylipin biomarkers were also identified with good performance in distinguishing SLE patients from healthy controls (individual AUC > 0.7). Interestingly, the biomarkers for differentiating SLE patients from healthy controls are distinct from the oxylipins differentially expressed in LN patients vs. non-LN patients. This study provides possibilities for the understanding of SLE characteristics and the development of new tools for SLE classification.
Collapse
Affiliation(s)
- Jingquan He
- Department of Radiotherapy, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, China
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Chiyu Ma
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Shaoyun Zhong
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Xiaofang Yuan
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Fengping Zheng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Dongzhou Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Xiaoping Hong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, United States
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Yong Dai,
| |
Collapse
|
5
|
Budd RC, Scharer CD, Barrantes-Reynolds R, Legunn S, Fortner KA. T Cell Homeostatic Proliferation Promotes a Redox State That Drives Metabolic and Epigenetic Upregulation of Inflammatory Pathways in Lupus. Antioxid Redox Signal 2022; 36:410-422. [PMID: 34328790 PMCID: PMC8982120 DOI: 10.1089/ars.2021.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Numerous abnormalities in T cells have been described in patients with systemic lupus erythematosus (SLE), including lymphopenia, DNA demethylation, expression of endogenous retroviruses (ERVs), increased cell death, enlarged mitochondria, production of reactive oxygen species (ROS), and the appearance of unusual CD4-CD8- T cells. Our studies propose a model in which accelerated homeostatic proliferation of T cells promotes an epigenetic and metabolic program, leading to this cluster of abnormalities. Recent Advances: Growing knowledge of the innate immune disorders in SLE has included increased mitochondrial size and ROS production that induces oligomerization of the mitochondrial antiviral signaling (MAVS) protein and type I interferon production, as well as DNA demethylation, upregulation of inflammatory genes, and expression of certain ERVs in SLE peripheral blood mononuclear cells. All these events are part of the cellular program that occurs during homeostatic proliferation of T cells. Evidence from a murine model of SLE as well as in human SLE reveals that increased T cell homeostatic proliferation may be a driving factor in these processes. Critical Issues: Despite extensive knowledge of the myriad autoantibodies in SLE and other immune abnormalities, a cogent model has been lacking to link the numerous and seemingly disparate immune aberrations. This may partly explain the general lack of new drugs specifically for SLE in over 50 years. A more coherent model of SLE would not only unify the variety of immune abnormalities is SLE but would also suggest new therapies. Future Directions: The model of augmented homeostatic proliferation leading to increased mitochondrial mass, ROS, DNA demethylation, and upregulation of inflammatory genes suggests strategic new targets for SLE, including antioxidants and certain inhibitors of metabolism. Antioxid. Redox Signal. 36, 410-422.
Collapse
Affiliation(s)
- Ralph C Budd
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Scott Legunn
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Karen A Fortner
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
6
|
Kailashiya J, Kailashiya V, Singh U. CTLA4 gene polymorphism and its association with disease occurrence, clinical manifestations, serum markers and cytokine levels in SLE patients from North India. Indian J Dermatol 2022; 67:311. [DOI: 10.4103/ijd.ijd_82_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Farhat SCL, Ejnisman C, Alves AGF, Goulart MFG, Lichtenfels AJDFC, Braga ALF, Pereira LAA, Maluf Elias A, Silva CA. Air pollution influence on serum inflammatory interleukins: A prospective study in childhood-onset systemic lupus erythematous patients. Lupus 2021; 30:2268-2275. [PMID: 34879788 DOI: 10.1177/09612033211061479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess the effect of individual exposure, in real-time, to traffic-related pollutants on serum interleukin levels of childhood-onset lupus erythematous systemic (c-SLE) patients. METHODS A longitudinal and observational design was conducted in 12 repeated measures of serum samples and clinical evaluations (totaling 108 measurements) of c-SLE patients over 30 consecutive months. Real-time, individual exposure to fine particles (PM2.5) and nitrogen dioxide (NO2) was measured with portable monitors. Generalized estimating equation was used to evaluate the association between exposure to PM2.5 and NO2 and the following serum cytokine levels on the 7 days preceding clinical assessment and serum collection: MCP1, IL-6, IL-8, IL-10, IL-17, IFN-alpha, and TNF-alpha. Disease activity and other risk factors were also controlled. RESULTS An interquartile range (IQR) increase in PM2.5 daily concentration was significantly associated with increased levels of TNF-alpha on the third, fourth, and seventh day after exposure; IL-10 on the third and fourth day after exposure; IL-17 on the third and seventh day after exposure; and INF-alpha on the third day after exposure (p < 0.05). An IQR increase in 7-day moving average of PM2.5 was associated with a 6.2 pg/mL (95% CI: 0.5; 11.8; p = 0.04) increase in serum IFN-alpha level. An unexpected significant association was observed between an IQR increase in NO27-day cumulative concentration and a decrease of 1.6 pg/mL (95% CI: -2.6; -0.7; p < 0.001) in serum IL-17. CONCLUSION Real-time exposure to PM2.5 prospectively associated with increased serum TNF-alpha, INF-alpha, IL-10, and IL-17 levels in c-SLE patients.
Collapse
Affiliation(s)
- Sylvia Costa Lima Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Pediatric Department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 37884Universidade de Sao Paulo, São Paulo, Brazil
| | - Carolina Ejnisman
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,428062Universidade de Santo Amaro, Sao Paulo, Brazil
| | - Andressa Guariento Ferreira Alves
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Fernanda Giacomin Goulart
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Alfésio Luis Ferreira Braga
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, 67888Universidade Catolica de Santos, Santos, Brazil
| | - Luiz Alberto Amador Pereira
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil
| | - Adriana Maluf Elias
- Pediatric Department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 28133Universidade de Sao Paulo, São Paulo, Brazil
| | - Clovis A Silva
- Pediatric Department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 28133Universidade de Sao Paulo, São Paulo, Brazil.,Division of Rheumatology, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Zeng J, Aryal RP, Stavenhagen K, Luo C, Liu R, Wang X, Chen J, Li H, Matsumoto Y, Wang Y, Wang J, Ju T, Cummings RD. Cosmc deficiency causes spontaneous autoimmunity by breaking B cell tolerance. SCIENCE ADVANCES 2021; 7:eabg9118. [PMID: 34613773 PMCID: PMC8494437 DOI: 10.1126/sciadv.abg9118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Factors regulating the induction and development of B cell–mediated autoimmunity are not well understood. Here, we report that targeted deletion in murine B cells of X-linked Cosmc, encoding the chaperone required for expression of core 1 O-glycans, causes the spontaneous development of autoimmune pathologies due to a breakdown of B cell tolerance. BC-CosmcKO mice display multiple phenotypic abnormalities, including severe weight loss, ocular manifestations, lymphadenopathy, and increased female-associated mortality. Disruption of B cell tolerance in BC-CosmcKO mice is manifested as elevated self-reactive IgM and IgG autoantibodies. Cosmc-deficient B cells exhibit enhanced basal activation and responsiveness to stimuli. There is also an elevated frequency of spontaneous germinal center B cells in BC-CosmcKO mice. Mechanistically, loss of Cosmc confers enhanced B cell receptor (BCR) signaling through diminished BCR internalization. The results demonstrate that Cosmc, through control of core 1 O-glycans, is a previously unidentified immune checkpoint gene in maintaining B cell tolerance.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Renyan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
A proteomics-based method for identifying antigens within immune complexes. PLoS One 2020; 15:e0244157. [PMID: 33362259 PMCID: PMC7757895 DOI: 10.1371/journal.pone.0244157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
A novel approach to recover and identify immune complexes (ICs) was developed using size exclusion chromatography (SEC) and affinity chromatography on immunoglobulin binding columns (HiTrap Protein G). The purification process was monitored by 1D SDS-PAGE, protein staining, Western blotting and, finally, liquid chromatography tandem mass spectrometry (LC MS/MS) was used to identify the recovered antigens. This approach was applied to serum with artificially created immune complexes (ICs) comprising vaccine antigen (influenza) and antibody, which led to recovery and identification of influenza peptides within the recovered ICs. This approach was compared with the established method for IC detection and recovery, polyethylene glycol (PEG) precipitation, followed by LC MS/MS. Both approaches successfully enabled capture, recovery and characterization of immunoglobulins and influenza antigen(s) in complex with the immunoglobulins. However, PEG precipitation has the advantage of simplicity and is more suited for large scale studies.
Collapse
|
10
|
Jaiswal P, Ghosh M, Patra G, Saha B, Mukhopadhyay S. Clinical Proteomics Profiling for Biomarker Identification Among Patients Suffering With Indian Post Kala Azar Dermal Leishmaniasis. Front Cell Infect Microbiol 2020; 10:251. [PMID: 32528904 PMCID: PMC7266879 DOI: 10.3389/fcimb.2020.00251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Post Kala Azar Dermal Leishmaniasis (PKDL) is a non-fatal dermal sequel of Visceral Leishmaniasis (VL), affecting individuals worldwide. Available diagnostic tools lack sensitivity and specificity toward identifying macular (MAC) PKDL patients, due to low parasite load in patients' sample. Confirmatory test like punch biopsy are invasive and painful. Considering the rural nature of this disease and the prevailing situation of diagnostic scenario, PKDL patients mostly remains unattended from receiving proper medical care. They in turn act as “mobile parasite reservoir,” responsible for VL transmission among healthy individuals (HI). This study aims to identify PKDL disease specific glycated protein biomarkers, utilizing the powerful LC-MS/MS technology, which is the tool of choice to efficiently identify and quantify disease specific protein biomarkers. These identified PKDL disease specific novel glycoproteins could be developed in future as immunochromatographic based assay for efficient case detection. Methodology: Previously our lab had identified importance of glycated (Circulating Immune Complexes) CICs, among PKDL patients. This study aims to further characterize disease specific glycated protein biomarkers, among MAC PKDL patients for both diagnostic and prognostic evaluation of the disease. LC-MS/MS based comparative spectral count analysis of MAC PKDL to polymorphic (POLY) PKDL, HI, and Cured (CR) individuals were performed. Proteins level alterations among all study groups were confirmed by Western blot and enzyme-linked immunosorbant Assay (ELISA). Results: Among MAC PKDL patients 43, 60, 90 proteins were altered compared to POLY PKDL, HI, and CR groups, respectively. Filtering for the most significant proteins, Plasminogen (PLG) and Vitronectin (VTN) were identified which promisingly identified MAC PKDL cases. Active surveillance results from endemic districts of West Bengal revealed drastic rise of MAC PKDL cases, alarming the urgency for field adaptive efficient biomarker. Conclusion: This current study aims to establish PLG and VTN as novel diagnostic and prognostic protein biomarker for MAC and POLY PKDL cases management.
Collapse
Affiliation(s)
- Priyank Jaiswal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Manab Ghosh
- Department of Tropical Medicine, School of Tropical Medicine, Department of Health & Family Welfare, Government of West Bengal, Kolkata, India
| | - Goutam Patra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Department of Health & Family Welfare, Government of West Bengal, Kolkata, India
| | - Sumi Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| |
Collapse
|
11
|
Parodis I, Åkerström E, Sjöwall C, Sohrabian A, Jönsen A, Gomez A, Frodlund M, Zickert A, Bengtsson AA, Rönnelid J, Gunnarsson I. Autoantibody and Cytokine Profiles during Treatment with Belimumab in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2020; 21:E3463. [PMID: 32422945 PMCID: PMC7278961 DOI: 10.3390/ijms21103463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
We investigated whether belimumab treatment impacts on levels of autoantibodies and cytokines of interest in systemic lupus erythematosus (SLE). Longitudinally collected serum samples from 78 belimumab-treated Swedish SLE patients were analysed. Serum cytokine levels were determined using Luminex xMAP technology, and nuclear antigen autoantibody specificities using addressable laser bead immunoassay. In patients with detectable levels at baseline, interferon (IFN)-α2 levels were lower at month 6 (median; interquartile range (IQR): 8.9; 1.5-54.9 pg/mL) versus baseline (28.4; 20.9-100.3 pg/mL; p = 0.043). Interleukin (IL)-6 (baseline: 7.1; 2.9-16.1 pg/mL) decreased from month 6 (0.5; 0.5-6.3 pg/mL; p = 0.018) and throughout a 24 month follow-up. IL-10 (baseline: 12.6; 2.8-29.7 pg/mL) showed more rapid decreases from month 3 (1.8; 0.6-9.1 pg/mL; p = 0.003). Levels of anti-dsDNA (p < 0.001), anti-Smith antigen (Sm) (p = 0.002), anti-U1 small nuclear ribonucleoprotein (U1RNP) (p < 0.001), anti-Sm-U1RNP complex (p = 0.028), and anti-ribosomal P (p = 0.012) antibodies decreased from month 3 and remained decreased. Anti-Sm positivity at baseline was associated with higher probability and/or shorter time to achieve sustained SLE responder index-4 response (hazard ratio (HR): 2.52; 95% CI: 1.20-5.29; p = 0.015), independently of other factors. Decline of IL-6 levels through month 3 was greater in responders. In summary, belimumab treatment lowered IFN-α2, IL-6, and IL-10 levels, as well as levels of multiple autoantibodies, however after different time spans. Notably, anti-Sm positivity and early decline in IL-6 levels were associated with favorable treatment outcome.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (E.A.); (A.G.); (A.Z.); (I.G.)
- Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Emil Åkerström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (E.A.); (A.G.); (A.Z.); (I.G.)
- Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Christopher Sjöwall
- Rheumatology/Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden; (C.S.); (M.F.)
| | - Azita Sohrabian
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (A.S.); (J.R.)
| | - Andreas Jönsen
- Rheumatology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-222 42 Lund, Sweden; (A.J.); (A.A.B.)
| | - Alvaro Gomez
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (E.A.); (A.G.); (A.Z.); (I.G.)
- Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Martina Frodlund
- Rheumatology/Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden; (C.S.); (M.F.)
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (E.A.); (A.G.); (A.Z.); (I.G.)
- Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anders A Bengtsson
- Rheumatology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-222 42 Lund, Sweden; (A.J.); (A.A.B.)
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (A.S.); (J.R.)
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (E.A.); (A.G.); (A.Z.); (I.G.)
- Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Ganjali R, Afshari JT, Rezaieyazdi Z, Khodashahi M, Brook A, Mazhani M, Hatef MR, Abbasi M. Relationship Between Polymorphisms of Interleukin-1 Receptor Antagonist (IL-1Ra) Genes and Susceptibility to Systemic Lupus Erythematosus in Iranian Population. Curr Rheumatol Rev 2019; 16:105-109. [PMID: 31854275 DOI: 10.2174/1573397116666191218100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/26/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Interleukin (IL)-1 has a major role in cell destruction and inflammation. IL-1 receptor antagonist (IL-1RN or IL-1Ra) is a natural anti-inflammatory molecule that blocks IL-1. We intended to determine whether IL-1RN or IL-1Ra variable number tandem repeat (VNTR) polymorphism is associated with susceptibility to systemic lupus erythematosus (SLE) in a series of patients in the Northeastern part of Iran. METHODS Genomic DNA was extracted from the whole blood of 104 SLE patients and 209 subjects without SLE as a control group. The control group was matched for age and gender with SLE patients. Then, genomic DNA was genotyped by polymerase chain reaction (PCR) method for a length polymorphism in intron 2 of the IL-1RN gene. RESULTS Of five alleles, only allele 4 of IL-1RN had a higher frequency in healthy subjects (2.4%) compared to SLE patients (0), with a statistically significant difference (P= 0.03). Eleven kinds of polymorphisms of IL-1RN were found including 1/1, 1/2, 2/2, 3/3, 1/3, 3/5, 2/3, 2/5, 1/5, 4/4 and 1/4 in both groups. In genotype frequency, there was no statistically significant difference regarding gene polymorphism kinds between the two groups (P= 0.29). CONCLUSION Alleles 4 of IL-1RN may have a protective role against SLE susceptibility. However, SLE was not associated with any of the 11 kinds of genotype IL1-RN gene polymorphisms studied here.
Collapse
Affiliation(s)
- Rashin Ganjali
- Immunogenetic and Cell Culture Lab, Immunology Center, Bu-Ali Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil T Afshari
- Immunogenetic and Cell Culture Lab, Immunology Center, Bu-Ali Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mandana Khodashahi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Brook
- Immunogenetic and Cell Culture Lab, Immunology Center, Bu-Ali Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mazhani
- Immunogenetic and Cell Culture Lab, Immunology Center, Bu-Ali Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad R Hatef
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Abbasi
- Metabolic Diseases Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
13
|
Aringer M. Inflammatory markers in systemic lupus erythematosus. J Autoimmun 2019; 110:102374. [PMID: 31812331 DOI: 10.1016/j.jaut.2019.102374] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023]
Abstract
While systemic lupus erythematosus (SLE) is an autoantibody and immune complex disease by nature, most of its organ manifestations are in fact inflammatory. SLE activity scores thus heavily rely on assessing inflammation in the various organs. This focus on clinical items demonstrates that routine laboratory markers of inflammation are still limited in their impact. The erythrocyte sedimentation rate (ESR) is used, but represents a rather crude overall measure. Anemia and diminished serum albumin play a role in estimating inflammatory activity, but both are reflecting more than one mechanism, and the association with inflammation is complex. C-reactive protein (CRP) is a better marker for infections than for SLE activity, where there is only a limited association, and procalcitonin (PCT) is also mainly used for detecting severe bacterial infection. Of the cytokines directly induced by immune complexes, type I interferons, interleukin-18 (IL-18) and tumor necrosis factor (TNF) are correlated with inflammatory disease activity. Still, precise and timely measurement is an issue, which is why they are not currently used for routine purposes. While somewhat more robust in the assays, IL-18 binding protein (IL-18BP) and soluble TNF-receptor 2 (TNF-R2), which are related to the respective cytokines, have not yet made it into clinical routine. The same is true for several chemokines that are increased with activity and relatively easy to measure, but still experimental parameters. In the urine, proteinuria leads and is essential for assessing kidney involvement, but may also result from damage. Similar to the situation in serum and plasma, several cytokines and chemokines perform reasonably well in scientific studies, but are not routine parameters. Cellular elements in the urine are more difficult to assess in the routine laboratory, where sufficient routine is not always available. Therefore, the analysis of urinary T cells may have potential for better monitoring renal inflammation.
Collapse
Affiliation(s)
- Martin Aringer
- University Medical Center and Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
14
|
DAHAL LEKHN, BARKER ROBERTN, WARD FRANKJ. The Soluble Isoform of CTLA-4 Correlates with Interferon-α Activity in Systemic Lupus Erythematosus. J Rheumatol 2019; 47:302-304. [DOI: 10.3899/jrheum.190678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Abstract
Osteoporotic fracture is a major cause of morbidity in patients with systemic lupus erythematosus (SLE). Mice lacking Fc gamma receptor IIb (FcγRIIB) spontaneously develop lupus-like disease or SLE at 6-month-old. The aim of this study was to investigate whether FcγRIIB deletion induces osteopenia. μCT analysis indicated that deleting FcγRIIB did not affect cancellous bone microarchitecture in 3-month-old mice in which SLE had not yet developed. However, 6- and 10-month-old FcγRIIB−/− males that developed an SLE-like phenotype were osteopenic and FcγRIIB deletion resulted in decreased cancellous bone volume. Histomorphometry confirmed a significant decrease in cancellous bone volume in 6- and 10-month-old FcγRIIB−/− males. The osteoclast number was increased without any change in osteoblast number. In vitro assays indicated that deleting FcγRIIB increased osteoclast differentiation while alkaline phosphatase activity and mineralization were unaltered. These changes were associated with increases in steady-state mRNA levels for the osteoclast marker genes Trap and Ctsk. Moreover, FcγRIIB−/− mice had higher level of serum TNFα, a proinflammatory cytokine. A soluble TNFα receptor, etanercept, prevented cancellous bone loss in FcγRIIB−/− mice. Our results indicate that FcγRIIB indirectly regulates cancellous bone homeostasis following SLE development. FcγRIIB deletion induces inflammatory bone loss due to increased TNFα-mediated bone resorption without any change in bone formation in mice with SLE-like syndrome.
Collapse
|
16
|
Geginat J, Vasco M, Gerosa M, Tas SW, Pagani M, Grassi F, Flavell RA, Meroni P, Abrignani S. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Semin Immunol 2019; 44:101330. [PMID: 31735515 DOI: 10.1016/j.smim.2019.101330] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterised by the production of pathogenic autoantibodies against nuclear self-antigens. The anti-inflammatory and tolerogenic cytokine Interleukin-10 appears to play a paradoxical pathogenic role in SLE and is therefore currently therapeutically targeted in clinical trials. It is generally assumed that the pathogenic effect of IL-10 in SLE is due to its growth and differentiation factor activity on autoreactive B-cells, but effects on other cells might also play a role. To date, a unique cellular source of pathogenic IL-10 in SLE has not been identified. In this review, we focus on the contribution of different CD4+T-cell subsets to IL-10 and autoantibody production in SLE. In particular, we discuss that IL-10 produced by different subsets of adaptive regulatory T-cells, follicular helper T-cells and extra-follicular B-helper T-cells is likely to have different effects on autoreactive B-cell responses. A better understanding of the role of IL-10 in B-cell responses and lupus would allow to identify the most promising therapies for individual SLE patients in the future.
Collapse
Affiliation(s)
- J Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
| | - M Vasco
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - M Gerosa
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy; ASST Istituto G. Pini, Milan, Italy
| | - S W Tas
- Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - M Pagani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - F Grassi
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - R A Flavell
- Department of Immunobiology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, USA
| | - Pl Meroni
- Istituto Auxologico Italiano, Milano, Italy
| | - S Abrignani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy
| |
Collapse
|
17
|
Fernández Matilla M, Grau García E, Fernández-Llanio Comella N, Chalmeta Verdejo I, Ivorra Cortés J, Castellano Cuesta JA, Román Ivorra JA. Increased interferon-1α, interleukin-10 and BLyS concentrations as clinical activity biomarkers in systemic lupus erythematosus. Med Clin (Barc) 2019; 153:225-231. [PMID: 30795903 DOI: 10.1016/j.medcli.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE to analyse the association between interferon-1α (INF1α), interleukin-10 (IL-10) and BLyS concentrations and clinical activity in systemic lupus erythematosus (SLE). PATIENTS AND METHODS A cross-sectional, observational study of 142 SLE patients and 34 healthy controls was performed, through a complete blood and urine test and review of their medical history. Serum concentration of INF1α, IL-10 and BLyS was determined by colorimetric methods. A biostatistical analysis was performed with R (3.3.2.). RESULTS 69% of our SLE patients showed at least one cytokine increased. INF1α, IL-10 and BLyS are higher in SLE patients than in healthy controls (P<.001, P=.005 and P=.043, respectively), being INF1α the most frequent. Patients were categorised according to low or high concentrations of the three cytokines. We found a significant association between increased IL-10/INF1α concentrations and a higher clinical activity measured by SELENA-SLEDAI (P<.0001) and, to a lesser extent, an association with increased INF1α/IL-10/BLyS concentrations. Elevated levels of IL-10/INF1α and INF1α/IL-10/BLyS related to increased C3-C4 consumption (P<.001 and P=.001 respectively) and anti-dsDNA titres (P=.001 and P=.002 respectively). Elevated INF1α/BLyS related to higher anti-dsDNA titres (P=.004) and ENA positivity (P<.001). Increased levels of INF1α/IL-10/BLyS related to positivity of ANAs (P<.001) and APL (P=.004). CONCLUSIONS INF1α, IL-10 and BLyS are higher in SLE patients than in healthy controls. Increased IL-10 levels, regardless of whether or not there were also increased levels of BLyS and/or INF1α, was the cytokine that best fit with clinical activity in SLE measured with classic methods.
Collapse
Affiliation(s)
- Meritxell Fernández Matilla
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, España; Sección de Reumatología, Hospital Arnau de Vilanova, Valencia, España.
| | - Elena Grau García
- Servicio de Reumatología, Hospital Universitario y Politécnico la Fe, Valencia, España
| | | | | | - José Ivorra Cortés
- Servicio de Reumatología, Hospital Universitario y Politécnico la Fe, Valencia, España
| | | | | |
Collapse
|
18
|
Menikou S, Langford PR, Levin M. Kawasaki Disease: The Role of Immune Complexes Revisited. Front Immunol 2019; 10:1156. [PMID: 31263461 PMCID: PMC6584825 DOI: 10.3389/fimmu.2019.01156] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Kawasaki disease (KD) is an inflammatory disease in children associated with vasculitis affecting predominantly the coronary arteries and is now the most common cause of acquired heart disease in children in developed countries. The etiology of KD is unknown but epidemiological studies implicate an infectious agent or toxin, which causes disease in genetically predisposed individuals. The presence of immune complexes (ICs) in the serum of children with KD was established in numerous studies during the 1970s and 80s. More recent genetic studies have identified variation in Fcγ receptors and genes controlling immunoglobulin production associated with KD. In this review we link the genetic findings and IC studies and suggest a key role for their interaction in pathophysiology of the disease.
Collapse
Affiliation(s)
- Stephanie Menikou
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Raschi E, Chighizola CB, Cesana L, Privitera D, Ingegnoli F, Mastaglio C, Meroni PL, Borghi MO. Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res Ther 2018; 20:187. [PMID: 30157947 PMCID: PMC6116570 DOI: 10.1186/s13075-018-1689-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background In systemic sclerosis (SSc), autoantibodies provide the most accurate tool to predict the disease subset and pattern of organ involvement. Scleroderma autoantibodies target nucleic acids or DNA/RNA-binding proteins, thus SSc immune complexes (ICs) can embed nucleic acids. Our working hypothesis envisaged that ICs containing scleroderma-specific autoantibodies might elicit proinflammatory and profibrotic effects in skin fibroblasts. Methods Fibroblasts were isolated from skin biopsies obtained from healthy subjects and patients with diffuse cutaneous SSc (dcSSc). ICs were purified by polyethylene-glycol precipitation from sera of SSc patients bearing different autoantibodies. ICs from patients with systemic lupus erythematosus (SLE) and primary anti-phospholipid syndrome (PAPS) and from normal healthy subjects (NHS) were used as controls. After incubation with ICs, fibroblasts were evaluated for ICAM-1 expression, interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase (MMP)-2, tumor growth factor (TGF)-β1 and Pro-CollagenIα1 secretion, collagen (col)Iα1, mmp-1, toll-like receptor (tlr)2, tlr3, tlr4, tlr7, tlr8, tlr9, interferon (ifn)-α, ifn-β and endothelin-1 mRNA, and NFκB, p38MAPK and SAPK-JNK activation rate. Experiments were also performed after pretreatment with DNase I/RNase and NFκB/p38MAPK inhibitors. Results The antigenic reactivity for each SSc-IC mirrored the corresponding serum autoantibody specificity, while no positivity was observed in NHS-ICs or sera. SSc-ICs but not NHS-ICs increased ICAM-1 expression, stimulated IL-6, IL-8, MMP-2, MCP-1, TGF-β1 and Pro-CollagenIα1 secretion, upregulated et-1, ifn-α, ifn-β, tlr2, tlr3 and tlr4, and activated NFκB, p38MAPK and SAPK-JNK. tlr9 was significantly upregulated by ARA-ICs, mmp-1 was significantly induced by ACA-ICs whereas colIα1 was not modulated by any SSc-ICs. SLE-ICs and PAPS-ICs significantly upregulated MMP-2 and activated NFκB, p38MAPK and SAPK-JNK. SLE-ICs and PAPS-ICs did not affect colIα1, mmp-1 and Pro-CollagenIα1. DNase I and RNase treatment significantly reduced the upregulation of study mediators induced by SSc-ICs. Pretreatment with NFκB/p38MAPK inhibitors suggested that response to anti-Th/To-ICs was preferentially mediated by p38MAPK whereas ATA-ICs, ACA-ICs and ARA-ICs engaged both mediators. In dcSSc fibroblasts, stimulation with SSc-ICs and NHS-ICs upregulated IL-6 and IL-8. Conclusions These data provide the first demonstration of the proinflammatory and profibrotic effects of SSc-ICs on fibroblasts, suggesting the potential pathogenicity of SSc autoantibodies. These effects might be mediated by Toll-like receptors via the interaction with nucleic acid fragments embedded in SSc-ICs.
Collapse
Affiliation(s)
- Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy. .,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy. .,Allergology, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - Laura Cesana
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
| | - Daniela Privitera
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Francesca Ingegnoli
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Claudio Mastaglio
- Rheumatology Unit, Ospedale Moriggia-Pelascini, Via Pelascini 3, 22015, Gravedona, Como, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Maria Orietta Borghi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
21
|
Bai D, Zhao Y, Zhu Q, Zhou Y, Zhao Y, Zhang T, Guo Q, Lu N. LZ205, a newly synthesized flavonoid compound, exerts anti-inflammatory effect by inhibiting M1 macrophage polarization through regulating PI3K/AKT/mTOR signaling pathway. Exp Cell Res 2018; 364:84-94. [DOI: 10.1016/j.yexcr.2018.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 01/26/2023]
|
22
|
Abd Elazeem MI, Mohammed RA, Abdallah NH. Correlation of serum interleukin-10 level with disease activity and severity in systemic lupus erythematosus. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2018. [DOI: 10.4103/err.err_15_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
O'Gorman WE, Kong DS, Balboni IM, Rudra P, Bolen CR, Ghosh D, Davis MM, Nolan GP, Hsieh EWY. Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J Autoimmun 2017; 81:S0896-8411(16)30412-7. [PMID: 28389038 PMCID: PMC5628110 DOI: 10.1016/j.jaut.2017.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is a heterogeneous autoimmune disease with heightened disease severity in children. The incomplete understanding of the precise cellular and molecular events that drive disease activity pose a significant hurdle to the development of targeted therapeutic agents. Here, we performed single-cell phenotypic and functional characterization of pediatric SLE patients and healthy controls blood via mass cytometry. We identified a distinct CD14hi monocyte cytokine signature, with increased levels of monocyte chemoattractant protein-1 (MCP1), macrophage inflammatory protein-1β (Mip1β), and interleukin-1 receptor antagonist (IL-1RA). This signature was shared by every clinically heterogeneous patient, and reproduced in healthy donors' blood upon ex-vivo exposure to plasma from clinically active patients only. This SLE-plasma induced signature was abrogated by JAK1/JAK2 selective inhibition. This study demonstrates the utility of mass cytometry to evaluate immune dysregulation in pediatric autoimmunity, by identification of a multi-parametric immune signature that can be further dissected to delineate the events that drive disease pathogenesis.
Collapse
Affiliation(s)
- W E O'Gorman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - D S Kong
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - I M Balboni
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - P Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - C R Bolen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - D Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - M M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - G P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - E W Y Hsieh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Division of Allergy and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Kalsi JK, Grossman J, Kim J, Sieling P, Gjertson DW, Reed EF, Ebling FM, Linker-Israeli M, Hahn BH. Peptides from antibodies to DNA elicit cytokine release from peripheral blood mononuclear cells of patients with systemic lupus erythematosus: relation of cytokine pattern to disease duration. Lupus 2016; 13:490-500. [PMID: 15352419 DOI: 10.1191/0961203303lu1060oa] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptides from VH regions of antibodies to DNA drive immune responses in systemic lupus erythematosus (SLE). We studied peptide-induced cytokine release by peripheral blood mononuclear cells (PBMC) of patients, the influence of peptide concentration, disease characteristics and HLA-D haplotypes. Cells secreting cytokines (IFNg, IL-2, IL-4 and IL-10) were measured by ELISPOT in PBMC from 31 patients with SLE and 20 matched healthy controls in response to seven peptides (A-G) from the CDR1/FR2 to CDR2/FR3 VH regions of human anti-DNA MAbs. Disease activity was assessed by SELENA-SLEDAI. HLA-DR and -DQ alleles were determined by molecular typing techniques. PBMC from significantly higher proportions of SLE patients than controls responded to VH peptides by generating IFNg and IL-10. Type of cytokines released in response to at least one peptide (D) depended on antigen concentration. Cytokine release was not associated with clinical features of SLE except for disease duration. A shift occurred from IFNg, IL-4 and IL-10 production in early disease to IL-4 and IL-10 in late disease (suggesting increasing TH2-like responses over time). Three peptides (B, D, G) were more stimulatory in the SLE patients than controls. Although none of the peptides was restricted by any particular MHC class II allele, among responders there was increased prevalence of HLA-DQB1 0201 and/or DRB1 0301, alleles known to predispose to SLE. Thus, responses to some VH peptides are more frequent in SLE and vary with disease duration. Increased responses in individuals with HLA class II genotypes that predispose to SLE suggest that peptide presentation by those molecules permits brisker peripheral blood cell responses to autoantibody peptides, thus increasing risk for disease.
Collapse
Affiliation(s)
- J K Kalsi
- Division of Rheumatology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Durcan L, Petri M. Immunomodulators in SLE: Clinical evidence and immunologic actions. J Autoimmun 2016; 74:73-84. [PMID: 27371107 DOI: 10.1016/j.jaut.2016.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal autoimmune disease. Current treatment strategies rely heavily on corticosteroids, which are in turn responsible for a significant burden of morbidity, and immunosuppressives which are limited by suboptimal efficacy, increased infections and malignancies. There are significant deficiencies in our immunosuppressive armamentarium, making immunomodulatory therapies crucial, offering the opportunity to prevent disease flare and the subsequent accrual of damage. Currently available immunomodulators include prasterone (synthetic dehydroeipandrosterone), vitamin D, hydroxychloroquine and belimumab. These therapies, acting via numerous cellular and cytokine pathways, have been shown to modify the aberrant immune responses associated with SLE without overt immunosuppression. Vitamin D is important in SLE and supplementation appears to have a positive impact on disease activity particularly proteinuria. Belimumab has specific immunomodulatory properties and is an effective therapy in those with specific serological and clinical characteristics predictive of response. Hydroxychloroquine is a crucial background medication in SLE with actions in many molecular pathways. It has disease specific effects in reducing flare, treating cutaneous disease and inflammatory arthralgias in addition to other effects such as reduced thrombosis, increased longevity, improved lipids, better glycemic control and blood pressure. Dehydroeipandrosterone is also an immunomodulator in SLE which can have positive effects on disease activity and has bone protective properties. This review outlines the immunologic actions of these drugs and the clinical evidence supporting their use.
Collapse
Affiliation(s)
- L Durcan
- Division of Rheumatology, University of Washington, Seattle, USA.
| | - M Petri
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, USA
| |
Collapse
|
26
|
Carvalheiro T, Gomes D, Pinto LA, Inês L, Lopes A, Henriques A, Pedreiro S, Martinho A, Trindade H, Young HA, da Silva JAP, Paiva A. Sera from patients with active systemic lupus erythematosus patients enhance the toll-like receptor 4 response in monocyte subsets. JOURNAL OF INFLAMMATION-LONDON 2015; 12:38. [PMID: 26038677 PMCID: PMC4451730 DOI: 10.1186/s12950-015-0083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
Background Systemic Lupus Erythematosus (SLE) is an auto-immune disease whose complex pathogenesis remains unraveled. Here we aim to explore the inflammatory ability of SLE patients’ sera upon peripheral blood (PB) monocyte subsets and myeloid dendritic cells (mDCs) obtained from healthy donors. Methods In this study we included 11 SLE patients with active disease (ASLE), 11 with inactive disease (ISLE) and 10 healthy controls (HC). PB from healthy donors was stimulated with patients’ sera, toll-like receptor (TLR) 4 ligand – lipopolysaccharide or both. The intracellular production of TNF-α was evaluated in classical, non-classical monocytes and mDCs, using flow cytometry. TNF-α mRNA expression was assessed in all these purified cells, after sera treatment. Results We found that sera of SLE patients did not change spontaneous TNF-α production by monocytes or dendritic cells. However, upon stimulation of TLR4, the presence of sera from ASLE patients, but not ISLE, significantly increased the intracellular expression of TNF-α in classical and non-classical monocytes. This ability was related to titers anti-double stranded DNA antibodies in the serum. High levels of anti-TNF-α in the patients’ sera were associated with increased TNF-α expression by co-cultured mDCs. No relationship was found with the levels of a wide variety of other pro-inflammatory cytokines. A slight increase of TNF-α mRNA expression was observed in these purified cells when they were cultured only in the presence of SLE serum. Conclusions Our data suggest that SLE sera induce an abnormal in vitro TLR4 response in classical and non-classical monocytes, reflected by a higher TNF-α intracellular expression. These effects may be operative in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Tiago Carvalheiro
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal
| | - Diane Gomes
- College of Health Technology of Coimbra, Rua 5 de Outubro, São Martinho do Bispo, 3046-854 Coimbra, Portugal
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Building 469, 21702 Frederick, MD USA
| | - Luis Inês
- Rheumatology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal ; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal ; School of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Lopes
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal
| | - Ana Henriques
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Susana Pedreiro
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal
| | - António Martinho
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal
| | - Hélder Trindade
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute at Frederick, Building 560, 21702-1201 Frederick, MD USA
| | - José António Pereira da Silva
- Rheumatology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal ; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal ; College of Health Technology of Coimbra, Rua 5 de Outubro, São Martinho do Bispo, 3046-854 Coimbra, Portugal
| |
Collapse
|
27
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the development of autoantibodies and immunologic attack of different organ systems, including the skin. This review aims to provide an overview of some of the pathogenic processes that may be important in the development of SLE, specifically cutaneous lupus erythematosus, and then illustrates how therapies might be tailored to modify these processes and treat disease.
Collapse
Affiliation(s)
- Mark G Kirchhof
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada
| | - Jan P Dutz
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
28
|
Trifunović J, Miller L, Debeljak Ž, Horvat V. Pathologic patterns of interleukin 10 expression--a review. Biochem Med (Zagreb) 2015; 25:36-48. [PMID: 25672465 PMCID: PMC4401305 DOI: 10.11613/bm.2015.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022] Open
Abstract
Interleukin 10 (IL-10) is important pleiotropic immunoregulatory cytokine which gene is located on chromosome 1 at 1q31-32. There are many genetic variants of IL-10 gene. However, the most studied are two dinucleotide repeats (microsatellites), IL10.G and IL10.R, located 1.2 kb and 4 kb upstream of the transcription start site and three single nucleotide polymorphisms (SNPs) -1082(G/A), -819(C/T) and -592(C/A). A large number of studies have shown that IL-10 gene polymorphisms are associated with different diseases and play an important role in pathophysiology and clinical course of these diseases. This review summarizes published literature knowledge about the association of IL-10 polymorphisms and expression patterns with asthma, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, rheumatoid arthritis, tuberculosis and some neoplasms.
Collapse
Affiliation(s)
- Jasenka Trifunović
- Department of Medical Biochemistry, Special Hospital for Medical Rehabilitation Varaždinske Toplice, Varaždinske Toplice, Croatia
| | - Larisa Miller
- Center of Excellence Medical Publications, EMD Serono Research and Development Institute, Billerica, United States of America
| | - Željko Debeljak
- Department of Clinical Laboratory Diagnostics, Clinical Hospital Centre Osijek, Osijek, Croatia
| | - Vesna Horvat
- Department of Clinical Laboratory Diagnostics, Clinical Hospital Centre Osijek, Osijek, Croatia
| |
Collapse
|
29
|
Araujo GR, Fonseca JE, Fujimura PT, Cunha-Junior JP, Silva CHM, Mourão AF, Canhão H, Goulart LR, Gonçalves J, Ueira-Vieira C. Anti-type II collagen antibodies detection and avidity in patients with oligoarticular and polyarticular forms of juvenile idiopathic arthritis. Immunol Lett 2015; 165:20-5. [PMID: 25800643 DOI: 10.1016/j.imlet.2015.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/14/2015] [Accepted: 03/11/2015] [Indexed: 11/28/2022]
Abstract
Juvenile idiopathic arthritis (JIA) refers to a heterogeneous group of illnesses that have in common the occurrence of chronic joint inflammation in children younger than 16 years of age. The diagnosis is made only on clinical assessment. The identification of antibody markers could improve the early diagnosis, optimizing the clinical management of patients. Type II collagen is one potential autoantigen that has been implicated in the process of arthritis development. The aims of our study were to investigate the occurrence of anti-type II collagen antibodies and also to determine the avidity of the antibody-antigen binding. Ninety-six patients with oligoarticular or polyarticular JIA, 13 patients with ankylosing spondylitis (AS) and 61 healthy controls (HC) were tested for anti-type II collagen antibodies by ELISA and avidity ELISA. Sensitivity and specificity were determined by the receiver operating characteristic (ROC) curve analysis. Forty-two JIA patients (44%) were positive for antibodies against type II collagen. Its detection was significantly higher in JIA patients than in AS patients (p=0.006) and HCs (p<0.0001). Furthermore, anti-type II collagen antibody detection was significantly more frequent in patients with JIA of ≤6 months duration (p=0.0007). Antibodies displaying high avidity to type II collagen were associated with disease activity (p=0.004). This study demonstrates that antibodies against type II collagen are present in the serum of patients with oligoarticular and polyarticular JIA, being its presence more prevalent in patients with early disease. It also demonstrates that JIA patients with active disease present antibodies with high avidity against type II collagen.
Collapse
Affiliation(s)
- Galber R Araujo
- Laboratory of Nanobiotecnology, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil; iMed - Instituto de Medicina, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal.
| | - João E Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Lisbon, Portugal; Rheumatology Department, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Patricia T Fujimura
- Laboratory of Nanobiotecnology, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Jair P Cunha-Junior
- Laboratory of Immunotecnology and Imunochemistry, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Carlos H M Silva
- Pediatric Rheumatology Department, Hospital de Clínicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Ana F Mourão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Lisbon, Portugal; Rheumatology Department, Hospital Egas Moniz, Lisbon, Portugal
| | - Helena Canhão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Lisbon, Portugal; Rheumatology Department, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Luiz R Goulart
- Laboratory of Nanobiotecnology, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil; Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - João Gonçalves
- iMed - Instituto de Medicina, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal; IMM - Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Ueira-Vieira
- Laboratory of Nanobiotecnology, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
30
|
Small Amounts of Sub-Visible Aggregates Enhance the Immunogenic Potential of Monoclonal Antibody Therapeutics. Pharm Res 2014; 32:1383-94. [DOI: 10.1007/s11095-014-1541-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Naja naja atra Venom Protects against Manifestations of Systemic Lupus Erythematosus in MRL/lpr Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:969482. [PMID: 25093033 PMCID: PMC4100264 DOI: 10.1155/2014/969482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease and effective therapy for this pathology is currently unavailable. We previously reported that oral administration of Naja naja atra venom (NNAV) had anti-inflammatory and immune regulatory actions. We speculated that NNAV may have therapeutic effects in MRL/lpr SLE mice. Twelve-week-old MRL/lpr mice received oral administration of NNAV (20, 40, and 80 μg/kg) or Tripterygium wilfordii polyglycosidium (10 mg/kg) daily for 16 weeks. The effects of NNAV on SLE manifestations, including skin erythema, proteinuria, and anxiety-like behaviors, were assessed with visual inspection and Multistix 8 SG strips and open field test, respectively. The pathology of spleen and kidney was examined with H&E staining. The changes in autoimmune antibodies and cytokines were determined with ELISA kits. The results showed that NNAV protected against the manifestation of SLE, including skin erythema and proteinuria. In addition, although no apparent histological change was found in liver and heart in MRL/lpr SLE mice, NNAV reduced the levels of glutamate pyruvate transaminase and creatine kinase. Furthermore, NNAV increased serum C3 and reduced concentrations of circulating globulin, anti-dsDNA antibody, and inflammatory cytokines IL-6 and TNF-α. NNAV also reduced lymphadenopathy and renal injury. These results suggest that NNAV may have therapeutic values in the treatment of SLE by inhibiting autoimmune responses.
Collapse
|
32
|
Melin E, Sohrabian A, Rönnelid J, Borg K. Normal serum levels of immune complexes in postpolio patients. RESULTS IN IMMUNOLOGY 2014; 4:54-7. [PMID: 25009767 PMCID: PMC4085341 DOI: 10.1016/j.rinim.2014.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The pathophysiology of the postpolio syndrome is not fully understood. Increased cytokine levels in cerebrospinal fluid and peripheral blood indicate a systemic inflammatory process. Decreased cytokine levels and the clinical effect of intravenous immunoglobulin treatment further indicate an inflammatory/immunological pathogenesis. The aim of the present study was to evaluate whether an autoimmune process follows the initial infection, by means of analyzing immune complexes. PATIENTS AND METHODS Circulating immune complexes were analyzed from blood samples of 20 postpolio patients and 95 healthy controls. To compensate for differences in age between patients and controls, a sub-analysis was performed using only the 30 oldest controls. Tumor necrosis factor-inducing properties of polyethylene glycol-precipitated immune complexes were compared between the postpolio patients and 10 healthy controls. RESULTS When comparing levels in postpolio patients to the whole control group, including the 30 oldest investigated, there were no statistically significant differences. No difference was found in tumor necrosis factor levels induced by immune complexes when comparing patients and controls. CONCLUSIONS There was no increase in circulating immune complex or in tumor necrosis factor-inducing effects of circulating immune complex between postpolio patients and healthy controls, indicating that the postpolio syndrome is not due to an autoimmune reaction.
Collapse
Affiliation(s)
- Eva Melin
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Azita Sohrabian
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristian Borg
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Azevedo PC, Murphy G, Isenberg DA. Pathology of systemic lupus erythematosus: the challenges ahead. Methods Mol Biol 2014; 1134:1-16. [PMID: 24497350 DOI: 10.1007/978-1-4939-0326-9_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many studies have explored the pathology of systemic lupus erythematosus (SLE), an autoimmune rheumatic disorder with a striking female predominance. Numerous autoimmune phenomena are present in this disease, which ultimately result in organ damage. However, the specific cellular and humoral mechanisms underlying the immune dysfunction are not yet fully understood. It is postulated that autoimmunity is based on the interaction of genetic predisposition, hormonal and environmental triggers that result in reduced tolerance to self-tissues. These phenomena could occur because of altered antigen presentation, abnormalities in B cell responses, increases in the function of T-helper cells, abnormal cytokine production, exaggerated effector responses, or loss of regulatory T cells or B cells. Abnormalities in all of these components of the immune response have been implicated to varying degrees in the pathogenesis of SLE. This chapter will attempt to provide a "state-of-the-art" review of the evidence about the mechanisms underlying the pathology of SLE.
Collapse
|
34
|
Wong M, La Cava A, Hahn BH. Blockade of programmed death-1 in young (New Zealand Black x New Zealand White)F1 mice promotes the suppressive capacity of CD4+ regulatory T cells protecting from lupus-like disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:5402-10. [PMID: 23636058 DOI: 10.4049/jimmunol.1202382] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Programmed death-1 (PD-1) usually acts as a negative signal for T cell activation, and its expression on CD8(+)Foxp3(+) T cells is required for their suppressive capacity. In this study, we show that PD-1 signaling is required for the maintenance of functional regulatory CD4(+)CD25(+)Foxp3(+) regulatory T cells (CD4(+) T(reg)) that can control autoimmunity in (New Zealand Black × New Zealand White)F1 lupus mice. PD-1 signaling induced resistance to apoptosis and prolonged the survival of CD4(+) T(reg). In vivo, the blockade of PD-1 with a neutralizing Ab reduced PD-1 expression on CD4(+) T(reg) (PD1(lo)CD4(+) T(reg)). PD1(lo)CD4(+) T(reg) had an increased ability to promote B cell apoptosis and to suppress CD4(+) Th as compared with CD4(+) T(reg) with elevated PD-1 expression (PD1(hi)CD4(+) T(reg)). When PD-1 expression on CD4(+) T(reg) was blocked in vitro, PD1(lo)CD4(+) T(reg) suppressed B cell production of IgG and anti-dsDNA Ab. Finally, in vitro studies showed that the suppressive capacity of CD4(+) T(reg) depended on PD-1 expression and that a fine-tuning of the expression of this molecule directly affected cell survival and immune suppression. These results indicate that PD-1 expression has multiple effects on different immune cells that directly contribute to a modulation of autoimmune responses.
Collapse
Affiliation(s)
- Maida Wong
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
35
|
Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4315-23. [PMID: 23509345 DOI: 10.4049/jimmunol.1200501] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IgG molecules are widely used as therapeutic agents either in the form of intact Abs or as Fc fusion proteins. Although efficient binding of the IgG Fc fragment to cellular FcγRs may be essential to achieve a high cytolytic activity, it may be advantageous for other applications to limit or abolish this interaction. Genetic or biochemical approaches have been used to generate these non-FcγR-binding IgG variants. By using soluble versions of FcγRs and monomeric versions of these altered IgG molecules, it was demonstrated that these IgG variants no longer bind to FcγRs. Importantly, however, these assays do not reflect the physiologic interaction of IgG with low-affinity cellular FcγRs occurring in the form of multimeric immune complexes. In this study, we investigated how the size of an immune complex can affect the interaction of normal and various versions of potentially non-FcγR-binding IgG variants with cellular FcγRs. We show that neither the D265A mutation nor EndoS treatment resulting in IgG molecules with only one N-acetylglucosamine and a fucose residue was fully able to abolish the interaction of all IgG subclasses with cellular FcγRs, suggesting that IgG subclass-specific strategies are essential to fully interfere with human FcγR binding.
Collapse
Affiliation(s)
- Anja Lux
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
36
|
Tsay G, Hsieh YF, Wang M, Chang D, Chang J, Zouali M. Targeting the IL-10 Pathway by RNA Interference Has Beneficial Effects on the Development of Experimental Lupus. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Results from patients with systemic lupus erythematosus (SLE) and from mice suffering from a lupus-like disease suggest that the IL-10 pathway is involved in pathogenesis, and that this cytokine could represent a target for managing SLE development. In this study, we constructed JC virus-like particles (VLP) expressing IL-10-specific short hairpin RNAs (shRNAs) that efficiently silenced IL-10 gene expression. In mice, a single injection of this preparation dramatically reduced serum levels of ILIO. We tested the preventive effect of this vector expressing anti-IL-10 shRNAs in female (NZBxNZW) F, mice. Weekly intraperitoneal injections decreased the incidence and severity of proteinuria, and prolonged lifespan, with reduced IL-10 production. Our data demonstrate that the IL-10 pathway plays a chief role in lupus pathogenesis. It indicates that JC virus-like particles represent a potent vector for delivering interfering RNA in vivo. They suggest that RNA interference targeting IL-10 is an effective strategy to silence the IL-10 pathway, and possesses a therapeutic potential that could be useful in the management of SLE and, possibly, other immune-mediated disorders.
Collapse
Affiliation(s)
- G.J. Tsay
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institue of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Y-F. Hsieh
- Institue of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - M. Wang
- Institue of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - D. Chang
- Department of Life Science, National Chung Cheng University, Chiayi County, Taiwan
| | - J.T. Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - M. Zouali
- Inserm UMR-S 606, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
37
|
Tanaka A, Tsukamoto H, Mitoma H, Kiyohara C, Ueda N, Ayano M, Ohta SI, Inoue Y, Arinobu Y, Niiro H, Horiuchi T, Akashi K. Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity. Arthritis Res Ther 2012; 14:R244. [PMID: 23140401 PMCID: PMC3674629 DOI: 10.1186/ar4087] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 11/09/2012] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Progranulin (PGRN) is the precursor of granulin (GRN), a soluble cofactor for toll-like receptor 9 (TLR9) signaling evoked by oligonucleotide (CpG)-DNA. Because TLR9 signaling plays an important role in systemic lupus erythematosus (SLE), we investigated whether PGRN is involved in the pathogenesis of SLE. METHODS We measured concentrations of serum PGRN and interleukin-6 (IL-6) with enzyme-linked immunosorbent assay (ELISA) in patients with SLE (n = 68) and in healthy controls (n = 60). We assessed the correlation between the serum PGRN levels and established disease-activity indexes. The sera from the patients with high PGRN titers (>80 ng/ml) at the initial evaluation were reevaluated after the disease was ameliorated by treatment. We also measured the IL-6 concentration secreted by peripheral blood mononuclear cells (PBMCs) incubated with (a) oligonucleotide (CpG-B) in the presence or absence of recombinant human PGRN (rhPGRN); and (b) lupus sera in the presence or absence of a neutralizing anti-PGRN antibody. RESULTS Serum PGRN levels were significantly higher in SLE patients than healthy controls. Their levels were significantly associated with activity of clinical symptoms. They also significantly correlated with values of clinical parameters, including the SLE Disease Activity Index and anti-double-stranded DNA antibody titers, and inversely with CH50, C3, and C4 levels. Moreover, serum PGRN levels significantly decreased after successful treatment of SLE. The rhPGRN significantly upregulated the production of IL-6 by PBMCs stimulated with CpG-B. Patients' sera stimulated production of IL-6 from PBMCs, which was significantly impaired by neutralization of PGRN. The serum PGRN levels significantly correlated with the serum IL-6 levels. CONCLUSIONS Serum PGRN could be a useful biomarker for disease activity of SLE. PGRN may be involved in the pathogenesis of SLE partly by enhancing the TLR9 signaling.
Collapse
|
38
|
Immune complexes isolated from patients with pulmonary tuberculosis modulate the activation and function of normal granulocytes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1965-71. [PMID: 23100480 DOI: 10.1128/cvi.00437-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Circulating immune complexes (ICs) are associated with the pathogenesis of several diseases. Very little is known about the effect of ICs on the host immune response in patients with tuberculosis (TB). The effects of ICs isolated from patients with TB in modulating the release of calcium, cytokines, and granular proteins were studied in normal granulocytes, as were their chemotactic, phagocytic, and oxidative burst processes. ICs from TB patients induced decreased production of cytokines and platelet-activating factor (PAF) from normal granulocytes. ICs from TB patients also induced enhanced chemotaxis and phagocytosis but caused diminished oxidative burst. This was accompanied by an increased release in intracellular calcium. On the other hand, ICs from TB patients induced increased release of the granular proteins human neutrophil peptides 1 to 3 (HNP1-3). Thus, ICs from patients with TB exhibit a profound effect on granulocyte function with activation of certain effector mechanisms and dampening of others.
Collapse
|
39
|
Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, Goletz TJ, Kerwin BA, Chirmule N, Narhi LO, Jawa V. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 2012; 287:25266-79. [PMID: 22584577 PMCID: PMC3408134 DOI: 10.1074/jbc.m111.330902] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aggregation of biotherapeutics has the potential to induce an immunogenic response. Here, we show that aggregated therapeutic antibodies, previously generated and determined to contain a variety of attributes (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118–25133), can enhance the in vitro innate immune response of a population of naive human peripheral blood mononuclear cells. This response depended on the aggregate type, inherent immunogenicity of the monomer, and donor responsiveness, and required a high number of particles, well above that detected in marketed drug products, at least in this in vitro system. We propose a cytokine signature as a potential biomarker of the in vitro peripheral blood mononuclear cell response to aggregates. The cytokines include IL-1β, IL-6, IL-10, MCP-1, MIP-1α, MIP-1β, MMP-2, and TNF-α. IL-6 and IL-10 might have an immunosuppressive effect on the long term immune response. Aggregates made by stirring induced the highest response compared with aggregates made by other methods. Particle size in the 2–10 μm range and the retention of some folded structure were associated with an increased response. The mechanism of aggregate activation at the innate phase was found to occur through specific cell surface receptors (the toll-like receptors TLR-2 and TLR-4, FcγRs, and the complement system). The innate signal was shown to progress to an adaptive T-cell response characterized by T-cell proliferation and secretion of T-cell cytokines. Investigating the ability of aggregates to induce cytokine signatures as biomarkers of immune responses is essential for determining their risk of immunogenicity.
Collapse
Affiliation(s)
- Marisa K Joubert
- Department of Product Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mullazehi M, Wick MC, Klareskog L, van Vollenhoven R, Rönnelid J. Anti-type II collagen antibodies are associated with early radiographic destruction in rheumatoid arthritis. Arthritis Res Ther 2012; 14:R100. [PMID: 22548748 PMCID: PMC3446477 DOI: 10.1186/ar3825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/01/2012] [Accepted: 05/01/2012] [Indexed: 01/06/2023] Open
Abstract
Introduction We have previously reported that high levels of antibodies specific for native human type II collagen (anti-CII) at the time of RA diagnosis were associated with concurrent but not later signs of inflammation. This was associated with CII/anti-CII immune complex (IC)-induced production of pro-inflammatory cytokines in vitro. In contrast, anti-cyclic citrullinated peptide antibodies (anti-CCP) were associated both with late inflammation and late radiological destruction in the same RA cohort. We therefore hypothesized that anti-CII are also associated with early erosions. Methods Two-hundred-and-fifty-six patients from an early RA cohort were included. Baseline levels of anti-CII, anti-CCP and anti-mutated citrullinated vimentin were analyzed with ELISA, and rheumatoid factor levels were determined by nephelometry. Radiographs of hands and feet at baseline, after one and after two years were quantified using the 32-joints Larsen erosion score. Results Levels of anti-CII were bimodally distributed in the RA cohort, with a small (3.1%, 8/256) group of very high outliers with a median level 87 times higher than the median for the healthy control group. Using a cut-off discriminating the outlier group that was associated with anti-CII IC-induced production of proinflammatory cytokines in vitro, baseline anti-CII antibodies were significantly (p = 0.0486) associated with increased radiographic damage at the time of diagnosis. Anti-CII-positive patient had also significantly increased HAQ score (p = 0.0303), CRP (p = 0.0026) and ESR (p = 0.0396) at the time of diagnosis but not during follow-up. The median age among anti-CII-positive subjects was 12 years higher than among the anti-CII-negative patients. Conclusion In contrary to anti-CCP, anti-CII-positive patients with RA have increased joint destruction and HAQ score at baseline. Anti-CII thus characterizes an early inflammatory/destructive phenotype, in contrast to the late appearance of an inflammatory/destructive phenotype in anti-CCP positive RA patients. The anti-CII phenotype might account for part of the elderly acute onset RA phenotype with rather good prognosis.
Collapse
Affiliation(s)
- Mohammed Mullazehi
- Clinical Immunology, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5, Uppsala University, Uppsala, SE-75185, Sweden
| | | | | | | | | |
Collapse
|
41
|
Ambarus CA, Santegoets KCM, van Bon L, Wenink MH, Tak PP, Radstake TRDJ, Baeten DLP. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10. PLoS One 2012; 7:e35994. [PMID: 22563430 PMCID: PMC3338562 DOI: 10.1371/journal.pone.0035994] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/26/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Costimulation of murine macrophages with immune complexes (ICs) and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs). Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4). In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2). The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.
Collapse
Affiliation(s)
- Carmen A Ambarus
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Decrease in circulating DNA, IL-10 and BAFF levels in newly-diagnosed SLE patients after corticosteroid and chloroquine treatment. Cell Immunol 2012; 276:196-203. [DOI: 10.1016/j.cellimm.2012.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/18/2012] [Accepted: 05/14/2012] [Indexed: 01/05/2023]
|
43
|
Åhlin E, Mathsson L, Eloranta ML, Jonsdottir T, Gunnarsson I, Rönnblom L, Rönnelid J. Autoantibodies associated with RNA are more enriched than anti-dsDNA antibodies in circulating immune complexes in SLE. Lupus 2012; 21:586-95. [DOI: 10.1177/0961203311434938] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To what extent different autoantibodies accumulate in systemic lupus erythematosus (SLE) immune complexes (ICs), and whether such accumulation is associated with disease activity has been investigated. ICs were isolated from SLE sera by both polyethylene glycol (PEG) precipitation and C1q-binding. Autoantibody specificities were determined using a lineblot assay quantified by densitometry. To compare the relative levels of autoantibodies, levels were normalized to the total levels of IgG measured by ELISA in sera and parallel ICs. Samples were investigated both in a cross-sectional design as well as in a paired design with samples obtained during both active and inactive SLE. All investigated autoantibody specificities except anti-dsDNA were enriched in circulating ICs as compared with parallel sera. The group of antibodies against RNA-associated antigens (anti-RNP/Sm, anti-Sm, anti-SSA/Ro60, anti-SSA/Ro52, anti-SSB/La) all exhibited higher median enrichment than the DNA-associated (anti-dsDNA, anti-histones, anti-nucleosomes) or cytoplasmic (anti-ribosomal P) antigens. In particular autoantibodies against RNP/Sm and SSA/Ro52 had the highest degree of enrichment in SLE PEG precipitates. These findings were corroborated by analysis of autoantibody content in C1q-bound ICs. There was no difference in degree of IC accumulation of the investigated autoantibodies during active and inactive SLE. Our findings demonstrate a difference in enrichment between autoantibodies against RNA- and DNA-associated autoantigens in isolated SLE IC, suggesting that the RNA-associated autoantibodies are more prone to form circulating ICs in SLE, in contrast to antibodies against DNA-associated autoantigens such as dsDNA. These finding have implications in understanding mechanisms of differential autoantibody accumulation in target organs in SLE.
Collapse
Affiliation(s)
- E Åhlin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - L Mathsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - M-L Eloranta
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Sweden
| | - T Jonsdottir
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - I Gunnarsson
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Regulatory T-cell-associated cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:463412. [PMID: 22219657 PMCID: PMC3247013 DOI: 10.1155/2011/463412] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/08/2011] [Indexed: 11/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition, resulting in tissue and organ damage. An understanding of the mechanisms responsible for homeostatic control of inflammation, which involve both innate and adoptive immune responses, will enable the development of novel therapies for SLE. Regulatory T cells (Treg) play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4+CD25+ Treg, which characteristically express the transcription factor forkhead box protein P3 (Foxp3), have been intensively studied because their deficiency abrogates self-tolerance and causes autoimmune disease. Moreover, regulatory cytokines such as interleukin-10 (IL-10) also play a central role in controlling inflammatory processes. This paper focuses on Tregs and Treg-associated cytokines which might regulate the pathogenesis of SLE and, hence, have clinical applications.
Collapse
|
45
|
Murdaca G, Colombo BM, Puppo F. Emerging biological drugs: A new therapeutic approach for Systemic Lupus Erythematosus. An update upon efficacy and adverse events. Autoimmun Rev 2011; 11:56-60. [DOI: 10.1016/j.autrev.2011.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 07/21/2011] [Indexed: 12/20/2022]
|
46
|
Senbagavalli P, Anuradha R, Ramanathan VD, Kumaraswami V, Nutman TB, Babu S. Heightened measures of immune complex and complement function and immune complex-mediated granulocyte activation in human lymphatic filariasis. Am J Trop Med Hyg 2011; 85:89-96. [PMID: 21734131 DOI: 10.4269/ajtmh.2011.11-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The presence of circulating immune complexes (CICs) is a characteristic feature of human lymphatic filariasis. However, the role of CICs in modulating granulocyte function and complement functional activity in filarial infection is unknown. The levels of CICs in association with complement activation in clinically asymptomatic, filarial-infected patients (INF); filarial-infected patients with overt lymphatic pathologic changes (CPDT); and uninfected controls (EN) were examined. Significantly increased levels of CICs and enhanced functional efficiency of the classical and mannose-binding lectin pathways of the complement system was observed in INF compared with CPDT and EN. Polyethylene glycol-precipitated CICs from INF and CPDT induced significantly increased granulocyte activation compared with those from EN, determined by the increased production of neutrophil granular proteins and a variety of pro-inflammatory cytokines. Thus, CIC-mediated enhanced granulocyte activation and modulation of complement function are important features of filarial infection and disease.
Collapse
Affiliation(s)
- Prakash Senbagavalli
- National Institutes of Health-International Center for Excellence in Research, Chennai, India.
| | | | | | | | | | | |
Collapse
|
47
|
ERK phosphorylation and tumor necrosis factor-alpha production by monocytes are persistent in response to immobilized IgG. Biochem Biophys Res Commun 2010; 402:301-4. [DOI: 10.1016/j.bbrc.2010.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 11/23/2022]
|
48
|
Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010; 2010:365083. [PMID: 20467470 PMCID: PMC2866250 DOI: 10.1155/2010/365083] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/02/2010] [Indexed: 12/30/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex auto-immune disorder which involves various facets of the immune system. In addition to autoantibody production and immune complex deposition, emerging evidences suggest that cytokines may act as key players in the immunopathogenesis of SLE. These cytokines assume a critical role in the differentiation, maturation and activation of cells and also participate in the local inflammatory processes that mediate tissue insults in SLE. Certain cytokines such as the IL-6, IL-10, IL-17, BLys, type I interferons (IFN) and tumor necrosis factor-α (TNF-α) are closely linked to pathogenesis of SLE. The delineation of the role played by these cytokines not only fosters our understanding of this disease but also provides a sound rationale for various therapeutic approaches. In this context, this review focuses on selected cytokines which exert significant effect in the pathogenesis of SLE and their possible clinical applications.
Collapse
|
49
|
IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 2010; 115:4699-706. [PMID: 20351305 DOI: 10.1182/blood-2009-07-230631] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Src homology 2 domain-containing inositol 5-phosphatase (SHIP(-/-)) animals display an age-related increase in interleukin-6 (IL-6), a decrease in B lymphopoiesis, and an elevation in myelopoiesis. We investigated the origin of the IL-6 production and show that it is largely produced by peritoneal and splenic macrophages. IL-6 production by these macrophages is not a direct result of the loss of SHIP: IL-6 production is not spontaneous, is absent from bone marrow-derived macrophages, declines with prolonged culture of macrophages, and requires a stimulus present in vivo. The IL-6-rich peritoneal cavity of SHIP(-/-) mice shows more than 700-fold more immunoglobulin G (IgG) than wild-type, approximately 20% of which is aggregated or in an immune complex and contains B220(+) cells that secrete IgG. The SHIP-deficient peritoneal macrophages show evidence of IgG receptor stimulation. Animals lacking both the signal-transducing gamma-chain of IgG receptors and SHIP or Ig and SHIP produce less IL-6. The data indicate a feed-forward process in which peripheral macrophages, responding through IgG receptors to secreted IgG, produce IL-6, to support further B-cell production of IgG. Because of the proinflammatory phenotype of SHIP(-/-) animals, these findings emphasize the importance of IL-6-neutralizing strategies in autoimmune and proinflammatory diseases.
Collapse
|
50
|
Eloranta ML, Lövgren T, Finke D, Mathsson L, Rönnelid J, Kastner B, Alm GV, Rönnblom L. Regulation of the interferon-α production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. ACTA ACUST UNITED AC 2009; 60:2418-27. [DOI: 10.1002/art.24686] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|