1
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
2
|
Gonnami M, Tominaga T, Isowa Y, Takashima S, Takeda N, Miura C, Takagi M, Egusa M, Mine A, Ifuku S, Kaminaka H. Chitin nanofibers promote rhizobial symbiotic nitrogen fixation in Lotus japonicus. Int J Biol Macromol 2024; 278:134910. [PMID: 39173792 DOI: 10.1016/j.ijbiomac.2024.134910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Chitin, an N-acetyl-D-glucosamine polymer, has multiple functions in living organisms, including the induction of disease resistance and growth promotion in plants. In addition, chitin oligosaccharides (COs) are used as the backbone of the signaling molecule Nod factor secreted by soil bacteria rhizobia to establish a mutual symbiosis with leguminous plants. Nod factor perception triggers host plant responses for rhizobial symbiosis. In this study, the effects of chitins on rhizobial symbiosis were examined in the leguminous plants Lotus japonicus and soybean. Chitin nanofiber (CNF), retained with polymeric structures, and COs elicited calcium spiking in L. japonicus roots expressing a nuclear-localized cameleon reporter. Shoot growth and symbiotic nitrogen fixation were significantly increased by CNF but not COs in L.japonicus and soybean. However, treatments with chitin and cellulose nanofiber, structurally similar polymers to CNF, did not affect shoot growth and nitrogen fixation in L.japonicus. Transcriptome analysis also supported the specific effects of CNF on rhizobial symbiosis in L.japonicus. Although chitins comprise the same monosaccharides and nanofibers share similar physical properties, only CNF can promote rhizobial nitrogen fixation in leguminous plants. Taking the advantages on physical properties, CNF could be a promising material for improving legume yield by enhancing rhizobial symbiosis.
Collapse
Affiliation(s)
- Mamu Gonnami
- Department of Agricultural Science, Graduate School of Sustainable Science, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Takaya Tominaga
- The United Graduate School of Agricultural Science, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Yukiko Isowa
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Sarasa Takashima
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Naoya Takeda
- School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Japan
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Momoko Takagi
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Akira Mine
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan; Unused Bioresource Utilization Center, Tottori University, 4-101 Koyama Minami, Tottori 680-8550, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan; Unused Bioresource Utilization Center, Tottori University, 4-101 Koyama Minami, Tottori 680-8550, Japan.
| |
Collapse
|
3
|
Zadegan SB, Kim W, Abbas HMK, Kim S, Krishnan HB, Hewezi T. Differential symbiotic compatibilities between rhizobium strains and cultivated and wild soybeans revealed by anatomical and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1435632. [PMID: 39290740 PMCID: PMC11405202 DOI: 10.3389/fpls.2024.1435632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Various species of rhizobium establish compatible symbiotic relationships with soybean (Glycine max) leading to the formation of nitrogen-fixing nodules in roots. The formation of functional nodules is mediated through complex developmental and transcriptional reprogramming that involves the activity of thousands of plant genes. However, host transcriptome that differentiate between functional or non-functional nodules remain largely unexplored. In this study, we investigated differential compatibilities between rhizobium strains (Bradyrhizobium diazoefficiens USDA110 Bradyrhizobium sp. strain LVM105) and cultivated and wild soybeans. The nodulation assays revealed that both USDA110 and LVM105 strains effectively nodulate G. soja but only USDA110 can form symbiotic relationships with Williams 82. LVM105 formed pseudonodules on Williams 82 that consist of a central nodule-like mass that are devoid of any rhizobia. RNA-seq data revealed that USDA110 and LVM105 induce distinct transcriptome programing in functional mature nodules formed on G. soja roots, where genes involved in nucleosome assembly, DNA replication, regulation of cell cycle, and defense responses play key roles. Transcriptome comparison also suggested that activation of genes associated with cell wall biogenesis and organization and defense responses together with downregulation of genes involved in the biosynthesis of isoprenoids and antioxidant stress are associated with the formation of non-functional nodules on Williams 82 roots. Moreover, our analysis implies that increased activity of genes involved in oxygen binding, amino acid transport, and nitrate transport differentiates between fully-developed nodules in cultivated versus wild soybeans.
Collapse
Affiliation(s)
- Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Wonseok Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | | | - Sunhyung Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, United States
- Plant Genetics Research, The United States Department of Agriculture (USDA) Agricultural Research Service, Columbia, MO, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
4
|
Sarrette B, Luu TB, Johansson A, Fliegmann J, Pouzet C, Pichereaux C, Remblière C, Sauviac L, Carles N, Amblard E, Guyot V, Bonhomme M, Cullimore J, Gough C, Jacquet C, Pauly N. Medicago truncatula SOBIR1 controls pathogen immunity and specificity in the Rhizobium-legume symbiosis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39225339 DOI: 10.1111/pce.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Medicago truncatula Nod Factor Perception (MtNFP) plays a role in both the Rhizobium-Legume (RL) symbiosis and plant immunity, and evidence suggests that the immune-related function of MtNFP is relevant for symbiosis. To better understand these roles of MtNFP, we sought to identify new interacting partners. We screened a yeast-2-hybrid cDNA library from Aphanomyces euteiches infected and noninfected M. truncatula roots. The M. truncatula leucine-rich repeat (LRR) receptor-like kinase SUPPRESSOR OF BIR1 (MtSOBIR1) was identified as an interactor of MtNFP and was characterised for kinase activity, and potential roles in symbiosis and plant immunity. We showed that the kinase domain of MtSOBIR1 is active and can transphosphorylate the pseudo-kinase domain of MtNFP. MtSOBIR1 could functionally complement Atsobir1 and Nbsobir1/sobir1-like mutants for defence activation, and Mtsobir1 mutants were defective in immune responses to A. euteiches. For symbiosis, we showed that Mtsobir1 mutant plants had both a strong, early infection defect and defects in the defence suppression in nodules, and both effects were plant genotype- and rhizobial strain-specific. This work highlights a conserved function for MtSOBIR1 in activating defence responses to pathogen attack, and potentially novel symbiotic functions of downregulating defence in association with the control of symbiotic specificity.
Collapse
Affiliation(s)
- Baptiste Sarrette
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Thi-Bich Luu
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Alexander Johansson
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Judith Fliegmann
- Centre for Plant Molecular Biology (ZMBP) - Plant Biochemistry, University of Tübingen, Tübingen, Germany
| | - Cécile Pouzet
- Fédération de Recherche Agrobiosciences, Interactions and Biodiversity Research (FR AIB) Imaging and Proteomics platforms, University of Toulouse III, CNRS, Auzeville-Tolosan, France
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions and Biodiversity Research (FR AIB) Imaging and Proteomics platforms, University of Toulouse III, CNRS, Auzeville-Tolosan, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Céline Remblière
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Laurent Sauviac
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Noémie Carles
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, University of Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Valentin Guyot
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, University of Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, University of Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis Cedex, France
| |
Collapse
|
5
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Ansari MM, Bisht N, Singh T, Chauhan PS. Symphony of survival: Insights into cross-talk mechanisms in plants, bacteria, and fungi for strengthening plant immune responses. Microbiol Res 2024; 285:127762. [PMID: 38763015 DOI: 10.1016/j.micres.2024.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Plants coexist with a diverse array of microorganisms, predominantly bacteria and fungi, in both natural and agricultural environments. While some microorganisms positively influence plant development and yield, others can cause harm to the host, leading to significant adverse impacts on the environment and the economy. Plant growth-promoting microorganisms (PGPM), including plant growth-promoting bacteria, arbuscular mycorrhizal fungus (AMF), and rhizobia, have been found to increase plant biomass production by synthesizing hormones, fixing nitrogen, and solubilizing phosphate and potassium. Numerous studies have contributed to unraveling the complex process of plant-microbe interactions in recent decades. In light of the increasing global challenges such as population growth, climate change, and resource scarcity, it has become imperative to explore the potential of plant-bacteria-fungi crosstalk in promoting sustainability. This review aims to bridge existing knowledge gaps, providing a roadmap for future research in this dynamic field by synthesizing current knowledge and identifying emerging trends.
Collapse
Affiliation(s)
- Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
7
|
Li Y, Zhao Y, Yan Z, Dong R, Yu H, Zhu H, Cao Y. NODULATION TRIO in Medicago truncatula: Unveiling the redundant roles of MtLYK2, MtLYK3, and MtLYK2bis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1553-1556. [PMID: 38888210 DOI: 10.1111/jipb.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Three Medicago truncatula LysM domain receptor kinases have redundant functions in nodulation, with multiple specificities mediating both entry and signaling responses and with distinct contributions to nodulation likely resulting from differing transcription patterns.
Collapse
Affiliation(s)
- Yaohua Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanwen Zhao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziang Yan
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ru Dong
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Yuan S, Leng P, Feng Y, Jin F, Zhang H, Zhang C, Huang Y, Shan Z, Yang Z, Hao Q, Chen S, Chen L, Cao D, Guo W, Yang H, Chen H, Zhou X. Comparative genomic and transcriptomic analyses provide new insight into symbiotic host specificity. iScience 2024; 27:110207. [PMID: 38984200 PMCID: PMC11231455 DOI: 10.1016/j.isci.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Fuxiao Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
10
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
11
|
Rowson M, Jolly M, Dickson S, Gifford ML, Carré I. Timely symbiosis: circadian control of legume-rhizobia symbiosis. Biochem Soc Trans 2024; 52:1419-1430. [PMID: 38779952 PMCID: PMC11346424 DOI: 10.1042/bst20231307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.
Collapse
Affiliation(s)
- Monique Rowson
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Matthew Jolly
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Suzanna Dickson
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Miriam L. Gifford
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry CV4 7AL, U.K
| | - Isabelle Carré
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
12
|
Cunha VLS, O'Doherty GA, Lowary TL. Exploring a De Novo Route to Bradyrhizose: Synthesis and Isomeric Equilibrium of Bradyrhizose Diastereomers ≠. Chemistry 2024; 30:e202400886. [PMID: 38590211 PMCID: PMC11168859 DOI: 10.1002/chem.202400886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
A de novo asymmetric strategy for the synthesis of d-bradyrhizose diastereomers from an achiral ketoenolester precursor is described. Key transformations used in the stereodivergent approach include two Noyori asymmetric reductions, an Achmatowicz rearrangement, diastereoselective alkene oxidations, and the first example of a palladium(0)-catalyzed glycosylation of a vinylogous pyranone. The isomeric composition of the bicyclic reducing sugars obtained was analyzed and their behaviour was compared to the natural product, revealing key stereocentres that impact the overall distribution.
Collapse
Affiliation(s)
- Vitor L S Cunha
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, 11529, Taiwan
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, 11529, Taiwan
- Institute of Biochemical Sciences, Institute of Biological Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
13
|
Li H, Ou Y, Huang K, Zhang Z, Cao Y, Zhu H. A pathogenesis-related protein, PRP1, negatively regulates root nodule symbiosis in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3542-3556. [PMID: 38457346 DOI: 10.1093/jxb/erae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
The legume-rhizobium symbiosis represents a unique model within the realm of plant-microbe interactions. Unlike typical cases of pathogenic invasion, the infection of rhizobia and their residence within symbiotic cells do not elicit a noticeable immune response in plants. Nevertheless, there is still much to uncover regarding the mechanisms through which plant immunity influences rhizobial symbiosis. In this study, we identify an important player in this intricate interplay: Lotus japonicus PRP1, which serves as a positive regulator of plant immunity but also exhibits the capacity to decrease rhizobial colonization and nitrogen fixation within nodules. The PRP1 gene encodes an uncharacterized protein and is named Pathogenesis-Related Protein1, owing to its orthologue in Arabidopsis thaliana, a pathogenesis-related family protein (At1g78780). The PRP1 gene displays high expression levels in nodules compared to other tissues. We observed an increase in rhizobium infection in the L. japonicus prp1 mutants, whereas PRP1-overexpressing plants exhibited a reduction in rhizobium infection compared to control plants. Intriguingly, L. japonicus prp1 mutants produced nodules with a pinker colour compared to wild-type controls, accompanied by elevated levels of leghaemoglobin and an increased proportion of infected cells within the prp1 nodules. The transcription factor Nodule Inception (NIN) can directly bind to the PRP1 promoter, activating PRP1 gene expression. Furthermore, we found that PRP1 is a positive mediator of innate immunity in plants. In summary, our study provides clear evidence of the intricate relationship between plant immunity and symbiosis. PRP1, acting as a positive regulator of plant immunity, simultaneously exerts suppressive effects on rhizobial infection and colonization within nodules.
Collapse
Affiliation(s)
- Hao Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajuan Ou
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kui Huang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongming Zhang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangrong Cao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Wangthaisong P, Piromyou P, Songwattana P, Phimphong T, Songsaeng A, Pruksametanan N, Boonchuen P, Wongdee J, Teamtaisong K, Boonkerd N, Sato S, Tittabutr P, Teaumroong N. CopG 1, a Novel Transcriptional Regulator Affecting Symbiosis in Bradyrhizobium sp. SUTN9-2. BIOLOGY 2024; 13:415. [PMID: 38927295 PMCID: PMC11201211 DOI: 10.3390/biology13060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The symbiotic interaction between leguminous and Bradyrhizobium sp. SUTN9-2 mainly relies on the nodulation process through Nod factors (NFs), while the type IV secretion system (T4SS) acts as an alternative pathway in this symbiosis. Two copies of T4SS (T4SS1 and T4SS2) are located on the chromosome of SUTN9-2. ΔT4SS1 reduces both nodule number and nitrogenase activity in all SUTN9-2 nodulating legumes. The functions of three selected genes (copG1, traG1, and virD21) within the region of T4SS1 were examined. We generated deleted mutants and tested them in Vigna radiata cv. SUT4. ΔtraG1 and ΔvirD21 exhibited lower invasion efficiency at the early stages of root infection but could be recently restored. In contrast, ΔcopG1 completely hindered nodule organogenesis and nitrogenase activity in all tested legumes. ΔcopG1 showed low expression of the nodulation gene and ttsI but exhibited high expression levels of the T4SS genes, traG1 and trbE1. The secreted proteins from ΔT4SS1 were down-regulated compared to the wild-type. Although ΔcopG1 secreted several proteins after flavonoid induction, T3SS (nopP and nopX) and the C4-dicarboxylate transporter (dct) were not detected. These results confirm the crucial role of the copG1 gene as a novel key regulator in the symbiotic relationship between SUTN9-2 and legumes.
Collapse
Affiliation(s)
- Praneet Wangthaisong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tarnee Phimphong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apisit Songsaeng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Natcha Pruksametanan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtaisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
15
|
Nakano RT, Shimasaki T. Long-Term Consequences of PTI Activation and Its Manipulation by Root-Associated Microbiota. PLANT & CELL PHYSIOLOGY 2024; 65:681-693. [PMID: 38549511 DOI: 10.1093/pcp/pcae033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
In nature, plants are constantly colonized by a massive diversity of microbes engaged in mutualistic, pathogenic or commensal relationships with the host. Molecular patterns present in these microbes activate pattern-triggered immunity (PTI), which detects microbes in the apoplast or at the tissue surface. Whether and how PTI distinguishes among soil-borne pathogens, opportunistic pathogens, and commensal microbes within the soil microbiota remains unclear. PTI is a multimodal series of molecular events initiated by pattern perception, such as Ca2+ influx, reactive oxygen burst, and extensive transcriptional and metabolic reprogramming. These short-term responses may manifest within minutes to hours, while the long-term consequences of chronic PTI activation persist for days to weeks. Chronic activation of PTI is detrimental to plant growth, so plants need to coordinate growth and defense depending on the surrounding biotic and abiotic environments. Recent studies have demonstrated that root-associated commensal microbes can activate or suppress immune responses to variable extents, clearly pointing to the role of PTI in root-microbiota interactions. However, the molecular mechanisms by which root commensals interfere with root immunity and root immunity modulates microbial behavior remain largely elusive. Here, with a focus on the difference between short-term and long-term PTI responses, we summarize what is known about microbial interference with host PTI, especially in the context of root microbiota. We emphasize some missing pieces that remain to be characterized to promote the ultimate understanding of the role of plant immunity in root-microbiota interactions.
Collapse
|
16
|
Zhang J, Sun J, Chiu CH, Landry D, Li K, Wen J, Mysore KS, Fort S, Lefebvre B, Oldroyd GED, Feng F. A receptor required for chitin perception facilitates arbuscular mycorrhizal associations and distinguishes root symbiosis from immunity. Curr Biol 2024; 34:1705-1717.e6. [PMID: 38574729 PMCID: PMC11037463 DOI: 10.1016/j.cub.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jongho Sun
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chai Hao Chiu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK
| | - David Landry
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Kangping Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kirankumar S Mysore
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Sébastien Fort
- Université de Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Benoit Lefebvre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Giles E D Oldroyd
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK.
| | - Feng Feng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
17
|
Li D, Wang W, Peng Y, Qiu X, Yang J, Zhang C, Wang E, Wang X, Yuan H. Soluble humic acid suppresses plant immunity and ethylene to promote soybean nodulation. PLANT, CELL & ENVIRONMENT 2024; 47:871-884. [PMID: 38164043 DOI: 10.1111/pce.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.
Collapse
Affiliation(s)
- Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Wenqian Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xiaoqian Qiu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Chunting Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
19
|
Li Y, Wu Y, Yang Z, Shi R, Zhang L, Feng Z, Wei G, Chou M. The Rpf107 gene, a homolog of LOR, is required for the symbiotic nodulation of Robinia pseudoacacia. PLANTA 2023; 259:6. [PMID: 38001306 DOI: 10.1007/s00425-023-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
MAIN CONCLUSION Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yuanli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Xiangyang Public Inspection and Testing Center, No.69, Taiziwan Road, Xiangyang, 441000, Hubei Province, People's Republic of China
| | - Ziyi Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zhao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
20
|
Zhang D, Wu Q, Zhao Y, Yan Z, Xiao A, Yu H, Cao Y. Dual RNA-Seq Analysis Pinpoints a Balanced Regulation between Symbiosis and Immunity in Medicago truncatula- Sinorhizobium meliloti Symbiotic Nodules. Int J Mol Sci 2023; 24:16178. [PMID: 38003367 PMCID: PMC10671737 DOI: 10.3390/ijms242216178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| |
Collapse
|
21
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Bustamante JA, Ceron JS, Gao IT, Ramirez HA, Aviles MV, Bet Adam D, Brice JR, Cuellar RA, Dockery E, Jabagat MK, Karp DG, Lau JKO, Li S, Lopez-Magaña R, Moore RR, Morin BKR, Nzongo J, Rezaeihaghighi Y, Sapienza-Martinez J, Tran TTK, Huang Z, Duthoy AJ, Barnett MJ, Long SR, Chen JC. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. PLoS Genet 2023; 19:e1010776. [PMID: 37871041 PMCID: PMC10659215 DOI: 10.1371/journal.pgen.1010776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
Collapse
Affiliation(s)
- Julian A. Bustamante
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Josue S. Ceron
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Hector A. Ramirez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Milo V. Aviles
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Demsin Bet Adam
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jason R. Brice
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Eva Dockery
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Miguel Karlo Jabagat
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Donna Grace Karp
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Kin-On Lau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Suling Li
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Raymondo Lopez-Magaña
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rebecca R. Moore
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Bethany Kristi R. Morin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Juliana Nzongo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Yasha Rezaeihaghighi
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Sapienza-Martinez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Tuyet Thi Kim Tran
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron J. Duthoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joseph C. Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
23
|
Liu Y, Lin Y, Wei F, Lv Y, Xie F, Chen D, Lin H, Li Y. G-type receptor-like kinase AsNIP43 interacts with rhizobia effector nodulation outer protein P and is required for symbiosis. PLANT PHYSIOLOGY 2023; 193:1527-1546. [PMID: 37432453 PMCID: PMC10517198 DOI: 10.1093/plphys/kiad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/27/2023] [Indexed: 07/12/2023]
Abstract
In the Rhizobium-Legume symbiosis, the nodulation outer protein P (NopP) effector is one of the key regulators for rhizobial infection and nodule organogenesis. However, the molecular mechanism through which host legume plants sense NopP remains largely unknown. Here, we constructed an nopP deletion mutant of Mesorhizobium huakuii and found that nopP negatively regulates nodulation on Chinese milk vetch (Astragalus sinicus). Screening for NopP interacting proteins in host plants using the yeast 2-hybrid system identified NopP interacting protein 43 (AsNIP43), which encodes a G-type receptor-like kinase (LecRLK). The B-lectin domain at the N terminus of AsNIP43 was essential in mediating its interaction with NopP, which was confirmed in vitro and in vivo. Subcellular localization, co-localization, and gene expression analyses showed that AsNIP43 and NopP function tightly associated with earlier infection events. RNA interference (RNAi) knockdown of AsNIP43 expression by hairy root transformation led to decreased nodule formation. AsNIP43 plays a positive role in symbiosis, which was further verified in the model legume Medicago truncatula. Transcriptome analysis indicated that MtRLK (a homolog of AsNIP43 in M. truncatula) may function to affect defense gene expression and thus to regulate early nodulation. Taken together, we show that LecRLK AsNIP43 is a legume host target that interacts with rhizobia effector NopP is essential for rhizobial infection and nodulation.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ye Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Feng Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yanfei Lv
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
24
|
Dávila-Delgado R, Flores-Canúl K, Juárez-Verdayes MA, Sánchez-López R. Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells. PLANTA 2023; 257:83. [PMID: 36928335 PMCID: PMC10020325 DOI: 10.1007/s00425-023-04116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.
Collapse
Affiliation(s)
- Raúl Dávila-Delgado
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Karen Flores-Canúl
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Marco Adán Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
25
|
A Germin-Like Protein GLP1 of Legumes Mediates Symbiotic Nodulation by Interacting with an Outer Membrane Protein of Rhizobia. Microbiol Spectr 2023; 11:e0335022. [PMID: 36633436 PMCID: PMC9927233 DOI: 10.1128/spectrum.03350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizobia can infect legumes and induce the coordinated expression of symbiosis and defense genes for the establishment of mutualistic symbiosis. Numerous studies have elucidated the molecular interactions between rhizobia and host plants, which are associated with Nod factor, exopolysaccharide, and T3SS effector proteins. However, there have been relatively few reports about how the host plant recognizes the outer membrane proteins (OMPs) of rhizobia to mediate symbiotic nodulation. In our previous work, a gene (Mhopa22) encoding an OMP was identified in Mesorhizobium huakuii 7653R, whose homologous genes are widely distributed in Rhizobiales. In this study, a germin-like protein GLP1 interacting with Mhopa22 was identified in Astragalus sinicus. RNA interference of AsGLP1 resulted in a decrease in nodule number, whereas overexpression of AsGLP1 increased the number of nodules in the hairy roots of A. sinicus. Consistent symbiotic phenotypes were identified in Medicago truncatula with MtGLPx (refer to medtr7g111240.1, the isogeny of AsGLP1) overexpression or Tnt1 mutant (glpx-1) in symbiosis with Sinorhizobium meliloti 1021. The glpx-1 mutant displayed hyperinfection and the formation of more infection threads but a decrease in root nodules. RNA sequencing analysis showed that many differentially expressed genes were involved in hormone signaling and symbiosis. Taken together, AsGLP1 and its homology play an essential role in mediating the early symbiotic process through interacting with the OMPs of rhizobia. IMPORTANCE This study is the first report to characterize a legume host plant protein to sense and interact with an outer membrane protein (OMP) of rhizobia. It can be speculated that GLP1 plays an essential role to mediate early symbiotic process through interacting with OMPs of rhizobia. The results provide deeper understanding and novel insights into the molecular interactive mechanism of a legume symbiosis signaling pathway in recognition with rhizobial OMPs. Our findings may also provide a new perspective to improve the symbiotic compatibility and nodulation of legume.
Collapse
|
26
|
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. Int J Mol Sci 2023; 24:ijms24032800. [PMID: 36769110 PMCID: PMC9917363 DOI: 10.3390/ijms24032800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host's immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system's role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area.
Collapse
|
27
|
Mapping Genetic Variation in Arabidopsis in Response to Plant Growth-Promoting Bacterium Azoarcus olearius DQS-4T. Microorganisms 2023; 11:microorganisms11020331. [PMID: 36838296 PMCID: PMC9961961 DOI: 10.3390/microorganisms11020331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can enhance plant health by facilitating nutrient uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or boosting plant productivity. The genetic determinants that drive the plant-bacteria association remain understudied. To identify genetic loci highly correlated with traits responsive to PGPB, we performed a genome-wide association study (GWAS) using an Arabidopsis thaliana population treated with Azoarcus olearius DQS-4T. Phenotypically, the 305 Arabidopsis accessions tested responded differently to bacterial treatment by improving, inhibiting, or not affecting root system or shoot traits. GWA mapping analysis identified several predicted loci associated with primary root length or root fresh weight. Two statistical analyses were performed to narrow down potential gene candidates followed by haplotype block analysis, resulting in the identification of 11 loci associated with the responsiveness of Arabidopsis root fresh weight to bacterial inoculation. Our results showed considerable variation in the ability of plants to respond to inoculation by A. olearius DQS-4T while revealing considerable complexity regarding statistically associated loci with the growth traits measured. This investigation is a promising starting point for sustainable breeding strategies for future cropping practices that may employ beneficial microbes and/or modifications of the root microbiome.
Collapse
|
28
|
Cope KR, Prates ET, Miller JI, Demerdash ON, Shah M, Kainer D, Cliff A, Sullivan KA, Cashman M, Lane M, Matthiadis A, Labbé J, Tschaplinski TJ, Jacobson DA, Kalluri UC. Exploring the role of plant lysin motif receptor-like kinases in regulating plant-microbe interactions in the bioenergy crop Populus. Comput Struct Biotechnol J 2022; 21:1122-1139. [PMID: 36789259 PMCID: PMC9900275 DOI: 10.1016/j.csbj.2022.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023] Open
Abstract
For plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria. The identification and characterization of LysM-RLKs in candidate bioenergy crops including Populus are limited compared to other model plant species, thus inhibiting our ability to both understand and engineer microbe-mediated gains in plant productivity. As such, we performed a sequence analysis of LysM-RLKs in the Populus genome and predicted their function based on phylogenetic analysis with known LysM-RLKs. Then, using predictive models, molecular dynamics simulations, and comparative structural analysis with previously characterized CO and LCO plant receptors, we identified probable ligand-binding sites in Populus LysM-RLKs. Using several machine learning models, we predicted remarkably consistent binding affinity rankings of Populus proteins to CO. In addition, we used a modified Random Walk with Restart network-topology based approach to identify a subset of Populus LysM-RLKs that are functionally related and propose a corresponding signal transduction cascade. Our findings provide the first look into the role of LysM-RLKs in Populus-microbe interactions and establish a crucial jumping-off point for future research efforts to understand specificity and redundancy in microbial perception mechanisms.
Collapse
Affiliation(s)
- Kevin R. Cope
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Erica T. Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John I. Miller
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Omar N.A. Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manesh Shah
- Genome Science and Technology, The University of Tennessee–Knoxville, Knoxville, TN 37996, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ashley Cliff
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew Lane
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Anna Matthiadis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
29
|
Yang Z, Yuan L, Zhu H, Jiang J, Yang H, Li L. Small RNA profiling reveals the involvement of microRNA-mediated gene regulation in response to symbiosis in raspberry. Front Microbiol 2022; 13:1082494. [PMID: 36620006 PMCID: PMC9810812 DOI: 10.3389/fmicb.2022.1082494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Dark septate endophytes (DSEs) can form reciprocal symbioses with most terrestrial plants, providing them with mineral nutrients in exchange for photosynthetic products. Although the mechanism of plant-DSEs is well understood at the transcriptional level, little is known about their post-transcriptional regulation, and microRNAs (miRNAs) for the symbiotic process of DSE infestation of raspberry have not been identified. In this study, we comprehensively identified the miRNAs of DSE-infested raspberry symbiosis using Illumina sequencing. A total of 361 known miRNAs and 95 novel miRNAs were identified in the roots. Similar to other dicotyledons, most of the identified raspberry miRNAs were 21 nt in length. Thirty-seven miRNAs were differentially expressed during colonization after inoculation with Phialocephala fortinii F5, suggesting a possible role for these miRNAs in the symbiotic process. Notably, two miRNAs (miR171h and miR396) previously reported to be responsive to symbiotic processes in alfalfa also had altered expression during raspberry symbiosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggests that miRNAs are mainly involved in regulatory mechanisms, such as biological processes, cellular metabolic processes, biosynthesis of secondary metabolites, plant-pathogen interactions, and phytohormone signaling pathways. This study revealed the potential conservation of miRNA-mediated post-transcriptional regulation in symbiotic processes among plants and provides some novel miRNAs for understanding the regulatory mechanisms of DSE-raspberry symbiosis.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Lianmei Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China,*Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China,Lili Li,
| |
Collapse
|
30
|
Li RJ, Zhang CX, Fan SY, Wang YH, Wen J, Mysore KS, Xie ZP, Staehelin C. The Medicago truncatula hydrolase MtCHIT5b degrades Nod factors of Sinorhizobium meliloti and cooperates with MtNFH1 to regulate the nodule symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034230. [PMID: 36466271 PMCID: PMC9712974 DOI: 10.3389/fpls.2022.1034230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. In Medicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors of Sinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b of M. truncatula expressed in Escherichia coli can release lipodisaccharides from Nod factors. Analysis of M. truncatula mutant plants indicated that MtCHIT5b, together with MtNFH1, degrades S. meliloti Nod factors in the rhizosphere. MtCHIT5b expression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of a MtCHIT5b knockout mutant was not significantly altered whereas overexpression of MtCHIT5b resulted in fewer nodules. Reduced nodulation was observed when MtCHIT5b and MtNFH1 were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation of M. truncatula is regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1.
Collapse
Affiliation(s)
- Ru-Jie Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Xiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng-Yao Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Han Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangqi Wen
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kirankumar S. Mysore
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Effector-Dependent and -Independent Molecular Mechanisms of Soybean-Microbe Interaction. Int J Mol Sci 2022; 23:ijms232214184. [PMID: 36430663 PMCID: PMC9695568 DOI: 10.3390/ijms232214184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is a pivotal staple crop worldwide, supplying the main food and feed plant proteins in some countries. In addition to interacting with mutualistic microbes, soybean also needs to protect itself against pathogens. However, to grow inside plant tissues, plant defense mechanisms ranging from passive barriers to induced defense reactions have to be overcome. Pathogenic but also symbiotic micro-organisms effectors can be delivered into the host cell by secretion systems and can interfere with the immunity system and disrupt cellular processes. This review summarizes the latest advances in our understanding of the interaction between secreted effectors and soybean feedback mechanism and uncovers the conserved and special signaling pathway induced by pathogenic soybean cyst nematode, Pseudomonas, Xanthomonas as well as by symbiotic rhizobium.
Collapse
|
32
|
Huang R, Li Z, Shen X, Choi J, Cao Y. The Perspective of Arbuscular Mycorrhizal Symbiosis in Rice Domestication and Breeding. Int J Mol Sci 2022; 23:ijms232012383. [PMID: 36293238 PMCID: PMC9604486 DOI: 10.3390/ijms232012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
In nature, symbiosis with arbuscular mycorrhizal (AM) fungi contributes to sustainable acquisition of phosphorus and other elements in over 80% of plant species; improving interactions with AM symbionts may mitigate some of the environmental problems associated with fertilizer application in grain crops such as rice. Recent developments of high-throughput genome sequencing projects of thousands of rice cultivars and the discovery of the molecular mechanisms underlying AM symbiosis suggest that interactions with AM fungi might have been an overlooked critical trait in rice domestication and breeding. In this review, we discuss genetic variation in the ability of rice to form AM symbioses and how this might have affected rice domestication. Finally, we discuss potential applications of AM symbiosis in rice breeding for more sustainable agriculture.
Collapse
Affiliation(s)
- Renliang Huang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang 330200, China
| | - Zheng Li
- State Key Laboratory of Agriculture Microbiology, Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan 430000, China
| | - Xianhua Shen
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang 330200, China
| | - Jeongmin Choi
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Yangrong Cao
- State Key Laboratory of Agriculture Microbiology, Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan 430000, China
- Correspondence:
| |
Collapse
|
33
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
34
|
Khan A, Wadood SF, Chen M, Wang Y, Xie ZP, Staehelin C. Effector-triggered inhibition of nodulation: A rhizobial effector protease targets soybean kinase GmPBS1-1. PLANT PHYSIOLOGY 2022; 189:2382-2395. [PMID: 35543503 PMCID: PMC9343005 DOI: 10.1093/plphys/kiac205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
Type III protein secretion systems of nitrogen-fixing rhizobia deliver effector proteins into leguminous host cells to promote or inhibit the nodule symbiosis. However, mechanisms underlying effector-triggered inhibition of nodulation remain largely unknown. Nodulation outer protein T (NopT) of Sinorhizobium sp. NGR234 is an effector protease related to the Pseudomonas effector Avirulence protein Pseudomonas phaseolicola B (AvrPphB). Here, we constructed NGR234 mutants producing different NopT variants and found that protease activity of NopT negatively affects nodulation of smooth crotalaria (Crotalaria pallida). NopT variants lacking residues required for autocleavage and subsequent lipidation showed reduced symbiotic effects and were not targeted to the plasma membrane. We further noticed that Sinorhizobium fredii strains possess a mutated nopT gene. Sinorhizobium fredii USDA257 expressing nopT of NGR234 induced considerably fewer nodules in soybean (Glycine max) cv. Nenfeng 15 but not in other cultivars. Effector perception was further examined in NopT-expressing leaves of Arabidopsis (Arabidopsis thaliana) and found to be dependent on the protein kinase Arabidopsis AvrPphB Susceptible 1 (AtPBS1) and the associated resistance protein Arabidopsis Resistance to Pseudomonas syringae 5 (AtRPS5). Experiments with Nicotiana benthamiana plants indicated that the soybean homolog GmPBS1-1 associated with AtRPS5 can perceive NopT. Further analysis showed that NopT cleaves AtPBS1 and GmPBS1-1 and thus can activate these target proteins. Insertion of a DKM motif at the cleavage site of GmPBS1-1 resulted in increased proteolysis. Nodulation tests with soybeans expressing an autoactive GmPBS1-1 variant indicated that activation of a GmPBS1-1-mediated resistance pathway impairs nodule formation in cv. Nenfeng 15. Our findings suggest that legumes face an evolutionary dilemma of either developing effector-triggered immunity against pathogenic bacteria or establishing symbiosis with suboptimally adapted rhizobia producing pathogen-like effectors.
Collapse
Affiliation(s)
- Asaf Khan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Syed F Wadood
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Min Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| |
Collapse
|
35
|
Huo H, Zong L, Liu Y, Chen W, Chen J, Wei G. Rhizobial HmuS pSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia. PLANT, CELL & ENVIRONMENT 2022; 45:2191-2210. [PMID: 35419804 DOI: 10.1111/pce.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
36
|
Jalmi SK, Sinha AK. Ambiguities of PGPR-Induced Plant Signaling and Stress Management. Front Microbiol 2022; 13:899563. [PMID: 35633696 PMCID: PMC9136662 DOI: 10.3389/fmicb.2022.899563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The growth and stress responses developed by the plant in virtue of the action of PGPR are dictated by the changes in hormone levels and related signaling pathways. Each plant possesses its specific type of microbiota that is shaped by the composition of root exudates and the signal molecules produced by the plant and microbes. Plants convey signals through diverse and complex signaling pathways. The signaling pathways are also controlled by phytohormones wherein they regulate and coordinate various defense responses and developmental stages. On account of improved growth and stress tolerance provided by the PGPR to plants, there exist crosstalk of signaling events between phytohormones and other signaling molecules secreted by the plants and the PGPR. This review discusses some of the important aspects related to the ambiguities of signaling events occurring in plants, allowing the interaction of PGPR with plants and providing stress tolerance to the plant.
Collapse
|
37
|
Llorens E, Scalschi L, Sharon O, Vicedo B, Sharon A, García-Agustín P. Jasmonic acid pathway is required in the resistance induced by Acremonium sclerotigenum in tomato against Pseudomonas syringae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111210. [PMID: 35351299 DOI: 10.1016/j.plantsci.2022.111210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The use of fungal endophytes is considered as a new tool to confer resistance in plants against stresses. However, the mechanisms involved in colonization as well as in the induction of resistance by the endophytes are usually unclear. In this work, we tested whether a fungal endophyte isolated from an ancestor of wheat could induce resistance in plants of a different class from the ones that were isolated from the beginning. Seeds of Solanum lycopersicum were inoculated with Acremonium sclerotigenum and after four weeks, seedlings were inoculated with the bacterium Pseudomonas syringae pv tomato. Plants inoculated with endophytes showed significantly lower symptoms of infection as well as lower levels of colony forming units compared with control plants. Moreover, the presence of the endophytes induced an enhancement of Jasmonic acid (JA) upon inoculation with P. syringae compared with endophyte free plants. To ascertain the implication of JA in the resistance induced by A. sclerotigenum, two mutants defective in JA were tested. Results showed that the endophyte is not able to induce resistance in the mutant spr2, which is truncated in the first step of JA biosynthesis. On the contrary, acx1 mutant plants, which are unable to synthesize JA from OPC8, show a phenotype similar to wild type plants. Moreover, experiments with GFP-tagged endophytes showed no differences in the colonization in both mutants. In conclusion, the jasmonic acid pathway is required for the resistance mediated by the endophyte A. sclerotigenum in tomato against the biotrophic bacterium P. syringae but is not necessary for the colonization.
Collapse
Affiliation(s)
- Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain.
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Or Sharon
- Institute for Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Begonya Vicedo
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Amir Sharon
- Institute for Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
38
|
Wang T, Balla B, Kovács S, Kereszt A. Varietas Delectat: Exploring Natural Variations in Nitrogen-Fixing Symbiosis Research. FRONTIERS IN PLANT SCIENCE 2022; 13:856187. [PMID: 35481136 PMCID: PMC9037385 DOI: 10.3389/fpls.2022.856187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen-fixing symbiosis between leguminous plants and soil bacteria collectively called rhizobia plays an important role in the global nitrogen cycle and is an essential component of sustainable agriculture. Genetic determinants directing the development and functioning of the interaction have been identified with the help of a very limited number of model plants and bacterial strains. Most of the information obtained from the study of model systems could be validated on crop plants and their partners. The investigation of soybean cultivars and different rhizobia, however, has revealed the existence of ineffective interactions between otherwise effective partners that resemble gene-for-gene interactions described for pathogenic systems. Since then, incompatible interactions between natural isolates of model plants, called ecotypes, and different bacterial partner strains have been reported. Moreover, diverse phenotypes of both bacterial mutants on different host plants and plant mutants with different bacterial strains have been described. Identification of the genetic factors behind the phenotypic differences did already and will reveal novel functions of known genes/proteins, the role of certain proteins in some interactions, and the fine regulation of the steps during nodule development.
Collapse
Affiliation(s)
- Ting Wang
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Benedikta Balla
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Szilárd Kovács
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Attila Kereszt
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
39
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
40
|
Chang D, Gao S, Zhou G, Deng S, Jia J, Wang E, Cao W. The chromosome-level genome assembly of Astragalus sinicus and comparative genomic analyses provide new resources and insights for understanding legume-rhizobial interactions. PLANT COMMUNICATIONS 2022; 3:100263. [PMID: 35529952 PMCID: PMC9073321 DOI: 10.1016/j.xplc.2021.100263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/20/2023]
Abstract
The legume species Astragalus sinicus (Chinese milk vetch [CMV]) has been widely cultivated for centuries in southern China as one of the most important green manures/cover crops for improving rice productivity and preventing soil degeneration. In this study, we generated the first chromosome-scale reference genome of CMV by combining PacBio and Illumina sequencing with high-throughput chromatin conformation capture (Hi-C) technology. The CMV genome was 595.52 Mb in length, with a contig N50 size of 1.50 Mb. Long terminal repeats (LTRs) had been amplified and contributed to genome size expansion in CMV. CMV has undergone two whole-genome duplication (WGD) events, and the genes retained after the WGD shared by Papilionoideae species shaped the rhizobial symbiosis and the hormonal regulation of nodulation. The chalcone synthase (CHS) gene family was expanded and was expressed primarily in the roots of CMV. Intriguingly, we found that resistance genes were more highly expressed in roots than in nodules of legume species, suggesting that their expression may be increased to bolster plant immunity in roots to cope with pathogen infection in legumes. Our work sheds light on the genetic basis of nodulation and symbiosis in CMV and provides a benchmark for accelerating genetic research and molecular breeding in the future.
Collapse
Affiliation(s)
- Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuhan Deng
- Glbizzia Biological Science and Technology, Co, Ltd, Beijing, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Corresponding author
| |
Collapse
|
41
|
Zboralski A, Biessy A, Filion M. Bridging the Gap: Type III Secretion Systems in Plant-Beneficial Bacteria. Microorganisms 2022; 10:187. [PMID: 35056636 PMCID: PMC8780523 DOI: 10.3390/microorganisms10010187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.
Collapse
Affiliation(s)
| | | | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (A.Z.); (A.B.)
| |
Collapse
|
42
|
Arashida H, Odake H, Sugawara M, Noda R, Kakizaki K, Ohkubo S, Mitsui H, Sato S, Minamisawa K. Evolution of rhizobial symbiosis islands through insertion sequence-mediated deletion and duplication. THE ISME JOURNAL 2022; 16:112-121. [PMID: 34272493 PMCID: PMC8692435 DOI: 10.1038/s41396-021-01035-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022]
Abstract
Symbiosis between organisms influences their evolution via adaptive changes in genome architectures. Immunity of soybean carrying the Rj2 allele is triggered by NopP (type III secretion system [T3SS]-dependent effector), encoded by symbiosis island A (SymA) in B. diazoefficiens USDA122. This immunity was overcome by many mutants with large SymA deletions that encompassed T3SS (rhc) and N2 fixation (nif) genes and were bounded by insertion sequence (IS) copies in direct orientation, indicating homologous recombination between ISs. Similar deletion events were observed in B. diazoefficiens USDA110 and B. japonicum J5. When we cultured a USDA122 strain with a marker gene sacB inserted into the rhc gene cluster, most sucrose-resistant mutants had deletions in nif/rhc gene clusters, similar to the mutants above. Some deletion mutants were unique to the sacB system and showed lower competitive nodulation capability, indicating that IS-mediated deletions occurred during free-living growth and the host plants selected the mutants. Among 63 natural bradyrhizobial isolates, 2 possessed long duplications (261-357 kb) harboring nif/rhc gene clusters between IS copies in direct orientation via homologous recombination. Therefore, the structures of symbiosis islands are in a state of flux via IS-mediated duplications and deletions during rhizobial saprophytic growth, and host plants select mutualistic variants from the resultant pools of rhizobial populations. Our results demonstrate that homologous recombination between direct IS copies provides a natural mechanism generating deletions and duplications on symbiosis islands.
Collapse
Affiliation(s)
- Haruka Arashida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Haruka Odake
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Ryota Noda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Kaori Kakizaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Satoshi Ohkubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
43
|
Pirhanov GG. Sinorhizobium meliloti AS A PERSPECTIVE OBJECT FOR MODERN BIOTECHNOLOGY. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sinorhizobium meliloti is a Gram-negative soil nitrogen-fixing bacterium that increases the yield of legumes. There is information in the literature about the complete genome sequence of this bacterium, in addition, the polysaccharide composition of the biofilm, which is actively involved in nitrogen fixation, has been studied. The well-known nucleotide sequence, as well as the genetic and biochemical features of S. meliloti make this organism an ideal model for biotechnological research. The purpose of this work was to analyze the current data provided in the literature on the symbiotic interaction of Sinorhizobium meliloti with the host plant, and to characterize the main directions of the use of this bacterium in agriculture, bioremediation and medicine.
Collapse
|
44
|
Singh S, Ramakrishna W. Application of CRISPR-Cas9 in plant-plant growth-promoting rhizobacteria interactions for next Green Revolution. 3 Biotech 2021; 11:492. [PMID: 34840925 PMCID: PMC8590643 DOI: 10.1007/s13205-021-03041-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Agriculture's beginnings resulted in the domestication of numerous plant species as well as the use of natural resources. Food grain production took about 10,000 years to reach a billion tonnes in 1960, however, it took only 40 years to achieve 2 billion tonnes in year 2000. The creation of genetically modified crops, together with the use of enhanced agronomic practices, resulted in this remarkable increase, dubbed the "Green Revolution". Plants and bacteria that interact with each other in nature are co-evolving, according to Red Queen dynamics. Plant microorganisms, also known as plant microbiota, are an essential component of plant life. Plant-microbe (PM) interactions can be beneficial or harmful to hosts, depending on the health impact. The significance of microbiota in plant growth promotion (PGP) and stress resistance is well known. Our understanding of the community composition of the plant microbiome and important driving forces has advanced significantly. As a result, utilising the plant microbiota is a viable strategy for the next Green Revolution for meeting food demand. The utilisation of newer methods to understand essential genetic and molecular components of the multiple PM interactions is required for their application. The use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) techniques to investigate PM interactions is of tremendous interest. The implementation of GE techniques to boost the ability of microorganisms or plants for agronomic trait development will be enabled by a comprehensive understanding of PM interactions. This review focuses on using GE approaches to investigate the principles of PM interactions, disease resistance, PGP activity, and future implications in agriculture in plants or associated microbiota.
Collapse
Affiliation(s)
- Sudiksha Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401 India
| | - Wusirika Ramakrishna
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401 India
| |
Collapse
|
45
|
Feng Y, Wu P, Liu C, Peng L, Wang T, Wang C, Tan Q, Li B, Ou Y, Zhu H, Yuan S, Huang R, Stacey G, Zhang Z, Cao Y. Suppression of LjBAK1-mediated immunity by SymRK promotes rhizobial infection in Lotus japonicus. MOLECULAR PLANT 2021; 14:1935-1950. [PMID: 34314895 DOI: 10.1016/j.molp.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/07/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
An important question in biology is how organisms can associate with different microbes that pose no threat (commensals), pose a severe threat (pathogens), and those that are beneficial (symbionts). The root nodule symbiosis serves as an important model system for addressing such questions in the context of plant-microbe interactions. It is now generally accepted that rhizobia can actively suppress host immune responses during the infection process, analogous to the way in which plant pathogens can evade immune recognition. However, much remains to be learned about the mechanisms by which the host recognizes the rhizobia as pathogens and how, subsequently, these pathways are suppressed to allow establishment of the nitrogen-fixing symbiosis. In this study, we found that SymRK (Symbiosis Receptor-like Kinase) is required for rhizobial suppression of plant innate immunity in Lotus japonicus. SymRK associates with LjBAK1 (BRASSINOSTEROID INSENSITIVE 1-Associated receptor Kinase 1), a well-characterized positive regulator of plant innate immunity, and directly inhibits LjBAK1 kinase activity. Rhizobial inoculation enhances the association between SymRK and LjBAK1 in planta. LjBAK1 is required for the regulation of plant innate immunity and plays a negative role in rhizobial infection in L. japonicus. The data indicate that the SymRK-LjBAK1 protein complex serves as an intersection point between rhizobial symbiotic signaling pathways and innate immunity pathways, and support that rhizobia may actively suppress the host's ability to mount a defense response during the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yong Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Wu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liwei Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Tan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bixuan Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajuan Ou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Renliang Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Muñoz VL, Figueredo MS, Reinoso H, Fabra A. Role of ethylene in effective establishment of the peanut-bradyrhizobia symbiotic interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1141-1148. [PMID: 34490719 DOI: 10.1111/plb.13333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ethylene has been implicated in nitrogen fixing symbioses in legumes, where rhizobial invasion occurs via infection threads (IT). In the symbiosis between peanut (Arachis hypogaea L.) and bradyrhizobia, the bacteria penetrate the root cortex intercellularly and IT are not formed. Little attention has been paid to the function of ethylene in the establishment of this symbiosis. The aim of this article is to evaluate whether ethylene plays a role in the development of this symbiotic interaction and the participation of Nod Factors (NF) in the regulation of ethylene signalling. Manipulation of ethylene in peanut was accomplished by application of 1-aminocyclopropane-1-carboxylic acid (ACC), which mimics applied ethylene, or AgNO3, which blocks ethylene responses. To elucidate the participation of NF in the regulation of ethylene signalling, we inoculated plants with a mutant isogenic rhizobial strain unable to produce NF and evaluated the effect of AgNO3 on gene expression of NF and ethylene responsive signalling pathways. Data revealed that ethylene perception is required for the formation of nitrogen-fixing nodules, while addition of ACC does not affect peanut symbiotic performance. This phenotypic evidence is in agreement with transcriptomic data from genes involved in symbiotic and ethylene signalling pathways. NF seem to modulate the expression of ethylene signalling genes. Unlike legumes infected through IT formation, ACC addition to peanut does not adversely affect nodulation, but ethylene perception is required for establishment of this symbiosis. Evidence for the contribution of NF to the modulation of ethylene-inducible defence gene expression is provided.
Collapse
Affiliation(s)
- V L Muñoz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - M S Figueredo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - H Reinoso
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
47
|
Tzipilevich E, Russ D, Dangl JL, Benfey PN. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021; 29:1507-1520.e4. [PMID: 34610294 DOI: 10.1016/j.chom.2021.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.
Collapse
Affiliation(s)
- Elhanan Tzipilevich
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA.
| |
Collapse
|
48
|
Mamenko TP. Regulation of Legume-Rhizobial Symbiosis: Molecular Genetic Aspects and Participation of Reactive Oxygen Species. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol 2021; 31:3538-3550.e5. [PMID: 34216556 DOI: 10.1016/j.cub.2021.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
50
|
Optimizing Chitin Depolymerization by Lysozyme to Long-Chain Oligosaccharides. Mar Drugs 2021; 19:md19060320. [PMID: 34072871 PMCID: PMC8229320 DOI: 10.3390/md19060320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.
Collapse
|