1
|
Kádková A, Murach J, Østergaard M, Malsam A, Malsam J, Lolicato F, Nickel W, Söllner TH, Sørensen JB. SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions. eLife 2024; 12:RP88619. [PMID: 38411501 PMCID: PMC10911398 DOI: 10.7554/elife.88619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
Collapse
Affiliation(s)
- Anna Kádková
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | | | - Maiken Østergaard
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Andrea Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Jörg Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergDenmark
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | | | | |
Collapse
|
2
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
An Atypical, Staged Cell Death Pathway Induced by Depletion of SNARE-Proteins MUNC18-1 or Syntaxin-1. J Neurosci 2023; 43:347-358. [PMID: 36517239 PMCID: PMC9864589 DOI: 10.1523/jneurosci.0611-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022] Open
Abstract
The presynaptic proteins MUNC18-1, syntaxin-1, and SNAP25 drive SNARE-mediated synaptic vesicle fusion and are also required for neuronal viability. Their absence triggers rapid, cell-autonomous, neuron-specific degeneration, unrelated to synaptic vesicle deficits. The underlying cell death pathways remain poorly understood. Here, we show that hippocampi of munc18-1 null mice (unknown sex) express apoptosis hallmarks cleaved caspase 3 (CC-3) and phosphorylated p53, and have condensed nuclei. However, side-by-side in vitro comparison with classical apoptosis induced by camptothecin uncovered striking differences to syntaxin-1 and MUNC18-1 depleted neurons. First, live-cell imaging revealed consecutive neurite retraction hours before cell death in MUNC18-1 or syntaxin-1 depleted neurons, whereas all neurites retracted at once, directly before cell death in classical apoptosis. Second, CC-3 activation was observed only after loss of all neurites and cellular breakdown, whereas CC-3 is activated before any neurite loss in classical apoptosis. Third, a pan-caspase inhibitor and a p53 inhibitor both arrested classical apoptosis, as expected, but not cell death in MUNC18-1 or syntaxin-1 depleted neurons. Neuron-specific cell death, consecutive neurite retraction, and late CC-3 activation were conserved in syntaxin-1 depleted human neurons. Finally, no indications were observed for involvement of other established cell death pathways, including necroptosis, Wallerian degeneration, autophagic cell death, and pyroptosis. Together, these data show that depletion of presynaptic proteins MUNC18-1 or syntaxin-1 triggers an atypical, staged cell death pathway characterized by consecutive neurite retraction, ultimately leading to, but not driven by, apoptosis.SIGNIFICANCE STATEMENT Neuronal cell death can occur via a multitude of pathways and plays an important role in the developing nervous system as well as neurodegenerative diseases. One poorly understood pathway to neuronal cell death takes place on depletion of presynaptic SNARE proteins syntaxin-1, SNAP25, or MUNC18-1. The current study demonstrates that MUNC18-1 or syntaxin-1 depleted neurons show a new, atypical, staged cell death that does not resemble any of the established cell death pathways in neurons. Cell death on MUNC18-1 or syntaxin-1 depletion is characterized by consecutive neurite retraction, ultimately involving, but not driven by, classical apoptosis.
Collapse
|
4
|
Vadisiute A, Meijer E, Szabó F, Hoerder-Suabedissen A, Kawashita E, Hayashi S, Molnár Z. The role of snare proteins in cortical development. Dev Neurobiol 2022; 82:457-475. [PMID: 35724379 PMCID: PMC9539872 DOI: 10.1002/dneu.22892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Eri Kawashita
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Santa-Marinha L, Castanho I, Silva RR, Bravo FV, Miranda AM, Meira T, Morais-Ribeiro R, Marques F, Xu Y, Point du Jour K, Wenk M, Chan RB, Di Paolo G, Pinto V, Oliveira TG. Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning. Cell Rep 2021; 30:4197-4208.e6. [PMID: 32209478 DOI: 10.1016/j.celrep.2020.02.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Collapse
Affiliation(s)
- Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Ribeiro Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisca Vaz Bravo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Torcato Meira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kimberly Point du Jour
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Markus Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Vilcaes AA, Chanaday NL, Kavalali ET. Interneuronal exchange and functional integration of synaptobrevin via extracellular vesicles. Neuron 2021; 109:971-983.e5. [PMID: 33513363 PMCID: PMC7979516 DOI: 10.1016/j.neuron.2021.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
Recent studies have investigated the composition and functional effects of extracellular vesicles (EVs) secreted by a variety of cell types. However, the mechanisms underlying the impact of these vesicles on neurotransmission remain unclear. Here, we isolated EVs secreted by rat and mouse hippocampal neurons and found that they contain synaptic-vesicle-associated proteins, in particular the vesicular SNARE (soluble N-ethylmaleimide-sensitive factor [NSF]-attachment protein receptor) synaptobrevin (also called VAMP). Using a combination of electrophysiology and live-fluorescence imaging, we demonstrate that this extracellular pool of synaptobrevins can rapidly integrate into the synaptic vesicle cycle of host neurons via a CD81-dependent process and selectively augment inhibitory neurotransmission as well as specifically rescue neurotransmission in synapses deficient in synaptobrevin. These findings uncover a novel means of interneuronal communication and functional coupling via exchange of vesicular SNAREs.
Collapse
Affiliation(s)
- A Alejandro Vilcaes
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba X5000HUA, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba X5000HUA, Argentina; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA.
| |
Collapse
|
7
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
8
|
Alten B, Zhou Q, Shin OH, Esquivies L, Lin PY, White KI, Sun R, Chung WK, Monteggia LM, Brunger AT, Kavalali ET. Role of Aberrant Spontaneous Neurotransmission in SNAP25-Associated Encephalopathies. Neuron 2020; 109:59-72.e5. [PMID: 33147442 DOI: 10.1016/j.neuron.2020.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, composed of synaptobrevin, syntaxin, and SNAP25, forms the essential fusion machinery for neurotransmitter release. Recent studies have reported several mutations in the gene encoding SNAP25 as a causative factor for developmental and epileptic encephalopathies of infancy and childhood with diverse clinical manifestations. However, it remains unclear how SNAP25 mutations give rise to these disorders. Here, we show that although structurally clustered mutations in SNAP25 give rise to related synaptic transmission phenotypes, specific alterations in spontaneous neurotransmitter release are a key factor to account for disease heterogeneity. Importantly, we identified a single mutation that augments spontaneous release without altering evoked release, suggesting that aberrant spontaneous release is sufficient to cause disease in humans.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Qiangjun Zhou
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ok-Ho Shin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rong Sun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Wendy K Chung
- Department of Pediatrics (in Medicine), Columbia University Medical Center, New York, NY 10032, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
9
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
10
|
Hoerder-Suabedissen A, Korrell KV, Hayashi S, Jeans A, Ramirez DMO, Grant E, Christian HC, Kavalali ET, Wilson MC, Molnár Z. Cell-Specific Loss of SNAP25 from Cortical Projection Neurons Allows Normal Development but Causes Subsequent Neurodegeneration. Cereb Cortex 2020; 29:2148-2159. [PMID: 29850799 DOI: 10.1093/cercor/bhy127] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.
Collapse
Affiliation(s)
- Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Kim V Korrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | | | - Denise M O Ramirez
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Eleanor Grant
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA.,Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Michael C Wilson
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
11
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
12
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
13
|
Duan MJ, Yan ML, Wang Q, Mao M, Su D, Sun LL, Li KX, Qu Y, Sun Q, Zhang XY, Huang SY, Ma JC, Ban T, Ai J. Overexpression of miR-1 in the heart attenuates hippocampal synaptic vesicle exocytosis by the posttranscriptional regulation of SNAP-25 through the transportation of exosomes. Cell Commun Signal 2018; 16:91. [PMID: 30497498 PMCID: PMC6267908 DOI: 10.1186/s12964-018-0303-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The link between cardiac diseases and cognitive deterioration has been accepted from the concept of "cardiogenic dementia", which was proposed in the late 1970s. However, the molecular mechanism is unclarified. METHODS The two animal models used in this study were cardiac-specific overexpression of microRNA-1-2 transgenic (Tg) mice and a myocardial infarction mouse model generated by left coronary artery ligation (LCA). First, we observed the microRNA-1 (miR-1) level and synaptic vesicles (SV) distribution in the hippocampus using in situ hybridization and transmission electron microscopy (TEM) and evaluated the expression of vesicle exocytosis related proteins by western blotting. Second, we used dual luciferase reporter assay as well as antagonist and miRNA-masking techniques to identify the posttranscriptional regulatory effect of miR-1 on the Snap25 gene. Third, FM1-43 staining was performed to investigate the effect of miR-1 on synaptic vesicle exocytosis. Lastly, we used GW4869 to inhibit the biogenesis and secretion of exosomes to determine the transportation effect of exosomes for miR-1 from the heart to the brain. RESULTS Compared with the levels in age-matched WT mice, miR-1 levels were increased in both the hearts and hippocampi of Tg mice, accompanied by the redistribution of SVs and the reduction in SV exocytosis-related protein SNAP-25 expression. In vitro studies showed that SNAP-25 protein expression was down- or upregulated by miR-1 overexpression or inhibition, respectively, however, unchanged by miRNA-masking the 3'UTR of the Snap25 gene. SV exocytosis was inhibited by miR-1 overexpression, which could be prevented by co-transfection with an anti-miR-1 oligonucleotide fragment (AMO-1). The knockdown of miR-1 by hippocampal stereotaxic injection of AMO-1 carried by a lentivirus vector (lenti-pre-AMO-1) led to the upregulation of SNAP-25 expression and prevented SV concentration in the synapses in the hippocampi of Tg mice. The application of GW4869 significantly reversed the increased miR-1 level in the blood and hippocampi as well as reduced the SNAP-25 protein levels in the hippocampi of both Tg and LCA mice. CONCLUSION The overexpression of miR-1 in the heart attenuated SV exocytosis in the hippocampus by posttranscriptionally regulating SNAP-25 through the transportation of exosomes. This study contributes to the understanding of the relationship between cardiovascular disease and brain dysfunction.
Collapse
Affiliation(s)
- Ming-Jing Duan
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Mei-Ling Yan
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Qin Wang
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Meng Mao
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Dan Su
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Lin-Lin Sun
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Ke-Xin Li
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Yang Qu
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Qiang Sun
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Xin-Yu Zhang
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Si-Yu Huang
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Ji-Chao Ma
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Tao Ban
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| | - Jing Ai
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086 Heilongjiang Province China
| |
Collapse
|
14
|
Pozzi D, Corradini I, Matteoli M. The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release. Neuroscience 2018; 420:72-78. [PMID: 30476527 DOI: 10.1016/j.neuroscience.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
The process of neurotransmitter release is central to the control of cell-to-cell communication in brain. SNAP-25 is a component of the SNARE complex, which, together with syntaxin-1 and synaptobrevin, mediates synaptic vesicle fusion with the plasma membrane. The genetic ablation of the protein or its proteolytic cleavage by botulinum neurotoxins results in a complete block of synaptic transmission. In the last years, several evidences have indicated that SNAP-25 also plays additional modulatory roles in neurotransmission through the control of voltage-gated calcium channels and presynaptic calcium ion concentration. Consistently, reduced levels of the protein affect presynaptic calcium homeostasis and result in pathologically enhanced glutamate exocytosis. The SNAP-25-dependent alterations of synaptic calcium dynamics may have direct impact on the development of neuropsychiatric disorders where the Snap-25 gene has been found to be involved.
Collapse
Affiliation(s)
- Davide Pozzi
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| | - Irene Corradini
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy
| | - Michela Matteoli
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| |
Collapse
|
15
|
Hussain S, Ringsevjen H, Schupp M, Hvalby Ø, Sørensen JB, Jensen V, Davanger S. A possible postsynaptic role for SNAP-25 in hippocampal synapses. Brain Struct Funct 2018; 224:521-532. [PMID: 30377802 DOI: 10.1007/s00429-018-1782-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The SNARE protein SNAP-25 is well documented as regulator of presynaptic vesicle exocytosis. Increasing evidence suggests roles for SNARE proteins in postsynaptic trafficking of glutamate receptors as a basic mechanism in synaptic plasticity. Despite these indications, detailed quantitative subsynaptic localization studies of SNAP-25 have never been performed. Here, we provide novel electron microscopic data of SNAP-25 localization in postsynaptic spines. In addition to its expected presynaptic localization, we show that the protein is also present in the postsynaptic density (PSD), the postsynaptic lateral membrane and on small vesicles in the postsynaptic cytoplasm. We further investigated possible changes in synaptic SNAP-25 protein expression after hippocampal long-term potentiation (LTP). Quantitative analysis of immunogold-labeled electron microscopy sections did not show statistically significant changes of SNAP-25 gold particle densities 1 h after LTP induction, indicating that local trafficking of SNAP-25 does not play a role in the early phases of LTP. However, the strong expression of SNAP-25 in postsynaptic plasma membranes suggests a function of the protein in postsynaptic vesicle exocytosis and a possible role in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- S Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H Ringsevjen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - M Schupp
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ø Hvalby
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - J B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - V Jensen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway. .,Laboratory of Synaptic Plasticity, Division of Anatomy, Institute of Basic Medical Sciences, P.O.Box 1105, Blindern, 0317, Oslo, Norway.
| |
Collapse
|
16
|
Monteggia LM, Lin PY, Adachi M, Kavalali ET. Behavioral Analysis of SNAP-25 and Synaptobrevin-2 Haploinsufficiency in Mice. Neuroscience 2018; 420:129-135. [PMID: 30144509 DOI: 10.1016/j.neuroscience.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
In central synapses, synaptobrevin-2 (also called VAMP-2) is the predominant synaptic vesicle SNARE protein that interacts with the plasma membrane SNAREs, SNAP-25 and syntaxin-1 to execute exocytosis. Mice deficient in synaptobrevin-2 or SNAP-25 show embryonic lethality, which precludes investigation of the complete loss-of-function of these proteins in the adult nervous system. However, mice that carry heterozygous null mutations survive into adulthood and are fertile. In order to elucidate how loss-of-function mutations in these proteins may result in human disease phenotypes it is important to develop bona fide animal models. Therefore, given the importance of these two critical SNAREs in central synaptic transmission and their association with several neurological or neuropsychiatric disorders, we performed a comprehensive behavioral analysis of SNAP-25 heterozygous null (SNAP-25+/-) mice as well as the synaptobrevin-2 heterozygous null (+/-) mice. This analysis revealed only mild phenotypes, SNAP-25 (+/-) mice exhibited marked hypoactivity, whereas synaptobrevin-2 (+/-) mice showed enhanced performance on the rotarod. The two mouse lines did not manifest significant deficits in anxiety-related behaviors, learning and memory measures, or prepulse inhibition. The rather mild behavioral deficits indicate that these key proteins, SNAP25 and synaptobrevin-2, are expressed in excess to circumvent the impact of potential fluctuations in expression levels on nervous system function.
Collapse
Affiliation(s)
- Lisa M Monteggia
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Pei-Yi Lin
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Megumi Adachi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
17
|
Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse. J Neurosci 2018; 38:8187-8199. [PMID: 30093538 DOI: 10.1523/jneurosci.0603-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromodulation mediated by metabotropic glutamate receptors (mGluRs) regulates many brain functions. However, the functions of mGluRs in the auditory system under normal and diseased states are not well understood. The medial nucleus of the trapezoid body (MNTB) is a critical nucleus in the auditory brainstem nuclei involved in sound localization. In addition to the classical calyx excitatory inputs, MNTB neurons also receive synaptic inhibition and it remains entirely unknown how this inhibition is regulated. Here, using whole-cell voltage clamp in brain slices, we investigated group I mGluR (mGluR I)-mediated modulation of the glycinergic and GABAergic inputs to MNTB neurons in both WT mice and a fragile X syndrome (FXS) mouse model (both sexes) in which the fragile X mental retardation gene 1 is knocked out (Fmr1 KO), causing exaggerated activity of mGluR I and behavioral phenotypes. Activation of mGluR I by (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) increased the frequency and amplitude of glycinergic spontaneous IPSCs (sIPSCs) in both WT and Fmr1 KO neurons in a voltage-gated sodium channel-dependent fashion, but did not modulate glycinergic evoked IPSCs (eIPSCs). In contrast, 3,5-DHPG did not affect GABAergic sIPSCs, but did suppress eIPSCs in WT neurons via endocannabinoid signaling. In the KO, the effect of 3,5-DHPG on GABAergic eIPSCs was highly variable, which supports the notion of impaired GABAergic signaling in the FXS model. The differential modulation of sIPSC and eIPSC and differential modulation of glycinergic and GABAergic transmission suggest distinct mechanisms responsible for spontaneous and evoked release of inhibitory transmitters and their modulation through the mGluR I signaling pathway.SIGNIFICANCE STATEMENT Neurons communicate with each other through the release of neurotransmitters, which assumes two basic modes, spontaneous and evoked release. These two release modes are believed to function using the same vesicle pool and machinery. Recent works have challenged this dogma, pointing to distinct vesicle release mechanisms underlying the two release modes. Here, we provide the first evidence in the central auditory system supporting this novel concept. We discovered neural-transmitter- and release-mode-specific neuromodulation of inhibitory transmission by metabotropic glutamate receptors and revealed part of the signaling pathways underlying this differential modulation. The results establish the foundation for a multitude of directions to study physiological significance of different release modes in auditory processing.
Collapse
|
18
|
Chanaday NL, Kavalali ET. Presynaptic origins of distinct modes of neurotransmitter release. Curr Opin Neurobiol 2018; 51:119-126. [PMID: 29597140 PMCID: PMC6066415 DOI: 10.1016/j.conb.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Presynaptic nerve terminals release neurotransmitter synchronously, asynchronously or spontaneously. During synchronous neurotransmission release is precisely coupled to action potentials, in contrast, asynchronous release events show only loose temporal coupling to presynaptic activity whereas spontaneous neurotransmission occurs independent of presynaptic activity. The mechanisms that give rise to this diversity in neurotransmitter release modes are poorly understood. Recent studies have described several presynaptic molecular pathways controlling synaptic vesicle pool segregation and recycling, which in turn may dictate distinct modes of neurotransmitter release. In this article, we review this recent work regarding neurotransmitter release modes and their relationship to synaptic vesicle pool dynamics as well as the molecular machinery that establishes synaptic vesicle pool identity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
19
|
Ulloa F, Cotrufo T, Ricolo D, Soriano E, Araújo SJ. SNARE complex in axonal guidance and neuroregeneration. Neural Regen Res 2018; 13:386-392. [PMID: 29623913 PMCID: PMC5900491 DOI: 10.4103/1673-5374.228710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary for the optimal performance of the nervous system in all organisms. Damage to these networks can be repaired by neuroregenerative processes which in turn can re-establish synapses between injured axons and postsynaptic terminals. Both axonal growth and guidance and the neuroregenerative response rely on correct axonal growth and growth cone responses to guidance cues as well as correct synapses with appropriate targets. With this in mind, parallels can be drawn between axonal regeneration and processes occurring during embryonic nervous system development. However, when studying parallels between axonal development and regeneration many questions still arise; mainly, how do axons grow and synapse with their targets and how do they repair their membranes, grow and orchestrate regenerative responses after injury. Major players in the cellular and molecular processes that lead to growth cone development and movement during embryonic development are the Soluble N-ethylamaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) proteins, which have been shown to be involved in axonal growth and guidance. Their involvement in axonal growth, guidance and neuroregeneration is of foremost importance, due to their roles in vesicle and membrane trafficking events. Here, we review the recent literature on the involvement of SNARE proteins in axonal growth and guidance during embryonic development and neuroregeneration.
Collapse
Affiliation(s)
- Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Delia Ricolo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid; Vall d´Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017; 127:78-88. [PMID: 29221906 DOI: 10.1016/j.neures.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
21
|
Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission. J Neurosci 2017; 36:11865-11880. [PMID: 27881774 DOI: 10.1523/jneurosci.1011-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/20/2023] Open
Abstract
Whether interactions between synaptotagmin-1 (syt-1) and the soluble NSF attachment protein receptors (SNAREs) are required during neurotransmission is debated. We examined five SNAP-25 mutations designed to interfere with syt-1 interactions. One mutation, D51/E52/E55A, targeted negative charges within region II of the primary interface (Zhou et al., 2015); two mutations targeted region I (D166A and D166/E170A) and one mutation targeted both (D51/E52/E55/D166A). The final mutation (D186/D193A) targeted C-terminal residues not expected to interact with syt-1. An in vitro assay showed that the region I, region II, and region I+II (D51/E52/E55/D166A) mutants markedly reduced the attachment between syt-1 and t-SNARE-carrying vesicles in the absence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In the presence of PI(4,5)P2, vesicle attachment was unaffected by mutation. When expressed in Snap-25-null mouse autaptic neurons, region I mutations reduced the size of the readily releasable pool of vesicles, whereas the region II mutation reduced vesicular release probability. Combining both in the D51/E52/E55/D166A mutation abrogated evoked release. These data point to a division of labor between region I (vesicle priming) and region II (evoked release). Spontaneous release was disinhibited by region I mutations and found to correlate with defective complexin (Cpx) clamping in an in vitro fusion assay, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Mutation in region II (D51/E52/E55A) also unclamped release, but this effect could be overcome by synaptotagmin overexpression, arguing against an obligatory role in clamping. We conclude that three synaptic release functions of syt-1, vesicle priming, spontaneous release clamping, and evoked release triggering, depend on direct SNARE complex interaction. SIGNIFICANCE STATEMENT The function of synaptotagmin-1 (syt-1):soluble NSF attachment protein receptor (SNARE) interactions during neurotransmission remains unclear. We mutated SNAP-25 within the recently identified region I and region II of the primary synaptotagmin:SNARE interface. Using in vitro assays and rescue experiments in autaptic neurons, we show that interactions within region II of the primary interface are necessary for synchronized calcium-triggered release, whereas region I is involved in vesicle priming. Spontaneous release was disinhibited by region I mutation and found to correlate with defective complexin (Cpx) clamping in vitro, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Therefore, vesicle priming, clamping spontaneous release, and eliciting evoked release are three different functions of syt-1 that involve different interaction modes with the SNARE complex.
Collapse
|
22
|
Wang SSH, Held RG, Wong MY, Liu C, Karakhanyan A, Kaeser PS. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking. Neuron 2017; 91:777-791. [PMID: 27537483 DOI: 10.1016/j.neuron.2016.07.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane.
Collapse
Affiliation(s)
- Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard G Held
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Man Yan Wong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aziz Karakhanyan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Yang K, Jiang X, Su Q, Wang J, Li C, Xia Y, Cheng S, Qin Q, Cao X, Chen C, Tu B. Disruption of glutamate neurotransmitter transmission is modulated by SNAP-25 in benzo[a]pyrene-induced neurotoxic effects. Toxicology 2017; 384:11-22. [DOI: 10.1016/j.tox.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
|
24
|
Santos TC, Wierda K, Broeke JH, Toonen RF, Verhage M. Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP-25. J Neurosci 2017; 37:4525-4539. [PMID: 28348137 PMCID: PMC6596660 DOI: 10.1523/jneurosci.3352-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022] Open
Abstract
The loss of presynaptic proteins Munc18-1, syntaxin-1, or SNAP-25 is known to produce cell death, but the underlying features have not been compared experimentally. Here, we investigated these features in cultured mouse CNS and DRG neurons. Side-by-side comparisons confirmed massive cell death, before synaptogenesis, within 1-4 DIV upon loss of t-SNAREs (syntaxin-1, SNAP-25) or Munc18-1, but not v-SNAREs (synaptobrevins/VAMP1/2/3 using tetanus neurotoxin (TeNT), also in TI-VAMP/VAMP7 knock-out (KO) neurons). A condensed cis-Golgi was the first abnormality observed upon Munc18-1 or SNAP-25 loss within 3 DIV. This phenotype was distinct from the Golgi fragmentation observed in apoptosis. Cell death was too rapid after syntaxin-1 loss to study Golgi abnormalities. Syntaxin-1 and Munc18-1 depend on each other for normal cellular levels. We observed that endogenous syntaxin-1 accumulates at the Golgi of Munc18-1 KO neurons. However, expression of a non-neuronal Munc18 isoform that does not bind syntaxin-1, Munc18-3, in Munc18-1 KO neurons prevented cell death and restored normal cis-Golgi morphology, but not synaptic transmission or syntaxin-1 targeting. Finally, we observed that DRG neurons are the only Munc18-1 KO neurons that do not degenerate in vivo or in vitro In these neurons, cis-Golgi abnormalities were less severe, with no changes in Golgi shape. Together, these data demonstrate that cell death upon Munc18-1, syntaxin-1, or SNAP-25 loss occurs via a degenerative pathway unrelated to the known synapse function of these proteins and involving early cis-Golgi abnormalities, distinct from apoptosis.SIGNIFICANCE STATEMENT This study provides new insights in a neurodegeneration pathway triggered by the absence of specific proteins involved in synaptic transmission (syntaxin-1, Munc18-1, SNAP-25), whereas other proteins involved in the same molecular process (synaptobrevins, Munc13-1/2) do not cause degeneration. Massive cell death occurs in cultured neurons upon depleting syntaxin-1, Munc18-1, and/or SNAP-25, well before synapse formation. This study characterizes several relevant cellular phenotypes, especially early cis-Golgi abnormalities, distinct from abnormalities observed during apoptosis, and rules out several other phenotypes as causal (defects in syntaxin-1 targeting and synaptic transmission). As proteins, such as syntaxin-1, Munc18-1, or SNAP-25, modulate α-synuclein neuropathy and/or are dysregulated in Alzheimer's disease, understanding this type of neurodegeneration may provide new links between synaptic defects and neurodegeneration in humans.
Collapse
Affiliation(s)
| | | | - Jurjen H Broeke
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics and
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
A Presynaptic Group III mGluR Recruits Gβγ/SNARE Interactions to Inhibit Synaptic Transmission by Cone Photoreceptors in the Vertebrate Retina. J Neurosci 2017; 37:4618-4634. [PMID: 28363980 DOI: 10.1523/jneurosci.2948-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission.SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system.
Collapse
|
26
|
Li YC, Chanaday NL, Xu W, Kavalali ET. Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways. Neuron 2017; 93:616-631.e3. [PMID: 28111077 DOI: 10.1016/j.neuron.2016.12.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/26/2022]
Abstract
Synaptic vesicle recycling is essential for maintaining normal synaptic function. The coupling of exocytosis and endocytosis is assumed to be Ca2+ dependent, but the exact role of Ca2+ and its key effector synaptotagmin-1 (syt1) in regulation of endocytosis is poorly understood. Here, we probed the role of syt1 in single- as well as multi-vesicle endocytic events using high-resolution optical recordings. Our experiments showed that the slowed endocytosis phenotype previously reported after syt1 loss of function can also be triggered by other manipulations that promote asynchronous release such as Sr2+ substitution and complexin loss of function. The link between asynchronous release and slowed endocytosis was due to selective targeting of fused synaptic vesicles toward slow retrieval by the asynchronous release Ca2+ sensor synaptotagmin-7. In contrast, after single synaptic vesicle fusion, syt1 acted as an essential determinant of synaptic vesicle endocytosis time course by delaying the kinetics of vesicle retrieval in response to increasing Ca2+ levels.
Collapse
Affiliation(s)
- Ying C Li
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Natali L Chanaday
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Wei Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
27
|
Imig C, Cooper BH. 3D Analysis of Synaptic Ultrastructure in Organotypic Hippocampal Slice Culture by High-Pressure Freezing and Electron Tomography. Methods Mol Biol 2017; 1538:215-231. [PMID: 27943193 DOI: 10.1007/978-1-4939-6688-2_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transmission electron microscopy serves as a valuable tool for synaptic structure-function analyses aimed at identifying morphological features or modifications associated with specific developmental stages or dysfunctional synaptic states. By utilizing cryo-preparation techniques to minimize the introduction of structural artifacts during sample preparation, and electron tomography to reconstruct the 3D ultrastructural architecture of a synapse, the spatial organization and morphological properties of synaptic organelles and subcompartments can be quantified with unparalleled precision. In this chapter, we present an experimental approach combining organotypic slice culture, high-pressure freezing, automated freeze-substitution, and electron tomography to investigate spatial relationships between synaptic vesicles and active zone release sites in synapses from lethal mouse mutants.
Collapse
Affiliation(s)
- Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany.
| |
Collapse
|
28
|
Toft-Bertelsen TL, Ziomkiewicz I, Houy S, Pinheiro PS, Sørensen JB. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell 2016; 27:3329-3341. [PMID: 27605709 PMCID: PMC5170865 DOI: 10.1091/mbc.e16-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
SNAP-25 regulates Ca2+ channels in an unknown manner. Endogenous and exogenous SNAP-25 inhibit Ca2+ currents indirectly by recruiting syntaxin-1 from clusters on the plasma membrane, thereby making it available for Ca2+ current inhibition. Thus the cell can regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters. SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Iwona Ziomkiewicz
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Paulo S Pinheiro
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
29
|
Khundakar AA, Hanson PS, Erskine D, Lax NZ, Roscamp J, Karyka E, Tsefou E, Singh P, Cockell SJ, Gribben A, Ramsay L, Blain PG, Mosimann UP, Lett DJ, Elstner M, Turnbull DM, Xiang CC, Brownstein MJ, O'Brien JT, Taylor JP, Attems J, Thomas AJ, McKeith IG, Morris CM. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations. Acta Neuropathol Commun 2016; 4:66. [PMID: 27357212 PMCID: PMC4928325 DOI: 10.1186/s40478-016-0334-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/12/2023] Open
Abstract
Dementia with Lewy bodies (DLB) patients frequently experience well formed recurrent complex visual hallucinations (RCVH). This is associated with reduced blood flow or hypometabolism on imaging of the primary visual cortex. To understand these associations in DLB we used pathological and biochemical analysis of the primary visual cortex to identify changes that could underpin RCVH. Alpha-synuclein or neurofibrillary tangle pathology in primary visual cortex was essentially absent. Neurone density or volume within the primary visual cortex in DLB was also unchanged using unbiased stereology. Microarray analysis, however, demonstrated changes in neuropeptide gene expression and other markers, indicating altered GABAergic neuronal function. Calcium binding protein and GAD65/67 immunohistochemistry showed preserved interneurone populations indicating possible interneurone dysfunction. This was demonstrated by loss of post synaptic GABA receptor markers including gephyrin, GABARAP, and Kif5A, indicating reduced GABAergic synaptic activity. Glutamatergic neuronal signalling was also altered with vesicular glutamate transporter protein and PSD-95 expression being reduced. Changes to the primary visual cortex in DLB indicate that reduced GABAergic transmission may contribute to RCVH in DLB and treatment using targeted GABAergic modulation or similar approaches using glutamatergic modification may be beneficial.
Collapse
Affiliation(s)
- Ahmad A Khundakar
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Peter S Hanson
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Daniel Erskine
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Nichola Z Lax
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Joseph Roscamp
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Evangelia Karyka
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Eliona Tsefou
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Preeti Singh
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Gribben
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Lynne Ramsay
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Peter G Blain
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK
| | - Urs P Mosimann
- University Hospital of Old Age Psychiatry, University Bern, CH 3010, Bern, Switzerland
| | - Deborah J Lett
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Matthias Elstner
- Department of Neurology and Clinical Neurophysiology, Academic Hospital Bogenhausen, Technical University of Munich, Munich, Germany
| | - Douglass M Turnbull
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Charles C Xiang
- Laboratory of Genetics at the National Institute of Mental Health/National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, MD20892, USA
| | - Michael J Brownstein
- Laboratory of Genetics at the National Institute of Mental Health/National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, MD20892, USA
| | - John T O'Brien
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, CB2 0SP, UK
| | - John-Paul Taylor
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Johannes Attems
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Alan J Thomas
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Ian G McKeith
- Biomedical Research Building, Institute of Neuroscience, Newcastle University, Newcastle University, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK
| | - Christopher M Morris
- Edwardson Building, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK.
- Medical Toxicology Centre, Newcastle University, Wolfson Building, Claremont Place, Newcastle, NE2 4AA, UK.
- Laboratory of Genetics at the National Institute of Mental Health/National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, MD20892, USA.
| |
Collapse
|
30
|
Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Mol Neurobiol 2016; 54:2189-2200. [PMID: 26941099 DOI: 10.1007/s12035-016-9810-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most highly heritable psychiatric disorders in childhood. The risk gene mutation accounts for about 60 to 90 % cases. Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic plasma membrane protein which is expressed highly and specifically in the neuronal cells. A number of evidences have suggested the role of SNAP-25 in the etiology of ADHD. Notably, the animal model of coloboma mouse mutant bears a ∼2-cM deletion encompassing genes including SNAP25 and displays spontaneous hyperkinetic behavior. Previous investigators have reported association between SNPs in SNAP25 and ADHD, and controversial results were observed. In this study, we analyzed the possible association between six polymorphisms (rs3746544, rs363006, rs1051312, rs8636, rs362549, and rs362998) of SNAP25 and ADHD in a pooled sample of ten family-based studies and four case-control studies by using meta-analysis. The combined analysis results were significant only for rs3746544 (P = 0.010) with mild association (odds ratio (OR) = 1.14). And, the meta-analysis data for rs8636, rs362549, and rs362998 are the first time to be reported; however, no positive association was detected. In conclusion, we report some evidence supporting the association of SNAP25 to ADHD. Future research should emphasize genome-wide association studies in more specific subgroups and larger independent samples.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Dai
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian-Guo Chen
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
31
|
Time-coded neurotransmitter release at excitatory and inhibitory synapses. Proc Natl Acad Sci U S A 2016; 113:E1108-15. [PMID: 26858411 DOI: 10.1073/pnas.1525591113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model's molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits.
Collapse
|
32
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
33
|
Hammel I, Meilijson I. Function Suggests Nano-Structure: Quantitative Structural Support for SNARE-Mediated Pore Formation. Neurotox Res 2015; 29:1-9. [PMID: 26407673 DOI: 10.1007/s12640-015-9559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Granule secretory content is released in either basal or calcium-activated complete exocytosis mode. A vital element in these processes is the establishment of a fusion pore between the granule membrane and the plasma membrane, initiated by the formation of a circular rosette docking arrangement of SNARE protein complexes. The controversially disputed number of SNARE complexes needed for granule priming leading to the formation of the fusion pore, is granule-size dependent and varies between secretion modes. Resorting to a statistical mechanics approach that views SNARE complexes and Ca(2+) ions as interacting particles, we have developed a relationship that links secretion rate to SNARE rosette size, Ca(2+) concentration and Ca(2+) ion cooperativity. Data are presented and discussed which suggest this SNARE-dependent generalization of existing narrow-range biophysical models that correlate secretion rate with Ca(2+) concentration and maximal Ca(2+) ion cooperativity. Evidence from dozens of examples in the literature advocate for this relation, which holds through the entire biological range. The coalescence of so many areas of diverse research methodologies has greatly augmented our understanding of so many different sequences of granule life cycle. Accordingly, these new tools may become valuable in a variety of electrophysiological experiments.
Collapse
Affiliation(s)
- Ilan Hammel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Isaac Meilijson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
34
|
Reese AL, Kavalali ET. Spontaneous neurotransmission signals through store-driven Ca(2+) transients to maintain synaptic homeostasis. eLife 2015. [PMID: 26208337 PMCID: PMC4534843 DOI: 10.7554/elife.09262] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca2+ signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca2+ probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca2+ transients in dendritic regions adjacent to fluorescently labeled presynaptic boutons in physiological levels of extracellular Mg2+. These Ca2+ transients required NMDA receptor activity, and their propensity correlated with acute or genetically induced changes in spontaneous neurotransmitter release. In contrast, they were insensitive to blockers of AMPA receptors, L-type voltage-gated Ca2+ channels, or group I mGluRs. However, inhibition of Ca2+-induced Ca2+ release suppressed these transients and elicited synaptic scaling, a process which required protein translation and eukaryotic elongation factor-2 kinase activity. These results support a critical role for Ca2+-induced Ca2+ release in amplifying NMDA receptor-driven Ca2+ signals at rest for the maintenance of synaptic homeostasis. DOI:http://dx.doi.org/10.7554/eLife.09262.001 Learning and memory is thought to rely on changes in the strength of the connections between nerve cells. When an electrical impulse travelling through a nerve cell reaches one of these connections (called a synapse), it causes the cell to release chemical transmitter molecules. These bind to receptors on the cell on the other side of the synapse. This starts a series of events that ultimately leads to new receptors being inserted into the membrane of this second cell, which strengthens the connection between the two cells. The receptors involved in this process belong to two groups, called AMPA and NMDA receptors. Both groups are ion channels that regulate the flow of charged particles from one side of a cell's membrane to the other. In resting nerve cells, NMDA receptors are partially blocked by magnesium ions. However, the binding of the transmitter molecules to AMPA receptors causes these receptors to open and allow positively charged sodium ions into the cell. This changes the electrical charge across the cell membrane, which displaces the magnesium ions from the NMDA receptors so that they too open. Calcium ions then enter the cell through the NMDA receptors and activate a signaling cascade that leads to the production of new AMPA receptors. Nerve cells also release transmitter molecules in the absence of electrical impulses, and evidence suggests that individual cells can use this ‘spontaneous transmitter release’ to adjust the strength of their synapses. When these spontaneous release levels are high, AMPA receptors are removed from the membrane of the nerve after the synapse to make it less sensitive to the transmitter molecules. Conversely, when spontaneous release levels are low, additional AMPA receptors are added to the membrane to increase the sensitivity. Reese and Kavalali have now identified the mechanism behind this process by showing that spontaneously released transmitter molecules cause small amounts of calcium to enter the second nerve cell through NMDA receptors, even when these receptors are blocked by magnesium ions. This trickle of calcium triggers the release of more calcium from stores inside the cell, which amplifies the signal. The ultimate effect of the flow of calcium into the cell is to block the production of AMPA receptors, and ensure that the synapse does not become any stronger. As confirmation of this mechanism, Reese and Kavalali showed that simulating low levels of spontaneous activity by blocking the so-called ‘calcium-induced calcium release’ has the opposite effect. This led to more AMPA receptors being produced and stronger synapses. Taken together these findings indicate that spontaneous transmitter release exerts an outsized influence on communication between neurons by maintaining adequate levels of AMPA receptors via these ‘amplified’ calcium signals. DOI:http://dx.doi.org/10.7554/eLife.09262.002
Collapse
Affiliation(s)
- Austin L Reese
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
35
|
Pellett S, Tepp WH, Scherf JM, Johnson EA. Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling. PLoS One 2015; 10:e0133737. [PMID: 26207366 PMCID: PMC4514655 DOI: 10.1371/journal.pone.0133737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the causative agent of the severe and long-lasting disease botulism. At least seven different serotypes of BoNTs (denoted A-G) have been described. All BoNTs enter human or animal neuronal cells via receptor mediated endocytosis and cleave cytosolic SNARE proteins, resulting in a block of synaptic vesicle exocytosis, leading to the flaccid paralysis characteristic of botulism. Previous data have indicated that once a neuronal cell has been intoxicated by a BoNT, further entry of the same or other BoNTs is prevented due to disruption of synaptic vesicle recycling. However, it has also been shown that cultured neurons exposed to BoNT/A are still capable of taking up BoNT/E. In this report we show that in general BoNTs can enter cultured human or mouse neuronal cells that have previously been intoxicated with another BoNT serotype. Quantitative analysis of cell entry by assessing SNARE cleavage revealed none or only a minor difference in the efficiency of uptake of BoNTs into previously intoxicated neurons. Examination of the endocytic entry pathway by specific endocytosis inhibitors indicated that BoNTs are taken up by clathrin coated pits in both non pre-exposed and pre-exposed neurons. LDH release assays indicated that hiPSC derived neurons exposed consecutively to two different BoNT serotypes remained viable and healthy except in the case of BoNT/E or combinations of BoNT/E with BoNT/B, /D, or /F. Overall, our data indicate that previous intoxication of neuronal cells with BoNT does not inhibit further uptake of BoNTs.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Jacob M. Scherf
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| |
Collapse
|
36
|
Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci 2015; 18:935-41. [DOI: 10.1038/nn.4044] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022]
|
37
|
Abstract
Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca(2+) influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release.
Collapse
|
38
|
Fossati G, Morini R, Corradini I, Antonucci F, Trepte P, Edry E, Sharma V, Papale A, Pozzi D, Defilippi P, Meier JC, Brambilla R, Turco E, Rosenblum K, Wanker EE, Ziv NE, Menna E, Matteoli M. Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death Differ 2015; 22:1425-36. [PMID: 25678324 DOI: 10.1038/cdd.2014.227] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/22/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022] Open
Abstract
Impairment of synaptic function can lead to neuropsychiatric disorders collectively referred to as synaptopathies. The SNARE protein SNAP-25 is implicated in several brain pathologies and, indeed, brain areas of psychiatric patients often display reduced SNAP-25 expression. It has been recently found that acute downregulation of SNAP-25 in brain slices impairs long-term potentiation; however, the processes through which this occurs are still poorly defined. We show that in vivo acute downregulation of SNAP-25 in CA1 hippocampal region affects spine number. Consistently, hippocampal neurons from SNAP-25 heterozygous mice show reduced densities of dendritic spines and defective PSD-95 dynamics. Finally, we show that, in brain, SNAP-25 is part of a molecular complex including PSD-95 and p140Cap, with p140Cap being capable to bind to both SNAP-25 and PSD-95. These data demonstrate an unexpected role of SNAP-25 in controlling PSD-95 clustering and open the possibility that genetic reductions of the protein levels - as occurring in schizophrenia - may contribute to the pathology through an effect on postsynaptic function and plasticity.
Collapse
Affiliation(s)
- G Fossati
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - R Morini
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - I Corradini
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - F Antonucci
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - P Trepte
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | - E Edry
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - V Sharma
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - A Papale
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milano 20132, Italy
| | - D Pozzi
- Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - P Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10124, Italy
| | - J C Meier
- 1] RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany [2] TU Braunschweig, Zoological Institute, Division of Cell Biology and Cell Physiology, Braunschweig, Germany
| | - R Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milano 20132, Italy
| | - E Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10124, Italy
| | - K Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - E E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | - N E Ziv
- Network Biology Labs and Faculty of Medicine, Technion, 33000 Haifa, Israel
| | - E Menna
- 1] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - M Matteoli
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| |
Collapse
|
39
|
Braida D, Guerini FR, Ponzoni L, Corradini I, De Astis S, Pattini L, Bolognesi E, Benfante R, Fornasari D, Chiappedi M, Ghezzo A, Clerici M, Matteoli M, Sala M. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Transl Psychiatry 2015; 5:e500. [PMID: 25629685 PMCID: PMC4312830 DOI: 10.1038/tp.2014.136] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022] Open
Abstract
Synaptosomal-associated protein of 25 kDa (SNAP-25) is involved in different neuropsychiatric disorders, including schizophrenia and attention-deficit/hyperactivity disorder. Consistently, SNAP-25 polymorphisms in humans are associated with hyperactivity and/or with low cognitive scores. We analysed five SNAP-25 gene polymorphisms (rs363050, rs363039, rs363043, rs3746544 and rs1051312) in 46 autistic children trying to correlate them with Childhood Autism Rating Scale and electroencephalogram (EEG) abnormalities. The functional effects of rs363050 single-nucleotide polymorphism (SNP) on the gene transcriptional activity, by means of the luciferase reporter gene, were evaluated. To investigate the functional consequences that SNAP-25 reduction may have in children, the behaviour and EEG of SNAP-25(+/-) adolescent mice (SNAP-25(+/+)) were studied. Significant association of SNAP-25 polymorphism with decreasing cognitive scores was observed. Analysis of transcriptional activity revealed that SNP rs363050 encompasses a regulatory element, leading to protein expression decrease. Reduction of SNAP-25 levels in adolescent mice was associated with hyperactivity, cognitive and social impairment and an abnormal EEG, characterized by the occurrence of frequent spikes. Both EEG abnormalities and behavioural deficits were rescued by repeated exposure for 21 days to sodium salt valproate (VLP). A partial recovery of SNAP-25 expression content in SNAP-25(+/-) hippocampi was also observed by means of western blotting. A reduced expression of SNAP-25 is responsible for the cognitive deficits in children affected by autism spectrum disorders, as presumably occurring in the presence of rs363050(G) allele, and for behavioural and EEG alterations in adolescent mice. VLP treatment could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Fondazione IRCCS Don Gnocchi, Milan, Italy
| | | | - L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Fondazione Fratelli Confalonieri, Milan, Italy
| | | | - S De Astis
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - L Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - R Benfante
- CNR—Neuroscience Institute, Milan, Italy
| | - D Fornasari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,CNR—Neuroscience Institute, Milan, Italy
| | - M Chiappedi
- Child Neuropsychiatry Unit, National Neurological Institute C. Mondino, Pavia, Italy
| | - A Ghezzo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy,Associazione Nazionale Famiglie di Persone con Disabilitá Affettiva e/o Relazionale (ANFFAS), Macerata, Italy
| | - M Clerici
- Fondazione IRCCS Don Gnocchi, Milan, Italy,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M Matteoli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Humanitas Clinical and Research Center, Rozzano, Italy
| | - M Sala
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,CNR—Neuroscience Institute, Milan, Italy,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milan 20129, Italy. E-mail:
| |
Collapse
|
40
|
Mani BK, Walker AK, Lopez Soto EJ, Raingo J, Lee CE, Perelló M, Andrews ZB, Zigman JM. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. J Comp Neurol 2014; 522:3644-66. [PMID: 24825838 PMCID: PMC4142102 DOI: 10.1002/cne.23627] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Growth hormone secretagogue receptor (GHSR) 1a is the only molecularly identified receptor for ghrelin, mediating ghrelin-related effects on eating, body weight, and blood glucose control, among others. The expression pattern of GHSR within the brain has been assessed previously by several neuroanatomical techniques. However, inherent limitations to these techniques and the lack of reliable anti-GHSR antibodies and reporter rodent models that identify GHSR-containing neurons have prevented a more comprehensive functional characterization of ghrelin-responsive neurons. Here we have systematically characterized the brain expression of an enhanced green fluorescence protein (eGFP) transgene controlled by the Ghsr promoter in a recently reported GHSR reporter mouse. Expression of eGFP in coronal brain sections was compared with GHSR mRNA expression detected in the same sections by in situ hybridization histochemistry. eGFP immunoreactivity was detected in several areas, including the prefrontal cortex, insular cortex, olfactory bulb, amygdala, and hippocampus, which showed no or low GHSR mRNA expression. In contrast, eGFP expression was low in several midbrain regions and in several hypothalamic nuclei, particularly the arcuate nucleus, where robust GHSR mRNA expression has been well-characterized. eGFP expression in several brainstem nuclei showed high to moderate degrees of colocalization with GHSR mRNA labeling. Further quantitative PCR and electrophysiological analyses of eGFP-labeled hippocampal cells confirmed faithful expression of eGFP within GHSR-containing, ghrelin-responsive neurons. In summary, the GHSR-eGFP reporter mouse model may be a useful tool for studying GHSR function, particularly within the brainstem and hippocampus; however, it underrepresents GHSR expression in nuclei within the hypothalamus and midbrain.
Collapse
Affiliation(s)
- Bharath K. Mani
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Angela K. Walker
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eduardo J. Lopez Soto
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Charlotte E. Lee
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mario Perelló
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Zane B. Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
41
|
Ramirez DMO, Kavalali ET. The role of non-canonical SNAREs in synaptic vesicle recycling. CELLULAR LOGISTICS 2014; 2:20-27. [PMID: 22645707 PMCID: PMC3355972 DOI: 10.4161/cl.20114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An increasing number of studies suggest that distinct pools of synaptic vesicles drive specific forms of neurotransmission. Interspersed with these functional studies are analyses of the synaptic vesicle proteome which have consistently detected the presence of so-called “non-canonical” SNAREs that typically function in fusion and trafficking of other subcellular structures within the neuron. The recent identification of certain non-canonical vesicular SNAREs driving spontaneous (e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4) release integrates and corroborates existing data from functional and proteomic studies and implies that at least some complement of non-canonical SNAREs resident on synaptic vesicles function in neurotransmission. Here, we discuss the specific roles in neurotransmission of proteins homologous to each member of the classical neuronal SNARE complex consisting of synaptobrevin2, syntaxin-1 and SNAP-25.
Collapse
|
42
|
Imig C, Min SW, Krinner S, Arancillo M, Rosenmund C, Südhof TC, Rhee J, Brose N, Cooper BH. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 2014; 84:416-31. [PMID: 25374362 DOI: 10.1016/j.neuron.2014.10.009] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
Synaptic vesicle docking, priming, and fusion at active zones are orchestrated by a complex molecular machinery. We employed hippocampal organotypic slice cultures from mice lacking key presynaptic proteins, cryofixation, and three-dimensional electron tomography to study the mechanism of synaptic vesicle docking in the same experimental setting, with high precision, and in a near-native state. We dissected previously indistinguishable, sequential steps in synaptic vesicle active zone recruitment (tethering) and membrane attachment (docking) and found that vesicle docking requires Munc13/CAPS family priming proteins and all three neuronal SNAREs, but not Synaptotagmin-1 or Complexins. Our data indicate that membrane-attached vesicles comprise the readily releasable pool of fusion-competent vesicles and that synaptic vesicle docking, priming, and trans-SNARE complex assembly are the respective morphological, functional, and molecular manifestations of the same process, which operates downstream of vesicle tethering by active zone components.
Collapse
Affiliation(s)
- Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sang-Won Min
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefanie Krinner
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Marife Arancillo
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Rosenmund
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
43
|
Chen G, Hu T, Li Q, Li J, Jia Y, Wang Z. Expression of synaptosomal-associated protein-25 in the rat brain after subarachnoid hemorrhage. Neural Regen Res 2014; 8:2693-702. [PMID: 25206580 PMCID: PMC4145993 DOI: 10.3969/j.issn.1673-5374.2013.29.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
Synaptosomal-associated protein-25 is an important factor for synaptic functions and cognition. In this study, subarachnoid hemorrhage models with spatial learning disorder were established through a blood injection into the chiasmatic cistern. Immunohistochemical staining and western blot analysis results showed that synaptosomal-associated protein-25 expression in the temporal lobe, hippocampus, and cerebellum significantly lower at days 1 and 3 following subarachnoid morrhage. Our findings indicate that synaptosomal-associated protein-25 expression was down-regulated in the rat brain after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Gang Chen
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Tong Hu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China ; Department of Neurosurgery, Yixing People's Hospital, Yixing 214200, Jiangsu Province, China
| | - Qi Li
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jianke Li
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yang Jia
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
44
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Mishima T, Fujiwara T, Sanada M, Kofuji T, Kanai-Azuma M, Akagawa K. Syntaxin 1B, but not syntaxin 1A, is necessary for the regulation of synaptic vesicle exocytosis and of the readily releasable pool at central synapses. PLoS One 2014; 9:e90004. [PMID: 24587181 PMCID: PMC3938564 DOI: 10.1371/journal.pone.0090004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
Two syntaxin 1 (STX1) isoforms, HPC-1/STX1A and STX1B, are coexpressed in neurons and function as neuronal target membrane (t)-SNAREs. However, little is known about their functional differences in synaptic transmission. STX1A null mutant mice develop normally and do not show abnormalities in fast synaptic transmission, but monoaminergic transmissions are impaired. In the present study, we found that STX1B null mutant mice died within 2 weeks of birth. To examine functional differences between STX1A and 1B, we analyzed the presynaptic properties of glutamatergic and GABAergic synapses in STX1B null mutant and STX1A/1B double null mutant mice. We found that the frequency of spontaneous quantal release was lower and the paired-pulse ratio of evoked postsynaptic currents was significantly greater in glutamatergic and GABAergic synapses of STX1B null neurons. Deletion of STX1B also accelerated synaptic vesicle turnover in glutamatergic synapses and decreased the size of the readily releasable pool in glutamatergic and GABAergic synapses. Moreover, STX1A/1B double null neurons showed reduced and asynchronous evoked synaptic vesicle release in glutamatergic and GABAergic synapses. Our results suggest that although STX1A and 1B share a basic function as neuronal t-SNAREs, STX1B but not STX1A is necessary for the regulation of spontaneous and evoked synaptic vesicle exocytosis in fast transmission.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- * E-mail:
| | - Tomonori Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masumi Sanada
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takefumi Kofuji
- Radio Isotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kimio Akagawa
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
46
|
SNAP-25 regulates spine formation through postsynaptic binding to p140Cap. Nat Commun 2014; 4:2136. [PMID: 23868368 DOI: 10.1038/ncomms3136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/12/2013] [Indexed: 11/08/2022] Open
Abstract
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a member of the Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNARE) protein family, required for exocytosis of synaptic vesicles and regulation of diverse ion channels. Here, we show that acute reduction of SNAP-25 expression leads to an immature phenotype of dendritic spines that are, consistently, less functional. Conversely, over-expression of SNAP-25 results in an increase in the density of mature, Postsynaptic Density protein 95 (PSD-95)-positive spines. The regulation of spine morphogenesis by SNAP-25 depends on the protein's ability to bind both the plasma membrane and the adaptor protein p140Cap, a key protein regulating actin cytoskeleton and spine formation. We propose that SNAP-25 allows the organization of the molecular apparatus needed for spine formation by recruiting and stabilizing p140Cap.
Collapse
|
47
|
Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 2013; 76:333-63. [PMID: 24274737 DOI: 10.1146/annurev-physiol-021113-170338] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | | |
Collapse
|
48
|
Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 2013; 80:934-46. [PMID: 24210904 DOI: 10.1016/j.neuron.2013.08.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca(2+) initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission.
Collapse
Affiliation(s)
- Manjot Bal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
The SNARE proteins SNAP25 and synaptobrevin are involved in endocytosis at hippocampal synapses. J Neurosci 2013; 33:9169-75. [PMID: 23699527 DOI: 10.1523/jneurosci.0301-13.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SNAP25, an essential component of the soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) complex that mediates exocytosis, is not considered to play a role in endocytosis, which couples to exocytosis by retrieving a similar amount of exocytosed vesicles. By knocking down SNAP25 and imaging slow endocytosis at a conventional synapse, the rat cultured hippocampal synapse, we found that SNAP25 is involved in slow, clathrin-dependent endocytosis. With similar techniques, we found that not only SNAP25, but also synaptobrevin is involved in slow endocytosis. These results provide the first evidence showing the dual role of SNAP25 and synaptobrevin in both exocytosis and slow endocytosis at conventional synapses. Such a dual role may contribute to mediate the coupling between exocytosis and clathrin-dependent endocytosis at conventional synapses, a mechanism critical for the maintenance of synaptic transmission and the normal structure of nerve terminals.
Collapse
|
50
|
Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 2013; 5:27. [PMID: 23847531 PMCID: PMC3698444 DOI: 10.3389/fnagi.2013.00027] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.
Collapse
Affiliation(s)
- William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|