1
|
Rodriguez-Rodriguez C, González-Mancha N, Ochoa-Echeverría A, Mérida I. Sorting nexin 27-dependent regulation of Lck and CD4 tunes the initial stages of T-cell activation. J Leukoc Biol 2024; 116:793-806. [PMID: 38648515 DOI: 10.1093/jleuko/qiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Sorting nexin 27 is a unique member of the sorting nexin family of proteins that mediates the endosome-to-plasma membrane trafficking of cargos bearing a PSD95/Dlg1/ZO-1 (PDZ)-binding motif. In brain, sorting nexin 27 regulates synaptic plasticity, and its dysregulation contributes to cognitive impairment and neuronal degeneration. In T lymphocytes, sorting nexin 27 partners with diacylglycerol kinase ζ to facilitate polarized traffic and signaling at the immune synapse. By silencing sorting nexin 27 expression in a human T-cell line, we demonstrate that sorting nexin 27 is a key regulator of the early T-cell tyrosine-based signaling cascade. Sorting nexin 27 transcriptionally controls CD4 abundance in resting conditions and that of its associated molecule, Lck. This guarantees the adequate recruitment of Lck at the immune synapse, which is indispensable for subsequent activation of tyrosine phosphorylation-regulated events. In contrast, reduced sorting nexin 27 expression enhances NF-κB-dependent induction of CXCR4 and triggers production of lytic enzymes and proinflammatory cytokines. These results provide mechanistic explanation to previously described sorting nexin 27 function in the control of immune synapse organization and indicate that impaired sorting nexin 27 expression contributes to CD4 T-cell dysfunction.
Collapse
Affiliation(s)
- Cristina Rodriguez-Rodriguez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Natalia González-Mancha
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
2
|
Liang C, Spoerl S, Xiao Y, Habenicht KM, Haeusl SS, Sandner I, Winkler J, Strieder N, Eder R, Stanewsky H, Alexiou C, Dudziak D, Rosenwald A, Edinger M, Rehli M, Hoffmann P, Winkler TH, Berberich-Siebelt F. Oligoclonal CD4 +CXCR5 + T cells with a cytotoxic phenotype appear in tonsils and blood. Commun Biol 2024; 7:879. [PMID: 39025930 PMCID: PMC11258247 DOI: 10.1038/s42003-024-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.
Collapse
Affiliation(s)
- Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina M Habenicht
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrun S Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Isabel Sandner
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Else Kröner-Fresenius-Foundation-Professorship, Section of Experimental Oncology & Nanomedicine (SEON), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Matthias Edinger
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
3
|
Honda T, Toyama S, Matsumoto Y, Sanada T, Yasui F, Koseki A, Kono R, Yamamoto N, Kamishita T, Kodake N, Miyazaki T, Kohara M. Intranasally Inoculated SARS-CoV-2 Spike Protein Combined with Mucoadhesive Polymer Induces Broad and Long-Lasting Immunity. Vaccines (Basel) 2024; 12:794. [PMID: 39066433 PMCID: PMC11281581 DOI: 10.3390/vaccines12070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Current mRNA vaccines against SARS-CoV-2 effectively induce systemic and cell-mediated immunity and prevent severe disease. However, they do not induce mucosal immunity that targets the primary route of respiratory infection, and their protective effects wane after a few months. Intranasal vaccines have some advantages, including their non-invasiveness and the additional ability to activate mucosal immunity. In this study, we aimed to explore the effectiveness of an intranasally inoculated spike protein of SARS-CoV-2 mixed with a carboxy-vinyl polymer (S-CVP), a viscous agent. Intranasally inoculated S-CVP strongly induced antigen-specific IgG, including neutralizing antibodies, in the mucosal epithelium and serum and cellular immunity compared to the spike protein mixed with aluminum potassium sulfate. Furthermore, IgA production was detected only with S-CVP vaccination. S-CVP-inoculation in mice significantly suppressed the viral load and inflammation in the lung and protected mice against SARS-CoV-2 challenges, including an early circulating strain and the Omicron BA.1 variant in a manner dependent on CD8+ cells and monocytes/neutrophils. Surprisingly, high antibody responses and protective effects against multiple variants of SARS-CoV-2, including Omicron BA.5, persisted for at least 15 months after the S-CVP immunization. Hence, we propose intranasal inoculation with S-CVP as a promising vaccine strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Aya Koseki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | | | | | | | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| |
Collapse
|
4
|
Ducellier S, Demeules M, Letribot B, Gaetani M, Michaudel C, Sokol H, Hamze A, Alami M, Nascimento M, Apcher S. Dual molecule targeting HDAC6 leads to intratumoral CD4+ cytotoxic lymphocytes recruitment through MHC-II upregulation on lung cancer cells. J Immunother Cancer 2024; 12:e007588. [PMID: 38609101 PMCID: PMC11015306 DOI: 10.1136/jitc-2023-007588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Despite the current therapeutic treatments including surgery, chemotherapy, radiotherapy and more recently immunotherapy, the mortality rate of lung cancer stays high. Regarding lung cancer, epigenetic modifications altering cell cycle, angiogenesis and programmed cancer cell death are therapeutic targets to combine with immunotherapy to improve treatment success. In a recent study, we uncovered that a molecule called QAPHA ((E)-3-(5-((2-cyanoquinolin-4-yl)(methyl)amino)-2-methoxyphenyl)-N-hydroxyacrylamide) has a dual function as both a tubulin polymerization and HDAC inhibitors. Here, we investigate the impact of this novel dual inhibitor on the immune response to lung cancer. METHODS To elucidate the mechanism of action of QAPHA, we conducted a chemical proteomics analysis. Using an in vivo mouse model of lung cancer (TC-1 tumor cells), we assessed the effects of QAPHA on tumor regression. Tumor infiltrating immune cells were characterized by flow cytometry. RESULTS In this study, we first showed that QAPHA effectively inhibited histone deacetylase 6, leading to upregulation of HSP90, cytochrome C and caspases, as revealed by proteomic analysis. We confirmed that QAPHA induces immunogenic cell death (ICD) by expressing calreticulin at cell surface in vitro and demonstrated its efficacy as a vaccine in vivo. Remarkably, even at a low concentration (0.5 mg/kg), QAPHA achieved complete tumor regression in approximately 60% of mice treated intratumorally, establishing a long-lasting anticancer immune response. Additionally, QAPHA treatment promoted the infiltration of M1-polarized macrophages in treated mice, indicating the induction of a pro-inflammatory environment within the tumor. Very interestingly, our findings also revealed that QAPHA upregulated major histocompatibility complex class II (MHC-II) expression on TC-1 tumor cells both in vitro and in vivo, facilitating the recruitment of cytotoxic CD4+T cells (CD4+CTL) expressing CD4+, NKG2D+, CRTAM+, and Perforin+. Finally, we showed that tumor regression strongly correlates to MHC-II expression level on tumor cell and CD4+ CTL infiltrate. CONCLUSION Collectively, our findings shed light on the discovery of a new multitarget inhibitor able to induce ICD and MHC-II upregulation in TC-1 tumor cell. These two processes participate in enhancing a specific CD4+ cytotoxic T cell-mediated antitumor response in vivo in our model of lung cancer. This breakthrough suggests the potential of QAPHA as a promising agent for cancer treatment.
Collapse
Affiliation(s)
- Sarah Ducellier
- UMR 1015 Immunologie des tumeurs et immunothérapie contre le cancer, B2M, Gustave Roussy, Villejuif, France
| | - Mélanie Demeules
- UMR 1015 Immunologie des tumeurs et immunothérapie contre le cancer, B2M, Gustave Roussy, Villejuif, France
| | | | - Massimiliano Gaetani
- Chemical Proteomics Core Facility, Division of Chemistry I Department of Medical Biochemistry andBiophysics, Karolinska Institute, Stockholm, Sweden
- Chemical Proteomics Unit, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Stockholm, Sweden
| | - Chloé Michaudel
- AgroParisTech Micalis institute, INRAe Université Paris-Saclay, Jouy-en-Josas, France
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine Sorbonne Université, INSERM CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | | | - Mouad Alami
- BioCIS, CNRS Université Paris-Saclay, Orsay, France
| | - Mégane Nascimento
- UMR 1015 Immunologie des tumeurs et immunothérapie contre le cancer, B2M, Gustave Roussy, Villejuif, France
| | - Sébastien Apcher
- UMR 1015 Immunologie des tumeurs et immunothérapie contre le cancer, B2M, Gustave Roussy, Villejuif, France
| |
Collapse
|
5
|
Gainullin M, Federico L, Røkke Osen J, Chaban V, Kared H, Alirezaylavasani A, Lund-Johansen F, Wildendahl G, Jacobsen JA, Sarwar Anjum H, Stratford R, Tennøe S, Malone B, Clancy T, Vaage JT, Henriksen K, Wüsthoff L, Munthe LA. People who use drugs show no increase in pre-existing T-cell cross-reactivity toward SARS-CoV-2 but develop a normal polyfunctional T-cell response after standard mRNA vaccination. Front Immunol 2024; 14:1235210. [PMID: 38299149 PMCID: PMC10827924 DOI: 10.3389/fimmu.2023.1235210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
People who use drugs (PWUD) are at a high risk of contracting and developing severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to their lifestyle, comorbidities, and the detrimental effects of opioids on cellular immunity. However, there is limited research on vaccine responses in PWUD, particularly regarding the role that T cells play in the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that before vaccination, PWUD did not exhibit an increased frequency of preexisting cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that opioids have on T-cell immunity, standard vaccination can elicit robust polyfunctional CD4+ and CD8+ T-cell responses that were similar to those found in controls. Our findings indicate that vaccination stimulates an effective immune response in PWUD and highlight targeted vaccination as an essential public health instrument for the control of COVID-19 and other infectious diseases in this group of high-risk patients.
Collapse
Affiliation(s)
- Murat Gainullin
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NEC OncoImmunity AS, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Lorenzo Federico
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Julie Røkke Osen
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Viktoriia Chaban
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hassen Kared
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Amin Alirezaylavasani
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | - John T. Vaage
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathleen Henriksen
- Agency for Social and Welfare Services, Oslo, Norway
- Student Health Services, University of Oslo, Oslo, Norway
| | - Linda Wüsthoff
- Unit for Clinical Research on Addictions, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Addiction Reasearch, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A. Munthe
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Ma Z, Li S, Liu Y, Li C, Wang X, Tang X, Dong R, Zheng S, Wang L. Serum lymphocytes and cytokines: diagnostic value and influence on the immune status in patients with pulmonary tuberculosis. J Bras Pneumol 2023; 49:e20230154. [PMID: 37909551 PMCID: PMC10759969 DOI: 10.36416/1806-3756/e20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/15/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE To determine the absolute number of serum T lymphocytes and cytokine levels and the characteristics of patients with active pulmonary tuberculosis and to assess their effect on the immune status of these patients and their diagnostic and predictive value for tuberculosis. METHODS We included 1,069 patients with active tuberculosis, 51 patients with latent tuberculosis infection, and 600 health individuals. Absolute serum T-lymphocyte counts and cytokine levels were quantified. RESULTS T lymphocytes were significantly reduced in patients with active tuberculosis when compared with healthy individuals. The immune function of patients gradually decreased with age and was stronger in female patients than in males. Th1 cells expressed higher levels of cytokines than did Th2 cells. Logistic regression analysis showed that reduced CD3+ T, CD8+ T, and NK cell counts, as well as reduced IL-4 and IFN-g expression, were independent influencing factors for active tuberculosis. ROC analysis showed that the sensitivity and specificity of absolute CD3+ T and CD8+ T lymphocyte counts and combined factors were significantly higher than were those of IL-4 and IFN-g for diagnosing active tuberculosis. CONCLUSIONS Serum T-lymphocyte counts and cytokine levels can assess the immune status of tuberculosis patients; they are also useful biomarkers for predicting and diagnosing tuberculosis.
Collapse
Affiliation(s)
- Zhiqiang Ma
- . The Third People's Hospital of Kunming, Kunming, China
| | - Shenghao Li
- . The Third People's Hospital of Kunming, Kunming, China
| | - Yuan Liu
- . The Third People's Hospital of Kunming, Kunming, China
| | - Caixin Li
- . The Third People's Hospital of Kunming, Kunming, China
| | - Xiaoyan Wang
- . The Third People's Hospital of Kunming, Kunming, China
| | - Xingrui Tang
- . The Third People's Hospital of Kunming, Kunming, China
| | - Rui Dong
- . The Third People's Hospital of Kunming, Kunming, China
| | - Shitai Zheng
- . The Third People's Hospital of Kunming, Kunming, China
| | - Lin Wang
- . The Third People's Hospital of Kunming, Kunming, China
| |
Collapse
|
7
|
Malyshkina A, Bayer W, Podschwadt P, Otto L, Karakoese Z, Sutter K, Bruderek K, Wang B, Lavender KJ, Santiago ML, Leipe PM, Elsner C, Esser S, Brandau S, Gunzer M, Dittmer U. Immunotherapy-induced cytotoxic T follicular helper cells reduce numbers of retrovirus-infected reservoir cells in B cell follicles. PLoS Pathog 2023; 19:e1011725. [PMID: 37883584 PMCID: PMC10602292 DOI: 10.1371/journal.ppat.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Podschwadt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J. Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pia Madeleine Leipe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Nguyen QP, Takehara KK, Deng TZ, O’Shea S, Heeg M, Omilusik KD, Milner JJ, Quon S, Pipkin ME, Choi J, Crotty S, Goldrath AW. Transcriptional programming of CD4 + T RM differentiation in viral infection balances effector- and memory-associated gene expression. Sci Immunol 2023; 8:eabq7486. [PMID: 37172104 PMCID: PMC10350289 DOI: 10.1126/sciimmunol.abq7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/19/2023] [Indexed: 05/14/2023]
Abstract
After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.
Collapse
Affiliation(s)
- Quynh P Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Tianda Z Deng
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Shannon O’Shea
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kyla D Omilusik
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
9
|
Yi Q, Wang J, Liu T, Yao Y, Loveless I, Subedi K, Toor J, Adrianto I, Xiao H, Chen B, Crawford HC, Fang D, Zhou L, Mi QS. scRNA-Seq and imaging mass cytometry analyses unveil iNKT cells-mediated anti-tumor immunity in pancreatic cancer liver metastasis. Cancer Lett 2023; 561:216149. [PMID: 36990268 DOI: 10.1016/j.canlet.2023.216149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate-like T cells that are abundant in liver sinusoids and play a critical role in tumor immunity. However, the role of iNKT cells in pancreatic cancer liver metastasis (PCLM) has not been fully explored. In this study, we employed a hemi-spleen pancreatic tumor cell injection mouse model of PCLM, a model that closely mimics clinical conditions in humans, to explore the role of iNKT cells in PCLM. Activation of iNKT cells with α-galactosylceramide (αGC) markedly increased immune cell infiltration and suppressed PCLM progression. Via single cell RNA sequencing (scRNA-seq) we profiled over 30,000 immune cells from normal liver and PCLM with or without αGC treatment and were able to characterize the global changes of the immune cells in the tumor microenvironment upon αGC treatment, identifying a total of 12 subpopulations. Upon treatment with αGC, scRNA-Seq and flow cytometry analyses revealed increased cytotoxic activity of iNKT/NK cells and skewing CD4 T cells towards a cytotoxic Th1 profile and CD8 T cells towards a cytotoxic profile, characterized by higher proliferation and reduced exhaustion marker PD1 expression. Moreover, αGC treatment excluded tumor associated macrophages. Lastly, imaging mass cytometry analysis uncovered the reduced epithelial to mesenchymal transition related markers and increased active CD4 and CD8 T cells in PCLM with αGC treatment. Overall, our findings uncover the protective function of activated iNKT cells in pancreatic cancer liver metastasis through increased NK and T cell immunity and decreased tumor associated macrophages.
Collapse
Affiliation(s)
- Qijun Yi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Tingting Liu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Yi Yao
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ian Loveless
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA
| | - Kalpana Subedi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Jugmohit Toor
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Hua Xiao
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Howard C Crawford
- Henry Ford Pancreatic Cancer Center, Department of Surgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Internal Medicine, Henry Ford Health, Detroit, MI, 48202, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Internal Medicine, Henry Ford Health, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022; 7:159. [PMID: 36494369 PMCID: PMC9734748 DOI: 10.1038/s41541-022-00587-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
11
|
Tanemoto S, Sujino T, Miyamoto K, Moody J, Yoshimatsu Y, Ando Y, Koya I, Harada Y, Tojo AO, Ono K, Hayashi Y, Takabayashi K, Okabayashi K, Teratani T, Mikami Y, Nakamoto N, Hosoe N, Ogata H, Hon CC, Shin JW, Kanai T. Single-cell transcriptomics of human gut T cells identifies cytotoxic CD4 +CD8A + T cells related to mouse CD4 cytotoxic T cells. Front Immunol 2022; 13:977117. [PMID: 36353619 PMCID: PMC9639511 DOI: 10.3389/fimmu.2022.977117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 08/21/2023] Open
Abstract
Cytotoxic CD4+ T cells (CD4-CTLs) show the presence of cytolytic granules, which include the enzymes granzyme and perforin. The cells have a pathogenic and protective role in various diseases, including cancer, viral infection, and autoimmune disease. In mice, cytotoxic CD4+ T cells express CD8αα+ and reside in the intestine (mouse CD4+CTLs; mCD4-CTLs). The population of cytotoxic CD4+ T cells in the human intestine is currently unknown. Moreover, it is unclear how cytotoxic CD4 T cells change in patients with inflammatory bowel disease (IBD). Here, we aimed to identify cytotoxic CD4+ T cells in the human intestine and analyze the characteristics of the population in patients with IBD using single-cell RNA-seq (scRNA-seq). In CD4+ T cells, granzyme and perforin expression was high in humanMAIT (hMAIT) cells and hCD4+CD8A+ T cell cluster. Both CD4 and CD8A were expressed in hTreg, hMAIT, and hCD4+CD8A+ T cell clusters. Next we performed fast gene set enrichment analysis to identify cell populations that showed homology to mCD4CTLs. The analysis identified the hCD4+CD8A+ T cell cluster (hCTL-like population; hCD4-CTL) similar to mouse CTLs. The percentage of CD4+CD8A+ T cells among the total CD4+ T cells in the inflamed intestine of the patients with Crohn's disease was significantly reduced compared with that in the noninflamed intestine of the patients. In summary, we identified cytotoxic CD4+CD8+ T cells in the small intestine of humans. The integration of the mouse and human sc-RNA-seq data analysis highlight an approach to identify human cell populations related to mouse cell populations, which may help determine the functional properties of several human cell populations in mice.
Collapse
Affiliation(s)
- Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Ikuko Koya
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Anna Okuzawa Tojo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukie Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Jay W. Shin
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
- Laboratory of Regulatory Genomics, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Kaur S, Hickman TM, Lopez-Ramirez A, McDonald H, Lockhart LM, Darwish O, Averitt DL. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha. Pain 2022; 163:e899-e916. [PMID: 35121697 PMCID: PMC9288423 DOI: 10.1097/j.pain.0000000000002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | | | - Hanna McDonald
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | | |
Collapse
|
14
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
15
|
Hoeks C, Duran G, Hellings N, Broux B. When Helpers Go Above and Beyond: Development and Characterization of Cytotoxic CD4+ T Cells. Front Immunol 2022; 13:951900. [PMID: 35903098 PMCID: PMC9320319 DOI: 10.3389/fimmu.2022.951900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Once regarded as an experimental artefact, cytotoxic CD4+ T cells (CD4 CTL) are presently recognized as a biologically relevant T cell subset with important functions in anti-viral, anti-tumor, and autoimmune responses. Despite the potentially large impact on their micro-environment, the absolute cell counts of CD4 CTL within the peripheral circulation are relatively low. With the rise of single cell analysis techniques, detection of these cells is greatly facilitated. This led to a renewed appraisal of CD4 CTL and an increased insight into their heterogeneous nature and ontogeny. In this review, we summarize the developmental path from naïve CD4+ T cells to terminally differentiated CD4 CTL, and present markers that can be used to detect or isolate CD4 CTL and their precursors. Subsets of CD4 CTL and their divergent functionalities are discussed. Finally, the importance of local cues as triggers for CD4 CTL differentiation is debated, posing the question whether CD4 CTL develop in the periphery and migrate to site of inflammation when called for, or that circulating CD4 CTL reflect cells that returned to the circulation following differentiation at the local inflammatory site they previously migrated to. Even though much remains to be learned about this intriguing T cell subset, it is clear that CD4 CTL represent interesting therapeutic targets for several pathologies.
Collapse
Affiliation(s)
- Cindy Hoeks
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Gayel Duran
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
- *Correspondence: Bieke Broux,
| |
Collapse
|
16
|
Durkee-Shock J, Lazarski CA, Jensen-Wachspress MA, Zhang A, Son A, Kankate VV, Field NE, Webber K, Lang H, Conway SR, Hanley PJ, Bollard CM, Keller MD, Schwartz DM. Transcriptomic analysis reveals optimal cytokine combinations for SARS-CoV-2-specific T cell therapy products. Mol Ther Methods Clin Dev 2022; 25:439-447. [PMID: 35506060 PMCID: PMC9050197 DOI: 10.1016/j.omtm.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/25/2022] [Indexed: 10/29/2022]
Abstract
Adoptive T cell immunotherapy has been used to restore immunity against multiple viral targets in immunocompromised patients after bone-marrow transplantation and has been proposed as a strategy for preventing coronavirus 2019 (COVID-19) in this population. Ideally, expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-virus-specific T cells (CSTs) should demonstrate marked cell expansion, T cell specificity, and CD8+ T cell skewing prior to adoptive transfer. However, current methodologies using IL-4 + IL-7 result in suboptimal specificity, especially in CD8+ cells. Using a microexpansion platform, we screened various cytokine cocktails (IL-4 + IL-7, IL-15, IL-15 + IL-4, IL-15 + IL-6, and IL-15 + IL-7) for the most favorable culture conditions. IL-15 + IL-7 optimally balanced T cell expansion, polyfunctionality, and CD8+ T cell skewing of a final therapeutic T cell product. Additionally, the transcriptomes of CD4+ and CD8+ T cells cultured with IL-15 + IL-7 displayed the strongest induction of antiviral type I interferon (IFN) response genes. Subsequently, microexpansion results were successfully translated to a Good Manufacturing Practice (GMP)-applicable format where IL-15 + IL-7 outperformed IL-4 + IL-7 in specificity and expansion, especially in the desirable CD8+ T cell compartment. These results demonstrate the functional implications of IL-15-, IL-4-, and IL-7-containing cocktails for therapeutic T cell expansion, which could have broad implication for cellular therapy, and pioneer the use of RNA sequencing (RNA-seq) to guide viral-specific T cell (VST) product manufacturing.
Collapse
Affiliation(s)
- Jessica Durkee-Shock
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | | | - Anqing Zhang
- GW Cancer Center, George Washington University, Washington, DC, USA
| | - Aran Son
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vaishnavi V Kankate
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Naomi E Field
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Kathleen Webber
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Susan R Conway
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,GW Cancer Center, George Washington University, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,GW Cancer Center, George Washington University, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,GW Cancer Center, George Washington University, Washington, DC, USA.,Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | - Daniella M Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Kathamuthu GR, Sridhar R, Baskaran D, Babu S. Dominant expansion of CD4+, CD8+ T and NK cells expressing Th1/Tc1/Type 1 cytokines in culture-positive lymph node tuberculosis. PLoS One 2022; 17:e0269109. [PMID: 35617254 PMCID: PMC9135291 DOI: 10.1371/journal.pone.0269109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/15/2022] [Indexed: 01/11/2023] Open
Abstract
Lymph node culture-positive tuberculosis (LNTB+) is associated with increased mycobacterial antigen-induced pro-inflammatory cytokine production compared to LN culture-negative tuberculosis (LNTB-). However, the frequencies of CD4+, CD8+ T cells and NK cells expressing Th1/Tc1/Type 1 (IFNγ, TNFα, IL-2), Th17/Tc17/Type 17 (IL-17A, IL-17F, IL-22) cytokines and cytotoxic (perforin [PFN], granzyme [GZE] B, CD107a) markers in LNTB+ and LNTB- individuals are not known. Thus, we have studied the unstimulated (UNS) and mycobacterial antigen-induced frequencies of CD4+, CD8+ T and NK cells expressing Th1, Th17 cytokines and cytotoxic markers using flow cytometry. The frequencies of CD4+, CD8+ T and NK cells expressing cytokines and cytotoxic markers were not significantly different between LNTB+ and LNTB- individuals in UNS condition. In contrast, upon Mtb antigen stimulation, LNTB+ individuals are associated with significantly increased frequencies of CD4+ T cells (PPD [IFNγ, TNFα], ESAT-6 PP [IFNγ, TNFα], CFP-10 PP [IFNγ, TNFα, IL-2]), CD8+ T cells (PPD [IFNγ], ESAT-6 PP [IFNγ], CFP-10 PP [TNFα]) and NK cells (PPD [IFNγ, TNFα], ESAT-6 PP [IFNγ, TNFα], CFP-10 PP [TNFα]) expressing Th1/Tc1/Type 1, but not Th17/Tc17/Type 17 cytokines and cytotoxic markers compared to LNTB- individuals. LNTB+ individuals did not show any significant alterations in the frequencies of CD4+, CD8+ T cells and NK cells expressing cytokines and cytotoxic markers compared to LNTB- individuals upon HIV Gag PP and P/I antigen stimulation. Increased frequencies of CD4+, CD8+ T and NK cells expressing Th1/Tc1/Type 1 cytokines among the LNTB+ group indicates that the presence of mycobacteria plays a dominant role in the activation of key correlates of immune protection or induces higher immunopathology.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
- * E-mail:
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
19
|
Yang YL, Kim J, Jeong Y, Jang YS. Intranasal immunization with a Middle East respiratory syndrome-coronavirus antigen conjugated to the M-cell targeting ligand Co4B enhances antigen-specific mucosal and systemic immunity and protects against infection. Vaccine 2022; 40:714-725. [PMID: 34991928 PMCID: PMC8716170 DOI: 10.1016/j.vaccine.2021.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 01/25/2023]
Abstract
Middle East respiratory syndrome (MERS) is a threat to public health worldwide. A vaccine against the causative agent of MERS, MERS-coronavirus (MERS-CoV), is urgently needed. We previously identified a peptide ligand, Co4B, which can enhance antigen (Ag) delivery to the nasal mucosa and promote Ag-specific mucosal and systemic immune responses following intranasal immunization. MERS-CoV infects via the respiratory route; thus, we conjugated the Co4B ligand to the MERS-CoV spike protein receptor-binding domain (S-RBD), and used this to intranasally immunize C57BL/6 and human dipeptidyl peptidase 4-transgenic (hDPP4-Tg) mice. Ag-specific mucosal immunoglobulin (Ig) A and systemic IgG, together with virus-neutralizing activities, were highly induced in mice immunized with Co4B-conjugated S-RBD (S-RBD-Co4B) compared to those immunized with unconjugated S-RBD. Ag-specific T cell-mediated immunity was also induced in the spleen and lungs of mice intranasally immunized with S-RBD-Co4B. Intranasal immunization of hDPP4-Tg mice with S-RBD-Co4B reduced immune cell infiltration into the tissues of virus-challenged mice. Finally, S-RBD-Co4B-immunized mice exhibited were better protected against infection, more likely to survive, and exhibited less body weight loss. Collectively, our results suggest that S-RBD-Co4B could be used as an intranasal vaccine candidate against MERS-CoV infection.
Collapse
Affiliation(s)
- Ye Lin Yang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea,Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea,Corresponding author at: Department of Molecular Biology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
20
|
Omokanye A, Ong LC, Lebrero-Fernandez C, Bernasconi V, Schön K, Strömberg A, Bemark M, Saelens X, Czarnewski P, Lycke N. Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol 2022; 15:717-729. [PMID: 35260804 PMCID: PMC8903128 DOI: 10.1038/s41385-022-00497-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively restricted virus replication as determined by CD4 T cell depletion studies. Single-cell RNAseq transcriptomic and TCR VDJ-analysis of M2e-tetramer-sorted CD4 T cells on day 3 and 8 post infection revealed complete Th17-lineage dominance (no Th1 or Tregs) with extensive functional diversity and expression of gene markers signifying mature resident Trm cells (Cd69, Nfkbid, Brd2, FosB). Unexpectedly, the same TCR clonotype hosted cells with different Th17 subcluster functions (IL-17, IL-22), regulatory and cytotoxic cells, suggesting a tissue and context-dependent differentiation of reactivated Th17 Trm cells. A gene set enrichment analysis demonstrated up-regulation of regulatory genes (Lag3, Tigit, Ctla4, Pdcd1) in M2e-specific Trm cells on day 8, indicating a tissue damage preventing function. Thus, contrary to current thinking, lung M2e-specific Th17 Trm cells are sufficient for controlling infection and for protecting against tissue injury. These findings will have strong implications for vaccine development against respiratory virus infections and influenza virus infections, in particular.
Collapse
Affiliation(s)
- Ajibola Omokanye
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Li Ching Ong
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Bemark
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paulo Czarnewski
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Nelson SA, Sant AJ. Potentiating Lung Mucosal Immunity Through Intranasal Vaccination. Front Immunol 2021; 12:808527. [PMID: 34970279 PMCID: PMC8712562 DOI: 10.3389/fimmu.2021.808527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 01/28/2023] Open
Abstract
Yearly administration of influenza vaccines is our best available tool for controlling influenza virus spread. However, both practical and immunological factors sometimes result in sub-optimal vaccine efficacy. The call for improved, or even universal, influenza vaccines within the field has led to development of pre-clinical and clinical vaccine candidates that aim to address limitations of current influenza vaccine approaches. Here, we consider the route of immunization as a critical factor in eliciting tissue resident memory (Trm) populations that are not a target of current licensed intramuscular vaccines. Intranasal vaccination has the potential to boost tissue resident B and T cell populations that reside within specific niches of the upper and lower respiratory tract. Within these niches, Trm cells are poised to respond rapidly to pathogen re-encounter by nature of their anatomic localization and their ability to rapidly deliver anti-pathogen effector functions. Unique features of mucosal immunity in the upper and lower respiratory tracts suggest that antigen localized to these regions is required for the elicitation of protective B and T cell immunity at these sites and will need to be considered as an important attribute of a rationally designed intranasal vaccine. Finally, we discuss outstanding questions and areas of future inquiry in the field of lung mucosal immunity.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
22
|
Perišić Nanut M, Pawelec G, Kos J. Human CD4+ T-Cell Clone Expansion Leads to the Expression of the Cysteine Peptidase Inhibitor Cystatin F. Int J Mol Sci 2021; 22:8408. [PMID: 34445118 PMCID: PMC8395124 DOI: 10.3390/ijms22168408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Collapse
Affiliation(s)
- Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15/3.008, 72076 Tübingen, Germany;
- Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON P3E 2H2, Canada
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Tippalagama R, Singhania A, Dubelko P, Lindestam Arlehamn CS, Crinklaw A, Pomaznoy M, Seumois G, deSilva AD, Premawansa S, Vidanagama D, Gunasena B, Goonawardhana NDS, Ariyaratne D, Scriba TJ, Gilman RH, Saito M, Taplitz R, Vijayanand P, Sette A, Peters B, Burel JG. HLA-DR Marks Recently Divided Antigen-Specific Effector CD4 T Cells in Active Tuberculosis Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:523-533. [PMID: 34193602 PMCID: PMC8516689 DOI: 10.4049/jimmunol.2100011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Upon Ag encounter, T cells can rapidly divide and form an effector population, which plays an important role in fighting acute infections. In humans, little is known about the molecular markers that distinguish such effector cells from other T cell populations. To address this, we investigated the molecular profile of T cells present in individuals with active tuberculosis (ATB), where we expect Ag encounter and expansion of effector cells to occur at higher frequency in contrast to Mycobacterium tuberculosis-sensitized healthy IGRA+ individuals. We found that the frequency of HLA-DR+ cells was increased in circulating CD4 T cells of ATB patients, and was dominantly expressed in M. tuberculosis Ag-specific CD4 T cells. We tested and confirmed that HLA-DR is a marker of recently divided CD4 T cells upon M. tuberculosis Ag exposure using an in vitro model examining the response of resting memory T cells from healthy IGRA+ to Ags. Thus, HLA-DR marks a CD4 T cell population that can be directly detected ex vivo in human peripheral blood, whose frequency is increased during ATB disease and contains recently divided Ag-specific effector T cells. These findings will facilitate the monitoring and study of disease-specific effector T cell responses in the context of ATB and other infections.
Collapse
Affiliation(s)
- Rashmi Tippalagama
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Akul Singhania
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Paige Dubelko
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Austin Crinklaw
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Mikhail Pomaznoy
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Gregory Seumois
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Aruna D deSilva
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | | | | | - Bandu Gunasena
- National Hospital for Respiratory Diseases, Welisara, Sri Lanka
| | | | - Dinuka Ariyaratne
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert H Gilman
- Johns Hopkins School of Public Health, Baltimore, MD
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Randy Taplitz
- Department of Medicine, City of Hope National Medical Center, Duarte, CA; and
| | - Pandurangan Vijayanand
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alessandro Sette
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Bjoern Peters
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA;
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Julie G Burel
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA;
| |
Collapse
|
24
|
Kida A, Mizukoshi E, Kido H, Toyama T, Terashima T, Arai K, Yamashita T, Fushimi K, Yamashita T, Sakai Y, Honda M, Uchiyama A, Sakai A, Shimizu K, Kaneko S. The characteristics of the immune cell profiles in peripheral blood in cholangiocarcinoma patients. Hepatol Int 2021; 15:695-706. [PMID: 33754279 DOI: 10.1007/s12072-021-10177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Immune related cells are known to be closely related to the therapeutic effects and prognoses of cancer patients. In this study, we analyzed immune cell profiles (ICP) of cholangiocarcinoma patients (CCA). METHODS To measure the frequency of immune cells, peripheral blood mononuclear cells of 41 CCA and 10 healthy volunteers (HV) were analyzed by FACS. RESULTS There were significant differences between CCA and HV in ICP, and these differences were a consequence of tumor-bearing status, because many items in ICP before surgery were restored to levels in HV after surgery. Therefore, these changes were specifically attributable to cholangiocarcinoma, and we examined if they can function as biomarkers for therapeutic effects and prognoses. A shorter overall survival was associated with a lower frequency of helper T cells (HT) (p = 0.001), a higher frequency of effector regulatory T cells (eTregs) (p = 0.008), and a lower frequency of CD80 + eTregs (p = 0.024) in the best supportive care group, with a lower frequency of CD25 + naïve Tregs (nTregs) (p = 0.005) in the chemotherapy group, and with a lower frequency of OX40 + HT (p = 0.022), CD25 + CD8 + T cells (p = 0.017), and OX40 + CD8 + T cells (p = 0.032) in the surgery group. The recurrence factors were a higher frequency of CD4 + T cells (p = 0.009), CCR6 + nTregs (p = 0.014), and CXCR3 + nTregs (p = 0.012), and a lower frequency of PD-1 + HT (p = 0.006), OX40 + HT (p = 0.004), CD8 + T cells (p = 0.001), and CTLA-4 + CD8 + T cells (p = 0.036). CONCLUSIONS The ICP in CCA are specifically attributable to cholangiocarcinoma, and may be biomarkers for therapeutic effects and prognoses.
Collapse
Affiliation(s)
- Akihiko Kida
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
- Department of Gastroenterology, JA Toyama Kouseiren Takaoka Hospital, Takaoka, Toyama, 933-0843, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hidenori Kido
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tadashi Toyama
- Department of Nephrology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazumi Fushimi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masao Honda
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Akio Uchiyama
- Department of Pathology, Toyama Prefectural Central Hospital, Toyama, Toyama, 930-8550, Japan
| | - Akito Sakai
- Department of Internal Medicine, Toyama Prefectural Central Hospital, Toyama, Toyama, 930-8550, Japan
| | - Koichi Shimizu
- Department of Surgery, Toyama Prefectural Central Hospital, Toyama, Toyama, 930-8550, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The aim of this review was to analyze COVID-19 effect on the biological features of suicidal vulnerability and its interaction with suicide-related biological pathways. We carried out a narrative review of international publications on the interactions of COVID-19 with the biological bases of suicide. RECENT FINDINGS We hypothesize that SARS-CoV-2 interacts with multiple biological processes that underlie suicidal behavior, such as the renin-angiotensin system, nicotinic receptors, and central and systemic inflammation. Social distancing measures may also worsen subjective or objective social disconnection, thus increasing the risk of suicide. Interestingly, the drugs used to prevent suicide could be promising options to counteract brain damage caused by this coronavirus. SARS-CoV-2 interacts with multiple biological pathways involved in suicide and opens a new window for understanding the suicidal process. The development of suicide prevention treatments in the context of a pandemic may benefit from knowledge on these interactions.
Collapse
Affiliation(s)
- I Conejero
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France.
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France.
| | - B Nobile
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - E Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
- FondaMental Foundation, Créteil, France
| | - Ph Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
- FondaMental Foundation, Créteil, France
| |
Collapse
|
26
|
Seumois G, Ramírez-Suástegui C, Schmiedel BJ, Liang S, Peters B, Sette A, Vijayanand P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol 2021; 5:5/48/eaba6087. [PMID: 32532832 DOI: 10.1126/sciimmunol.aba6087] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
CD4+ T helper (TH) cells and regulatory T (Treg) cells that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and nonasthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous and certain subsets are quantitatively and qualitatively different in individuals with HDM-reactive asthma. The number of interleukin-9 (IL-9)-expressing HDM-reactive TH cells is greater in asthmatics with HDM allergy compared with nonasthmatics with HDM allergy, and this IL-9-expressing TH subset displays enhanced pathogenic properties. More HDM-reactive TH and Treg cells expressing the interferon response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, tumor necrosis factor-related apoptosis-inducing ligand, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Collapse
Affiliation(s)
- Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | - Shu Liang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Clinical and Experimental Sciences, National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
27
|
DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun 2021; 538:211-217. [PMID: 33190827 PMCID: PMC7584424 DOI: 10.1016/j.bbrc.2020.10.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 first emerged in the human population in late 2019 in Wuhan, China, and in a matter of months, spread across the globe resulting in the Coronavirus Disease 19 (COVID-19) pandemic and substantial economic fallout. SARS-CoV-2 is transmitted between humans via respiratory particles, with infection presenting a spectrum of clinical manifestations ranging from asymptomatic to respiratory failure with multiorgan dysfunction and death in severe cases. Prior experiences with human pathogenic coronaviruses and respiratory virus diseases in general have revealed an important role for cellular immunity in limiting disease severity. Here, we review some of the key mechanisms underlying cell-mediated immunity to respiratory viruses and summarize our current understanding of the functional capacity and role of SARS-CoV-2-specific T cells following natural infection and vaccination.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
28
|
Amygdalin promotes the activity of T cells to suppress the progression of HBV-related hepatocellular carcinoma via the JAK2/STAT3 signaling pathway. BMC Infect Dis 2021; 21:56. [PMID: 33435880 PMCID: PMC7802162 DOI: 10.1186/s12879-020-05713-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC). Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression. Methods The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, JAK2, caspase-3, cleaved caspase-3 were detected by performing immunoblotting assays. Results We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction. In HBV-T cells, the MFI levels of CD8+ are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells, and these alterations could be partially reversed by amygdalin treatment. Conclusion Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05713-0.
Collapse
|
29
|
Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, Yajima Y, Yasuda S, Oikawa K, Kono M, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Harabuchi Y, Kobayashi H. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 2020; 10:1856545. [PMID: 33457076 PMCID: PMC7781841 DOI: 10.1080/2162402x.2020.1856545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Placenta-specific 1 (PLAC1) is expressed primarily in placental trophoblasts but not in normal tissues and is a targetable candidate for cancer immunotherapy because it is a cancer testis antigen known to be up-regulated in various tumors. Although peptide epitopes capable of stimulating CD8 T cells have been previously described, there have been no reports of PLAC1 CD4 helper T lymphocyte (HTL) epitopes and the expression of this antigen in head and neck squamous cell carcinoma (HNSCC). Here, we show that PLAC1 is highly expressed in 74.5% of oropharyngeal and 51.9% of oral cavity tumors from HNSCC patients and in several HNSCC established cell lines. We also identified an HTL peptide epitope (PLAC131-50) capable of eliciting effective antigen-specific and tumor-reactive T cell responses. Notably, this peptide behaves as a promiscuous epitope capable of stimulating T cells in the context of more than one human leukocyte antigen (HLA)-DR allele and induces PLAC1-specific CD4 T cells that kill PLAC1-positive HNSCC cell lines in an HLA-DR-restricted manner. Furthermore, T-cells reactive to PLAC131-50 peptide were detected in the peripheral blood of HNSCC patients. These findings suggest that PLAC1 represents a potential target antigen for HTL based immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
30
|
Shao J, Yin Z, Wang Y, Yang Y, Tang Q, Zhang M, Jiao J, Liu C, Yang M, Zhen L, Hassouna A, White WL, Lu J. Effects of Different Doses of Eucalyptus Oil From Eucalyptus globulus Labill on Respiratory Tract Immunity and Immune Function in Healthy Rats. Front Pharmacol 2020; 11:1287. [PMID: 32973518 PMCID: PMC7472567 DOI: 10.3389/fphar.2020.01287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Eucalyptol (1,8-cineole), the major constituent of eucalyptus oil (EO), was used in traditional medicine as a remedy for colds and bronchitis. This study aimed at clarifying the effect of eucalyptol on respiratory immune function of CD8 and CD4 cells, and alveolar macrophages (AM). Thirty male Sprague-Dawley rats were divided into experimental and control groups. The drug was given once a day for 3 weeks and the experimental group was divided according to the eucalyptol dose into: 30, 100, and 300 mg·kg-1 groups. Flow cytometry was used to detect the phagocytic function of CD4, CD8 cells, and AM in the bronchopulmonary lavage fluid. The 30 and 100 mg·kg-1 groups had an up-regulation effect on CD8 (p < 0.05), with no significant effect on macrophage phagocytosis. The 300 mg·kg-1 group had an inhibitory effect on CD8 and macrophage phagocytosis (p < 0.05), with no significant difference in CD4 between groups. Further investigation was conducted to evaluate the effect of EO on immune function in rats by detecting blood T, B, and NK cells using flow cytometry, and blood IgA, IgG, IgM, and IFN-γ levels by ELISA. High dosage of eucalyptol significantly reduced the proportion of blood B and NK cells (p < 0.05). IgA was decreased in the 100 and 300 mg·kg-1 groups (p < 0.05). There are no significant differences between the number of T cells and the IgG, IgM, and IFN-γ levels between experimental and control groups. Rational use of EO containing eucalyptol can improve the immune function of the respiratory tract and the body immunity, while high dose could have damaging effects, through modifying the phagocytic function of CD8 cells and reducing the proportion of blood B cells, NK cells, and IgA.
Collapse
Affiliation(s)
- Jie Shao
- 521 Hospital of Norinco Group, Xi'an, China
| | | | - Yaqin Wang
- 521 Hospital of Norinco Group, Xi'an, China
| | | | - Qing Tang
- 521 Hospital of Norinco Group, Xi'an, China
| | | | | | | | | | | | - Amira Hassouna
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
31
|
Cookenham T, Lanzer KG, Gage E, Lorenzo EC, Carter D, Coler RN, Baldwin SL, Haynes L, Reiley WW, Blackman MA. Vaccination of aged mice with adjuvanted recombinant influenza nucleoprotein enhances protective immunity. Vaccine 2020; 38:5256-5267. [PMID: 32540272 DOI: 10.1016/j.vaccine.2020.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Elderly individuals are highly susceptible to influenza virus (IAV) infection and respond poorly to influenza vaccines. Although the generally accepted correlate of protection following influenza vaccination is neutralizing antibody titers, cytotoxic T cell activity has been found to be a better correlate in the elderly. This suggests that vaccines designed to protect against influenza in the elderly should induce both humoral and cellular immunity. The co-induction of T cell immunity is additionally advantageous, as virus-specific T cells are frequently cross-reactive against different strains of IAV. Here, we tested the capacity of a synthetic TLR-4 adjuvant, SLA-SE (second-generation lipid adjuvant formulated in a squalene-based oil-in-water emulsion) to elicit T cell immunity to a recombinant influenza nucleoprotein (rNP), in both young and aged mice. IAV challenge of vaccinated mice resulted in a modest increase in the numbers of NP-specific CD4 and CD8 effector T cells in the spleen, but did not increase numbers of memory phenotype CD8 T cells generated following viral clearance (compared to control vaccinated mice). Cytotoxic activity of CD8, but not CD4 T cells was increased. In addition, SLA-SE adjuvanted vaccination specifically enhanced the production of NP-specific IgG2c antibodies in both young and aged mice. Although NP-specific antibodies are not neutralizing, they can cooperate with CD8 T cells and antigen-presenting cells to enhance protective immunity. Importantly, SLA-SE adjuvanted rNP-vaccination of aged mice resulted in significantly enhanced viral clearance. In addition, vaccination of aged mice resulted in enhanced survival after lethal challenge compared to control vaccination, that approached statistical significance. These data demonstrate the potential of SLA-SE adjuvanted rNP vaccines to (i) generate both cellular and humoral immunity to relatively conserved IAV proteins and (ii) elicit protective immunity to IAV in aged mice.
Collapse
Affiliation(s)
| | | | - Emily Gage
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Erica C Lorenzo
- University of Connecticut School of Medicine, Department of Immunology and Center on Aging, Farmington, CT, USA
| | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Laura Haynes
- University of Connecticut School of Medicine, Department of Immunology and Center on Aging, Farmington, CT, USA
| | | | | |
Collapse
|
32
|
Almanzar G, Kienle F, Schmalzing M, Maas A, Tony HP, Prelog M. Tofacitinib modulates the VZV-specific CD4+ T cell immune response in vitro in lymphocytes of patients with rheumatoid arthritis. Rheumatology (Oxford) 2020; 58:2051-2060. [PMID: 31106368 DOI: 10.1093/rheumatology/kez175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE RA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response. METHODS The effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro. RESULTS Tofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed. CONCLUSION This study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.
Collapse
Affiliation(s)
- Giovanni Almanzar
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, Würzburg, Germany
| | - Felix Kienle
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, Würzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, Rheumatology and Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Anna Maas
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, Würzburg, Germany
| | - Hans-Peter Tony
- Department of Internal Medicine II, Rheumatology and Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, Würzburg, Germany
| |
Collapse
|
33
|
Shan L, Li S, Meeldijk J, Blijenberg B, Hendriks A, van Boxtel KJWM, van den Berg SPH, Groves IJ, Potts M, Svrlanska A, Stamminger T, Wills MR, Bovenschen N. Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner. PLoS Pathog 2020; 16:e1008426. [PMID: 32282833 PMCID: PMC7179929 DOI: 10.1371/journal.ppat.1008426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/23/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection. Human cytomegalovirus (HCMV) is the leading viral cause of congenital defects, can trigger disease in immune-compromised patients, and plays roles in cancer development. Cytotoxic lymphocytes kill HCMV-infected cells via releasing a set of five cytotoxic serine proteases called granzymes. However, the killing capacity of cytotoxic cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we show that cytotoxic lymphocytes can also use granzymes to inhibit HCMV replication in absence of cell death. All five granzymes cleave and inactivate both viral immediate-early (IE1/2) proteins, which are essential players for initiating HCMV infection. Our data support the model that cytotoxic cells employ granzymes to dampen HCMV replication prior to accumulation of sufficient hits to kill the infected cell.
Collapse
Affiliation(s)
- Liling Shan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shuang Li
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernadet Blijenberg
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Astrid Hendriks
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Ian J. Groves
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Potts
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Adriana Svrlanska
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Oki S. Eomes-expressing T-helper cells as potential target of therapy in chronic neuroinflammation. Neurochem Int 2019; 130:104348. [DOI: 10.1016/j.neuint.2018.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022]
|
35
|
Extrapituitary prolactin promotes generation of Eomes-positive helper T cells mediating neuroinflammation. Proc Natl Acad Sci U S A 2019; 116:21131-21139. [PMID: 31570595 PMCID: PMC6800326 DOI: 10.1073/pnas.1906438116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously demonstrated that induction of pathogenic eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) is associated with transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE). In the late phase of EAE, B cells and non-B cell antigen-presenting cells (APCs) recruited to the central nervous system strikingly up-regulate prolactin (PRL). The PRL-producing APCs have the potential to promote generation of Eomes+ Th cells from naïve T cells in an MHC class II-restricted manner, and therapies inhibitory for PRL production suppress the induction of Eomes+ Th cells and ameliorate clinical signs of EAE. Our study highlights the unexpected role of extrapituitary PRL in the development of persistent neuroinflammation. Induction of eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) has recently been correlated with the transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Moreover, these cells’ pathogenic role has been experimentally proven in EAE. While exploring how the pathogenic Eomes+ Th cells are generated during the course of EAE, we unexpectedly found that B cells and MHC class II+ myeloid cells isolated from the late EAE lesions strikingly up-regulated the expression of prolactin (PRL). We demonstrate that such PRL-producing cells have a unique potential to induce Eomes+ Th cells from naïve T cells ex vivo, and that anti-MHC class II antibody could block this process. Furthermore, PRL levels in the cerebrospinal fluid were significantly increased in the late phase of EAE, and blocking the production of PRL by bromocriptine or Zbtb20-specific siRNA significantly reduced the numbers of Eomes+ Th cells in the central nervous system (CNS) and ameliorated clinical signs in the later phase of EAE. The PRL dependency of Eomes+ Th cells was confirmed in a series of in vitro and ex vivo experiments. Collectively, these results indicate that extrapituitary PRL plays a crucial role in the CNS inflammation mediated by pathogenic Eomes+ Th cells. Cellular interactions involving PRL-producing immune cells could be considered as a therapeutic target for the prevention of chronic neuroinflammation.
Collapse
|
36
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
37
|
Hirata-Nozaki Y, Ohkuri T, Ohara K, Kumai T, Nagata M, Harabuchi S, Kosaka A, Nagato T, Ishibashi K, Oikawa K, Aoki N, Ohara M, Harabuchi Y, Uno Y, Takei H, Celis E, Kobayashi H. PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. J Transl Med 2019; 17:207. [PMID: 31221178 PMCID: PMC6585001 DOI: 10.1186/s12967-019-1957-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) originates from squamous epithelium of the upper aerodigestive tract and is the most common malignancy in the head and neck region. Among HNSCCs, oropharynx squamous cell carcinoma (OSCC) has a unique profile and is associated with human papillomavirus infection. Recently, anti-programmed cell death-1 monoclonal antibody has yielded good clinical responses in recurrent and/or metastatic HNSCC patients. Therefore, programmed death-ligand 1 (PD-L1) may be a favorable target molecule for cancer immunotherapy. Although PD-L1-expressing malignant cells could be targeted by PD-L1-specific CD8+ cytotoxic T lymphocytes, it remains unclear whether CD4+ helper T lymphocytes (HTLs) recognize and kill tumor cells in a PD-L1-specific manner. METHODS The expression levels of PD-L1 and HLA-DR were evaluated using immunohistochemical analyses. MHC class II-binding peptides for PD-L1 were designed based on computer algorithm analyses and added into in vitro culture of HTLs with antigen-presenting cells to evaluate their stimulatory activity. RESULTS We found that seven of 24 cases of OSCC showed positive for both PD-L1 and HLA-DR and that PD-L1241-265 peptide efficiently activates HTLs, which showed not only cytokine production but also cytotoxicity against tumor cells in a PD-L1-dependent manner. Also, an adoptive transfer of the PD-L1-specific HTLs significantly inhibited growth of PD-L1-expressing human tumor cell lines in an immunodeficient mouse model. Importantly, T cell responses specific for the PD-L1241-265 peptide were detected in the HNSCC patients. CONCLUSIONS The cancer immunotherapy targeting PD-L1 as a helper T-cell antigen would be a rational strategy for HNSCC patients.
Collapse
Affiliation(s)
- Yui Hirata-Nozaki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Kei Ishibashi
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Yuji Uno
- Department of Pathology, Asahikawa Medical University Hospital, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Hidehiro Takei
- Department of Pathology, Asahikawa Medical University Hospital, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| |
Collapse
|
38
|
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, Pedro de Magalhães J, Larbi A. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep 2019; 26:1627-1640.e7. [PMID: 30726743 PMCID: PMC6367568 DOI: 10.1016/j.celrep.2019.01.041] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023] Open
Abstract
The molecular characterization of immune subsets is important for designing effective strategies to understand and treat diseases. We characterized 29 immune cell types within the peripheral blood mononuclear cell (PBMC) fraction of healthy donors using RNA-seq (RNA sequencing) and flow cytometry. Our dataset was used, first, to identify sets of genes that are specific, are co-expressed, and have housekeeping roles across the 29 cell types. Then, we examined differences in mRNA heterogeneity and mRNA abundance revealing cell type specificity. Last, we performed absolute deconvolution on a suitable set of immune cell types using transcriptomics signatures normalized by mRNA abundance. Absolute deconvolution is ready to use for PBMC transcriptomic data using our Shiny app (https://github.com/giannimonaco/ABIS). We benchmarked different deconvolution and normalization methods and validated the resources in independent cohorts. Our work has research, clinical, and diagnostic value by making it possible to effectively associate observations in bulk transcriptomics data to specific immune subsets.
Collapse
Affiliation(s)
- Gianni Monaco
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK; Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland.
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Seri Mustafah
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | | | | | | | - Michele Ceccarelli
- BIOGEM Research Center, Ariano Irpino, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK.
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia; Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Han X, Liu H, Huang H, Liu X, Jia B, Gao GF, Zhang F. ID2 and ID3 are indispensable for Th1 cell differentiation during influenza virus infection in mice. Eur J Immunol 2018; 49:476-489. [PMID: 30578645 DOI: 10.1002/eji.201847822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/25/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
Abstract
Antigen-specific Th1 cells could be a passage to the infection sites during infection to execute effector functions, such as help CD8+ T cells to localize in these sites by secretion of anti-viral cytokines-IFN-γ or direct cytotoxicity of antigen-bearing cells. However, the molecular components that modulate Th1 cell differentiation and function in response to viral infection remain incompletely understood. Here, we reported that both inhibitor of DNA binding 3(Id3) protein and inhibitor of DNA binding 2(Id2) protein promoted Th1 cell differentiation. Depletion of Id3 or Id2 led to severe defect of Th1 cell differentiation during influenza virus infection. Whereas depletion of both Id3 and Id2 in CD4+ T cells restrained Th1 cell differentiation to a greater extent, indicating that Id3 and Id2 nonredundantly regulate Th1 cell differentiation. Moreover, deletion of E-proteins, the antagonists of Id proteins, greatly enhanced Th1 cell differentiation. Mechanistic study indicated that E-proteins suppressed Th1 cell differentiation by directly binding to the regulatory elements of Th1 cell master regulator T-bet and regulate T-bet expression. Thus, our findings identified Id-protein's importance for Th1 cells and clarified the nonredundant role of Id3 and Id2 in regulating Th1 cell differentiation, providing novel insight that Id3-Id2-E protein axis are essential for Th1 cell polarization.
Collapse
Affiliation(s)
- Xiaojuan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huarong Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baoqian Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,SavaId Medical School, University of Chinese Academy of Sciences, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,SavaId Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Woon AP, Purcell AW. The use of proteomics to understand antiviral immunity. Semin Cell Dev Biol 2018; 84:22-29. [PMID: 30449533 DOI: 10.1016/j.semcdb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Abstract
Viruses are intracellular pathogens that cause a vast array of diseases, which are often severe and typified by high morbidity and mortality rates. Viral infections continue to be a global health burden and effective vaccines and therapeutics are constantly sought to prevent and treat these infections. The development of such treatments generally relies on understanding the mechanisms that underpin efficient host antiviral immune responses. This review summarises recent developments in our understanding of antiviral adaptive immunity and in particular, highlights the use of mass spectrometry to elucidate viral antigens and their processing and presentation to T cells and other immune effectors. These processed peptides serve as potential vaccine candidates or may facilitate clinical monitoring, diagnosis and immunotherapy of infectious diseases.
Collapse
Affiliation(s)
- Amanda P Woon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
41
|
Hypopigmented Interface T-Cell Dyscrasia and Hypopigmented Mycosis Fungoides: A Comparative Study. Am J Dermatopathol 2018; 40:727-735. [PMID: 30188378 DOI: 10.1097/dad.0000000000001187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypopigmented interface T-cell dyscrasia (HITCD) is a distinct form of lymphoid dyscrasia that may progress to hypopigmented mycosis fungoides (HMF). We compared both diseases as regards their CD4/CD8 phenotype and expression of granzyme B and tumor necrosis factor-alpha (TNF-α) and how these are affected by narrow-band UVB (nb-UVB). The study included 11 patients with HITCD and 9 patients with HMF. They received nb-UVB thrice weekly until complete repigmentation or a maximum of 48 sessions. Pretreatment and posttreatment biopsies were stained using anti CD4, CD8, TNF-α, and granzyme B monoclonal antibodies. Epidermal lymphocytes were CD8 predominant in 54.5% and 66.7% of HITCD and HMF cases, respectively, whereas dermal lymphocytes were CD4 predominant in 63.6% and 66.7%, respectively. Significantly, more dermal infiltrate was encountered in HMF (P = 0.041). In both diseases, granzyme B was only expressed in the dermis, whereas TNF-α was expressed both in the epidermis and dermis. No difference existed as regards the number of sessions needed to achieve repigmentation or cumulative nb-UVB dose reached at end of study. (P > 0.05). Narrow-band UVB significantly reduced only the epidermal lymphocytes in both diseases (P ≤ 0.05) with their complete disappearance in 8 (72.7%) HITCD and 6 (66.7%) HMF cases. In both diseases, nb-UVB did not affect granzyme B or TNF-α expression (P > 0.05). In conclusion, both diseases share the same phenotype, with HITCD being a milder form of T-cell dysfunction. In both diseases, epidermal lymphocytes are mainly CD8-exhausted cells lacking cytotoxicity, whereas dermal cells are mostly reactive cells exerting antitumor cytotoxicity. Tumor necrosis factor-alpha mediates hypopigmentation in both diseases and prevents disease progression. Repigmentation after nb-UVB in both diseases occurs before and independently from disappearance of the dermal infiltrate.
Collapse
|
42
|
Moise L, M Biron B, Boyle CM, Kurt Yilmaz N, Jang H, Schiffer C, M Ross T, Martin WD, De Groot AS. T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response. Hum Vaccin Immunother 2018; 14:2203-2207. [PMID: 30015562 PMCID: PMC6183197 DOI: 10.1080/21645515.2018.1495303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4+ T cell epitopes – without perturbing native antigen structure – by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4+ T cell memory to influenza immunity, (ii) the essential role CD4+ T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4+ T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.
Collapse
Affiliation(s)
- Leonard Moise
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.,c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA
| | | | | | - Nese Kurt Yilmaz
- d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA
| | - Hyesun Jang
- e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA
| | - Celia Schiffer
- d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA
| | - Ted M Ross
- e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.,f Department of Infectious Diseases , University of Georgia , Athens , GA , USA
| | | | - Anne S De Groot
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.,c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
43
|
Richards KA, DiPiazza AT, Rattan A, Knowlden ZAG, Yang H, Sant AJ. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection. Front Immunol 2018; 9:655. [PMID: 29681900 PMCID: PMC5897437 DOI: 10.3389/fimmu.2018.00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anthony T. DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Viral Pathogenesis Laboratory, Vaccine Research Center NIAID, Bethesda, MD, United States
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
44
|
Devarajan P, Jones MC, Kugler-Umana O, Vong AM, Xia J, Swain SL. Pathogen Recognition by CD4 Effectors Drives Key Effector and Most Memory Cell Generation Against Respiratory Virus. Front Immunol 2018; 9:596. [PMID: 29632538 PMCID: PMC5879149 DOI: 10.3389/fimmu.2018.00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 01/14/2023] Open
Abstract
Although much is known about the mechanisms by which pathogen recognition drives the initiation of T cell responses, including those to respiratory viruses, the role of pathogen recognition in fate decisions of T cells once they have become effectors remains poorly defined. Here, we review our recent studies that suggest that the generation of CD4 T cell memory is determined by recognition of virus at an effector “checkpoint.” We propose this is also true of more highly differentiated tissue-restricted effector cells, including cytotoxic “ThCTL” in the site of infection and TFH in secondary lymphoid organs. We point out that ThCTL are key contributors to direct viral clearance and TFH to effective Ab response, suggesting that the most protective immunity to influenza, and by analogy to other respiratory viruses, requires prolonged exposure to antigen and to infection-associated signals. We point out that many vaccines used today do not provide such prolonged signals and suggest this contributes to their limited effectiveness. We also discuss how aging impacts effective CD4 T cell responses and how new insights about the response of aged naive CD4 T cells and B cells might hold implications for effective vaccine design for both the young and aged against respiratory viruses.
Collapse
Affiliation(s)
- Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael C Jones
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
45
|
Molecular immunohaematology round table discussions at the AABB Annual Meeting, Orlando 2016. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018. [PMID: 29517973 DOI: 10.2450/2018.0260-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Innate and adaptive T cells in influenza disease. Front Med 2018; 12:34-47. [DOI: 10.1007/s11684-017-0606-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
|
47
|
Signaling by the Epstein-Barr virus LMP1 protein induces potent cytotoxic CD4 + and CD8 + T cell responses. Proc Natl Acad Sci U S A 2018; 115:E686-E695. [PMID: 29311309 DOI: 10.1073/pnas.1713607115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The B-lymphotropic Epstein-Barr virus (EBV), pandemic in humans, is rapidly controlled on initial infection by T cell surveillance; thereafter, the virus establishes a lifelong latent infection in the host. If surveillance fails, fatal lymphoproliferation and lymphomagenesis ensue. The initial T cell response consists of predominantly CD8+ cytotoxic T cells and a smaller expansion of CD4+ cells. A major approach to treating EBV-associated lymphomas is adoptive transfer of autologous or allogeneic T cells that are stimulated/expanded on EBV-transformed B cells. Strikingly, the clinical response correlates with the frequency of CD4 cells in the infused T cells. Although in vitro studies suggested that EBV-specific CD4 cells develop cytotoxicity, they have not been comprehensively characterized and the molecular mechanism underlying their formation remains unknown. Our recent work, using a transgenic approach in mice, has revealed a central role for the EBV signaling molecule LMP1 in immune surveillance and transformation of EBV-infected B cells. The mouse model offers a unique tool for uncovering basic features of EBV immunity. Here, we show that LMP1 expression in B cells induces potent cytotoxic CD4 and CD8 T cell responses, by enhancing antigen presentation and costimulation by CD70, OX40 ligand, and 4-1BB ligand. Our data further suggest that cytotoxic CD4 cells hold superior therapeutic value for LMP1 (EBV)-driven lymphomas. These findings provide insights into EBV immunity, demonstrating that LMP1 signaling alone is sufficient to induce a prominent cytotoxic CD4 response, and suggest strategies for immunotherapy in EBV-related and other cancers.
Collapse
|
48
|
Roshan R, Labo N, Trivett M, Miley W, Marshall V, Coren L, Cornejo Castro EM, Perez H, Holdridge B, Davis E, Matus-Nicodemos R, Ayala VI, Sowder R, Wyvill KM, Aleman K, Fennessey C, Lifson J, Polizzotto MN, Douek D, Keele B, Uldrick TS, Yarchoan R, Ohlen C, Ott D, Whitby D. T-cell responses to KSHV infection: a systematic approach. Oncotarget 2017; 8:109402-109416. [PMID: 29312617 PMCID: PMC5752530 DOI: 10.18632/oncotarget.22683] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/05/2017] [Indexed: 01/14/2023] Open
Abstract
Prior studies of T-cell responses to KSHV have included relatively few participants and focused on relatively few KSHV antigens. To provide a more comprehensive analysis, we investigated T-cell responses to the whole KSHV proteome using IFN-γ ELISpot. Using ∼7,500 overlapping 15mer peptides we generated one to three peptide pools for each of the 82 KSHV ORFs. IFN-γ ELISpot analysis of PBMCs from 19 patients with a history of KSHV-associated disease and 24 healthy donors (11 KSHV seropositive) detected widely varied responses. Fifty six of the 82 ORFs were recognized by at least one individual but there was little overlap between participants. Responses to at least one ORF pool were observed in all 19 patients and in 7 seropositive donors. Four seropositive donors and 10 seronegative donors had no detectable responses while 3 seronegative donors had weak responses to one ORF. Patients recognised more ORFs than the donors (p=0.04) but the response intensity (spot forming units: SFU per million cells) was similar in the two groups. In four of the responding donors, individual peptides eliciting the predominant responses were identified: three donors responded to only one peptide per ORF, while one recognized five. Using intracellular cytokine staining in four participant samples, we detected peptide-induced IFN-γ, MIP1-β, and TNF-α as well as CD107a degranulation, consistent with multifunctional effector responses in CD8+ and CD4+ T cells. Sequence analysis of TCRs present in peptide specific T-cell clones generated from two participants showed both mono- and multi-clonotypic responses. Finally, we molecularly cloned the KSHV specific TCRs and incorporated the sequences into retroviral vectors to transfer the specificities to fresh donor cells for additional studies. This study suggests that KSHV infected individuals respond to diverse KSHV antigens, consistent with a lack of shared immunodominance and establishes useful tools to facilitate KSHV immunology studies.
Collapse
Affiliation(s)
- Romin Roshan
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazzarena Labo
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vickie Marshall
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lori Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elena M. Cornejo Castro
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hannah Perez
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Benjamin Holdridge
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eliza Davis
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Victor I. Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raymond Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathleen M. Wyvill
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Karen Aleman
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Christine Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mark N. Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Brandon Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas S. Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
49
|
Miyamoto N, Mochizuki S, Sakurai K. Designing an immunocyte-targeting delivery system by use of beta-glucan. Vaccine 2017; 36:186-189. [PMID: 29174675 DOI: 10.1016/j.vaccine.2017.11.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
A β-1,3-d-glucan called Schizophyllan (SPG) can form a novel complex with homo oligodeoxynucleotides (ODNs) via the combination of hydrogen bonding and hydrophobic interactions. Dectin-1 is a major receptor involved in the recognition of β-1,3-d-glucans and expressed on antigen presenting cells (APCs) including macrophages, dendritic cells, monocytes, neutrophils, and a subset of T cells. Therefore, the SPG/ODN complex can be used as APCs cell-specific delivery of functional ODNs including unmethylated CpG sequences (CpG-ODNs). In fact, CpG-ODN/SPG complex induced high antibody titers when it was administered to cynomolgus monkeys as adjutant of influenza vaccine. These results indicate that SPG can be an excellent immunocyte-targeting drug delivery system.
Collapse
Affiliation(s)
- Noriko Miyamoto
- Department of Chemistry and Biochemistry, University of Kitakyushu, Fukuoka, Japan.
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, University of Kitakyushu, Fukuoka, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, Fukuoka, Japan
| |
Collapse
|
50
|
Rouers A, Jeger-Madiot R, Moris A, Graff-Dubois S. [Follicular helper T cells and HIV - United for better and worse]. Med Sci (Paris) 2017; 33:878-886. [PMID: 28994384 DOI: 10.1051/medsci/20173310020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Follicular helper T cells (Tfh) have been discovered in lymph nodes and, since then, are the focus of very intensive research to understand their origin, differentiation and functions. Tfh interact with B cells in the secondary lymphoid organs leading to B cell differentiation and maturation. Tfh are particularly studied in pathological contexts such as autoimmune diseases and infection by the human immunodeficiency virus (HIV). In the context of HIV infection, broadly neutralizing antibodies have been identified in a few patients. The generation of these broadly neutralizing antibodies requires a long and complex maturation of B cells in the secondary lymphoid organs. Characterizing Tfh functions and the relation with the quality of antibodies in HIV infection might help in designing novel immunotherapies and vaccination strategies to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Angeline Rouers
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Arnaud Moris
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Stéphanie Graff-Dubois
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|