1
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Zhang B, Xiang L, Chen J, Zhang J, Dong R, Mo G, Wu F. GRN Activates TNFR2 to Promote Macrophage M2 Polarization Aggravating Mycobacterium Tuberculosis Infection. FRONT BIOSCI-LANDMRK 2024; 29:332. [PMID: 39344332 DOI: 10.31083/j.fbl2909332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The polarization of macrophages plays a critical role in the immune response to infectious diseases, with M2 polarization shown to be particularly important in various pathological processes. However, the specific mechanisms of M2 macrophage polarization in Mycobacterium tuberculosis (Mtb) infection remain unclear. In particular, the roles of Granulin (GRN) and tumor necrosis factor receptor 2 (TNFR2) in the M2 polarization process have not been thoroughly studied. OBJECTIVE To investigate the effect of macrophage M2 polarization on Mtb infection and the mechanism of GRN and TNFR2 in M2 polarization. METHODS Forty patients with pulmonary tuberculosis (PTB) and 40 healthy volunteers were enrolled in this study, and peripheral blood samples were taken to detect the levels of TNFR2 and GRN mRNA by Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR); monocytes were isolated and then assessed by Flow Cytometry (FC) for M1 and M2 macrophage levels. To further validate the function of TNFR2 in macrophage polarization, we used interleukin 4 (IL-4) to induce mouse monocyte macrophages RAW264.7 to M2 polarized state. The expression of TNFR2 was detected by Western Blot and RT-qPCR. Next, we constructed a GRN knockdown plasmid and transfected it into IL-4-induced mouse monocyte macrophage RAW264.7, and detected the expression of TNFR2, M1 macrophage-associated factors tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6), and the M2 macrophage-associated factors CD206, IL-10, and Arginase 1 (Arg1); Immunofluorescence staining was used to monitor the expression of CD86+ and CD206+, and FC was used to analyze the macrophage phenotype. Subsequently, immunoprecipitation was used to detect the binding role of GRN and TNFR2. Finally, the effects of GRN and TNFR2 in macrophage polarization were further explored by knocking down GRN and simultaneously overexpressing TNFR2 and observing the macrophage polarization status. RESULTS The results of the study showed elevated expression of TNFR2 and GRN and predominance of M2 type in macrophages in PTB patients compared to healthy volunteers (p < 0.05). Moreover, TNFR2 was highly expressed in M2 macrophages (p < 0.05). Additionally, GRN knockdown was followed by elevated expression of M1 polarization markers TNF-α, iNOS and IL-6 (p < 0.05), decreased levels of M2 polarization-associated factors CD206, IL-10 and Arg1 (p < 0.05), and macrophage polarization towards M1. Subsequently, we found that GRN binds to TNFR2 and that GRN upregulates TNFR2 expression (p < 0.05). In addition, knockdown of GRN elevated M1 polarization marker expression, decreased M2 polarization marker expression, and increased M1 macrophages and decreased M2 macrophages, whereas concurrent overexpression of TNFR2 decreased M1 polarization marker expression, elevated M2 polarization marker expression, and decreased M1 macrophages and increased M2 macrophages. CONCLUSION TNFR2 and GRN are highly expressed in PTB patients and GRN promotes macrophage M2 polarization by upregulating TNFR2 expression.
Collapse
Affiliation(s)
- Bingling Zhang
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Lan Xiang
- Department of Doctor-patient Communication, The First Affiliated Hospital of Ningbo University, 315010 Ningbo, Zhejiang, China
| | - Jun Chen
- Department of Doctor-patient Communication, The First Affiliated Hospital of Ningbo University, 315010 Ningbo, Zhejiang, China
| | - Jun Zhang
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Renliu Dong
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Guolun Mo
- Beijing STEPPIN Technology Co., LTD., 100195 Beijing, China
| | - Feng Wu
- Infectious Disease Prevention and Control, Jiangbei Center for Disease Control and Prevention, 315000 Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Zhang S, Li D, Wang H, Liu B, Du F, Wang Q. CAFs-derived Exosomal miR-889-3p Might Repress M1 Macrophage Polarization to Boost ESCC Development by Regulating STAT1. Cell Biochem Biophys 2024:10.1007/s12013-024-01496-2. [PMID: 39237779 DOI: 10.1007/s12013-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Cancer-associated fibroblasts (CAFs) represent one of the major components of the tumor stroma, which might create an immunosuppressive tumor microenvironment by inducing and functionally polarizing protumoral macrophages. Previous studies indicated that exosomes derived from CAFs might transmit regulating signals and boost esophageal squamous cell carcinoma (ESCC) development. This study is designed to explore the role and mechanism of CAFs-derived exosomal microRNA-889-3p (miR-889-3p) in ESCC progression. Macrophage polarization was detected using flow cytometry. miR-889-3p, Tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, cycle progression, migration, and invasion were assessed using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), scratch assay, and Transwell assays. α-SMA, FAP, CD63, CD81, and signal transducer and activator of transcription 1 (STAT1) protein levels were detected using western blot. Exosomes were characterized using an electron microscope and nanoparticle tracking analysis (NTA). Binding between miR-889-3p and STAT1 was predicted by Starbase, and verified by a dual-luciferase reporter and RNA pull-down. The effect of CAFs-derived exosomal miR-889-3p on ESCC tumor growth in vivo was detected using mice xenograft assay. miR-889-3p level was decreased in LPS-induced M0 macrophages. CAF-derived exosomal miR-889-3p knockdown suppressed ESCC proliferation, migration, and invasion. CAFs might transfer miR-889-3p to M0 macrophages via exosomes. STAT1 was a target of miR-889-3p. Besides, in vivo studies confirmed that CAFs-derived exosomal miR-889-3p can accelerate ESCC tumor growth by regulating STAT1. CAFs-derived exosomal miR-889-3p facilitates esophageal squamous cell carcinoma cell proliferation, migration, and invasion by inhibiting M1 macrophage polarization through down-regulation of STAT1, providing a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shaofeng Zhang
- Department of Thoracic surgery, Xingtai People's Hospital, Xingtai, China
| | - Danqing Li
- Department of Radiotherapy, Xingtai People's Hospital, Xingtai, China
| | - Haijun Wang
- Department of Thoracic surgery, Xingtai People's Hospital, Xingtai, China
| | - Bo Liu
- Department of Thoracic surgery, Xingtai People's Hospital, Xingtai, China
| | - Fan Du
- Department of Thoracic surgery, Xingtai People's Hospital, Xingtai, China
| | - Qing Wang
- Department of Thoracic Surgery, Nantong Tumor Hospital/Tumor Hospital Affiliated to Nantong University, Nantong, China.
| |
Collapse
|
4
|
Ludwig N, Cucinelli S, Hametner S, Muckenthaler MU, Schirmer L. Iron scavenging and myeloid cell polarization. Trends Immunol 2024; 45:625-638. [PMID: 39054114 DOI: 10.1016/j.it.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Myeloid cells that populate all human organs and blood are a versatile class of innate immune cells. They are crucial for sensing and regulating processes as diverse as tissue homeostasis and inflammation and are frequently characterized by their roles in either regulating or promoting inflammation. Recent studies in cultured cells and mouse models highlight the role of iron in skewing the functional properties of myeloid cells in tissue damage and repair. Here, we review certain emerging concepts on how iron influences and determines myeloid cell polarization in the context of its uptake, storage, and metabolism, including in conditions such as multiple sclerosis (MS), sickle cell disease, and tumors.
Collapse
Affiliation(s)
- Natalie Ludwig
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Stefania Cucinelli
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria; Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
6
|
Odum JD, Akhter J, Verma V, Vollmer G, Davidson A, Hyndman KA, Bolisetty S. Myeloid-specific ferritin light chain deletion does not exacerbate sepsis-associated AKI. Am J Physiol Renal Physiol 2024; 327:F171-F183. [PMID: 38779751 DOI: 10.1152/ajprenal.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits. Previous work revealed that myeloid FtH deletion leads to a compensatory increase in intracellular and circulating FtL and is associated with amelioration of SA-AKI. We designed this study to test the hypothesis that loss of myeloid FtL and subsequently, circulating FtL will exacerbate the sepsis-induced inflammatory response and worsen SA-AKI. We generated a novel myeloid-specific FtL knockout mouse (FtLLysM-/-) and induced sepsis via cecal ligation and puncture or lipopolysaccharide endotoxemia. As expected, serum ferritin levels were significantly lower in the knockout mice, suggesting that myeloid cells dominantly contribute to circulating ferritin. Interestingly, although sepsis induction led to a marked production of pro- and anti-inflammatory cytokines, there was no statistical difference between the genotypes. There was a similar loss of kidney function, as evidenced by a rise in serum creatinine and cystatin C and renal injury identified by expression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Finally, RNA sequencing revealed upregulation of pathways for cell cycle arrest and autophagy postsepsis, but no significant differences were observed between genotypes, including in key genes associated with ferroptosis, an iron-mediated form of cell death. The loss of FtL did not impact sepsis-mediated activation of NF-κB or HIF-1a signaling, key inflammatory pathways associated with dysregulated host response. Taken together, while FtL overexpression was shown to be protective against sepsis, the loss of FtL did not influence sepsis pathogenesis.NEW & NOTEWORTHY Hyperferritinemia in sepsis is often associated with a proinflammatory phenotype and poor prognosis. We previously showed the myeloid deletion of FtH results in a compensatory increase in FtL and is associated with reduced circulating cytokines and decreased rates of SA-AKI in animal sepsis models. Here, we show that myeloid deletion of FtL does not impact the severity of SA-AKI following CLP or LPS, suggesting that FtH plays the predominant role in propagating myeloid-induced proinflammatory pathways.
Collapse
Affiliation(s)
- James D Odum
- Division of Pediatric Critical Care, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Juheb Akhter
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vivek Verma
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Giacynta Vollmer
- Division of Pediatric Critical Care, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ahmad Davidson
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Deng F, Han X, Ji Y, Jin Y, Shao Y, Zhang J, Ning C. Distinct mechanisms of iron and zinc metal ions on osteo-immunomodulation of silicocarnotite bioceramics. Mater Today Bio 2024; 26:101086. [PMID: 38765245 PMCID: PMC11098954 DOI: 10.1016/j.mtbio.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024] Open
Abstract
The immunomodulatory of implants have drawn more and more attention these years. However, the immunomodulatory of different elements on the same biomaterials have been rarely investigated. In this work, two widely used biosafety elements, iron and zinc added silicocarnotite (Ca5(PO4)2SiO4, CPS) were applied to explore the routine of elements on immune response. The immune reactions over time of Fe-CPS and Zn-CPS were explored at genetic level and protein level, and the effects of their immune microenvironment with different time points on osteogenesis were also investigated in depth. The results confirmed that both Fe-CPS and Zn-CPS had favorable ability to secret anti-inflammatory cytokines. The immune microenvironment of Fe-CPS and Zn-CPS also could accelerate osteogenesis and osteogenic differentiation in vitro and in vivo. In terms of mechanism, RNA-seq analysis and Western-blot experiment revealed that PI3K-Akt signaling pathway and JAK-STAT signaling pathways were activated of Fe-CPS to promote macrophage polarization from M1 to M2, and its immune microenvironment induced osteogenic differentiation through the activation of Hippo signaling pathway. In comparison, Zn-CPS inhibited polarization of M1 macrophage via the up-regulation of Rap1 signaling pathway and complement and coagulation cascade pathway, while its osteogenic differentiation related pathway of immune environment was NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanyan Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| | - Xianzhuo Han
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Yingqi Ji
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ying Jin
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| | - Yiran Shao
- SHNU-YAPENG Joint Lab of Tissue Repair Materials, Shanghai Yapeng Biological Technology Co., Ltd, Shanghai, China
| | - Jingju Zhang
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School & Hospital of Stomatology, Shanghai, China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| |
Collapse
|
8
|
Wang X, Liang Y, Li J, Wang J, Yin G, Chen Z, Huang Z, Pu X. Artificial periosteum promotes bone regeneration through synergistic immune regulation of aligned fibers and BMSC-recruiting phages. Acta Biomater 2024; 180:262-278. [PMID: 38579918 DOI: 10.1016/j.actbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Given the crucial role of periosteum in bone repair, the use of artificial periosteum to induce spontaneous bone healing instead of using bone substitutes has become a potential strategy. Also, the proper transition from pro-inflammatory signals to anti-inflammatory signals is pivotal for achieving optimal repair outcomes. Hence, we designed an artificial periosteum loaded with a filamentous bacteriophage clone named P11, featuring an aligned fiber morphology. P11 endowed the artificial periosteum with the capacity to recruit bone marrow mesenchymal stem cells (BMSCs). The artificial periosteum also regulated the immune microenvironment at the bone injury site through the synergistic effects of biochemical factors and topography. Specifically, the inclusion of P11 preserved inflammatory signaling in macrophages and additionally facilitated the migration of BMSCs. Subsequently, aligned fibers stimulated macrophages, inducing alterations in cytoskeletal and metabolic activities, resulting in the polarization into the M2 phenotype. This progression encouraged the osteogenic differentiation of BMSCs and promoted vascularization. In vivo experiments showed that the new bone generated in the AP group exhibited the most efficient healing pattern. Overall, the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair indicates a promising approach for artificial periosteum development. STATEMENT OF SIGNIFICANCE: The appropriate transition of macrophages from a pro-inflammatory to an anti-inflammatory phenotype is pivotal for achieving optimal bone repair outcomes. Hence, we designed an artificial periosteum featuring an aligned fiber morphology and loaded with specific phage clones. The artificial periosteum not only fostered the recruitment of BMSCs but also achieved sequential regulation of the immune microenvironment through the synergistic effects of biochemical factors and topography, and improved the effect of bone repair. This study indicates that the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair is a promising approach for artificial periosteum development.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yingyue Liang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jingtao Li
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Zhuo Chen
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Han R, Liu L, Wang Y, Wu R, Yang Y, Zhao Y, Jian L, Yuan Y, Zhang L, Gu Y, Gao C, Ye J. Microglial SLC25A28 Deficiency Ameliorates the Brain Injury After Intracerebral Hemorrhage in Mice by Restricting Aerobic Glycolysis. Inflammation 2024; 47:591-608. [PMID: 38085466 DOI: 10.1007/s10753-023-01931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 05/07/2024]
Abstract
The microglia overactivation-induced neuroinflammation is a significant cause of the brain injury after intracerebral hemorrhage (ICH). Iron homeostasis is crucial for microglia activation, but the mechanism and causality still need further study. This study aimed to explore the roles and mechanism of the mitochondrial iron transporter SLC25A28 in microglia activation after ICH. Intrastriatal injection of autologous blood was used to establish ICH model, and the neuroinflammation, iron metabolism and brain injuries were assessed in wildtype or microglia-specific SLC25A28 knockout mice after ICH. Mitochondria iron levels and microglial function were determined in SLC25A28 overexpressed or deleted microglia. The extracellular acidification rate (ECAR), lactate production, and glycolytic enzyme levels were used to determine aerobic glycolysis. The results showed that ICH stimulated mitochondrial iron overload, and synchronously upregulated the SLC25A28 expression. In vitro, SLC25A28 overexpression increased mitochondrial iron levels in microglia. Interestingly, microglial SLC25A28 deficiency ameliorated neuroinflammation, brain edema, blood-brain barrier injury and ethological alterations in mice after ICH. Mechanically, SLC25A28 deficiency inhibited microglial activation by restricting the aerobic glycolysis. Moreover, zinc protoporphyrin could reduce SLC25A28 expression and mitigated brain injury. SLC25A28 plays crucial roles in mitochondrial iron homeostasis and microglia activation after ICH, and it might be a potential therapeutic target for ICH.
Collapse
Affiliation(s)
- Ruili Han
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China
| | - Lei Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yuying Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Ruolin Wu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Ying Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Lele Jian
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China
| | - Yu Gu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Changjun Gao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China.
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Wang Z, Zhou X, Hu X, Zheng C. Quercetin ameliorates Helicobacter pylori-induced gastric epithelial cell injury by regulating specificity protein 1/lipocalin 2 axis in gastritis. J Appl Toxicol 2024; 44:641-650. [PMID: 38056887 DOI: 10.1002/jat.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Helicobacter pylori (HP) infection is the main cause of most cases of gastritis. Quercetin has been shown to have anti-inflammatory, anti-bacterial, and antiviral activities and has been demonstrated to be involved in HP-induced gastric mucosa injury. Moreover, the secretory protein lipocalin-2 (LCN2) was elevated in HP-infected gastric mucosa. Thus, this work aimed to study the interaction between quercetin and LCN2 in HP-triggered gastric injury during gastritis. Human gastric epithelial cell line GES-1 cells were exposed to HP for functional experiments. Cell viability, apoptosis, and inflammation were evaluated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Levels of genes and proteins were tested using quantitative reverse transcription polymerase chain reaction and western blotting analyses. The interaction between LCN2 and specificity protein 1 (SP1) was validated using chromatin immunoprecipitation assay and dual-luciferase reporter assay. Thereafter, we found quercetin treatment suppressed HP-induced GES-1 cell apoptotic and inflammatory injury and macrophage M1 polarization. LCN2 was highly expressed in HP-infected gastritis patients and HP-infected GES-1 cells, while quercetin reduced LCN2 expression in HP-infected GES-1 cells; moreover, LCN2 knockdown reversed HP-induced GES-1 cell injury and macrophage M1 polarization, and forced expression of LCN2 abolished the protective effects of quercetin on GES-1 cells under HP infection. Mechanistically, SP1 bound to LCN2 promoter and promoted its transcription. Also, SP1 overexpression counteracted the functions of quercetin on HP-stimulated GES-1 cells. In all, quercetin ameliorated HP-induced gastric epithelial cell apoptotic and inflammatory injuries, and macrophage M1 polarization via the SP1/LCN2 axis.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Hu
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congru Zheng
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Wei H, Wu X, Huang L, Long C, Lu Q, Huang Z, Huang Y, Li W, Pu J. LncRNA MEG3 Reduces the Ratio of M2/M1 Macrophages Through the HuR/CCL5 Axis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:543-562. [PMID: 38496248 PMCID: PMC10943271 DOI: 10.2147/jhc.s449090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Chen Long
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| |
Collapse
|
12
|
Jiang Y, Wu H, Peng Y, He P, Qian S, Lin H, Chen H, Qian R, Wang D, Chu M, Ji W, Guo X, Shan X. Gastrodin ameliorates acute pancreatitis by modulating macrophage inflammation cascade via inhibition the p38/NF-κB pathway. Int Immunopharmacol 2024; 129:111593. [PMID: 38290206 DOI: 10.1016/j.intimp.2024.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Acute pancreatitis (AP) is a prevalent, destructive, non-infectious pancreatic inflammatory disease, which is usually accompanied with systemic manifestations and poor prognosis. Gastrodin (4-hydroxybenzyl alcohol 4-O-β-d-glucopyranoside) has ideal anti-inflammatory effects in various inflammatory diseases. However, its potential effects on AP had not been studied. In this study, serum biochemistry, H&E staining, immunohistochemistry, immunofluorescence, western blot, real-time quantitative PCR (RT-qPCR) were performed to investigate the effects of Gastrodin on caerulein-induced AP pancreatic acinar injury model in vivo and lipopolysaccharide (LPS) induced M1 phenotype macrophage model in vitro. Our results showed that Gastrodin treatment could significantly reduce the levels of serum amylase and serum lipase while improving pancreatic pathological morphology. Additionally, it decreased secretion of inflammatory cytokines and chemokines, and inhibited the levels of p-p38/p38, p-IκB/IκB as well as p-NF-κB p-p65/NF-κB p65. Overall our findings suggested that Gastrodin might be a promising therapeutic option for patients with AP by attenuating inflammation through inhibition of the p38/NF-κB pathway mediated macrophage cascade.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huilan Wu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yongmiao Peng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Pingping He
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Songwei Qian
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hongzhou Lin
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huihui Chen
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rengcheng Qian
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dexuan Wang
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Maoping Chu
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Weiping Ji
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xiaoling Guo
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xiaoou Shan
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
13
|
Arnosa-Prieto Á, Diaz-Rodriguez P, González-Gómez MA, García-Acevedo P, de Castro-Alves L, Piñeiro Y, Rivas J. Magnetic-driven Interleukin-4 internalization promotes magnetic nanoparticle morphology and size-dependent macrophage polarization. J Colloid Interface Sci 2024; 655:286-295. [PMID: 37944376 DOI: 10.1016/j.jcis.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Macrophages are known to depict two major phenotypes: classically activated macrophages (M1), associated with high production of pro-inflammatory cytokines, and alternatively activated macrophages (M2), which present an anti-inflammatory function. A precise control over M1-M2 polarization is a promising strategy in therapeutics to modulate both tissue regeneration and tumor progression processes. However, this is not a simple task as macrophages behave differently depending on the microenvironment. In agreement with this, non-consistent data have been reported regarding macrophages response to magnetic iron oxide nanoparticles (MNPs). To investigate the impact of both tissue microenvironment and MNPs properties on the obtained macrophage responses, single-core (SC) and multi-core (MC) citrate coated MNPs, are synthesized and, afterwards, loaded with a macrophage polarization trigger, IL-4. The developed MNPs are then tested in macrophages subjected to different stimuli. We demonstrate that macrophages treated with low concentrations of MNPs behave differently depending on the polarization stage independently of the concentration of iron. Moreover, we find out that MNPs size and morphology determines the effect of the IL-4 loaded MNPs on M1 macrophages, since IL-4 loaded SC MNPs favor the polarization of M1 macrophages towards M2 phenotype, while IL-4 loaded MC MNPs further stimulate the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Ángela Arnosa-Prieto
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Instituto de Materiales (iMATUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Manuel A González-Gómez
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Pelayo García-Acevedo
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Lisandra de Castro-Alves
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Yolanda Piñeiro
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - José Rivas
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| |
Collapse
|
14
|
Wang Y, Xu H, Wang D, Lu Y, Zhang Y, Cheng J, Xu X, Chen X, Li J. Synergistic reinforcement of immunogenic cell death and transformation of tumor-associated macrophages via an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform. Acta Biomater 2024; 174:358-371. [PMID: 38092253 DOI: 10.1016/j.actbio.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The immune system's role in tumor growth and spread has led to the importance of activating immune function in tumor therapy. We present a strategy using an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform (M1mDDTF) to synergistically reinforce immunogenic cell death (ICD) and transform tumor-associated macrophages (TAMs) against tumors. The M1mDDTF nanoparticles consist of doxorubicin-loaded dendritic mesoporous silica nanoparticles chelated with FeIII-tannic acid (FeIIITA) and coated with M1-type macrophage membranes. In the acidic tumor microenvironment, FeIIITA releases Fe2+ and generates ·OH, aided by near infrared irradiation for enhanced doxorubicin release. Furthermore, the M1mDDTF nanoplatform not only directly kills tumor cells but stimulates ICD, which can increase the proportion of CD86+ CD80+ cells and promote dendritic cell maturation. Particularly, the M1mDDTF nanoplatform can also promote the gradual polarization of TAMs into the M1-type and promote tumor cell killing. This study demonstrates the safety and multifunctionality of M1mDDTF nanoparticles, highlighting their potential for clinical tumor treatment. STATEMENT OF SIGNIFICANCE: Malignant tumors are a global concern and a major cause of death. Nanoparticles' passive targeting is ineffective and hindered by reticuloendothelial system clearance. Therefore, enhancing nanoparticle accumulation in tumors while minimizing toxicity is a challenge. Coating nanoparticles with cell membranes enhances biocompatibility, immune evasion, and specific targeting. This approach has led to the development of numerous cell membrane-mimicking nanomaterials with remarkable properties and functions. This study developed an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform, boosting immunogenic cell death and transforming tumor-associated macrophages. Tannic acid in the tumor microenvironment reduced Fe3+ to Fe2+, generating ·OH. M1mDDTF nanosystem induced M1-type macrophage polarization, inhibiting tumor growth and triggering immune cell death. Safe and versatile, these M1mDDTF nanoparticles hold promise for clinical tumor treatment.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Xu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duan Wang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongping Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; College of Medicine, Southwest Jiaotong University, 610003, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Lu Y, Wu Y, Huang M, Chen J, Zhang Z, Li J, Yang R, Liu Y, Cai S. Fuzhengjiedu formula exerts protective effect against LPS-induced acute lung injury via gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155190. [PMID: 37972468 DOI: 10.1016/j.phymed.2023.155190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is distinguished by rapid and severe respiratory distress and prolonged hypoxemia. A traditional Chinese medicine (TCM), known as the Fuzhengjiedu formula (FZJDF), has been shown to have anti-inflammatory benefits in both clinical and experimental studies. The precise underlying processes, nevertheless, are yet unclear. PURPOSE This study sought to enlighten the protective mechanism of FZJDF in ALI through the standpoint of the gut-lung crosstalk. METHODS The impact of FZJDF on lipopolysaccharide (LPS)-induced ALI murine model were investigated, and the lung injury score, serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) expression were measured to confirm its anti-inflammatory effects. Additionally, gut microbiota analysis and serum and fecal samples metabolomics were performed using metagenomic sequencing and high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, respectively. RESULTS FZJDF significantly induced histopathological changes caused by LPS-induced ALI as well as downregulated the serum concentration of IL-1β and TNF-α. Furthermore, FZJDF had an effect in gut microbiota disturbances, and linear discriminant effect size analysis identified signal transduction, cell motility, and amino acid metabolism as the potential mechanisms of action in the FZJDF-treated group. Several metabolites in the LPS and FZJDF groups were distinguished by untargeted metabolomic analysis. Correlations were observed between the relative abundance of microbiota and metabolic products. Comprehensive network analysis revealed connections among lung damage, gut microbes, and metabolites. The expression of glycine, serine, glutamate, cysteine, and methionine in the lung and colon tissues was dysregulated in LPS-induced ALI, and FZJDF reversed these trends. CONCLUSION This study revealed that FZJDF considerably protected against LPS-induced ALI in mice by regulating amino acid metabolism via the gut-microbiota-lung axis and offered thorough and in-depth knowledge of the multi-system linkages of systemic illnesses.
Collapse
Affiliation(s)
- Yue Lu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan Wu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengfen Huang
- The Ninth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiankun Chen
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiqiang Li
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China.
| | - Rongyuan Yang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yuntao Liu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Shubin Cai
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Jutanom M, Kato S, Yamashita S, Toda M, Kinoshita M, Nakagawa K. Analysis of oxidized glucosylceramide and its effects on altering gene expressions of inflammation induced by LPS in intestinal tract cell models. Sci Rep 2023; 13:22537. [PMID: 38110468 PMCID: PMC10728070 DOI: 10.1038/s41598-023-49521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Glucosylceramide (GlcCer) belongs to sphingolipids and is found naturally in plant foods and other sources that humans consume daily. Our previous studies demonstrated that GlcCer prevents inflammatory bowel disease both in vitro and in vivo, whose patients are increasing alarmingly. Although some lipids are vulnerable to oxidation which changes their structure and activities, it is unknown whether oxidative modification of GlcCer affects its activity. In this research, we oxidized GlcCer in the presence of a photosensitizer, analyzed the oxide by mass spectrometric techniques, and examined its anti-inflammatory activity in lipopolysaccharide (LPS)-treated differentiated Caco-2 cells as in vitro model of intestinal inflammation. The results showed that GlcCer is indeed oxidized, producing GlcCer hydroperoxide (GlcCerOOH) as a primary oxidation product. We also found that oxidized GlcCer preserves beneficial functions of GlcCer, suppressing inflammatory-related gene expressions. These findings suggested that GlcCerOOH may perform as an LPS recognition antagonist to discourage inflammation rather than induce inflammation.
Collapse
Affiliation(s)
- Mirinthorn Jutanom
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shunji Kato
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masako Toda
- Food and Biomolecular Science Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Kiyotaka Nakagawa
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
17
|
Malabanan JWT, Alcantara KP, Jantaratana P, Pan Y, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Enhancing Physicochemical Properties and Biocompatibility of Hollow Porous Iron Oxide Nanoparticles through Polymer-Based Surface Modifications. ACS APPLIED BIO MATERIALS 2023; 6:5426-5441. [PMID: 37956113 DOI: 10.1021/acsabm.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In this study, we synthesized hollow porous iron oxide nanoparticles (HPIONPs) with surface modifications using polymers, specifically chitosan (Chi), polyethylene glycol (PEG), and alginate (Alg), to improve colloidal stability and biocompatibility. For colloidal stability, Alg-coated HPIONPs maintained size stability up to 24 h, with only an 18% increase, while Chi, PEG, and uncoated HPIONPs showed larger size increases ranging from 64 to 140%. The biocompatibility of polymer-coated HPIONPs was evaluated by assessing their cell viability, genotoxicity, and hemocompatibility. Across tested concentrations from 6.25 to 100 μg/mL, both uncoated and polymer-coated HPIONPs showed minimal cytotoxicity against three normal cell lines: RAW264.7, 3T3-L1, and MCF10A, with cell viability exceeding 80% at the highest concentration. Notably, polymer-coated HPIONPs exhibited nongenotoxicity based on the micronucleus assay and showed hemocompatibility, with only 2-3% hemolysis in mouse blood, in contrast to uncoated HPIONPs which exhibited 4-5%. Furthermore, we evaluated the cytotoxicity of HPIONPs on MDA-MB-231 breast cancer cells after a 2 h exposure to a stationary magnetic field, and the results showed the highest cell death of 38 and 29% when treated with uncoated and polymer-coated HPIONPs at 100 μg/mL, respectively. This phenomenon is attributed to iron catalyzing the Fenton and Haber-Weiss reactions, leading to reactive oxygen species (ROS)-dependent cell death (r ≥ 0.98). In conclusion, the hydrothermal synthesis and subsequent surface modification of HPIONPs with polymers showed improved colloidal stability, nongenotoxicity, and hemocompatibility compared to uncoated HPIONPs while maintaining closely similar levels of cytotoxicity against both normal and cancer cells. This research has paved the way for further exploration of polymer coatings to enhance the overall performance and safety profile of magnetic nanoparticles in delivering anticancer drugs.
Collapse
Affiliation(s)
- John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Qu B, Liu J, Peng Z, Xiao Z, Li S, Wu J, Li S, Luo J. CircSOD2 polarizes macrophages towards the M1 phenotype to alleviate cisplatin resistance in gastric cancer cells by targeting the miR-1296/STAT1 axis. Gene 2023; 887:147733. [PMID: 37625563 DOI: 10.1016/j.gene.2023.147733] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Cisplatin is the first-line drug for gastric cancer (GC). Cisplatin resistance is the most important cause of poor prognosis for GC. Increasing evidence has identified the important role of macrophage polarization in chemoresistance. CircRNAs are newly discovered non-coding RNAs, characterized by covalently closed loops with high stability. Previous studies have reported a significant difference between circRNA profiles expressed in classically activated M1 macrophages, and those expressed in alternatively activated M2 macrophages. However, the underlying mechanism behind the regulation of GC cisplatin resistance by macrophages remains unclear. In our study, we observed the aberrant high expression of circSOD2 in M1 macrophages derived from THP-1. These expression patterns were confirmed in macrophages from patients with GC. Detection of the M1 and M2 markers confirmed that overexpression of circSOD2 enhances M1 polarization. The viability of cisplatin-treated GC cells was significantly reduced in the presence of macrophages overexpressing circSOD2, and cisplatin-induced apoptosis increased dramatically. In vivo experiments showed that macrophages expressing circSOD2 enhanced the effect of cisplatin. Moreover, we demonstrated that circSOD2 acts as a microRNA sponge for miR-1296 and regulates the expression of its target gene STAT1 (signal transducer and activator of transcription 1). CircSOD2 exerts its function through the miR-1296/STAT1 axis. Inhibition of circSOD2/miR-1296/STAT1 may therefore reduce M1 polarization. Overexpression of circSOD2 promotes the polarization of M1 macrophages and enhances the effect of cisplatin in GC. CircSOD2 is a novel positive regulator of M1 macrophages and may serve as a potential target for GC chemotherapy.
Collapse
Affiliation(s)
- Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiasheng Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiyang Peng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhe Xiao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shijun Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianguo Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shengbo Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianfei Luo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
19
|
Abstract
Glioblastoma (GBM) is among the deadliest malignancies facing modern oncology. While our understanding of certain aspects of GBM biology has significantly increased over the last decade, other aspects, such as the role of bioactive metals in GBM progression, remain understudied. Iron is the most abundant transition metal found within the earth's crust and plays an intricate role in human physiology owing to its ability to participate in oxidation-reduction reactions. The importance of iron homeostasis in human physiology is apparent when examining the clinical consequences of iron deficiency or iron overload. Despite this, the role of iron in GBM progression has not been well described. Here, we review and synthesize the existing literature examining iron's role in GBM progression and patient outcomes, as well as provide a survey of iron's effects on the major cell types found within the GBM microenvironment at the molecular and cellular level. Iron represents an accessible target given the availability of already approved iron supplements and chelators. Improving our understanding of iron's role in GBM biology may pave the way for iron-modulating approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Zhao Y, Peng F, He J, Qu Y, Ni H, Wu L, Chen X. SOCS1 Peptidomimetic Alleviates Glomerular Inflammation in MsPGN by Inhibiting Macrophage M1 Polarization. Inflammation 2023; 46:2402-2414. [PMID: 37581761 DOI: 10.1007/s10753-023-01886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Mesangial proliferative glomerulonephritis (MsPGN), the most common pathological change in primary glomerulonephritis, is characterized by increased macrophage infiltration into glomeruli, which results in proinflammatory cytokine release. Macrophage infiltration and differentiation are induced by the Janus kinase 2 and signal transducer and activator of the transcription 1 (JAK2/STAT1) pathway. As a suppressor of cytokine signaling 1 (SOCS1) downregulates the immune response by inhibiting the JAK2/STAT1 pathway, we investigated whether a peptide mimicking the SOCS1 kinase inhibitor region, namely, SOCS1 peptidomimetic, protects against nephropathy. Glomerular JAK2/STAT1 pathway activation was synchronized with kidney injury in an MsPGN rat model. Rats treated with the SOCS1 peptidomimetic exhibited reduced pathological glomerular changes and lessened macrophage recruitment. Moreover, in vivo, the phosphorylation of the JAK2/STAT1 pathway was downregulated in infiltrated macrophages of glomeruli. In vitro, the SOCS1 peptidomimetic inhibited macrophage M1 polarization by suppressing JAK2/STAT1 activation. In conclusion, our study demonstrated that the SOCS1 peptidomimetic plays a protective role against pathologic glomerular changes in MsPGN by reducing macrophage infiltration and inhibiting macrophage polarizing to the M1 phenotype. SOCS1 peptidomimetic, therefore, presents a feasible therapeutic strategy to alleviate renal inflammation in MsPGN.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Fei Peng
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jiayi He
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Huiming Ni
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, State Key Laboratory of Kidney Diseases, PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
21
|
Feng X, Li M, Lin Z, Lu Y, Zhuang Y, Lei J, Liu X, Zhao H. Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke. Neurochem Int 2023; 170:105607. [PMID: 37657766 DOI: 10.1016/j.neuint.2023.105607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke results in demyelination that underlies neurological disfunction. Promoting oligodendrogenesis will rescue the injured axons and accelerate remyelination after stroke. Microglia react to ischemia/hypoxia and polarize to M1/M2 phenotypes influencing myelin injury and repair. Tetramethylpyrazine (TMP) has neuroprotective effects in treating cerebrovascular disorders. This study aims to evaluate whether TMP promotes the renovation of damaged brain tissues especially on remyelination and modulates microglia phenotypes following ischemic stroke. Here magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI) and histopathological evaluation are performed to characterize the process of demyelination and remyelination. Immunofluorescence staining is used to prove oligodendrogenesis and microglial polarization. Western blotting is conducted to examine interleukin (IL)-6, IL-10, transforming growth factor β (TGF-β) and Janus protein tyrosine kinase (JAK) 2-signal transducer and activator of transcription (STAT) 1/3-glycogen synthase kinase (GSK) 3-nuclear transcription factor κB (NFκB) signals. Results show TMP alleviates the injury of axons and myelin sheath, increases NG2+, Ki67+/NG2+, CNPase+, Ki67+/CNPase+, Iba1+/Arg-1+ cells and decreases Iba1+ and Iba1+/CD16+ cells in periinfarctions of rats. Particularly, TMP downregulates IL-6 and upregulates IL-10 and TGF-β expressions, besides, enhances JAK2-STAT3 and suppresses STAT1-GSK3-NFκB activation in middle cerebral artery occlusion (MCAo) rats. Then we demonstrate that TMP reverses M1/M2 phenotype via JAK2-STAT1/3 and GSK3-NFκB pathways in lipopolysaccharide (LPS) plus interferon-γ (IFN-γ)-stimulated BV2 microglia. Blocking JAK2 with AG490 counteracts TMP's facilitation on M2 polarization of microglia. This study warrants the promising therapy for stroke with TMP treatment.
Collapse
Affiliation(s)
- Xuefeng Feng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Mingcong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ziyue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jianfeng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Xiaonan Liu
- Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
22
|
Xu A, Yang Y, Shao Y, Jiang M, Sun Y, Feng B. FHL2 regulates microglia M1/M2 polarization after spinal cord injury via PARP14-depended STAT1/6 pathway. Int Immunopharmacol 2023; 124:110853. [PMID: 37708708 DOI: 10.1016/j.intimp.2023.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Neuronal apoptosis and inflammation exacerbate the secondary injury after spinal cord injury (SCI). Four and a half domains 2 (FHL2) is a multifunctional scaffold protein with tissue- and cell-type specific effects on the regulation of inflammation, but its role in SCI remains unclear. The T10 mouse spinal cord contusion model was established, and the mice were immediately injected with lentiviruses carrying FHL2 shRNA after SCI. The results showed that FHL2 expression was increased following SCI, and then gradually decreased. Moreover, FHL2 depletion aggravated functional impairment, neuronal necrosis, and enlarged lesion cavity areas in the injured spinal cord. FHL2 deficiency facilitated neuronal apoptosis by elevating cleaved caspase 3/9 expression, neuroinflammation by regulating microglia polarization, and bone loss. Indeed, FHL2 deficiency increased the secretion of TNF-α and IL-6, M1 microglia polarization, and the activation of STAT1 pathway but decreased the secretion of IL-10 and IL-4, M2 microglia polarization, and the activation of the STAT6 pathway in the spinal cord. In vitro, FHL2 silencing promoted LPS + IFN-γ-induced microglia M1 polarization through activating the STAT1 pathway and alleviated IL-4-induced microglia M2 polarization via inhibiting the STAT6 pathway. FHL2 positively regulated the expression of poly (ADP-ribose) polymerase family member 14 (PARP14) by promoting its transcription. PARP14 overexpression inhibited FHL2 silencing-induced microglia M1 polarization and relieved the inhibitory effect of FHL2 silencing on microglia M2 polarization. Collectively, the study suggests that FHL2 reduces the microglia M1/M2 polarization-mediated inflammation via PARP14-dependent STAT1/6 pathway and thereby improves functional recovery after SCI.
Collapse
Affiliation(s)
- Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Manyu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Feng
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
23
|
Tang X, Li Y, Zhao J, Liang L, Zhang K, Zhang X, Yu H, Du H. Heme oxygenase-1 increases intracellular iron storage and suppresses inflammatory response of macrophages by inhibiting M1 polarization. Metallomics 2023; 15:mfad062. [PMID: 37838477 DOI: 10.1093/mtomcs/mfad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting enzymatic step of heme degradation, producing carbon monoxide, biliverdin, and free iron. Most iron is derived from aged erythrocytes by the decomposition of heme, which happened mainly in macrophages. However, the role of HO-1 on iron metabolism and function of macrophage is unclear. The present study investigated the effect of HO-1 on iron metabolism in macrophages, and explored the role of HO-1 on inflammatory response, polarization, and migration of macrophages. HO-1 inducer Hemin or HO-1 inhibitor zinc protoporphyrin was intravenously injected to C57BL/6 J mice every 4 d for 28 d. We found that HO-1 was mainly located in the cytoplasm of splenic macrophages of mice. Activation of HO-1 by Hemin significantly increased iron deposition in the spleen, up-regulated the gene expression of ferritin and ferroportin, and down-regulated gene expression of divalent metal transporter 1 and hepcidin. Induced HO-1 by Hemin treatment increased intracellular iron levels of macrophages, slowed down the absorption of extracellular iron, and accelerated the excretion of intracellular iron. In addition, activation of HO-1 significantly decreased the expression of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, and inducible nitric oxide synthase, but increased the expression of anti-inflammatory cytokines such as IL-10. Furthermore, activation of HO-1 inhibited macrophages to M1-type polarization, and increased the migration rate of macrophages. This study demonstrated that HO-1 was able to regulate iron metabolism, exert anti-inflammatory effects, and inhibit macrophages polarization to M1 type.
Collapse
Affiliation(s)
- Xueyou Tang
- MoE Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunqin Li
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Zhao
- MoE Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Liang
- MoE Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang Zhang
- MoE Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Huahua Du
- MoE Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
24
|
Stergioti EM, Manolakou T, Sentis G, Samiotaki M, Kapsala N, Fanouriakis A, Boumpas DT, Banos A. Transcriptomic and proteomic profiling reveals distinct pathogenic features of peripheral non-classical monocytes in systemic lupus erythematosus. Clin Immunol 2023; 255:109765. [PMID: 37678715 DOI: 10.1016/j.clim.2023.109765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Peripheral blood monocytes propagate inflammation in systemic lupus erythematosus (SLE). Three major populations of monocytes have been recognized namely classical (CM), intermediate (IM) and non-classical monocytes (NCM). Herein, we performed a comprehensive transcriptomic, proteomic and functional characterization of the three peripheral monocytic subsets from active SLE patients and healthy individuals. Our data demonstrate extensive molecular disruptions in circulating SLE NCM, characterized by enhanced inflammatory features such as deregulated DNA repair, cell cycle and heightened IFN signaling combined with differentiation and developmental cues. Enhanced DNA damage, elevated expression of p53, G0 arrest of cell cycle and increased autophagy stress the differentiation potential of NCM in SLE. This immunogenic profile is associated with an activated macrophage phenotype of NCM exhibiting M1 characteristics in the circulation, fueling the inflammatory response. Together, these findings identify circulating SLE NCM as a pathogenic cell type in the disease that could represent an additional therapeutic target.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece; 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece.
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Athens 166 72, Greece
| | - Noemin Kapsala
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece
| | - Antonis Fanouriakis
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.
| |
Collapse
|
25
|
Xu AH, Yang Y, Shao Y, Jiang MY, Sun YX. Poly(ADP-ribose) polymerase family member 14 promotes functional recovery after spinal cord injury through regulating microglia M1/M2 polarization via STAT1/6 pathway. Neural Regen Res 2023; 18:1809-1817. [PMID: 36751810 PMCID: PMC10154507 DOI: 10.4103/1673-5374.357909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Poly(ADP-ribose)polymerase family member 14 (PARP14), which is an intracellular mono(ADP-ribosyl) transferase, has been reported to promote post-stroke functional recovery, but its role in spinal cord injury (SCI) remains unclear. To investigate this, a T10 spinal cord contusion model was established in C57BL/6 mice, and immediately after the injury PARP14 shRNA-carrying lentivirus was injected 1 mm from the injury site to silence PARP14 expression. We found that PARP14 was up-regulated in the injured spinal cord and that lentivirus-mediated downregulation of PARP14 aggravated functional impairment after injury, accompanied by obvious neuronal apoptosis, severe neuroinflammation, and slight bone loss. Furthermore, PARP14 levels were elevated in microglia after SCI, PARP14 knockdown activated microglia in the spinal cord and promoted a shift from M2-polarized microglia (anti-inflammatory phenotype) to M1-polarized microglia (pro-inflammatory phenotype) that may have been mediated by the signal transducers and activators of transcription (STAT) 1/6 pathway. Next, microglia M1 and M2 polarization were induced in vitro using lipopolysaccharide/interferon-γ and interleukin-4, respectively. The results showed that PARP14 knockdown promoted microglia M1 polarization, accompanied by activation of the STAT1 pathway. In addition, PARP14 overexpression made microglia more prone to M2 polarization and further activated the STAT6 pathway. In conclusion, these findings suggest that PARP14 may improve functional recovery after SCI by regulating the phenotypic transformation of microglia via the STAT1/6 pathway.
Collapse
Affiliation(s)
- Ai-Hua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Man-Yu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong-Xin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
26
|
Li H, Yang C, Wei Y, Li X, Jiang W, Xu Y, Li L, Guo R, Chen D, Gao P, Zhang H, Qin H, Zhang Z, Liu X, Yan D. Ferritin light chain promotes the reprogramming of glioma immune microenvironment and facilitates glioma progression. Theranostics 2023; 13:3794-3813. [PMID: 37441589 PMCID: PMC10334844 DOI: 10.7150/thno.82975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Tumor-associated macrophages (TAMs), the most abundant non-tumor cell population in the glioma microenvironment, play a crucial role in immune evasion and immunotherapy resistance of glioblastoma (GBM). However, the regulatory mechanism of the immunosuppressive TME of GBM remains unclear. Methods: Bioinformatics were used to analyse the potential role of ferritin light chain (FTL) in GBM immunology and explore the effects of FTL on the reprogramming of the GBM immune microenvironment and GBM progression. Results: The FTL gene was found to be upregulated in TAMs of GBM at both the bulk and single-cell RNA-seq levels. FTL contributed to the protumor microenvironment by promoting M2 polarization in TAMs via inhibiting the expression of iPLA2β to facilitate the ferroptosis pathway. Inhibition of FTL in TAMs attenuated glioma angiogenesis, promoted the recruitment of T cells and sensitized glioma to anti-PD1 therapy. Conclusion: Our study suggested that FTL promoted the development of an immunosuppressive TME by inducing M2 polarization in TAMs, and inhibition of FTL in TAMs reprogrammed the TME and sensitized glioma to anti-PD1 therapy, providing a new strategy for improving the therapeutic effect of anti-PD1.
Collapse
Affiliation(s)
- Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanfei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wei Jiang
- The Application Center for Precision Medicine, Academy of Medical Science, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lifeng Li
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haohao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Qin
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
27
|
Lei L, Wan G, Geng X, Sun J, Zhang Y, Wang J, Yang C, Pan Z. The total iridoid glycoside extract of Lamiophlomis rotata Kudo induces M2 macrophage polarization to accelerate wound healing by RAS/ p38 MAPK/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116193. [PMID: 36746295 DOI: 10.1016/j.jep.2023.116193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lamiophlomis rotata (Benth.) Kudo (L. rotata), a Tibetan medicinal plant, is used to treat "yellow-water diseases", such as skin disease, jaundice and rheumatism. Our previous study showed that the iridoid glycoside extract of L. rotata (IGLR) is the major constituent of skin wound healing. However, the role of IGLR in the biological process of trauma repair and the probable mechanism of the action remain largely unknown. AIM OF THE STUDY To investigate the role of IGLR in the biological process of trauma repair and the probable mechanism of the action. MATERIALS AND METHODS The role of IGLR in wound healing was investigated by overall skin wound in mice with Hematoxylin and Eosin (H&E) and Masson trichrome staining. The anti-inflammatory, angiogenesis-promoting and fibril formation effects of IGLR were visualized in wound skin tissue by immunofluorescence staining, and the proinflammatory factors and growth factors were assayed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Macrophages, dermal fibroblasts, and endothelial cells were cultured to measure the direct/indirect interaction effects of IGLR on the proliferation and migration of cells, and flow cytometry was employed to assess the role of IGLR on macrophage phenotype. Network pharmacology combined with Western blot experiments were conducted to explore possible mechanisms of the actions. RESULTS IGLR increased the expression of CD206 (M2 markers) through the RAS/p38 MAPK/NF-κB signaling pathway during wound injury in vivo and in vitro. IGLR suppressed the inflammatory cytokines iNOS, IL-1β and TNF-α in the early stage of wound healing. During the proliferation step of wound repair, IGLR promoted angiogenesis and fibril formation by increasing the expression of VEGF, CD31, TGF-β and α-SMA in wound tissue, and similar results were verified by RT-PCR and ELISA. In a paracrine mechanism, the extract promoted the proliferation of dermal fibroblasts, and endothelial cells were founded by the conditioned medium (CM). CONCLUSION IGLR induced M2 macrophage polarization in the early stage of wound healing; in turn, IGLR played a key role in the transition from inflammation to cell proliferation during the biological process of wound healing.
Collapse
Affiliation(s)
- Lei Lei
- Chongqing Medical University, Chongqing, China
| | - Guoguo Wan
- Chongqing Medical University, Chongqing, China
| | - Xiaoyu Geng
- Chongqing Medical University, Chongqing, China
| | - Jianguo Sun
- Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | | | | | - Zheng Pan
- Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Liu T, Zhu M, Chang X, Tang X, Yuan P, Tian R, Zhu Z, Zhang Y, Chen X. Tumor-Specific Photothermal-Therapy-Assisted Immunomodulation via Multiresponsive Adjuvant Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300086. [PMID: 36782382 DOI: 10.1002/adma.202300086] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Indexed: 05/05/2023]
Abstract
Multiresponsive adjuvant nanoparticles (RMmAGL) are fabricated to perform tumor-specific photothermal therapy while regulating the behavior of tumor-associated immune cells for primary tumor eradication and metastasis inhibition. Core-satellite-like RMmAGL have a core of mannose-functionalized mesoporous silica nanoparticles loaded with the TLR7 agonist imiquimod (R837@MSN-mannose) connected via hydrazone bonds to satellites of glutamine (Glu)- and lysine (Lys)-comodified gold nanoparticles (AuNPs-Glu/Lys). During therapy, the acidic environment in tumor tissue cleaves the hydrazone bonds to release AuNPs-Glu/Lys, which further accumulate in tumor cells. After internalization, photothermal agents (aggregated AuNPs-Glu/Lys) are generated in situ through the intratumoral enzyme-catalyzed reaction between Glu and Lys, resulting in tumor-specific photothermal therapy. The detachment of AuNPs-Glu/Lys also triggers the release of R837, which matured dendritic cells (DCs) via a vaccine-like mechanism along with the tumor-associated antigens generated by photothermal therapy. These matured DCs further activates surrounding T cells for immunotherapy. Moreover, the resulting free MSN-mannose serves as an artificial glycocalyx to continuously induce the polarization of tumor-associated macrophages from an immunosuppressive phenotype to an inflammatory phenotype, thus further enhancing immunotherapy. Both in vivo and in vitro experiments demonstrate significant inhibition of malignant tumors after therapy.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xiaowei Chang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ran Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
29
|
Ma H, Shu Q, Li D, Wang T, Li L, Song X, Lou K, Xu H. Accumulation of Intracellular Ferrous Iron in Inflammatory-Activated Macrophages. Biol Trace Elem Res 2023; 201:2303-2310. [PMID: 35852674 DOI: 10.1007/s12011-022-03362-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Macrophages are important innate immune cells which can be polarized into heterogeneous populations. The inflammatory-activated M1 cells are known to be involved in all kinds of inflammatory diseases, which were also found to be associated with dysregulation of iron metabolism. While iron overload is known to induce M1 polarization, the valence states of iron and its intracellular dynamics during macrophage inflammatory activation have not been identified. In this study, THP-1-derived macrophages were polarized into M1, M2a, M2b, M2c, and M2d cells, and intracellular ferrous iron (Fe(II)) was measured by our previously developed ultrasensitive Fe(II) fluorescent probe. Significant accumulation of Fe(II) was only observed in M1 cells, which was different from the alterations of total iron. Time-dependent change of intracellular Fe(II) during the inflammatory activation was also consistent with the expression shifts of transferrin receptor CD71, ferrireductase Steap3, and Fe(II) exporter Slc40a1. In addition, accumulation of Fe(II) was also found in the colon macrophages of mice with ulcerative colitis, which was positively correlated to inflammatory phenotypes, including the productions of NO, IL-1β, TNF-α, and IL-6. Collectively, these results demonstrated the specific accumulation of Fe(II) in inflammatory-activated macrophages, which not only enriched our understanding of iron homeostasis in macrophages, but also indicated that Fe(II) could be further developed as a potential biomarker for inflammatory-activated macrophages.
Collapse
Affiliation(s)
- Huijuan Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Shu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Dan Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Tingqian Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Linyi Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Kaiyan Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huan Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
30
|
He XY, Fan X, Qu L, Wang X, Jiang L, Sang LJ, Shi CY, Lin S, Yang JC, Yang ZZ, Lei K, Li JH, Ju HQ, Yan Q, Liu J, Wang F, Shao J, Xiong Y, Wang W, Lin A. LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism. Nat Commun 2023; 14:2253. [PMID: 37080959 PMCID: PMC10119135 DOI: 10.1038/s41467-023-37871-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Iron metabolism dysregulation is tightly associated with cancer development. But the underlying mechanisms remain poorly understood. Increasing evidence has shown that long noncoding RNAs (lncRNAs) participate in various metabolic processes via integrating signaling pathway. In this study, we revealed one iron-triggered lncRNA, one target of YAP, LncRIM (LncRNA Related to Iron Metabolism, also named ZBED5-AS1 and Loc729013), which effectively links the Hippo pathway to iron metabolism and is largely independent on IRP2. Mechanically, LncRIM directly binds NF2 to inhibit NF2-LATS1 interaction, which causes YAP activation and increases intracellular iron level via DMT1 and TFR1. Additionally, LncRIM-NF2 axis mediates cellular iron metabolism dependent on the Hippo pathway. Clinically, high expression of LncRIM correlates with poor patient survival, suggesting its potential use as a biomarker and therapeutic target. Taken together, our study demonstrated a novel mechanism in which LncRIM-NF2 axis facilitates iron-mediated feedback loop to hyperactivate YAP and promote breast cancer development.
Collapse
Affiliation(s)
- Xin-Yu He
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, 158 Guangchang Back Road, 313000, Huzhou, Zhejiang, P.R. China
| | - Li Jiang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling-Jie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Cheng-Yu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Siyi Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jie-Cheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zuo-Zhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jun-Hong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, Guangdong, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jian Liu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, 310002, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 314400, Haining, Zhejiang, China
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, 310000, Hangzhou, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Yuan Y, Sun M, Jin Z, Zheng C, Ye H, Weng H. Dapagliflozin ameliorates diabetic renal injury through suppressing the self-perpetuating cycle of inflammation mediated by HMGB1 feedback signaling in the kidney. Eur J Pharmacol 2023; 943:175560. [PMID: 36736941 DOI: 10.1016/j.ejphar.2023.175560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Dapagliflozin, the Sodium-glucose cotransporter 2 (SGLT2) inhibitor class of glucose-lowering agents, has shown the significantly nephroprotective effects to reduce the risk of kidney failure in diabetes. However, the underlying mechanisms are incompletely understood to explain the beneficial effects of dapagliflozin on kidney function. Here, we demonstrated that the administered of dapagliflozin for 12 weeks improved the proteinuria, histomorphology damage, oxidative stress, and macrophage infiltrations in the kidney of streptozotocin (STZ)-induced diabetic mice. Meanwhile, dapagliflozin attenuated the renal inflammation and fibrosis by reducing the pro-inflammatory factors interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α) and anti-fiber factor fibronectin (FN) and elevating the anti-inflammatory factor IL-10. Our data revealed that dapagliflozin exerted anti-inflammatory effects by inhibiting the activation of high mobility group box 1 (HMGB1)/TLR2/4/NF-κB signaling pathway. Consistently, we found that dapagliflozin suppressed the expression of HMGB1 and downstream TLR2/4/NF-κB signaling proteins in the human proximal tubular (HK-2) stimulated by high glucose and lipids or HMGB1 and RAW264.7 cells stimulated by IL-1β, respectively. Further experiments were performed in the indirect co-culture model of RAW264.7 and HK-2 cells induced by high glucose and lipids. The results again confirmed the effects of dapagliflozin on alleviating inflammatory response and regulating the proportions of M1/M2 macrophage. It is indicated that the feedback signaling of HMGB1 between the tubules and macrophage involves in the persistence of the inflammation. These data demonstrate that dapagliflozin suppress the self-perpetuating inflammation by blocking the feedback loop of HMGB1 in the kidney, which contribute to ameliorate the renal injury in diabetes.
Collapse
Affiliation(s)
- Yan Yuan
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Mengyao Sun
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Zijie Jin
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Chen Zheng
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Huijing Ye
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Hongbo Weng
- School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
32
|
Wang A, Kang X, Wang J, Zhang S. IFIH1/IRF1/STAT1 promotes sepsis associated inflammatory lung injury via activating macrophage M1 polarization. Int Immunopharmacol 2023; 114:109478. [PMID: 36462334 PMCID: PMC9709523 DOI: 10.1016/j.intimp.2022.109478] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND A growing body of research has shown that the phenotypic change in macrophages from M0 to M1 is essential for the start of the inflammatory process in septic acute respiratory distress syndrome (ARDS). Potential treatment targets might be identified with more knowledge of the molecular regulation of M1 macrophages in septic ARDS. METHODS A multi-microarray interrelated analysis of high-throughput experiments from ARDS patients and macrophage polarization was conducted to identify the hub genes associated with macrophage M1 polarization and septic ARDS. Lipopolysaccharide (LPS) and Poly (I:C) were utilized to stimulate bone marrow-derived macrophages (BMDMs) for M1-polarized macrophage model construction. Knock down of the hub genes on BMDMs via shRNAs was used to screen the genes regulating macrophage M1 polarization in vitro. The cecal ligation and puncture (CLP) mouse model was constructed in knockout (KO) mice and wild-type (WT) mice to explore whether the screened genes regulate macrophage M1 polarization in septic ARDS in vivo. ChIP-seq and further experiments on BMDMs were performed to investigate the molecular mechanism. RESULTS The bioinformatics analysis of gene expression profiles from a clinical cohort of 26 ARDS patients and macrophage polarization found that the 5 hub genes (IFIH1, IRF1, STAT1, IFIT3, GBP1) may have a synergistic effect on macrophage M1 polarization in septic ARDS. Further in vivo investigations indicated that IFIH1, STAT1 and IRF1 contribute to macrophage M1 polarization. The histological evaluation and immunohistochemistry of the lungs from the IRF1-/- and WT mice indicated that knockout of IRF1 markedly alleviated CLP-induced lung injury and M1-polarized infiltration. Moreover, the molecular mechanism investigations indicated that knockdown of IFIH1 markedly promoted IRF1 translocation into the nucleus. Knockout of IRF1 significantly decreases the expression of STAT1. ChIP-seq and PCR further confirmed that IRF1, as a transcription factor of STAT1, binds to the promoter region of STAT1. CONCLUSION IRF1 was identified as the key molecule that regulates macrophage M1polarization and septic ARDS development in vivo and in vitro. Moreover, as the adaptor in response to infection mimics irritants, IFIH1 promotes IRF1 (transcription factor) translocation into the nucleus to initiate STAT1 transcription.
Collapse
Affiliation(s)
- Ailing Wang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueli Kang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shi Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Corresponding author
| |
Collapse
|
33
|
Wang K, Xiong J, Lu Y, Wang L, Tian T. SENP1-KLF4 signalling regulates LPS-induced macrophage M1 polarization. FEBS J 2023; 290:209-224. [PMID: 35942612 DOI: 10.1111/febs.16589] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/19/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
Macrophages are very important immune cells and play critical roles in tumour immunity. Macrophage subtypes can be divided into classical polarization (M1 macrophages) and alternative polarization (M2 macrophages) under different microenvironments. Krüppel-like factor 4 (KLF4) is an essential transcription factor for macrophage polarization. Our previous study has shown that KLF4 SUMOylation plays an important role in macrophage M2 polarization. In the present study, small ubiquitin-like modifier (SUMO) specific peptidase (SENP)1 was identified as a specific protease for KLF4 de-SUMOylation, with the SENP1-KLF4 axis playing a vital role in M1 macrophage polarization by affecting the nuclear factor kappa B signalling pathway. Additionally, the activity of tumour cells was weakened by KLF4 SUMOylation deficient macrophages. Hence, the SENP1-KLF4 axis is considered to play a crucial role in regulating lipopolysaccharide-induced macrophage M1 polarization, thereby affecting the activity of tumour cells. Therefore, the SENP1-KLF4 axis has therapeutic potential as a target in cancer therapy.
Collapse
Affiliation(s)
- Kezhou Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yiwen Lu
- Department of Laboratory Medicine, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| | - Tian Tian
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
34
|
Baicalein Relieves Ferroptosis-Mediated Phagocytosis Inhibition of Macrophages in Ovarian Endometriosis. Curr Issues Mol Biol 2022; 44:6189-6204. [PMID: 36547083 PMCID: PMC9777460 DOI: 10.3390/cimb44120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Iron overload and oxidative stress have been reported to contribute to ferroptosis in endometriotic lesions. However, the possible roles of iron overload on macrophages in endometriosis (EMs) remain unknown. Based on recent reports by single-cell sequencing data of endometriosis, here we found significant upregulations of ferroptosis-associated genes in the macrophage of the endometriotic lesion. Additionally, there was an elevated expression of HMOX1, FTH1, and FTL in macrophages of peritoneal fluid in EMs, as well as iron accumulation in the endometriotic lesions. Notably, cyst fluid significantly up-regulated levels of intracellular iron and ferroptosis in Phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. Additionally, high iron-induced ferroptosis obviously reduced PMA-stimulated THP-1 cells' phagocytosis and increased the expression of angiogenic cytokines, such as vascular endothelial growth factor A (VEGFA) and interleukin 8 (IL8). Baicalein, a potential anti-ferroptosis compound, increased GPX4 expression, significantly inhibited ferroptosis, and restored phagocytosis of THP-1 cells in vitro. Collectively, our study reveals that ferroptosis triggered by high iron in cyst fluid promotes the development of EMs by impairing macrophage phagocytosis and producing more angiogenic cytokines (e.g., IL8 and VEGFA). Baicalein displays the potential for the treatment of EMs, especially in patients with high ferroptosis and low phagocytosis of macrophages.
Collapse
|
35
|
Li T, Li L, Peng R, Hao H, Zhang H, Gao Y, Wang C, Li F, Liu X, Chen F, Zhang S, Zhang J. Abrocitinib Attenuates Microglia-Mediated Neuroinflammation after Traumatic Brain Injury via Inhibiting the JAK1/STAT1/NF-κB Pathway. Cells 2022; 11:cells11223588. [PMID: 36429017 PMCID: PMC9688110 DOI: 10.3390/cells11223588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuroinflammation has been shown to play a critical role in secondary craniocerebral injury, leading to poor outcomes for TBI patients. Abrocitinib, a Janus kinase1 (JAK1) selective inhibitor approved to treat atopic dermatitis (AD) by the Food and Drug Administration (FDA), possesses a novel anti-inflammatory effect. In this study, we investigated whether abrocitinib could ameliorate neuroinflammation and exert a neuroprotective effect in traumatic brain injury (TBI) models. METHODS First, next-generation sequencing (NGS) was used to select genes closely related to neuroinflammation after TBI. Then, magnetic resonance imaging (MRI) was used to dynamically observe the changes in traumatic focus on the 1st, 3rd, and 7th days after the induction of fluid percussion injury (FPI). Moreover, abrocitinib's effects on neurobehaviors were evaluated. A routine peripheral blood test was carried out and Evans blue dye extravasation, cerebral cortical blood flow, the levels of inflammatory cytokines, and changes in the numbers of inflammatory cells were evaluated to investigate the function of abrocitinib on the 1st day post-injury. Furthermore, the JAK1/signal transducer and activator of transcription1 (STAT1)/nuclear factor kappa (NF-κB) pathway was assessed. RESULTS In vivo, abrocitinib treatment was found to shrink the trauma lesions. Compared to the TBI group, the abrocitinib treatment group showed better neurological function, less blood-brain barrier (BBB) leakage, improved intracranial blood flow, relieved inflammatory cell infiltration, and reduced levels of inflammatory cytokines. In vitro, abrocitinib treatment was shown to reduce the pro-inflammatory M1 microglia phenotype and shift microglial polarization toward the anti-inflammatory M2 phenotype. The WB and IHC results showed that abrocitinib played a neuroprotective role by restraining JAK1/STAT1/NF-κB levels after TBI. CONCLUSIONS Collectively, abrocitinib treatment after TBI is accompanied by improvements in neurological function consistent with radiological, histopathological, and biochemical changes. Therefore, abrocitinib can indeed reduce excessive neuroinflammation by restraining the JAK1/STAT1/NF-κB pathway.
Collapse
Affiliation(s)
- Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Hongying Hao
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300000, China
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Hejun Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Xilei Liu
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Correspondence: (S.Z.); (J.Z.)
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Correspondence: (S.Z.); (J.Z.)
| |
Collapse
|
36
|
Wang J, Long R, Han Y. The role of exosomes in the tumour microenvironment on macrophage polarisation. Biochim Biophys Acta Rev Cancer 2022; 1877:188811. [DOI: 10.1016/j.bbcan.2022.188811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
|
37
|
Chen H, Zhao W, Yan X, Huang T, Yang A. Overexpression of Hepcidin Alleviates Steatohepatitis and Fibrosis in a Diet-induced Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2022; 10:577-588. [PMID: 36062292 PMCID: PMC9396326 DOI: 10.14218/jcth.2021.00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Iron overload can contribute to the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). Hepcidin (Hamp), which is primarily synthesized in hepatocytes, is a key regulator of iron metabolism. However, the role of Hamp in NASH remains unclear. Therefore, we aimed to elucidate the role of Hamp in the pathophysiology of NASH. METHODS Male mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for 16 weeks to establish the mouse NASH model. A choline-supplemented amino acid-defined (CSAA) diet was used as the control diet. Recombinant adeno-associated virus genome 2 serotype 8 vector expressing Hamp (rAAV2/8-Hamp) or its negative control (rAAV2/8-NC) was administered intravenously at week 8 of either the CDAA or CSAA diet. RESULTS rAAV2/8-Hamp treatment markedly decreased liver weight and improved hepatic steatosis in the CDAA-fed mice, accompanied by changes in lipogenesis-related genes and adiponectin expression. Compared with the control group, rAAV2/8-Hamp therapy attenuated liver damage, with mice exhibiting reduced histological NAFLD inflammation and fibrosis, as well as lower levels of liver enzymes. Moreover, α-smooth muscle actin-positive activated hepatic stellate cells (HSCs) and CD68-postive macrophages increased in number in the CDAA-fed mice, which was reversed by rAAV2/8-Hamp treatment. Consistent with the in vivo findings, overexpression of Hamp increased adiponectin expression in hepatocytes and Hamp treatment inhibited HSC activation. CONCLUSIONS Overexpression of Hamp using rAAV2/8-Hamp robustly attenuated liver steatohepatitis, inflammation, and fibrosis in an animal model of NASH, suggesting a potential therapeutic role for Hamp.
Collapse
Affiliation(s)
- Hui Chen
- Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| | - Wenshan Zhao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
- Beijing Clinical Medicine Institute, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| |
Collapse
|
38
|
Zhang J, Zhou X, Hao H. Macrophage phenotype-switching in cancer. Eur J Pharmacol 2022; 931:175229. [PMID: 36002039 DOI: 10.1016/j.ejphar.2022.175229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022]
Abstract
Tumour-associated macrophages (TAMs) have been found to be of great importance in tumorigenesis and in promoting malignant progression, including tumour angiogenesis and metastasis. Moreover, the TAM phenotype is more likely to be an M2 type. Transforming TAMs by M2-polarization into the tumour-suppressive M1-phenotype is an important approach for tumour therapy. In this review, we analysed the effects of the tumour microenvironment on macrophage phenotype-switching, including hypoxia and cytokines, and the mechanisms of drugs targeting TAMs. Furthermore, we analysed the effects of exosomes on macrophage polarization, phenotype switching of macrophages, and the mechanisms of lipid mediators targeting TAMs.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
39
|
Synthesis and Assessment of the In Vitro and Ex Vivo Activity of Salicylate Synthase (Mbti) Inhibitors as New Candidates for the Treatment of Mycobacterial Infections. Pharmaceuticals (Basel) 2022; 15:ph15080992. [PMID: 36015139 PMCID: PMC9413995 DOI: 10.3390/ph15080992] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure–activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.
Collapse
|
40
|
Perng V, Navazesh SE, Park J, Arballo JR, Ji P. Iron Deficiency and Overload Modulate the Inflammatory Responses and Metabolism of Alveolar Macrophages. Nutrients 2022; 14:nu14153100. [PMID: 35956279 PMCID: PMC9370601 DOI: 10.3390/nu14153100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alveolar macrophages (AM) are critical to defense against respiratory pathogens. This study evaluated cellular iron imbalance to immunometabolism in endotoxin-polarized porcine AMs (PAMs). PAMs collected from five 6-week-old pigs were treated with a basal media, iron chelator, or ferric ammonium citrate to maintain iron replete or induce iron deficiency or overload, respectively. After 24 h treatment, PAMs were challenged with saline or lipopolysaccharide (LPS) for 6 h. Cells were analyzed for gene, protein, and untargeted metabolome. Cytokines were determined in culture media. Data were assessed using two-way ANOVA. Treatments successfully induced iron deficiency and overload. The mRNA of DMT1 and ZIP14 was increased up to 300-fold by LPS, but unaffected by iron. Surprisingly, both iron deprivation and overload attenuated LPS-induced inflammation, showing less TNFα production and lower mRNA of pro- and anti-inflammatory cytokines than iron-replete PAMs. Forty-eight metabolites were altered by either or both main effects. LPS enhanced the glycolysis and polyol pathways. Iron deprivation disrupted the TCA cycle. Iron overload increased intracellular cholesterol. Interestingly, iron deprivation augmented, whereas iron overload diminished, LPS-induced itaconic acid production, which has anti-microbial and anti-inflammatory properties. Therefore, iron-deficient PAMs may be more resistant to intracellular pathogens which use PAMs as a conduit for infection.
Collapse
Affiliation(s)
| | | | | | | | - Peng Ji
- Correspondence: ; Tel.: +1-530-752-6469
| |
Collapse
|
41
|
Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, Gao LC. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci 2022; 14:888989. [PMID: 35847685 PMCID: PMC9284275 DOI: 10.3389/fnagi.2022.888989] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of senile dementia, includes the complex pathogenesis of abnormal deposition of amyloid beta-protein (Aβ), phosphorylated tau (p-tau) and neuroimmune inflammatory. The neurodegenerative process of AD triggers microglial activation, and the overactivation of microglia produces a large number of neuroimmune inflammatory factors. Microglia dysfunction can lead to disturbances in iron metabolism and enhance iron-induced neuronal degeneration in AD, while elevated iron levels in brain areas affect microglia phenotype and function. In this manuscript, we firstly discuss the role of microglia in AD and then introduce the role of microglia in the immune-inflammatory pathology of AD. Their role in AD iron homeostasis is emphasized. Recent studies on microglia and ferroptosis in AD are also reviewed. It will help readers better understand the role of microglia in iron metabolism in AD, and provides a basis for better regulation of iron metabolism disorders in AD and the discovery of new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
42
|
Bloomer SA. Hepatic Macrophage Abundance and Phenotype in Aging and Liver Iron Accumulation. Int J Mol Sci 2022; 23:ijms23126502. [PMID: 35742946 PMCID: PMC9223835 DOI: 10.3390/ijms23126502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Liver macrophages serve important roles in iron homeostasis through phagocytosis of effete erythrocytes and the export of iron into the circulation. Conversely, intracellular iron can alter macrophage phenotype. Aging increases hepatic macrophage number and nonparenchymal iron, yet it is unknown whether age-related iron accumulation alters macrophage number or phenotype. To evaluate macrophages in a physiological model of iron loading that mimicked biological aging, young (6 mo) Fischer 344 rats were given one injection of iron dextran (15 mg/kg), and macrophage number and phenotype were evaluated via immunohistochemistry. A separate group of old (24 mo) rats was treated with 200 mg/kg deferoxamine every 12 h for 4 days. Iron administration to young rats resulted in iron concentrations that matched the values and pattern of tissue iron deposition observed in aged animals; however, iron did not alter macrophage number or phenotype. Aging resulted in significantly greater numbers of M1 (CD68+) and M2 (CD163+) macrophages in the liver, but neither macrophage number nor phenotype were affected by deferoxamine. Double-staining experiments demonstrated that both M1 (iNOS+) and M2 (CD163+) macrophages contained hemosiderin, suggesting that macrophages of both phenotypes stored iron. These results also suggest that age-related conditions other than iron excess are responsible for the accumulation of hepatic macrophages with aging.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, 1600 Woodland Rd, Abington, PA 19001, USA
| |
Collapse
|
43
|
Lee SY, Fierro J, Dipasquale J, Bastian A, Tran AM, Hong D, Chin B, Nguyen-Lee PJ, Mazal S, Espinal J, Thomas T, Dou H. Engineering Human Circulating Monocytes/Macrophages by Systemic Deliverable Gene Editing. Front Immunol 2022; 13:754557. [PMID: 35663976 PMCID: PMC9159279 DOI: 10.3389/fimmu.2022.754557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Delivery of plasmid DNA to transfect human primary macrophages is extremely difficult, especially for genetic engineering. Engineering macrophages is imperative for the treatment of many diseases including infectious diseases, cancer, neurological diseases, and aging. Unfortunately, plasmid does not cross the nuclear membranes of terminally differentiated macrophages to integrate the plasmid DNA (pDNA) into their genome. To address this issue, we have developed a core-shell nanoparticle (NP) using our newly created cationic lipid to deliver the anti-inflammatory cytokine IL-4 pDNA (IL-4pDNA-NPs). Human blood monocyte-derived macrophages (MDM) were effectively transfected with IL-4pDNA-NPs. IL-4pDNA-NPs were internalized in MDM within 30 minutes and delivered into the nucleus within 2 hours. Exogenous IL-4 expression was detected within 1 - 2 days and continued up to 30 days. Functional IL-4 expression led to M2 macrophage polarization in vitro and in an in vivo mouse model of inflammation. These data suggest that these NPs can protect pDNA from degradation by nucleases once inside the cell, and can transport pDNA into the nucleus to enhance gene delivery in macrophages in vitro and in vivo. In this research, we developed a new method to deliver plasmids into the nucleus of monocytes and macrophages for gene-editing. Introducing IL-4 pDNA into macrophages provides a new gene therapy solution for the treatment of various diseases.
Collapse
Affiliation(s)
- So Yoon Lee
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Javier Fierro
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Jake Dipasquale
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Anthony Bastian
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - An M Tran
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Deawoo Hong
- Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Brandon Chin
- Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Paul J Nguyen-Lee
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Sarah Mazal
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Jamil Espinal
- Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Tima Thomas
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Huanyu Dou
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States.,Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| |
Collapse
|
44
|
Iron accumulation induces oxidative stress, while depressing inflammatory polarization in human iPSC-derived microglia. Stem Cell Reports 2022; 17:1351-1365. [PMID: 35523178 PMCID: PMC9213827 DOI: 10.1016/j.stemcr.2022.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
Iron accumulation in microglia has been observed in Alzheimer’s disease and other neurodegenerative disorders and is thought to contribute to disease progression through various mechanisms, including neuroinflammation. To study this interaction, we treated human induced pluripotent stem cell-derived microglia (iPSC-MG) with iron, in combination with inflammatory stimuli such as interferon gamma (IFN-γ) and amyloid β. Both IFN-γ and iron treatment increased labile iron levels, but only iron treatment led to a consistent increase of ferritin levels, reflecting long-term iron storage. Therefore, in iPSC-MG, ferritin appeared to be regulated by iron revels rather than inflammation. Further investigation showed that while IFN-γ induced pro-inflammatory activation, iron treatment dampened both classic pro- and anti-inflammatory activation on a transcriptomic level. Notably, iron-loaded microglia showed strong upregulation of cellular stress response pathways, the NRF2 pathway, and other oxidative stress pathways. Functionally, iPSC-MG exhibited altered phagocytosis and impaired mitochondrial metabolism following iron treatment. Collectively, these data suggest that in MG, in contrast to current hypotheses, iron treatment does not result in pro-inflammatory activation, but rather dampens it and induces oxidative stress. In iPSC-microglia, iron rather than inflammatory activation induces ferritin expression Excessive iron dampens both classic pro- and anti-inflammatory activation Iron uptake leads to upregulation of NRF2 and other oxidative stress pathways Phagocytosis and mitochondrial metabolism are altered following iron uptake
Collapse
|
45
|
Wen Y, Cheng M, Qin L, Xu W. TNFα-induced abnormal activation of TNFR/NF-κB/FTH1 in endometrium is involved in the pathogenesis of early spontaneous abortion. J Cell Mol Med 2022; 26:2947-2958. [PMID: 35441429 PMCID: PMC9097845 DOI: 10.1111/jcmm.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Early spontaneous abortion (ESA) is one of the most common complications during pregnancy and the inflammation condition in uterine environment such as long‐term exposure to high TNFα plays an essential role in the aetiology. Ferritin heavy chain (FTH1) is considered to be closely associated with inflammation and very important in normal pregnancy, yet the underlying mechanism of how TNFα induced abortion and its relationship with FTH1 remain elusive. In this study, we found that TNFα and FTH1 were positively expressed in decidual stromal cells and increased significantly in the ESA group compared with the normal pregnancy group (NP group). Besides, TNFα expression was positively correlated with FTH1 expression. Furthermore, in vitro cell model demonstrated that high TNFα could induce the abnormal signals of TNFR/NF‐κB/FTH1 and activate apoptosis both in human endometrium stromal cells (hESCs) and in local decidual tissues. Taken together, the present findings suggest that the excessive apoptosis in response to TNFα‐induced upregulation of FTH1 may be responsible for the occurrence of ESA, and thus provide a possible therapeutic target for the treatment of ESA.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng Cheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
47
|
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020555. [PMID: 35056870 PMCID: PMC8779769 DOI: 10.3390/molecules27020555] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
Collapse
|
48
|
Zhang JX, Yang Y, Huang H, Xie HB, Huang M, Jiang W, Ding BW, Zhu QX. TNF-α/TNFR1 regulates the polarization of Kupffer cells to mediate trichloroethylene-induced liver injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113141. [PMID: 34974362 DOI: 10.1016/j.ecoenv.2021.113141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
We have previously shown trichloroethylene (TCE) induced immune liver injury, and TNF-α/TNFR1 pathway as a probably mechanism underlying the immune damage, but the pathogenic mechanism is still unclear. The study aims to investigate whether TNF-α and its receptors regulate Kupffer cell polarization and downstream inflammation signaling pathways during TCE sensitization, to clarify the mechanism of TCE-mediated immune liver injury. 6-8 weeks old SPF BALB/c female mice were used to establish a TCE sensitization model. We found that in the TCE sensitization positive group, liver injury was aggravated, Kupffer cells activated and polarized to M1 type. The expression of M1 Kupffer cell marker proteins CD11c and CD16/32 increased in the TCE positive group, so did TNF-α and TNFR1 in liver. The expression of P-IKK protein, PP65 protein and P-STAT3 protein increased in the TCE sensitization positive group, and the downstream inflammatory factors IL-1β and IL-6 also increased in the TCE sensitization positive group. After using the TNFR1 inhibitor R7050, we found that M1 Kupffer cell polarization, TNF-α expression, signal pathway expression and inflammatory factors IL-1β and IL-6 expression declined, and the liver damage relieved. Briefly, the use of R7050 to inhibit TNF-α/TNFR1 changing the polarization of liver M1 Kupffer cell, thereby inhibiting the activation of related downstream signaling pathways and reducing the secretion of inflammatory factors. TNF-α/TNFR1 regulates the polarization of M1 Kupffer cells inflammatory play an important role in liver immune damage.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Yi Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hua Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Bo Xie
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of dermatological, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Bai-Wang Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of dermatological, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
49
|
Characterization of agapornis fischeri interferon gamma and its activity against beak and feather disease virus. Virus Res 2022; 308:198647. [PMID: 34838936 DOI: 10.1016/j.virusres.2021.198647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
This study sought to clone and sequence the interferon-γ (IFN-γ) gene of the Fischer's lovebird parrot (Agapornis fischeri). Raw264.7 cells treated with the expressed IFN-γ protein exhibited an upregulation in inducible nitric oxide synthase protein expression and nitric oxide (NO) production coupled with increases in phagocytosis and pinocytosis, as well as an induction of interferon-stimulated genes through the activation of the NF-κB factor, all of which are indicators of the innate immune responses of the activated macrophages. Similar to the IFN-γ protein of other species, the NO production activity of the parrot IFN-γ protein decreased by 80% after exposure at 60 °C for 4 min. Additionally, only half of the NO production activity of the parrot IFN-γ protein remained upon exposure to HCl for 30 min. These findings suggested that the parrot IFN-γ protein was heat-labile and sensitive to acidic conditions. Therefore, all of these effects contributed to the blockage of the uptake of BFDV virus-like particles (VLPs) by cells, the nuclear entry of the Cap protein of BFDV VLPs, and the clearance of the virus from BFDV-infected parrots by the IFN-γ protein of Agapornis fischeri. This study is the first to describe the cloning of the IFN-γ gene of Agapornis fischeri and characterize the anti-beak and feather disease virus activity of the IFN-γ protein of Agapornis fischeri.
Collapse
|
50
|
Liang L, Xiong Q, Kong J, Tian C, Miao L, Zhang X, Du H. Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function. Biomed Pharmacother 2021; 144:112253. [PMID: 34607106 DOI: 10.1016/j.biopha.2021.112253] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Iron supplementation is necessary for the treatment of anemia, one of the most frequent complications in inflammatory bowel disease (IBD). However, oral iron supplementation leads to an exacerbation of intestinal inflammation. Gut barrier plays a key role in the pathogenesis of IBD. The aim of this study was to characterize the interrelationship between systemic iron, intestinal barrier and the development of intestinal inflammation in a dextran sulfate sodium (DSS) induced experimental colitis mice model. We found that DSS-treated mice developed severe inflammation of colon, but became much healthy when intraperitoneal injection with iron. Iron supplementation alleviated colonic and systemic inflammation by lower histological scores, restorative morphology of colonic villi, and reduced expression of pro-inflammatory cytokines. Moreover, intraperitoneal supplementation of iron enhanced intestinal barrier function by upregulating the colonic expressions of tight junction proteins, restoring intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and increasing mucous secretion of goblet cells in the colon. High-throughput sequencing of fecal 16 S rRNA showed that iron injection significantly increased the relative abundance of Bacteroidetes, which was suppressed in the gut microbiota of DSS-induced colitis mice. These results provided evidences supporting the protective effects of systemic iron repletion by intraperitoneal injection of iron on intestinal barrier functions. The finding highlights a novel approach for the treatment of IBD with iron injection therapy.
Collapse
Affiliation(s)
- Li Liang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Xiong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jingxia Kong
- Department of Investment and Insurance, Zhejiang Financial College, Hangzhou, China
| | - Chenying Tian
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Linfeng Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huahua Du
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|