1
|
Hovis G, Chandra N, Kejriwal N, Hsieh KJY, Chu A, Yang I, Wadehra M. Understanding the Role of Endothelial Cells in Glioblastoma: Mechanisms and Novel Treatments. Int J Mol Sci 2024; 25:6118. [PMID: 38892305 PMCID: PMC11173095 DOI: 10.3390/ijms25116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is a highly aggressive neoplasm and the most common primary malignant brain tumor. Endothelial tissue plays a critical role in glioblastoma growth and progression, facilitating angiogenesis, cellular communication, and tumorigenesis. In this review, we present an up-to-date and comprehensive summary of the role of endothelial cells in glioblastomas, along with an overview of recent developments in glioblastoma therapies and tumor endothelial marker identification.
Collapse
Affiliation(s)
- Gabrielle Hovis
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Chandra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Nidhi Kejriwal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Kaleb Jia-Yi Hsieh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Spinelli C, Adnani L, Meehan B, Montermini L, Huang S, Kim M, Nishimura T, Croul SE, Nakano I, Riazalhosseini Y, Rak J. Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR. Nat Commun 2024; 15:2865. [PMID: 38570528 PMCID: PMC10991552 DOI: 10.1038/s41467-024-46597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Targeting neovascularization in glioblastoma (GBM) is hampered by poor understanding of the underlying mechanisms and unclear linkages to tumour molecular landscapes. Here we report that different molecular subtypes of human glioma stem cells (GSC) trigger distinct endothelial responses involving either angiogenic or circumferential vascular growth (vasectasia). The latter process is selectively triggered by mesenchymal (but not proneural) GSCs and is mediated by a subset of extracellular vesicles (EVs) able to transfer EGFR/EGFRvIII transcript to endothelial cells. Inhibition of the expression and phosphorylation of EGFR in endothelial cells, either pharmacologically (Dacomitinib) or genetically (gene editing), abolishes their EV responses in vitro and disrupts vasectasia in vivo. Therapeutic inhibition of EGFR markedly extends anticancer effects of VEGF blockade in mice, coupled with abrogation of vasectasia and prolonged survival. Thus, vasectasia driven by intercellular transfer of oncogenic EGFR may represent a new therapeutic target in a subset of GBMs.
Collapse
Affiliation(s)
- Cristiana Spinelli
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lata Adnani
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Meehan
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Laura Montermini
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Minjun Kim
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Tamiko Nishimura
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sidney E Croul
- Department of Pathology & Laboratory Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ichiro Nakano
- Department of Neurosurgery, Hokuto Social Medical Corporation, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan
| | | | - Janusz Rak
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Ribatti D. Aberrant tumor vasculature. Facts and pitfalls. Front Pharmacol 2024; 15:1384721. [PMID: 38576482 PMCID: PMC10991687 DOI: 10.3389/fphar.2024.1384721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Endothelial cells form a single cell layer lining the inner walls of blood vessels and play critical roles in organ homeostasis and disease progression. Specifically, tumor endothelial cells are heterogenous, and highly permeable, because of specific interactions with the tumor tissue environment and through soluble factors and cell-cell interactions. This review article aims to analyze different aspects of endothelial cell heterogeneity in tumor vasculature, with particular emphasis on vascular normalization, vascular permeability, metabolism, endothelial-to-mesenchymal transition, resistance to therapy, and the interplay between endothelial cells and the immune system.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
4
|
Dubourg V, Schwerdt G, Schreier B, Kopf M, Mildenberger S, Benndorf RA, Gekle M. EGFR activation differentially affects the inflammatory profiles of female human aortic and coronary artery endothelial cells. Sci Rep 2023; 13:22827. [PMID: 38129563 PMCID: PMC10739936 DOI: 10.1038/s41598-023-50148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| |
Collapse
|
5
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
6
|
Mitchell MI, Loudig O. Communicator Extraordinaire: Extracellular Vesicles in the Tumor Microenvironment Are Essential Local and Long-Distance Mediators of Cancer Metastasis. Biomedicines 2023; 11:2534. [PMID: 37760975 PMCID: PMC10526527 DOI: 10.3390/biomedicines11092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Human tumors are increasingly being described as a complex "ecosystem", that includes many different cell types, secreted growth factors, extracellular matrix (ECM) components, and microvessels, that altogether create the tumor microenvironment (TME). Within the TME, epithelial cancer cells control the function of surrounding stromal cells and the non-cellular ECM components in an intricate orchestra of signaling networks specifically designed for cancer cells to exploit surrounding cells for their own benefit. Tumor-derived extracellular vesicles (EVs) released into the tumor microenvironment are essential mediators in the reprogramming of surrounding stromal cells, which include cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), and tumor endothelial cells (TECs), which are responsible for the promotion of neo-angiogenesis, immune cell evasion, and invasion which are essential for cancer progression. Perhaps most importantly, tumor-derived EVs play critical roles in the metastatic dissemination of tumor cells through their two-fold role in initiating cancer cell invasion and the establishment of the pre-metastatic niche, both of which are vital for tumor cell migration, homing, and colonization at secondary tumor sites. This review discusses extracellular vesicle trafficking within the tumor microenvironment and pre-metastatic niche formation, focusing on the complex role that EVs play in orchestrating cancer-to-stromal cell communication in order to promote the metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
7
|
Zhang X, Ohayon-Steckel L, Coppin E, Johny E, Dasari A, Florentin J, Vasamsetti S, Dutta P. Epidermal Growth Factor Receptor in Hepatic Endothelial Cells Suppresses MCP-1-Dependent Monocyte Recruitment in Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1363-1371. [PMID: 36946774 PMCID: PMC10121888 DOI: 10.4049/jimmunol.2200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
Insulin resistance is a compromised response to insulin in target tissues such as liver. Emerging evidence shows that vascular endothelial cells (ECs) are critical in mediating glucose metabolism. However, how liver ECs can regulate inflammation in the setting of insulin resistance is still unknown. Using genome-wide transcriptome analysis of ECs isolated from diabetic mice, we found enrichment of the genes involved in epidermal growth factor receptor (Egfr) signaling. In line with this, hepatic sinusoidal ECs in diabetic mice had elevated levels of Egfr expression. Interestingly, we found an increased number of hepatic myeloid cells, especially macrophages, and systemic glucose intolerance in Cdh5Cre/+Egfrfl/fl mice lacking Egfr in ECs compared with littermate control mice with type II diabetes. Egfr deficiency upregulated the expression of MCP-1 in hepatic sinusoidal ECs. This resulted in augmented monocyte recruitment and macrophage differentiation in Cdh5Cre/+Egfrfl/fl mice compared with littermate control mice as determined by a mouse model of parabiosis. Finally, MCP-1 neutralization and hepatic macrophage depletion in Cdh5Cre/+Egfrfl/fl mice resulted in a reduced number of hepatic macrophages and ameliorated glucose intolerance compared with the control groups. Collectively, these results demonstrate a protective endothelial Egfr signaling in reducing monocyte-mediated hepatic inflammation and glucose intolerance in type II diabetic mice.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon-Steckel
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sathish Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
8
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
9
|
GPR174 knockdown enhances blood flow recovery in hindlimb ischemia mice model by upregulating AREG expression. Nat Commun 2022; 13:7519. [PMID: 36473866 PMCID: PMC9727025 DOI: 10.1038/s41467-022-35159-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are critically involved in neovascularization, an important compensatory mechanism in peripheral artery disease. The contribution of G protein coupled receptor 174 (GPR174), which is a regulator of Treg function and development, in neovascularization remains elusive. Here, we show that genetic deletion of GPR174 in Tregs potentiated blood flow recovery in mice after hindlimb ischemia. GPR174 deficiency upregulates amphiregulin (AREG) expression in Tregs, thereby enhancing endothelial cell functions and reducing pro-inflammatory macrophage polarization and endothelial cell apoptosis. Mechanically, GPR174 regulates AREG expression by inhibiting the nuclear accumulation of early growth response protein 1 (EGR1) via Gαs/cAMP/PKA signal pathway activation. Collectively, these findings demonstrate that GPR174 negatively regulates angiogenesis and vascular remodeling in response to ischemic injury and that GPR174 may be a potential molecular target for therapeutic interventions of ischemic vascular diseases.
Collapse
|
10
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
11
|
Advances on Delivery of Cytotoxic Enzymes as Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123836. [PMID: 35744957 PMCID: PMC9230553 DOI: 10.3390/molecules27123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Cancer is one of the most serious human diseases, causing millions of deaths worldwide annually, and, therefore, it is one of the most investigated research disciplines. Developing efficient anticancer tools includes studying the effects of different natural enzymes of plant and microbial origin on tumor cells. The development of various smart delivery systems based on enzyme drugs has been conducted for more than two decades. Some of these delivery systems have been developed to the point that they have reached clinical stages, and a few have even found application in selected cancer treatments. Various biological, chemical, and physical approaches have been utilized to enhance their efficiencies by improving their delivery and targeting. In this paper, we review advanced delivery systems for enzyme drugs for use in cancer therapy. Their structure-based functions, mechanisms of action, fused forms with other peptides in terms of targeting and penetration, and other main results from in vivo and clinical studies of these advanced delivery systems are highlighted.
Collapse
|
12
|
Yamada K, Kizawa R, Yoshida A, Koizumi R, Motohashi S, Shimoyama Y, Hannya Y, Yoshida S, Oikawa T, Shimoda M, Yoshida K. Extracellular PKCδ signals to EGF receptor for tumor proliferation in liver cancer cells. Cancer Sci 2022; 113:2378-2385. [PMID: 35490382 PMCID: PMC9277411 DOI: 10.1111/cas.15386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR‐expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C‐terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ‐EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ‐targeting therapy for liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ryusuke Kizawa
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ayano Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Rei Koizumi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saya Motohashi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yuya Shimoyama
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yoshito Hannya
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saishu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology Department of Internal Medicine The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Masayuki Shimoda
- Department of Pathology The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| |
Collapse
|
13
|
Decreased expression of ErbB2 on left ventricular epicardial cells in patients with diabetes mellitus. Cell Signal 2022; 96:110360. [PMID: 35609807 PMCID: PMC9671200 DOI: 10.1016/j.cellsig.2022.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
We investigated the cell surface expression of ErbB receptors on left ventricular (LV) epicardial endothelial cells and CD105+ cells obtained from cardiac biopsies of patients undergoing coronary artery bypass grafting surgery (CABG). Endothelial cells and CD105+ non-endothelial cells were freshly isolated from LV epicardial biopsies obtained from 15 subjects with diabetes mellitus (DM) and 8 controls. The expression of ErbB receptors was examined using flow cytometry. We found that diabetes mellitus (DM) and high levels of hemoglobin A1C are associated with reduced expression of ErbB2. To determine if the expression of ErbB2 receptors is regulated by glucose levels, we examined the effect of high Glucose in human microvascular endothelial cells (HMEC-1) and CD105+ non-endothelial cells, using a novel flow cytometric approach to simultaneously determine the total level, cell surface expression, and phosphorylation of ErbB2. Incubation of cells in the presence of 25 mM d-glucose resulted in decreased cell surface but not total levels of ErbB2. The level of ErbB2 at the cell surface is controlled by disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) that is expressed on LV epicardial cells. Inhibition of ADAM10 prevented the high glucose-dependent decrease in the cell surface expression of ErbB2. We suggest that high Glucose depresses ErbB receptor signaling in endothelial cells and cardiac progenitor cells via the promotion of ADAM10-dependent cleavage of ErbB2 at the cell surface, thus contributing to vascular dysfunction and adverse remodeling seen in diabetic patients.
Collapse
|
14
|
Choi SH, Yoo SS, Lee SY, Park JY. Anti-angiogenesis revisited: reshaping the treatment landscape of advanced non-small cell lung cancer. Arch Pharm Res 2022; 45:263-279. [PMID: 35449345 DOI: 10.1007/s12272-022-01382-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Although anti-angiogenic agents have been of limited use in the treatment of non-small cell lung cancer (NSCLC) until recently, further roles for the use of angiogenesis inhibition have emerged in the era of targeted therapy and immune checkpoint blockade. Given the shared common downstream signals of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) with their complementary roles in tumorigenesis and tumor angiogenesis, the dual inhibition of EGFR and VEGF pathways represents a rational strategy to maximize clinical efficacy and overcome resistance in the treatment of EGFR-mutant NSCLC. VEGF-driven angiogenesis is a potent driver of immunosuppressive tumor microenvironment (TME), with the recruited immunosuppressive cells driving angiogenesis, highlighting the interplay between the tumor vasculature and the anticancer immunity. Anti-angiogenic therapy can normalize the tumor vasculature and reprogram the TME from immunosuppressive into immunosupportive. Intensive research is under way to utilize the anti-angiogenic combination therapy to its full potential in diverse clinical settings in urgent unmet needs for the treatment of NSCLC. In this review, we present an overview of tumor angiogenesis and summarize the scientific background and preclinical and clinical evidence of anti-angiogenic therapy in combination with target therapy and immunotherapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea. .,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea. .,Vessel-Organ Interaction Research Center, Kyungpook National University, Daegu, 41566, Korea.
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea
| |
Collapse
|
15
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
16
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
17
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
18
|
Chen WT, Lin YH, Changchien CY, Chen Y, Chang HH, Tsai WC, Tsai HC, Wang CY, Shen MS, Cheng LT, Tsai CL. Concurrent Blockade of Endothelial EGFR and VEGF Signaling on Malignant Associated Pleural Fluid Induced Angiogenesis: From Clinic to Bench. Biomedicines 2021; 9:biomedicines9101327. [PMID: 34680445 PMCID: PMC8533568 DOI: 10.3390/biomedicines9101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Malignant-associated pleural fluid (MAPF) represented an unsolved problem in advanced lung cancer. Our previous work characterized increased pleural angiogenesis in lung adenocarcinoma and the propensity of MAPF on endothelial angiogenesis. This study investigated the combined efficacy of the tyrosine kinase inhibitor (gefitinib) and bevacizumab in opposing MAPF-induced angiogenesis. In lung adenocarcinoma patients with malignant pleural effusion (MPE), Kaplan–Meier analysis revealed the benefit of cotreatment with target therapy and bevacizumab. Increased EGFR expression was observed in the pleural microvessels of patients with lung adenocarcinoma both with and without mutations in EGFR. MAPF was obtained from lung adenocarcinoma patients both wild-type and mutant EGFRs. Total and phosphorylated EGFR were upregulated in HUVEC cultured with MAPF. Treatment with gefitinib as an EGFR inhibitor suppressed MAPF-induced endothelial migration and partially attenuated endothelial proliferation in both wild-type and mutant EGFR lung adenocarcinoma. Cotreatment with gefitinib and bevacizumab produced better inhibition of MAPF-induced endothelial angiogenesis than gefitinib alone in the mutant EGFR subgroup. Protein analysis of MAPF-derived exosomes revealed abundant EGFR and p-EGFR components that implied possible transfer to endothelial cells. Concluding Kaplan–Meier analysis and in vitro studies, the results indicated that the addition of bevacizumab on gefitinib treatment could suppress MAPF-induced angiogenesis in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Wei-Teing Chen
- Division of Chest Medicine, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yu-Huei Lin
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Ying Changchien
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (Y.C.); (H.-H.C.)
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (Y.C.); (H.-H.C.)
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (Y.C.); (H.-H.C.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Hao-Chung Tsai
- Division of Chest Medicine, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei 105, Taiwan;
| | - Chieh-Yung Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.W.); (L.-T.C.)
| | - Ming-Sheng Shen
- Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung 411, Taiwan;
| | - Li-Ting Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.W.); (L.-T.C.)
| | - Chen-Liang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.W.); (L.-T.C.)
- Correspondence:
| |
Collapse
|
19
|
Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D, Rovati B, Moccia F, Pedrazzoli P, Ferraris E. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res 2021; 138:104189. [PMID: 34062191 DOI: 10.1016/j.mvr.2021.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.
Collapse
Affiliation(s)
- Giovanna Armani
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy..
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Daniela Cicognini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Rovati
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Ferraris
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
20
|
Cong L, Maishi N, Annan DA, Young MF, Morimoto H, Morimoto M, Nam JM, Hida Y, Hida K. Inhibition of stromal biglycan promotes normalization of the tumor microenvironment and enhances chemotherapeutic efficacy. Breast Cancer Res 2021; 23:51. [PMID: 33966638 PMCID: PMC8108358 DOI: 10.1186/s13058-021-01423-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biglycan is a proteoglycan found in the extracellular matrix. We have previously shown that biglycan is secreted from tumor endothelial cells and induces tumor angiogenesis and metastasis. However, the function of stroma biglycan in breast cancer is still unclear. METHODS Biglycan gene analysis and its prognostic values in human breast cancers were based on TCGA data. E0771 breast cancer cells were injected into WT and Bgn KO mice, respectively. RESULTS Breast cancer patients with high biglycan expression had worse distant metastasis-free survival. Furthermore, biglycan expression was higher in the tumor stromal compartment compared to the epithelial compartment. Knockout of biglycan in the stroma (Bgn KO) in E0771 tumor-bearing mice inhibited metastasis to the lung. Bgn KO also impaired tumor angiogenesis and normalized tumor vasculature by repressing tumor necrosis factor-ɑ/angiopoietin 2 signaling. Moreover, fibrosis was suppressed and CD8+ T cell infiltration was increased in tumor-bearing Bgn KO mice. Furthermore, chemotherapy drug delivery and efficacy were improved in vivo in Bgn KO mice. CONCLUSION Our results suggest that targeting stromal biglycan may yield a potent and superior anticancer effect in breast cancer.
Collapse
Affiliation(s)
- Li Cong
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Dorcas A Annan
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, NIDCR, Bethesda, MD, 20892-4320, USA
| | - Hirofumi Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Masahiro Morimoto
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Jin-Min Nam
- Global Institution for Collaborative Research and Education (GI-CoRE), Faculty of Medicine, Hokkaido University, Sapporo, 060-0808, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan.
| |
Collapse
|
21
|
Obaid G, Samkoe K, Tichauer K, Bano S, Park Y, Silber Z, Hodge S, Callaghan S, Guirguis M, Mallidi S, Pogue B, Hasan T. Is Tumor Cell Specificity Distinct from Tumor Selectivity In Vivo?: A Quantitative NIR Molecular Imaging Analysis of Nanoliposome Targeting. NANO RESEARCH 2021; 14:1344-1354. [PMID: 33717420 PMCID: PMC7951968 DOI: 10.1007/s12274-020-3178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The significance and ability for receptor targeted nanoliposomes (tNLs) to bind to their molecular targets in solid tumors in vivo has been questioned, particularly as the efficiency of their tumor accumulation and selectivity is not always predictive of their efficacy or molecular specificity. This study presents, for the first time, in situ NIR molecular imaging-based quantitation of the in vivo specificity of tNLs for their target receptors, as opposed to tumor selectivity, which includes influences of enhanced tumor permeability and retention. Results show that neither tumor delivery nor selectivity (tumor-to-normal ratio) of cetuximab and IRDye conjugated tNLs correlate with EGFR expression in U251, U87 and 9L tumors, and in fact underrepresent their imaging-derived molecular specificity by up to 94.2%. Conversely, their in vivo specificity, which we quantify as the concentration of tNL-reported tumor EGFR provided by NIR molecular imaging, correlates positively with EGFR expression levels in vitro and ex vivo (Pearson's r= 0.92 and 0.96, respectively). This study provides a unique opportunity to address the problematic disconnect between tNL synthesis and in vivo specificity. The findings encourage their continued adoption as platforms for precision medicine, and facilitates intelligent synthesis and patient customization in order to improve safety profiles and therapeutic outcomes.
Collapse
Affiliation(s)
- Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Kimberley Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Kenneth Tichauer
- Armour College of Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, U.S
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Yeonjae Park
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Zachary Silber
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Susan Callaghan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Mina Guirguis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S
| |
Collapse
|
22
|
Endothelial epidermal growth factor receptor is of minor importance for vascular and renal function and obesity-induced dysfunction in mice. Sci Rep 2021; 11:7269. [PMID: 33790318 PMCID: PMC8012653 DOI: 10.1038/s41598-021-86587-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular EGF receptors (EGFR) influence function and structure of arterial vessels. In genetic mouse models we described the role of vascular smooth muscle (VSMC) EGFR for proper physiological function and structure as well as for pathophysiological alterations by obesity or angiotensin II. As the importance of endothelial (EC) EGFR in vivo is unknown, we analyzed the impact of EC-EGFR knockout in a conditional mouse model on vascular and renal function under control condition as well as in obesity and in comparison to VSMC-KO. Heart and lung weight, blood pressure and aortic transcriptome (determined by RNA-seq) were not affected by EC-EGFR-KO. Aortic reactivity to α1-adrenergic stimulation was not affected by EC-EGFR-KO contrary to VSMC-EGFR-KO. Endothelial-induced relaxation was reduced in abdominal aorta of EC-EGFR-KO animals, whereas it was enhanced in VSMC-EGFR-KO animals. Mesenteric arteries of EC-EGFR-KO animals showed enhanced sensitivity to α1-adrenergic stimulation, whereas endothelial-induced relaxation and vessel morphology were not affected. Renal weight, histomorphology, function (albumin excretion, serum creatinine, fractional water excretion) or transcriptome were not affected by EC-EGFR-KO, likewise in VSMC-EGFR-KO. High fat diet (HFD) over 18 weeks induced arterial wall thickening, renal weight increase, creatininemia, renal and aortic transcriptome alterations with a similar pattern in EC-EGFR-WT and EC-EGFR-KO animals by contrast to the previously reported impact of VSMC-EGFR-KO. HFD induced endothelial dysfunction in abdominal aortae of EC-EGFR-WT, which was not additive to the EC-EGFR-KO-induced endothelial dysfunction. As shown before, VSMC-EGFR-KO prevented HFD-induced endothelial dysfunction. HFD-induced albuminuria was less pronounced in EC-EGFR-KO animals and abrogated in VSMC-EGFR-KO animals. Our results indicate that EC-EGFR, in comparison to VSMC-EGFR, is of minor and opposite importance for basal renovascular function as well as for high fat diet-induced vascular remodeling and renal end organ damage.
Collapse
|
23
|
Vinekar A, Nair AP, Sinha S, Vaidya T, Chakrabarty K, Shetty R, Ghosh A, Sethu S. Tear Fluid Angiogenic Factors: Potential Noninvasive Biomarkers for Retinopathy of Prematurity Screening in Preterm Infants. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 33646290 PMCID: PMC7938022 DOI: 10.1167/iovs.62.3.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose To determine the status of proangiogenic factors in the tear fluid of preterm infants with and without retinopathy of prematurity (ROP). Methods Preterm infants (n = 36) undergoing routine ROP screening included in the prospective study were categorized as No-ROP (n = 13, no ROP at any visits), ROP (if ROP was present at first visit; n = 18), or No-ROP to ROP (no disease at first visit, but developed ROP subsequently; n = 5). Infants with ROP were also grouped as progressing (n = 7) and regressing (n = 16) based on ROP evolution between the first and subsequent visits. Schirmer's strips were used to collect tear fluid and proangiogenic factors (VEGF, angiogenin, soluble vascular cell adhesion molecule, and fractalkine) levels (in picograms per milliliter) in tear fluid were measured by multiplex ELISA. Results Lower levels of VEGF (135 ± 69; mean ± standard deviation) and higher levels of angiogenin (6568 ± 4975) were observed in infants with ROP compared with infants without ROP (172.5 ± 54.0; 4139 ± 3909) at the first visit. Significantly lower levels of VEGF were observed in the No-ROP to ROP group compared with the No-ROP and ROP groups. The VEGF and angiogenin levels at the first visit were significantly lower in infants with ROP with progressing disease. Angiogenin levels negatively correlated with birth weight and gestational age in ROP. The area under the curve (AUC) and odds ratio (OR) analysis demonstrated that angiogenin/birth weight (AUC = 0.776; OR, 8.6); angiogenin/gestational age (AUC = 0.706; OR, 7.3) and Angiogenin/VEGF (AUC = 0.806; OR, 14.3) ratios were able to differentiated preterm infants with and without ROP. Conclusions The association between angiogenin and ROP suggests its possible role in ROP. The ratio of angiogenin level with birth weight, gestational age, and/or VEGF could serve as a potential noninvasive screening biomarker for ROP.
Collapse
Affiliation(s)
- Anand Vinekar
- Department of Pediatric Retina, Narayana Nethralaya, Bangalore, India
| | - Archana Padmanabhan Nair
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Shivani Sinha
- Department of Pediatric Retina, Narayana Nethralaya, Bangalore, India
| | - Tanuja Vaidya
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | | | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India.,Singapore Eye Research Institute, Singapore
| | | |
Collapse
|
24
|
Kannan S, Lee M, Muthusamy S, Blasiak A, Sriram G, Cao T. Peripheral sensory neurons promote angiogenesis in neurovascular models derived from hESCs. Stem Cell Res 2021; 52:102231. [PMID: 33601097 DOI: 10.1016/j.scr.2021.102231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/10/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the adult tissues, blood vessels traverse the body with neurons side by side; and share common signaling molecules. Developmental studies on animal models have shown that peripheral sensory neurons (PSNs) secrete angiogenic factors and endothelial cells (ECs) secrete neurotrophic factors which contribute to their coexistence, thereby forming the peripheral neurovascular (PNV) unit. Despite the large number of studies showing that innervation and vascularization complement each other, the interaction between human PSNs and ECs is still largely unknown. To study this interaction and to evaluate if PSNs affect angiogenesis, we derived both PSNs and ECs from human embryonic stem cells (hESCs) and developed a co-culture system. Seeding the two cell types together showed that PSNs induced endothelial morphogenesis with formation of vessel-like structures (VLSs). The PSN precursors, neural crest stem cells also induced VLS formation in the co-culture system; however, to a lesser extent. This sheds new light on the in vitro angiogenic potential of these cell types. PSNs derived from hESCs are powerful tools for studying development and disease as human PSNs are inaccessible for in vitro assays. Our novel approach, with optimized media condition allowed for integrating hESC-derived PSNs with hESC-derived ECs in three-dimensional (3D) collagen gel for creating a completely humanised PNV model. This preliminary model showed that innervation improves the development of vascularized channels in vitro, and provides insight to the development of innervated 3D models in future.
Collapse
Affiliation(s)
- Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore.
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Er Saw P, Jon S. Understanding of the Entry Mechanism of Nanoparticles into Tumors Determines the Future Direction of Nanomedicine Development. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Korea
| |
Collapse
|
26
|
Therapeutic Approaches for Metastases from Colorectal Cancer and Pancreatic Ductal Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13010103. [PMID: 33466892 PMCID: PMC7830403 DOI: 10.3390/pharmaceutics13010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.
Collapse
|
27
|
Conforti F, Pala L, Bagnardi V, Specchia C, Oriecuia C, Marra A, Zagami P, Morganti S, Tarantino P, Catania C, De Marinis F, Queirolo P, De Pas T. EGFR-TKI Plus Anti-Angiogenic Drugs in EGFR-Mutated Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Clinical Trials. JNCI Cancer Spectr 2020; 4:pkaa064. [PMID: 33344882 PMCID: PMC7737478 DOI: 10.1093/jncics/pkaa064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022] Open
Abstract
Background Results of several randomized clinical trials (RCTs) testing the combination of an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) plus an anti-angiogenic drug in advanced EGFR-mutated non–small cell lung cancer were reported. Methods We first report a systematic review and meta-analysis of all RCTs to estimate effectiveness and toxicity of this new therapeutic approach compared with first-generation EGFR-TKI monotherapy. Subsequently, we present a network meta-analysis comparing the combination of an EGFR-TKI plus an anti-angiogenic drug with 2 new treatment options: combination of an EGFR-TKI plus chemotherapy or new EGFR-TKIs of second or third generation as monotherapy. Results Five RCTs were included in the first meta-analysis. The progression-free survival (PFS) was statistically significantly larger in patients treated with an EGFR-TKI plus an anti-angiogenic drug compared with EGFR-TKI monotherapy: the pooled PFS–hazard ratio (HR) was 0.59 (95% confidence interval [CI] = 0.51 to 0.69). The pooled median-PFS was 17.8 months (95% CI = 16.5 to 19.3 months) for the combination vs 11.7 months (95% CI = 11.1 to 12.7 months) for EGFR-TKI as monotherapy. No statistically significant differences between the 2 treatment arms were observed in overall survival or objective response rate. The rate of grade equal or higher than 3 adverse events was statistically significantly higher in patients treated with EGFR-TKI plus an anti-angiogenic drug: the pooled-relative risk was 1.72 (95% CI = 1.43 to 2.06). Ten RCTs were included in the network meta-analysis. All 3 experimental treatments were associated with a statistically significant improvement in PFS compared with first-generation EGFR-TKIs. When compared to each other, none of the 3 experimental treatments were statistically significantly associated with larger PFS or lower rate of grade 3 or higher adverse events. Conclusion Patients with EGFR-mutated non small-cell lung cancer derived clinically meaningful larger PFS benefit from the addition of an anti-angiogenic drug to a first-generation EGFR-TKI at the cost of an increase of toxicities.
Collapse
Affiliation(s)
- Fabio Conforti
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Laura Pala
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Oriecuia
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Morganti
- Division of New Drugs and Early Drug Development, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Catania
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Tommaso De Pas
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| |
Collapse
|
28
|
uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1,2 signaling in endothelial cells. Cell Mol Life Sci 2020; 78:3057-3072. [PMID: 33237352 PMCID: PMC8004497 DOI: 10.1007/s00018-020-03707-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Exosomes (Exos) have been reported to promote pre-metastatic niche formation, proliferation, angiogenesis and metastasis. We have investigated the role of uPAR in melanoma cell lines-derived Exos and their pro-angiogenic effects on human microvascular endothelial cells (HMVECs) and endothelial colony-forming cells (ECFCs). Melanoma Exos were isolated from conditioned media of A375 and M6 cells by differential centrifugation and filtration. Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle tracking analysis were performed to analyze dimension and concentration of Exos. The CRISPR–Cas 9 technology was exploited to obtain a robust uPAR knockout. uPAR is expressed in melanoma Exos that are internalized by HMVECs and ECFCs, enhancing VE-Cadherin, EGFR and uPAR expression in endothelial cells that undergo a complete angiogenic program, including proliferation, migration and tube formation. uPAR loss reduced the pro-angiogenic effects of melanoma Exos in vitro and in vivo by inhibition of VE-Cadherin, EGFR and uPAR expression and of ERK1,2 signaling in endothelial cells. A similar effect was obtained with a peptide that inhibits uPAR–EGFR interaction and with the EGFR inhibitor Gefitinib, which also inhibited melanoma Exos-dependent EGFR phosphorylation. This study suggests that uPAR is required for the pro-angiogenic activity of melanoma Exos. We propose the identification of uPAR-expressing Exos as a potentially useful biomarker for assessing pro-angiogenic propensity and eventually monitoring the response to treatment in metastatic melanoma patients.
Collapse
|
29
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
30
|
Onufer EJ, Aladegbami B, Imai T, Seiler K, Bajinting A, Courtney C, Sutton S, Bustos A, Yao J, Yeh CH, Sescleifer A, Wang LV, Guo J, Warner BW. EGFR in enterocytes & endothelium and HIF1α in enterocytes are dispensable for massive small bowel resection induced angiogenesis. PLoS One 2020; 15:e0236964. [PMID: 32931498 PMCID: PMC7491746 DOI: 10.1371/journal.pone.0236964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Short bowel syndrome (SBS) results from significant loss of small intestinal length. In response to this loss, adaptation occurs, with Epidermal Growth Factor Receptor (EGFR) being a key driver. Besides enhanced enterocyte proliferation, we have revealed that adaptation is associated with angiogenesis. Further, we have found that small bowel resection (SBR) is associated with diminished oxygen delivery and elevated levels of hypoxia-inducible factor 1-alpha (HIF1α). Methods We ablated EGFR in the epithelium and endothelium as well as HIF1α in the epithelium, ostensibly the most hypoxic element. Using these mice, we determined the effects of these genetic manipulations on intestinal blood flow after SBR using photoacoustic microscopy (PAM), intestinal adaptation and angiogenic responses. Then, given that endothelial cells require a stromal support cell for efficient vascularization, we ablated EGFR expression in intestinal subepithelial myofibroblasts (ISEMFs) to determine its effects on angiogenesis in a microfluidic model of human small intestine. Results Despite immediate increased demand in oxygen extraction fraction measured by PAM in all mouse lines, were no differences in enterocyte and endothelial cell EGFR knockouts or enterocyte HIF1α knockouts by POD3. Submucosal capillary density was also unchanged by POD7 in all mouse lines. Additionally, EGFR silencing in ISEMFs did not impact vascular network development in a microfluidic device of human small intestine. Conclusions Overall, despite the importance of EGFR in facilitating intestinal adaptation after SBR, it had no impact on angiogenesis in three cell types–enterocytes, endothelial cells, and ISEMFs. Epithelial ablation of HIF1α also had no impact on angiogenesis in the setting of SBS.
Collapse
Affiliation(s)
- Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Bola Aladegbami
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Toru Imai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Kristen Seiler
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Adam Bajinting
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Stephanie Sutton
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Aiza Bustos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Cheng-Hung Yeh
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Anne Sescleifer
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Lihong V. Wang
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
31
|
Özkan A, Stolley D, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review. MICROMACHINES 2020; 11:E487. [PMID: 32397454 PMCID: PMC7281532 DOI: 10.3390/mi11050487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In chronic liver diseases and hepatocellular carcinoma, the cells and extracellular matrix of the liver undergo significant alteration in response to chronic injury. Recent literature has highlighted the critical, but less studied, role of the liver vasculature in the progression of chronic liver diseases. Recent advancements in liver-on-a-chip systems has allowed in depth investigation of the role that the hepatic vasculature plays both in response to, and progression of, chronic liver disease. In this review, we first introduce the structure, gradients, mechanical properties, and cellular composition of the liver and describe how these factors influence the vasculature. We summarize state-of-the-art vascularized liver-on-a-chip platforms for investigating biological models of chronic liver disease and their influence on the liver sinusoidal endothelial cells of the hepatic vasculature. We conclude with a discussion of how future developments in the field may affect the study of chronic liver diseases, and drug development and testing.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Danielle Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Department of Oncology, The University of Texas, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
32
|
Hoyer FF, Zhang X, Coppin E, Vasamsetti SB, Modugu G, Schloss MJ, Rohde D, McAlpine CS, Iwamoto Y, Libby P, Naxerova K, Swirski FK, Dutta P, Nahrendorf M. Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation 2020; 142:244-258. [PMID: 32316750 DOI: 10.1161/circulationaha.120.046038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5Cre Egfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5Cre Egfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5Cre Egfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5Cre Egfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.
Collapse
Affiliation(s)
- Friedrich Felix Hoyer
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Xinyi Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.).,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (X.Z.)
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Ganesh Modugu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Maximilian J Schloss
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - David Rohde
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Cameron S McAlpine
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (P.L.)
| | - Kamila Naxerova
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Würzburg, Germany (M.N.)
| |
Collapse
|
33
|
Ciesielski O, Biesiekierska M, Panthu B, Vialichka V, Pirola L, Balcerczyk A. The Epigenetic Profile of Tumor Endothelial Cells. Effects of Combined Therapy with Antiangiogenic and Epigenetic Drugs on Cancer Progression. Int J Mol Sci 2020; 21:ijms21072606. [PMID: 32283668 PMCID: PMC7177242 DOI: 10.3390/ijms21072606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.
Collapse
Affiliation(s)
- Oskar Ciesielski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marta Biesiekierska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Baptiste Panthu
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Varvara Vialichka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- Correspondence: ; Tel.: +48-42-635-45-10
| |
Collapse
|
34
|
Seiler KM, Bajinting A, Alvarado DM, Traore MA, Binkley MM, Goo WH, Lanik WE, Ou J, Ismail U, Iticovici M, King CR, VanDussen KL, Swietlicki EA, Gazit V, Guo J, Luke CJ, Stappenbeck T, Ciorba MA, George SC, Meacham JM, Rubin DC, Good M, Warner BW. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Sci Rep 2020; 10:3842. [PMID: 32123209 PMCID: PMC7051952 DOI: 10.1038/s41598-020-60672-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.
Collapse
Grants
- R01 HD105301 NICHD NIH HHS
- R01 DK106382 NIDDK NIH HHS
- T32 DK007130 NIDDK NIH HHS
- R01 DK104698 NIDDK NIH HHS
- R01 DK114047 NIDDK NIH HHS
- R03 DK111473 NIDDK NIH HHS
- R01 DK109384 NIDDK NIH HHS
- R01 DK118568 NIDDK NIH HHS
- R01 DK112378 NIDDK NIH HHS
- K08 DK101608 NIDDK NIH HHS
- P30 DK052574 NIDDK NIH HHS
- T32 HD043010 NICHD NIH HHS
- K01 DK109081 NIDDK NIH HHS
- Association for Academic Surgery Foundation (AASF)
- Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-F-2017-629; National Institutes of Health 4T32HD043010-14
- National Institutes of Health 3T32DK007130-45S1
- Givin’ it all for Guts Foundation (https://givinitallforguts.org/), Lawrence C. Pakula MD IBD Research, Innovation, and Education Fund, National Institutes of Health R01DK109384
- National Institutes of Health R03DK111473, R01DK118568, and K08DK101608, Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-FR-2017-596, March of Dimes Foundation Grant No. 5-FY17-79, Department of Pediatrics at Washington University School of Medicine, St. Louis
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - David M Alvarado
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mahama A Traore
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Michael M Binkley
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - William H Goo
- Washington University, St. Louis, Missouri, United States
| | - Wyatt E Lanik
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jocelyn Ou
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Usama Ismail
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Micah Iticovici
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cristi R King
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kelli L VanDussen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elzbieta A Swietlicki
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Vered Gazit
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cliff J Luke
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Thaddeus Stappenbeck
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Matthew A Ciorba
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California, United States
| | - J Mark Meacham
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Deborah C Rubin
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States.
| |
Collapse
|
35
|
Lopes-Coelho F, Martins F, Serpa J. Endothelial Cells (ECs) Metabolism: A Valuable Piece to Disentangle Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:143-159. [PMID: 32130698 DOI: 10.1007/978-3-030-34025-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective therapies to fight cancer should not be focused specifically on cancer cells, but it should consider the various components of the TME. Non-cancerous cells cooperate with cancer cells by sharing signaling and organic molecules, accounting for cancer progression. Most of the anti-angiogenic therapy clinically approved for the treatment of human diseases relies on targeting vascular endothelial growth factor (VEGF) signaling pathway. Unexpectedly and unfortunately, the results of anti-angiogenic therapies in the treatment of human diseases are not so effective, showing an insufficient efficacy and resistance.This chapter will give some insights on showing that targeting endothelial cell metabolism is a missing piece to revolutionize cancer therapy. Only recently endothelial cell (EC) metabolism has been granted as an important inducer of angiogenesis. Metabolic studies in EC demonstrated that targeting EC metabolism can be an alternative to overcome the failure of anti-angiogenic therapies. Hence, it is urgent to increase the knowledge on how ECs alter their metabolism during human diseases, in order to open new therapeutic perspectives in the treatment of pathophysiological angiogenesis, as in cancer.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
36
|
Brossa A, Buono L, Fallo S, Fiorio Pla A, Munaron L, Bussolati B. Alternative Strategies to Inhibit Tumor Vascularization. Int J Mol Sci 2019; 20:E6180. [PMID: 31817884 PMCID: PMC6940973 DOI: 10.3390/ijms20246180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells present in tumors show different origin, phenotype, and genotype with respect to the normal counterpart. Various mechanisms of intra-tumor vasculogenesis sustain the complexity of tumor vasculature, which can be further modified by signals deriving from the tumor microenvironment. As a result, resistance to anti-VEGF therapy and activation of compensatory pathways remain a challenge in the treatment of cancer patients, revealing the need to explore alternative strategies to the classical anti-angiogenic drugs. In this review, we will describe some alternative strategies to inhibit tumor vascularization, including targeting of antigens and signaling pathways overexpressed by tumor endothelial cells, the development of endothelial vaccinations, and the use of extracellular vesicles. In addition, anti-angiogenic drugs with normalizing effects on tumor vessels will be discussed. Finally, we will present the concept of endothelial demesenchymalization as an alternative approach to restore normal endothelial cell phenotype.
Collapse
Affiliation(s)
- Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, Universitty of Torino, 10126 Torino, Italy; (A.B.); (L.B.); (S.F.)
| | - Lola Buono
- Department of Molecular Biotechnology and Health Sciences, Universitty of Torino, 10126 Torino, Italy; (A.B.); (L.B.); (S.F.)
| | - Sofia Fallo
- Department of Molecular Biotechnology and Health Sciences, Universitty of Torino, 10126 Torino, Italy; (A.B.); (L.B.); (S.F.)
| | - Alessandra Fiorio Pla
- Department of Life Science and Systems Biology, University of Torino, 10126 Torino, Italy; (A.F.P.); (L.M.)
| | - Luca Munaron
- Department of Life Science and Systems Biology, University of Torino, 10126 Torino, Italy; (A.F.P.); (L.M.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, Universitty of Torino, 10126 Torino, Italy; (A.B.); (L.B.); (S.F.)
| |
Collapse
|
37
|
Xu Z, Jiang P, He S. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Med Sci Monit 2019; 25:9216-9226. [PMID: 31794546 PMCID: PMC6909914 DOI: 10.12659/msm.917736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), one of the most common cavity-associated cancers, has a high incidence and worldwide mortality. However, the cause and underlying molecular mechanisms of OSCC remain unclear. MATERIAL AND METHODS Three microarray datasets (GSE23558, GSE34105, and GSE74530) from the Gene Expression Omnibus (GEO) database were downloaded and then integrated to gain differentially expressed genes (DEGs). We performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs in order to elucidate DEGs' biological roles. Protein-protein interaction (PPI) networks were established in order to identify hub genes. To validate the gene markers for OSCC, the data of TCGA OSCC were also assessed. RESULTS Together, 651 DEGs containing 288 upregulated genes and 363 downregulated genes were screened out, which could completely distinguish between OSCC and normal control tissues by principal component analysis (PCA). The GO analysis indicated the DEGs were enriched in chemokine activity in the biological process group. The molecular functions of DEGs included growth factor activity. The molecular functions included oxidoreductase activity. The main DEG-associated cellular components included extracellular exosome. The KEGG pathway analysis indicated the DEGs were mainly participated in the cytokine-cytokine receptor interaction, metabolism of xenobiotics by cytochrome P450 and glutathione metabolism signal pathway. The co-expression network identified core genes from the PPI network. Additionally, Kaplan-Meier survival analysis showed that CSF2 and EGF genes were significantly correlated with OSCC patients' overall survival. CONCLUSIONS Our study using an integrated bioinformatics analysis might provide valuable information for exploring potential new molecular biomarkers and therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Stomatology, The Third People Hospital of Hainan Province, Sanya, Hainan, China (mainland)
| | - Pan Jiang
- Department of Stomatology, The Third People Hospital of Hainan Province, Sanya, Hainan, China (mainland)
| | - Shengteng He
- Department of Stomatology, The Third People Hospital of Hainan Province, Sanya, Hainan, China (mainland)
| |
Collapse
|
38
|
Hakozaki T, Okuma Y, Hashimoto K, Hosomi Y. Correlation between the qualification for bevacizumab use and the survival of patients with non-small cell lung cancer harboring the epidermal growth factor receptor mutation: a retrospective analysis. J Cancer Res Clin Oncol 2019; 145:2555-2564. [PMID: 31350622 DOI: 10.1007/s00432-019-02985-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Previously, the combination of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and bevacizumab (BEV) was investigated. A subgroup analysis of the IMpower150 trial, which investigated the combination of atezolizumab, carboplatin, paclitaxel, and bevacizumab (ABCP), demonstrated the benefit of ABCP in patients harboring EGFR mutations. This study aims to assess the prognostic significance of the qualification for BEV use and the proportion of patients who potentially benefit from BEV-containing combination therapy before and after initial EGFR-TKI treatment. METHODS We retrospectively analyzed the data of 297 patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC) harboring EGFR mutations who had received EGFR-TKIs. We performed statistical analyses using the Kaplan-Meier method and the Cox regression adjusted for risk factors. RESULTS Of the 297 patients, 203 (68%) were eligible to receive BEV ("BEV fit") at the time of EGFR-TKI initiation. Among the "BEV unfit" patients at baseline (n = 70), 14 (20%) became eligible to receive ABCP ("ABCP fit") at the time of EGFR-TKI failure. The median overall survival (OS) of the "BEV fit" and "BEV unfit" patients was 26.2 [95% confidence interval (CI) 23.7-31.2] and 19.1 (95% CI 15.0-25.1) months, respectively (P < 0.001). The multivariate analysis revealed a marked correlation between survival and the qualification for BEV use. CONCLUSIONS The qualification for BEV use at baseline is independently related to the OS. Some patients harboring EGFR mutations, including those who were "BEV unfit" at baseline, could be eligible for the ABCP regimen after EGFR-TKI treatment.
Collapse
Affiliation(s)
- Taiki Hakozaki
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 105-0045, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan. .,Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 105-0045, Japan.
| | - Kana Hashimoto
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan
| |
Collapse
|
39
|
Oh DY, Lee KW, Han SW, Kim JW, Shin JW, Jo SJ, Won J, Hahn S, Lee H, Kim WH, Bang YJ. A First-in-Human Phase I Study of GC1118, a Novel Anti-Epidermal Growth Factor Receptor Antibody, in Patients with Advanced Solid Tumors. Oncologist 2019; 24:1037-e636. [PMID: 31164456 PMCID: PMC6693725 DOI: 10.1634/theoncologist.2019-0294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED GC1118 is a novel fully human anti-epidermal growth factor receptor (EGFR) antibody with unique binding epitopes and different ligand-binding inhibitory activity compared with cetuximab or panitumumab.GC1118 showed promising antitumor activity, especially in patients with colorectal cancer resistant to prior EGFR antibody. Skin toxicities were more common and diarrhea was less frequent compared with other anti-EGFR antibodies. BACKGROUND GC1118 is a novel monoclonal antibody targeting epidermal growth factor receptor (EGFR) with more potent ligand inhibition than cetuximab or panitumumab. We conducted a first-in-human, phase I study of GC118 in patients with refractory solid tumors. METHODS In the dose escalation part, GC1118 was administered on days 1, 8, 15, and 22, followed by a 2-week rest, during which dose-limiting toxicities (DLTs) were evaluated. In the expansion part, patients were enrolled into three cohorts (Cohort 1 [C1], patients with colorectal cancer [CRC] without prior anti-EGFR treatment; Cohort 2 [C2], patients with CRC with tumors resistant to anti-EGFR therapy; Cohort 3 [C3], EGFR-overexpressing gastric cancer). RESULTS In the dose escalation part, 24 patients were treated at five dose levels: 0.3, 1.0, 3.0, 4.0, and 5.0 mg/kg. In the 5.0 mg/kg cohort, two patients experienced DLTs (skin toxicities). The maximum-tolerated dose (MTD) was 4.0 mg/kg. Common adverse events were skin toxicities. In the expansion part, 39 patients were enrolled. In Cohort 1, stable disease (SD) was observed in 58%; in Cohort 2, partial response (PR) 17% and SD 8%; in Cohort 3, PR 8% and SD 17%. CONCLUSION GC1118 showed promising antitumor activity and was well tolerated. Infrequent diarrhea compared with other anti-EGFR antibodies might be advantageous for further development.
Collapse
Affiliation(s)
- Do-Youn Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seong-Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jonghwa Won
- GC Pharma, Yongin, Korea
- Mogam Institute for Biomedical Research, Yongin, Korea
| | - Seokyung Hahn
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
40
|
S-nitrosylation and its role in breast cancer angiogenesis and metastasis. Nitric Oxide 2019; 87:52-59. [PMID: 30862477 DOI: 10.1016/j.niox.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
S-nitrosylation, the modification by nitric oxide of free sulfhydryl groups in cysteines, has become an important regulatory mechanism in carcinogenesis and metastasis. S-nitrosylation of targets in tumor cells contributes to metastasis regulating epithelial to mesenchymal transition, migration and invasion. In the tumor environment, the role of S-nitrosylation in endothelium has not been addressed; however, the evidence points out that S-nitrosylation of endothelial proteins may regulate angiogenesis, adhesion of tumor cells to the endothelium, intra and extravasation of tumor cells and contribute to metastasis.
Collapse
|
41
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
42
|
Taguchi K, Onoe T, Yoshida T, Yamashita Y, Taniyama K, Ohdan H. Isolation of tumor endothelial cells from murine cancer. J Immunol Methods 2018; 464:105-113. [PMID: 30395818 DOI: 10.1016/j.jim.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Tumor endothelial cells (TECs), which constitute the lining of the tumor blood vessels, have various characteristics as tumor constituent cells. In this study, we describe a novel method for the isolation of highly pure, fresh TECs, which form a small population within the tumor. Tumors were first dissected from tumor-bearing mice and digested to a single cell suspension with Collagenase Type II; the single cells were then separated by density gradient centrifugation. TECs were enriched by CD31-positive selection using magnetic activated cell sorting and subsequently purified by fluorescence activated cell sorting. The high purity of the obtained cells was verified by flow cytometry. Upon cell culture, the isolated cells showed a polygonal shape and a cobblestone appearance, which are features of the endothelial cells. Furthermore, a functional assay revealed that the TECs suppressed the proliferation of CD8+ T cells in vitro. We believe that the isolation method described in this study will enable the further elucidation of the characteristics of TECs.
Collapse
Affiliation(s)
- Kazuhiro Taguchi
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan; Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | - Takashi Onoe
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan; Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan.
| | - Tomoaki Yoshida
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Yoshinori Yamashita
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Kiyomi Taniyama
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
43
|
Shen M, Kang Y. Complex interplay between tumor microenvironment and cancer therapy. Front Med 2018; 12:426-439. [PMID: 30097962 DOI: 10.1007/s11684-018-0663-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Tumor microenvironment (TME) is comprised of cellular and non-cellular components that exist within and around the tumor mass. The TME is highly dynamic and its importance in different stages of cancer progression has been well recognized. A growing body of evidence suggests that TME also plays pivotal roles in cancer treatment responses. TME is significantly remodeled upon cancer therapies, and such change either enhances the responses or induces drug resistance. Given the importance of TME in tumor progression and therapy resistance, strategies that remodel TME to improve therapeutic responses are under developing. In this review, we provide an overview of the essential components in TME and the remodeling of TME in response to anti-cancer treatments. We also summarize the strategies that aim to enhance therapeutic efficacy by modulating TME.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
44
|
Chen S, Le T, Harley BAC, Imoukhuede PI. Characterizing Glioblastoma Heterogeneity via Single-Cell Receptor Quantification. Front Bioeng Biotechnol 2018; 6:92. [PMID: 30050899 PMCID: PMC6050407 DOI: 10.3389/fbioe.2018.00092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of tyrosine kinase receptor (RTK) signaling pathways play important roles in glioblastoma (GBM). However, therapies targeting these signaling pathways have not been successful, partially because of drug resistance. Increasing evidence suggests that tumor heterogeneity, more specifically, GBM-associated stem and endothelial cell heterogeneity, may contribute to drug resistance. In this perspective article, we introduce a high-throughput, quantitative approach to profile plasma membrane RTKs on single cells. First, we review the roles of RTKs in cancer. Then, we discuss the sources of cell heterogeneity in GBM, providing context to the key cells directing resistance to drugs. Finally, we present our provisionally patented qFlow cytometry approach, and report results of a "proof of concept" patient-derived xenograft GBM study.
Collapse
Affiliation(s)
- Si Chen
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Thien Le
- Department of Mathematics and Department of Computer Science, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
45
|
Hida K, Maishi N, Annan DA, Hida Y. Contribution of Tumor Endothelial Cells in Cancer Progression. Int J Mol Sci 2018; 19:ijms19051272. [PMID: 29695087 PMCID: PMC5983794 DOI: 10.3390/ijms19051272] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor progression depends on the process of angiogenesis, which is the formation of new blood vessels. These newly formed blood vessels supply oxygen and nutrients to the tumor, supporting its progression and providing a gateway for tumor metastasis. Tumor angiogenesis is regulated by the balance between angiogenic activators and inhibitors within the tumor microenvironment. Because the newly formed tumor blood vessels originate from preexisting normal vessels, tumor blood vessels, and tumor endothelial cells (TECs) have historically been considered to be the same as normal blood vessels and endothelial cells; however, evidence of TECs’ distinctive abnormal phenotypes has increased. In addition, it has been revealed that TECs constitute a heterogeneous population. Thus, TECs that line tumor blood vessels are important targets in cancer therapy. We have previously reported that TECs induce cancer metastasis. In this review, we describe recent studies on TEC abnormalities related to cancer progression to provide insight into new anticancer therapies.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-0815, Japan.
| |
Collapse
|
46
|
Wang YN, Lee HH, Chou CK, Yang WH, Wei Y, Chen CT, Yao J, Hsu JL, Zhu C, Ying H, Ye Y, Wang WJ, Lim SO, Xia W, Ko HW, Liu X, Liu CG, Wu X, Wang H, Li D, Prakash LR, Katz MH, Kang Y, Kim M, Fleming JB, Fogelman D, Javle M, Maitra A, Hung MC. Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer. Cancer Cell 2018; 33:752-769.e8. [PMID: 29606349 PMCID: PMC5893359 DOI: 10.1016/j.ccell.2018.02.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR. Notably, high plasma ANG level in PDAC patients is positively associated with response to EGFR inhibitor erlotinib treatment. These results identify a role of ANG as a serum biomarker that may be used to stratify patients for EGFR-targeted therapies, and offer insights into the ligand-receptor relationship between RNase and RTK families.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Hao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Cihui Zhu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Jan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaan Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
47
|
Yamakawa M, Doh SJ, Santosa SM, Montana M, Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 2018. [PMID: 29528507 DOI: 10.1002/med.21496] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
48
|
Mésange P, Bouygues A, Ferrand N, Sabbah M, Escargueil AE, Savina A, Chibaudel B, Tournigand C, André T, de Gramont A, Larsen AK. Combinations of Bevacizumab and Erlotinib Show Activity in Colorectal Cancer Independent of RAS Status. Clin Cancer Res 2018; 24:2548-2558. [PMID: 29490990 DOI: 10.1158/1078-0432.ccr-17-3187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/09/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Purpose: There is extensive cross-talk between VEGF- and EGFR-pathway signaling in colorectal cancer. However, combinations of VEGF- and EGFR-targeted monoclonal antibodies (mAb) show disappointing activity, in particular for patients with mutant RAS Previous results show that tyrosine kinase inhibitors (TKI) can be active in colorectal cancer models resistant to mAbs. This prompted us to examine whether the activity of bevacizumab can be increased by combination with erlotinib.Experimental Design: The antitumor activity of bevacizumab, erlotinib, and their combination was determined in colorectal cancer models with different RAS status and bevacizumab sensitivity. EGFR/VEGF pathway activation was characterized by immunohistochemistry, Western blot, and ELISA assays. The influence of cetuximab and erlotinib on EGF-mediated migration and the EGFR-EGF ligand feedback loop was established in colorectal cancer cell lines with different RAS status.Results: The addition of erlotinib increased bevacizumab activity in all models independent of RAS status. Bevacizumab exposure was accompanied by marked EGFR activation in tumor cells as well as in tumor-associated endothelial cells (TECs) and resulted in strong accumulation of intracellular EGFR, which could be attenuated by erlotinib. In cellular models, erlotinib was able to attenuate EGF-mediated functions in all cell lines independent of RAS status while cetuximab only showed activity in RAS wild-type cells.Conclusions: These results should provide a molecular framework to better understand the increased activity of the bevacizumab-erlotinib combination, compared with bevacizumab alone, in the GERCOR DREAM phase III clinical trial. Differential activity of mAbs and TKIs targeting the same signaling pathway is likely applicable for other tumor types. Clin Cancer Res; 24(11); 2548-58. ©2018 AACR.
Collapse
Affiliation(s)
- Paul Mésange
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France
| | - Anaïs Bouygues
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France
| | - Nathalie Ferrand
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Alexandre E Escargueil
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France
| | - Ariel Savina
- Roche Scientific Partnerships, Boulogne-Billancourt, France
| | - Benoist Chibaudel
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Department of Medical Oncology, Institut Hospitalier Franco-Britannique, Levallois-Perret, France
| | - Christophe Tournigand
- Department of Medical Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France.,Université Paris Est, Créteil, France
| | - Thierry André
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France.,Department of Medical Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Aimery de Gramont
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Department of Medical Oncology, Institut Hospitalier Franco-Britannique, Levallois-Perret, France
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
49
|
De Sanctis F, Ugel S, Facciponte J, Facciabene A. The dark side of tumor-associated endothelial cells. Semin Immunol 2018; 35:35-47. [PMID: 29490888 DOI: 10.1016/j.smim.2018.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a hallmark of cancer and a requisite that tumors must achieve to fulfill their metabolic needs of nutrients and oxygen. As a critical step in cancer progression, the 'angiogenic switch' allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic progression and dissemination. Tumor-dependent triggering of the angiogenic switch has critical consequences on tumor progression which extends from an increased nutrient supply and relies instead on the ability of the tumor to hijack the host immune response for the generation of a local immunoprivileged microenvironment. Tumor angiogenic-mediated establishment of endothelial anergy is responsible for this process. However, tumor endothelium can also promote immune tolerance by unbalanced expression of co-stimulatory and co-inhibitory molecules and by releasing soluble factors that restrain T cell function and induce apoptosis. In this review, we discuss the molecular properties of the tumor endothelial barrier and endothelial anergy and discuss the main immunosuppressive mechanisms triggered by the tumor endothelium. Lastly, we describe the current anti-angiogenic therapeutic landscape and how targeting tumor angiogenesis can contribute to improve clinical benefits for patients.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - John Facciponte
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Facciabene
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver 'organ on a chip'. Exp Cell Res 2018; 363:15-25. [PMID: 29291400 PMCID: PMC5944300 DOI: 10.1016/j.yexcr.2017.12.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
The liver plays critical roles in both homeostasis and pathology. It is the major site of drug metabolism in the body and, as such, a common target for drug-induced toxicity and is susceptible to a wide range of diseases. In contrast to other solid organs, the liver possesses the unique ability to regenerate. The physiological importance and plasticity of this organ make it a crucial system of study to better understand human physiology, disease, and response to exogenous compounds. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems.
Collapse
Affiliation(s)
- Colin H Beckwitt
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA.
| |
Collapse
|