1
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Khazem F, Zetoune AB. Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol 2024; 15:322. [PMID: 39085703 PMCID: PMC11291832 DOI: 10.1007/s12672-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
High Mobility Group A2 (HMGA2) oncofetal proteins are a distinct category of Transcription Factors (TFs) known as "architectural factors" due to their lack of direct transcriptional activity. Instead, they modulate the three-dimensional structure of chromatin by binding to AT-rich regions in the minor grooves of DNA through their AT-hooks. This binding allows HMGA2 to interact with other proteins and different regions of DNA, thereby regulating the expression of numerous genes involved in carcinogenesis. Consequently, multiple mechanisms exist to finely control HMGA2 protein expression at various transcriptional levels, ensuring precise concentration adjustments to maintain cellular homeostasis. During embryonic development, HMGA2 protein is highly expressed but becomes absent in adult tissues. However, recent studies have revealed its re-elevation in various cancer types. Extensive research has demonstrated the involvement of HMGA2 protein in carcinogenesis at multiple levels. It intervenes in crucial processes such as cell cycle regulation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, cancer cell stemness, and DNA damage repair mechanisms, ultimately promoting cancer cell survival. This comprehensive review provides insights into the HMGA2 protein, spanning from the genetic regulation to functional protein behavior. It highlights the significant mechanisms governing HMGA2 gene expression and elucidates the molecular roles of HMGA2 in the carcinogenesis process.
Collapse
Affiliation(s)
- Farah Khazem
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
3
|
Kubota S, Sun Y, Morii M, Bai J, Ideue T, Hirayama M, Sorin S, Eerdunduleng, Yokomizo-Nakano T, Osato M, Hamashima A, Iimori M, Araki K, Umemoto T, Sashida G. Chromatin modifier Hmga2 promotes adult hematopoietic stem cell function and blood regeneration in stress conditions. EMBO J 2024; 43:2661-2684. [PMID: 38811851 PMCID: PMC11217491 DOI: 10.1038/s44318-024-00122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.
Collapse
Affiliation(s)
- Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Ideue
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eerdunduleng
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motomi Osato
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
5
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kuwayama N, Kujirai T, Kishi Y, Hirano R, Echigoya K, Fang L, Watanabe S, Nakao M, Suzuki Y, Ishiguro KI, Kurumizaka H, Gotoh Y. HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation. Nat Commun 2023; 14:6420. [PMID: 37828010 PMCID: PMC10570362 DOI: 10.1038/s41467-023-42094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5- and DNase I-inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.
Collapse
Grants
- This research was supported by AMED-CREST and AMED-PRIME of the Japan Agency for Medical Research and Development (JP22gm1310004, JP22gm6110021), SECOM Science and Technology Foundation SECOM Science and Technology Foundation (for Y.K.), Platform Project for Supporting Drug Discovery and Life Science Research from AMED JP21am0101076 and (for H.K.), Research Support Project for Life Science and Drug Discovery from AMED JP22ama121009 (for H.K.), Japan Science and Technology Agency ERATO JPMJER1901 (for H.K.) and by KAKENHI grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JP21J14115 for N.K.; JP22K15033 for T.K.;16H06279, 20H03179, 21H00242 and 22H04687 for Y.K.; 20K07589 for S.W.; JP20H00449, JP18H05534 for H.K.; JP22H00431, JP16H06279 and JP22H04925 for Y.G.)
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Rina Hirano
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kenta Echigoya
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Lingyan Fang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sugiko Watanabe
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kei-Ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
The Emerging Role of m6A Modification in Endocrine Cancer. Cancers (Basel) 2023; 15:cancers15041033. [PMID: 36831377 PMCID: PMC9954123 DOI: 10.3390/cancers15041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
With the development of RNA modification research, N6-methyladenosine (m6A) is regarded as one of the most important internal epigenetic modifications of eukaryotic mRNA. It is also regulated by methylase, demethylase, and protein preferentially recognizing the m6A modification. This dynamic and reversible post-transcriptional RNA alteration has steadily become the focus of cancer research. It can increase tumor stem cell self-renewal and cell proliferation. The m6A-modified genes may be the primary focus for cancer breakthroughs. Although some endocrine cancers are rare, they may have a high mortality rate. As a result, it is critical to recognize the significance of endocrine cancers and identify new therapeutic targets that will aid in improving disease treatment and prognosis. We summarized the latest experimental progress in the m6A modification in endocrine cancers and proposed the m6A alteration as a potential diagnostic marker for endocrine malignancies.
Collapse
|
8
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
9
|
Li S, Zong X, Zhang L, Li L, Wu J. A chromatin accessibility landscape during early adipogenesis of human adipose-derived stem cells. Adipocyte 2022; 11:239-249. [PMID: 35435105 PMCID: PMC9037556 DOI: 10.1080/21623945.2022.2063015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Obesity has become a serious global public health problem; a deeper understanding of systemic change of chromatin accessibility during human adipogenesis contributes to conquering obesity and its related diseases. Here, we applied the ATAC-seq method to depict a high-quality genome‐wide time-resolved accessible chromatin atlas during adipogenesis of human adipose-derived stem cells (hASCs). Our data indicated that the chromatin accessibility drastic dynamically reformed during the adipogenesis of hASCs and 8 h may be the critical transition node of adipogenesis chromatin states from commitment phase to determination phase. Moreover, upon adipogenesis, we also found that the chromatin accessibility of regions related to anti-apoptotic, angiogenic and immunoregulatory gradually increased, which is beneficial to maintaining the health of adipose tissue (AT). Finally, the chromatin accessibility changed significantly in intronic regions of peroxisome proliferator‐activated receptor γ during adipogenesis, and these regions were rich in transcription factors binding motifs that were exposed for further regulation. Overall, we systematically analysed the complex change of chromatin accessibility occurring in the early stage of adipogenesis and deepened our understanding of human adipogenesis. Furthermore, we also provided a good reference data resource of genome‐wide chromatin accessibility for future studies on human adipogenesis.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Zong
- Division of achievements transformation, Development Center for Medical Science & Technology National Health Commission of the People’s Republic of China, Beijing, China
| | - Liheng Zhang
- Shanghai Jiayin Biotechnology Co., Ltd, Shanghai, China
| | - Luya Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Mohammed NI, Alzubaidi ZF, Khudhair M. THE RELEVANCE OF RS6777038 AND RS6444082 OF IGF2BP2 GENE POLYMORPHISM AND TYPE 2 DIABETES MELLITUS: A CASE CONTROL STUDY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2811-2816. [PMID: 36591772 DOI: 10.36740/wlek202211215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: We investigate IGF2BP2 gene polymorphisms (rs6777038 and rs6444082) association with T2DM of Iraqi sample. PATIENTS AND METHODS Materials and methods: The study involves 800 participants that divided to a healthy control group (400) and T2DM patients (400). Fasting blood sugar (FBS), triglycerides (Tgs), high-density lipoprotein cholesterol (HDL-Ch), total cholesterol (T-Ch), low-density lipoprotein cholesterol (LDL-Ch), and fasting insulin measured for both participant groups. IGF2BP2 gene has been genotyped for polymorphisms, rs6777038 and rs6444082 using the PCR-RFLP technique. RESULTS Results: Logistic regression analysis testing for rs6777038 revealed that the genotype and allele frequency differ significantly (p=0.009) between T2DM and control group. In codominant model, TT genotype carriers had higher risks for diabetes than control also in the recessive model TT genotype significantly had higher risk for diabetes than control group. The other models of rs6777038 failed to reveal significant differences. The rs6777038 genotypes as codominant model showed significant differences with phenotypic characters of BMI, insulin and HOMA-IR. As well as, this SNP as dominant model showed significant differences with fasting insulin and HOMA-IR. However, rs6444082 genotypes only as dominant model reveal significant variation with HOMA-IR. CONCLUSION Conclusions: This study confirmed the variant rs6777038 of IGF2BP2 possibly associated with T2DM risks and some anthropometric parameters such as lower fasting insulin, HOMA-IR and BMI in Iraqi T2DM participants.
Collapse
Affiliation(s)
- Noaman Ibadi Mohammed
- DEPARTMENT OF PHYSIOLOGY, BIOCHEMISTRY AND PHARMACOLOGY, FACULTY OF VETERINARY MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Zubaida Falih Alzubaidi
- DEPARTMENT OF CLINICAL AND LABORATORY SCIENCES, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Muneer Khudhair
- DEPARTMENT OF LAB INVESTIGATIONS, FACULTY OF SCIENCES, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
12
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
13
|
HMGA2 Promotes Brain Injury in Rats with Cerebral Infarction by Activating TLR4/NF-κB Signaling Pathway. Mediators Inflamm 2022; 2022:1376959. [PMID: 35966335 PMCID: PMC9371803 DOI: 10.1155/2022/1376959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral infarction is a common disease with a higher disability and fatality rates. The incidence rates of cerebral infarction or cerebral ischemic stroke gradually increase with aging and cerebrovascular disease progression. This study is aimed at evaluating the effects of HMGA2 on cerebral infarction-induced brain tissue damage and its underlying mechanisms. Adult Sprague Dawley rats were pretreated with sh-HMGA2 before cerebral infarction operation. The effect of HMGA2 on the arrangement, distribution, and morphological structure of neurons and the cell apoptosis ratio in brain tissue were detected via hematoxylin and eosin staining, brain-water content, TTC staining, and TUNEL staining. The results from ELISA assay, qPCR, and western blot indicated that downregulation of HMGA2 mitigated inflammatory stress via regulating the expression of TLR4/NF-κB. In addition, results showed that suppressed HMGA2 attenuated the neurological dysfunction of brain injury rats and markedly reduced infarct volume. HMGA2 might be able to alleviate the damage associated with cerebral infarction-induced inflammatory response and cell apoptosis. Moreover, downregulation of HMGA2 had a protective effect on the brain damage derived from cerebral infarction by mediating the TLR4/NF-κB pathway. In conclusion, the current study demonstrated that downregulation of HMGB2 decreased the infarct size, inflammatory responses, and apoptosis in cerebral injury and further had neuroprotective effects against cerebral infarction-induced brain damage. Finally, these results indicated that the downregulation of the TLR4/NF-κB pathway after ischemia by HMGB2 inhibition is a potential mechanism of the neuroprotective effect of cerebral injury.
Collapse
|
14
|
Cui J, Dean D, Hornicek FJ, Yi G, Duan Z. Expression and Clinical Significance of High-Mobility Group AT-hook 2 (HMGA2) in Osteosarcoma. Orthop Surg 2022; 14:955-966. [PMID: 35388973 PMCID: PMC9087380 DOI: 10.1111/os.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Although high‐mobility group AT‐hook 2 (HMGA2) has been shown to have crucial roles in the pathogenesis and metastasis of various malignancies, its expression and significance in osteosarcoma remain unknown. Here we evaluate the expression, clinical prognostic value, and overall function of HMGA2 in osteosarcoma. Methods Sixty‐nine osteosarcoma patient specimens within a tissue microarray (TMA) were analyzed by immunohistochemistry for HMGA2 expression. Demographics and clinicopathological information including age, gender, tumor location, metastasis, recurrence, chemotherapy response, follow‐up time, and disease status were also collected. After validation of expression, we determined whether there was a correlation between HMGA2 expression and patient clinicopathology. HMGA2 expression was also evaluated in osteosarcoma cell lines and patient tissues by Western blot, we analyzed the expression of HMGA2 in the human osteosarcoma cell lines MG63, 143B, U2OS, Saos‐2, MNNG/HOS, and KHOS. HMGA2‐specific siRNA and clonogenic assays were then used to determine the effect of HMGA2 inhibition on osteosarcoma cell proliferation, growth, and chemosensitivity. Results HMGA2 expression was elevated in the osteosarcoma patient specimens and human osteosarcoma cell lines. HMGA2 was differentially expressed in human osteosarcoma cell lines. Specifically, a relatively high expression of HMGA2 was present in KHOS, MNNG/HOS, 143B and a relatively low expression was in MG63, U2OS as well as Saos‐2. HMGA2 expression is correlated with metastasis and shorter overall survival. High HMGA2 expression is an independent predictor of poor osteosarcoma prognosis. There was no significant correlation between HMGA2 expression and the age, gender, or tumor site of the patient. HMGA2 expression is predominantly within the nucleus. The expression of HMGA2 also directly correlated to neoadjuvant chemoresistance. There was a significant reduction of HMGA2 expression in the siRNA transfection group. After the use of siRNA, the proliferation of osteosarcoma cells is decreased and the chemosensitivity of osteosarcoma cells is significantly increased. Conclusion Our study supports HMGA2 as a potential prognostic biomarker and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Sa R, Liang R, Qiu X, He Z, Liu Z, Chen L. Targeting IGF2BP2 Promotes Differentiation of Radioiodine Refractory Papillary Thyroid Cancer via Destabilizing RUNX2 mRNA. Cancers (Basel) 2022; 14:cancers14051268. [PMID: 35267576 PMCID: PMC8909796 DOI: 10.3390/cancers14051268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Differentiation therapy is one of the most promising treatment approaches for radioiodine refractory papillary thyroid cancer (RR-PTC). In this study, we found that insulin-like growth factor 2 mRNA-binding protein 2 promoted dedifferentiation of PTC via integrating to 3′-untranslated regions of runt-related transcription factor 2, which bound to the promoter region of sodium/iodide symporter, downregulating its expression. Abstract N6-methyladenosine (m6A) regulators play an important role in multiple biological and pathological processes of radioiodine refractory papillary thyroid cancer (RR-PTC). However, the function of m6A regulators in differentiation of RR-PTC remains unclear. In this study, online data, clinical samples, and RR-PTC cell lines (K1 and TPC1) were used to identify the m6A regulators that contributed to the differentiation of RR-PTC. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was found to be associated with thyroid-specific genes in online data analyses, and metastatic PTCs with high expression of IGF2BP2 were prone to be 131I-nonavid in clinical analyses. Furthermore, targeting IGF2BP2 increased 125I uptake in RR-PTC cell lines and enhanced the sodium/iodide symporter (NIS) expression. Mechanistically, IGF2BP2 bound to the m6A modification site of runt-related transcription factor 2 (RUNX2) 3′-UTR and enhanced the RUNX2 mRNA stability. Moreover, RUNX2 could bind to the promoter region of NIS to block the differentiation of RR-PTC. Together, these results demonstrated that IGF2BP2 represents a diagnostic marker for RR-PTC, suggesting a novel differentiation therapeutic strategy of targeting IGF2BP2.
Collapse
Affiliation(s)
- Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin Street, Changchun 130021, China
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu 610041, China;
| | - Xian Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
| | - Ziyan He
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China
- Correspondence: (Z.L.); (L.C.); Tel.: +86-189-3017-2295 (Z.L.); +86-216-436-9181(L.C.)
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
- Correspondence: (Z.L.); (L.C.); Tel.: +86-189-3017-2295 (Z.L.); +86-216-436-9181(L.C.)
| |
Collapse
|
16
|
Carrabotta M, Laginestra MA, Durante G, Mancarella C, Landuzzi L, Parra A, Ruzzi F, Toracchio L, De Feo A, Giusti V, Pasello M, Righi A, Lollini PL, Palmerini E, Donati DM, Manara MC, Scotlandi K. Integrated Molecular Characterization of Patient-Derived Models Reveals Therapeutic Strategies for Treating CIC-DUX4 Sarcoma. Cancer Res 2022; 82:708-720. [PMID: 34903601 PMCID: PMC9359717 DOI: 10.1158/0008-5472.can-21-1222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Capicua-double homeobox 4 (CIC-DUX4)-rearranged sarcomas (CDS) are extremely rare, highly aggressive primary sarcomas that represent a major therapeutic challenge. Patients are treated according to Ewing sarcoma protocols, but CDS-specific therapies are strongly needed. In this study, RNA sequencing was performed on patient samples to identify a selective signature that differentiates CDS from Ewing sarcoma and other fusion-driven sarcomas. This signature was used to validate the representativeness of newly generated CDS experimental models-patient-derived xenografts (PDX) and PDX-derived cell lines-and to identify specific therapeutic vulnerabilities. Annotation analysis of differentially expressed genes and molecular gene validation highlighted an HMGA2/IGF2BP/IGF2/IGF1R/AKT/mTOR axis that characterizes CDS and renders the tumors particularly sensitive to combined treatments with trabectedin and PI3K/mTOR inhibitors. Trabectedin inhibited IGF2BP/IGF2/IGF1R activity, but dual inhibition of the PI3K and mTOR pathways was required to completely dampen downstream signaling mediators. Proof-of-principle efficacy for the combination of the dual AKT/mTOR inhibitor NVP-BEZ235 (dactolisib) with trabectedin was obtained in vitro and in vivo using CDS PDX-derived cell lines, demonstrating a strong inhibition of local tumor growth and multiorgan metastasis. Overall, the development of representative experimental models (PDXs and PDX-derived cell lines) has helped to identify the unique sensitivity of the CDS to AKT/mTOR inhibitors and trabectedin, revealing a mechanism-based therapeutic strategy to fight this lethal cancer. SIGNIFICANCE This study identifies altered HMGA2/IGF2BP/IGF2 signaling in CIC-DUX4 sarcomas and provides proof of principle for combination therapy with trabectedin and AKT/mTOR dual inhibitors to specifically combat the disease.
Collapse
Affiliation(s)
- Marianna Carrabotta
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Giorgio Durante
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Caterina Mancarella
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lisa Toracchio
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Veronica Giusti
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcoma and Novel Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Third Orthopaedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
17
|
Lu F, Chen W, Jiang T, Cheng C, Wang B, Lu Z, Huang G, Qiu J, Wei W, Yang M, Huang X. Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma. Exp Ther Med 2022; 23:252. [PMID: 35261624 DOI: 10.3892/etm.2022.11177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fenying Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tingwang Jiang
- Department of Science and Technology Division, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Cuie Cheng
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Bin Wang
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Zhiping Lu
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Guojin Huang
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Jiaming Qiu
- Department of Pathology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Wei Wei
- Department of Pathology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Ming Yang
- Department of Thoracic Surgery, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Xia Huang
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| |
Collapse
|
18
|
The acidic domain of Hmga2 and the domain’s linker region are critical for driving self-renewal of hematopoietic stem cell. Int J Hematol 2022; 115:553-562. [DOI: 10.1007/s12185-021-03274-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
|
19
|
Cao J, Yan W, Ma X, Huang H, Yan H. Insulin-like Growth Factor 2 mRNA-Binding Protein 2-a Potential Link Between Type 2 Diabetes Mellitus and Cancer. J Clin Endocrinol Metab 2021; 106:2807-2818. [PMID: 34061963 PMCID: PMC8475209 DOI: 10.1210/clinem/dgab391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT Type 2 diabetes mellitus (T2DM) and cancer share a variety of risk factors and pathophysiological features. It is becoming increasingly accepted that the 2 diseases are related, and that T2DM increases the risk of certain malignancies. OBJECTIVE This review summarizes recent advancements in the elucidation of functions of insulin-like growth factor 2 (IGF-2) messenger RNA (mRNA)-binding protein 2 (IGF2BP2) in T2DM and cancer. METHODS A PubMed review of the literature was conducted, and search terms included IGF2BP2, IMP2, or p62 in combination with cancer or T2DM. Additional sources were identified through manual searches of reference lists. The increased risk of multiple malignancies and cancer-associated mortality in patients with T2DM is believed to be driven by insulin resistance, hyperinsulinemia, hyperglycemia, chronic inflammation, and dysregulation of adipokines and sex hormones. Furthermore, IGF-2 is oncogenic, and its loss-of-function splice variant is protective against T2DM, which highlights the pivotal role of this growth factor in the pathogenesis of these 2 diseases. IGF-2 mRNA-binding proteins, particularly IGF2BP2, are also involved in T2DM and cancer, and single-nucleotide variations (formerly single-nucleotide polymorphisms) of IGF2BP2 are associated with both diseases. Deletion of the IGF2BP2 gene in mice improves their glucose tolerance and insulin sensitivity, and mice with transgenic p62, a splice variant of IGF2BP2, are prone to diet-induced fatty liver disease and hepatocellular carcinoma, suggesting the biological significance of IGF2BP2 in T2DM and cancer. CONCLUSION Accumulating evidence has revealed that IGF2BP2 mediates the pathogenesis of T2DM and cancer by regulating glucose metabolism, insulin sensitivity, and tumorigenesis. This review provides insight into the potential involvement of this RNA binding protein in the link between T2DM and cancer.
Collapse
Affiliation(s)
- Junguo Cao
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Weijia Yan
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
- Department of Ophthalmology, University of Heidelberg, Heidelberg 69120, Germany
| | - Xiujian Ma
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Hong Yan
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
| |
Collapse
|
20
|
The biological function of IGF2BPs and their role in tumorigenesis. Invest New Drugs 2021; 39:1682-1693. [PMID: 34251559 DOI: 10.1007/s10637-021-01148-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) pertain to a highly conservative RNA-binding family that works as a post-transcriptional fine-tuner for target transcripts. Emerging evidence suggests that IGF2BPs regulate RNA processing and metabolism, including stability, translation, and localization, and are involved in various cellular functions and pathophysiologies. In this review, we summarize the roles and molecular mechanisms of IGF2BPs in cancer development and progression. We mainly discuss the functional relevance of IGF2BPs in embryo development, neurogenesis, metabolism, RNA processing, and tumorigenesis. Understanding IGF2BPs role in tumor progression will provide new insight into cancer pathophysiology.
Collapse
|
21
|
Barca I, Mignogna C, Donato G, Cristofaro MG. Expression of PLAG1, HMGA1 and HMGA2 in minor salivary glands tumours. Gland Surg 2021; 10:1609-1617. [PMID: 34164305 DOI: 10.21037/gs-20-667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Diagnosis of minor salivary gland (MSG) tumours is often difficult, due to the scarce tissue obtained from bioptic excision and complex histopathological differential diagnosis. In our study we performed an immunohistochemical analysis of PLAG1, HMGA1 and HMGA2 on a series of MSG tumours, in order to develop a new helpful diagnostic panel. Methods A retrospective series of 17 surgical specimens of MSG tumours were analysed for the expression of PLAG1, HMGA1 and HMGA2. Three control cases were enrolled and analysed. An intensity and percentage-based approach was performed, creating a combined score panel. Results PLAG1 facilitate the diagnosis of benign tumours, discriminating it from malignant histotypes, with a defined cut-off value. Similarly, HMGA1 is significantly higher in benign histotypes than in malignant ones. HMGA2 in our series, did not reveal any association in identifying benign from malignant histotypes. Conclusions In this study we assessed the diagnostic role of PLAG1, HMGA1 and HMGA2 immunohistochemical analysis. The score panel facilitate histopathological diagnosis of these rare tumours, helping to distinguish benign tumours from malignant ones and ameliorating the differential diagnosis of specific histotypes.
Collapse
Affiliation(s)
- Ida Barca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | | |
Collapse
|
22
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
23
|
Bitaraf A, Razmara E, Bakhshinejad B, Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC, Babashah S. The oncogenic and tumor suppressive roles of RNA-binding proteins in human cancers. J Cell Physiol 2021; 236:6200-6224. [PMID: 33559213 DOI: 10.1002/jcp.30311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Mousa Vatanmakanian
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Overexpression of Hmga2 activates Igf2bp2 and remodels transcriptional program of Tet2-deficient stem cells in myeloid transformation. Oncogene 2021; 40:1531-1541. [PMID: 33452460 DOI: 10.1038/s41388-020-01629-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
High Mobility Group AT-hook 2 (HMGA2) is a chromatin modifier and its overexpression has been found in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Level of Hmga2 expression is fine-tuned by Lin28b-Let-7 axis and Polycomb Repressive Complex 2, in which deletion of Ezh2 leads to activation of Hmga2 expression in hematopoietic stem cells. To elucidate the mechanisms by which the overexpression of HMGA2 helps transformation of stem cells harboring a driver mutation of TET2, we generated an Hmga2-expressing Tet2-deficient mouse model showing the progressive phenotypes of MDS and AML. The overexpression of Hmga2 remodeled the transcriptional program of Tet2-deficient stem and progenitor cells, leading to the impaired differentiation of myeloid cells. Furthermore, Hmga2 was bound to a proximal region of Igf2bp2 oncogene, and activated its transcription, leading to enhancing self-renewal of Tet2-deficient stem cells that was suppressed by inhibition of the DNA binding of Hmga2. These combinatory effects on the transcriptional program and cellular function were not redundant to those in Tet2-deficient cells. The present results elucidate that Hmga2 targets key oncogenic pathways during the transformation and highlight the Hmga2-Igf2bp2 axis as a potential target for therapeutic intervention.
Collapse
|
25
|
Mas A, Simón C. Molecular differential diagnosis of uterine leiomyomas and leiomyosarcomas. Biol Reprod 2020; 101:1115-1123. [PMID: 30184111 DOI: 10.1093/biolre/ioy195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022] Open
Abstract
Uterine leiomyomas (LM) and leiomyosarcomas (LMS) are considered biologically unrelated tumors due to their cytogenetic and molecular disparity. Yet, these tumors share morphological and molecular characteristics that cannot be differentiated through current clinical diagnostic tests, and thus cannot be definitively classified as benign or malignant until surgery. Newer approaches are needed for the identification of these tumors, as has been done for other tissues. The application of next generation sequencing enables the detection of new mutations that, when coupled to machine learning bioinformatic tools, advances our understanding of chromosomal instability. These approaches in the context of LM and LMS could allow the discovery of genetic variants and possible genomic markers. Additionally, the potential clinical utility of circulating cell-free tumor DNA could revolutionize the noninvasive detection and monitoring of these tumors. Here, we seek to provide a perspective on the molecular background of LM and LMS, recognizing their distinct molecular features that may lead to improved diagnosis and personalized treatments, which would have a measurable impact on women's reproductive health.
Collapse
Affiliation(s)
- Aymara Mas
- Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain.,Igenomix Foundation/Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Carlos Simón
- Igenomix Foundation/Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| |
Collapse
|
26
|
Li Y, Qiang W, Griffin BB, Gao T, Chakravarti D, Bulun S, Kim JJ, Wei JJ. HMGA2-mediated tumorigenesis through angiogenesis in leiomyoma. Fertil Steril 2020; 114:1085-1096. [PMID: 32868105 DOI: 10.1016/j.fertnstert.2020.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To study the role of HMGA2 in promoting angiogenesis in uterine leiomyoma (LM). DESIGN This study involved evaluation of vessel density and angiogenic factors in leiomyomas with HMGA2 overexpression; examining angiogenic factor expression and AKT signaling in myometrial (MM) and leiomyoma cells by introducing HMGA2 overexpression in vitro; and exploring vessel formation induced by HMGA2 overexpression both in vitro and in vivo. SETTING University research laboratory. PATIENTS None. INTERVENTIONS None. MAIN OUTCOME MEASURES The main outcome measures include vessel density in leiomyomas with HMGA2 (HMGA2-LM) or MED12 (MED12-LM) alteration; angiogenic factor expression in primary leiomyoma and in vitro cell line model; and vessel formation in leiomyoma cells with HMGA2 overexpression in vitro and in vivo. RESULTS Angiogenic factors and receptors were significantly upregulated at mRNA and protein levels in HMGA2-LM. Specifically, HMGA2-LM exhibited increased expression of VEGFA, EGF, bFGF, TGFα, VEGFR1, and VEGFR2 compared to MED12-LM and myometrium. Overexpression of HMGA2 in MM and LM cell lines resulted in increased secretion of angiogenesis-associated factors. Secreted factors promoted human umbilical vein endothelial cell (HUVEC) migration, tube formation, and wound healing. HMGA2 overexpression upregulated IGF2BP2 and pAKT, and silencing the IGF2BP2 gene reduced pAKT levels and reduced HUVEC migration. Myometrial cells with stable HMGA2 overexpression exhibited increased colony formation and cell growth in vitro and formed xenografts with increased blood vessels. CONCLUSIONS HMGA2-LM have a high vasculature density, which likely contributes to tumor growth and disease burden of this leiomyoma subtype. HMGA2 plays an important role in angiogenesis and the involvement of IGF2BP2-mediated pAKT activity in angiogenesis, which provides a potential novel target for therapy for this subtype of LM.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenan Qiang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brannan Brooks Griffin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tingting Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Debabrata Chakravarti
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Serdar Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
27
|
Unachukwu U, Chada K, D’Armiento J. High Mobility Group AT-Hook 2 (HMGA2) Oncogenicity in Mesenchymal and Epithelial Neoplasia. Int J Mol Sci 2020; 21:ijms21093151. [PMID: 32365712 PMCID: PMC7246488 DOI: 10.3390/ijms21093151] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
High mobility group AT-hook 2 (HMGA2) has been associated with increased cell proliferation and cell cycle dysregulation, leading to the ontogeny of varied tumor types and their metastatic potentials, a frequently used index of disease prognosis. In this review, we deepen our understanding of HMGA2 pathogenicity by exploring the mechanisms by which HMGA2 misexpression and ectopic expression induces mesenchymal and epithelial tumorigenesis respectively and distinguish the pathogenesis of benign from malignant mesenchymal tumors. Importantly, we highlight the regulatory role of let-7 microRNA family of tumor suppressors in determining HMGA2 misexpression events leading to tumor pathogenesis and focused on possible mechanisms by which HMGA2 could propagate lymphangioleiomyomatosis (LAM), benign mesenchymal tumors of the lungs. Lastly, we discuss potential therapeutic strategies for epithelial and mesenchymal tumorigenesis based on targeting the HMGA2 signaling pathway.
Collapse
Affiliation(s)
- Uchenna Unachukwu
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S 12-402, New York, NY 10032, USA;
| | - Kiran Chada
- Department of Biochemistry & Molecular Biology; Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA;
| | - Jeanine D’Armiento
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S 12-402, New York, NY 10032, USA;
- Correspondence: ; Tel.: +212-305-3745
| |
Collapse
|
28
|
McMullen ER, Zoumberos NA, Kleer CG. Metaplastic Breast Carcinoma: Update on Histopathology and Molecular Alterations. Arch Pathol Lab Med 2020; 143:1492-1496. [PMID: 31765246 DOI: 10.5858/arpa.2019-0396-ra] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT— Metaplastic carcinoma is a rare, triple-negative carcinoma of the breast that exhibits transformation of part or all of its glandular carcinomatous component into a nonglandular, or metaplastic, component. The World Health Organization currently recognizes 5 variants of metaplastic carcinoma based on their histologic appearance. OBJECTIVE— To review the histologic classifications, differential diagnosis, prognosis, and recent laboratory studies of metaplastic breast carcinoma. DATA SOURCES.— We reviewed recently published studies that collectively examine metaplastic carcinomas, including results from our own research. CONCLUSIONS.— Metaplastic breast carcinoma has a broad spectrum of histologic patterns, often leading to a broad differential diagnosis. Diagnosis can typically be rendered by a combination of morphology and immunohistochemical staining for high-molecular-weight cytokeratins and p63. Recent studies elucidate new genes and pathways involved in the pathogenesis of metaplastic carcinoma, including the downregulation of CCN6 and WNT pathway gene mutations, and provide a novel MMTV-Cre;Ccn6fl/fl knockout disease-relevant mouse model to test new therapies.
Collapse
Affiliation(s)
- Emily R McMullen
- From the Department of Pathology (Drs McMullen, Zoumberos, and Kleer) and Rogel Cancer Center (Dr Kleer), University of Michigan Medical School, Ann Arbor
| | - Nicholas A Zoumberos
- From the Department of Pathology (Drs McMullen, Zoumberos, and Kleer) and Rogel Cancer Center (Dr Kleer), University of Michigan Medical School, Ann Arbor
| | - Celina G Kleer
- From the Department of Pathology (Drs McMullen, Zoumberos, and Kleer) and Rogel Cancer Center (Dr Kleer), University of Michigan Medical School, Ann Arbor
| |
Collapse
|
29
|
Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J, Chen C. Tumor Suppressor microRNA-138 Suppresses Low-Grade Glioma Development and Metastasis via Regulating IGF2BP2. Onco Targets Ther 2020; 13:2247-2260. [PMID: 32214825 PMCID: PMC7082711 DOI: 10.2147/ott.s232795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background Low-grade gliomas (LGG), approximately constitute one-third of all types of gliomas, are prone to relapse and metastasis. MicroRNA-138 (miR-138) is reported to be dysregulated in diverse human tumors and mainly function as a tumor suppressor. In this study, we analyzed the expression profile and function of miR-138 in LGG. Methods Quantitative PCR (qPCR) and public database bioinformatics analysis were performed to determine the miR-138 levels in LGG. MiR-138 overexpression in LGG cells was achieved by miR-138 mimics transfection. Cell proliferation was assessed by CCK8, EdU and colony formation assays. Cell invasion and migration were analyzed by transwell and wound-healing assays. Xenograft model was employed to study the role of miR-138 in LGG growth in vivo. The target of miR-138 was validated by multiple methods, such as luciferase reporter assay, RT-qPCR and Western blot. Bioinformatics analysis was conducted to explore the molecular mechanisms by which miR-138 contributed to LGG progression. Results miR-138 was significantly downregulated in LGG tumor tissues and low expression of miR-138 was significantly associated with poor prognosis as well as relapse and metastasis in LGG patients. Functional analysis indicated that ectopic miR-138 expression suppressed LGG cell growth and invasive phenotype in vitro, and inhibited tumor development in vivo. Moreover, miR-138 directly targeted and repressed insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) by targeting the 3ʹ-UTR of IGF2BP2, inhibiting epithelial to mesenchymal transition (EMT) to attenuate LGG aggressiveness. In addition, we found that elevated IGF2BP2 expression correlates with poor survival of LGG patients. Conclusion miR-138 may function as a tumor inhibitor by directly inhibiting IGF2BP2 and suppressing EMT in the progression of LGG.
Collapse
Affiliation(s)
- Yang Yang
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China.,Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xinyu Liu
- School of Intelligent Manufacturing, The Huanghuai University, Zhumadian 463000, People's Republic of China
| | - Lulu Cheng
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Li Li
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zhenyu Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xinxiang Medical College, Xinxiang 453000, People's Republic of China
| | - Zong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Gang Han
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xuefeng Wan
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zaizhong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Chuanliang Chen
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| |
Collapse
|
30
|
Sakai H, Fujii Y, Kuwayama N, Kawaji K, Gotoh Y, Kishi Y. Plag1 regulates neuronal gene expression and neuronal differentiation of neocortical neural progenitor cells. Genes Cells 2020; 24:650-666. [PMID: 31442350 DOI: 10.1111/gtc.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023]
Abstract
Neural progenitor cells (NPCs, also known as radial glial progenitors) produce neurons and then glial cells such as astrocytes during development of the mouse neocortex. Given that this sequential generation of neural cells is critical for proper brain formation, the neurogenic potential of NPCs must be precisely controlled. Here, we show that the transcription factor Plag1 plays an important role in the regulation of neurogenic potential in mouse neocortical NPCs. We found that Hmga2, a key neurogenic factor in neocortical NPCs, induces expression of the Plag1 gene. Analysis of the effects of over-expression or knockdown of Plag1 indicated that Plag1 promotes the production of neurons at the expense of astrocyte production in embryonic neocortical cultures. Furthermore, over-expression of Plag1 promoted and knockdown of Plag1 suppressed neuronal differentiation of neocortical NPCs in vivo. Transcriptomic analysis showed that Plag1 increases the expression of a set of neuronal genes in NPCs. Our results thus identify Plag1 as a regulator of neuronal gene expression and neuronal differentiation in NPCs of the developing mouse neocortex.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Kawaji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Parisi S, Piscitelli S, Passaro F, Russo T. HMGA Proteins in Stemness and Differentiation of Embryonic and Adult Stem Cells. Int J Mol Sci 2020; 21:E362. [PMID: 31935816 PMCID: PMC6981681 DOI: 10.3390/ijms21010362] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA1 and HMGA2 are chromatin architectural proteins that do not have transcriptional activity per se, but are able to modify chromatin structure by interacting with the transcriptional machinery and thus negatively or positively regulate the transcription of several genes. They have been extensively studied in cancer where they are often found to be overexpressed but their functions under physiologic conditions have still not been completely addressed. Hmga1 and Hmga2 are expressed during the early stages of mouse development, whereas they are not detectable in most adult tissues. Hmga overexpression or knockout studies in mouse have pointed to a key function in the development of the embryo and of various tissues. HMGA proteins are expressed in embryonic stem cells and in some adult stem cells and numerous experimental data have indicated that they play a fundamental role in the maintenance of stemness and in the regulation of differentiation. In this review, we discuss available experimental data on HMGA1 and HMGA2 functions in governing embryonic and adult stem cell fate. Moreover, based on the available evidence, we will aim to outline how HMGA expression is regulated in different contexts and how these two proteins contribute to the regulation of gene expression and chromatin architecture in stem cells.
Collapse
Affiliation(s)
- Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy (F.P.); (T.R.)
| | | | | | | |
Collapse
|
32
|
The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun 2019; 10:3979. [PMID: 31484926 PMCID: PMC6726650 DOI: 10.1038/s41467-019-11910-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers.
Collapse
|
33
|
Li M, Zhao H, Zhao SG, Wei DM, Zhao YR, Huang T, Muhammad T, Yan L, Gao F, Li L, Lu G, Chan WY, Leung PCK, Dunaif A, Liu HB, Chen ZJ. The HMGA2-IMP2 Pathway Promotes Granulosa Cell Proliferation in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:1049-1059. [PMID: 30247605 PMCID: PMC6753588 DOI: 10.1210/jc.2018-00544] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
Abstract
CONTEXT The high mobility group AT hook 2 (HMGA2) gene was previously identified in a genome-wide association study as a candidate risk gene that might be related to polycystic ovary syndrome (PCOS). Whether HMGA2 contributes to promoting granulosa cell (GC) proliferation in PCOS remains unknown. OBJECTIVE We sought to determine whether HMGA2 is involved in the ovarian dysfunction of PCOS and in the mechanism of increased GC proliferation. PATIENTS AND CELLS mRNA expression was analyzed in ovarian GCs from 96 women with PCOS and 58 healthy controls. Immortalized human GCs (KGN and SVOG cells) were used for the mechanism study. MAIN OUTCOME MEASURES mRNA expression in ovarian GCs was measured using quantitative RT-PCR, and KGN cells were cultured for proliferation assays after overexpression or knockdown of target genes. Protein expression analysis, luciferase assays, and RNA binding protein immunoprecipitation assays were used to confirm the mechanism study. RESULTS HMGA2 and IGF2 mRNA binding protein 2 (IMP2) were highly expressed in the GCs of women with PCOS, and the HMGA2/IMP2 pathway promoted GC proliferation. Cyclin D2 and SERPINE1 mRNA binding protein 1 were regulated by IMP2 and were highly expressed in women with PCOS. CONCLUSIONS The HMGA2/IMP2 pathway was activated in women with PCOS and promoted the proliferation of GCs. This might provide new insights into the dysfunction of GCs in PCOS.
Collapse
Affiliation(s)
- Miao Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Shi-Gang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Dai-Min Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yue-Ran Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Lei Yan
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | - Hong-Bin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Correspondence and Reprint Requests: Hong-Bin Liu, PhD, or Zi-Jiang Chen, MD, PhD, Center for Reproductive Medicine, Shandong University, No. 157 Jingliu Road, Jinan 250001, China. E-mail: or
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Correspondence and Reprint Requests: Hong-Bin Liu, PhD, or Zi-Jiang Chen, MD, PhD, Center for Reproductive Medicine, Shandong University, No. 157 Jingliu Road, Jinan 250001, China. E-mail: or
| |
Collapse
|
34
|
McMullen ER, Gonzalez ME, Skala SL, Tran M, Thomas D, Djomehri SI, Burman B, Kidwell KM, Kleer CG. CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Res Treat 2018; 172:577-586. [PMID: 30220054 DOI: 10.1007/s10549-018-4960-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Metaplastic breast carcinomas are an aggressive subtype of triple-negative breast cancer (TNBC) in which part or all of the adenocarcinoma transforms into a non-glandular component (e.g., spindled, squamous, or heterologous). We discovered that mammary-specific Ccn6/Wisp3 knockout mice develop mammary carcinomas with spindle and squamous differentiation that share upregulation of the oncofetal proteins IGF2BP2 (IMP2) and HMGA2 with human metaplastic carcinomas. Here, we investigated the functional relationship between CCN6, IGF2BP2, and HMGA2 proteins in vitro and in vivo, and their expression in human tissue samples. METHODS MMTV-cre;Ccn6fl/fl tumors and spindle TNBC cell lines were treated with recombinant CCN6 protein or vehicle. IGF2BP2 was downregulated using shRNAs in HME cells with stable CCN6 shRNA knockdown, and subjected to invasion and adhesion assays. Thirty-one human metaplastic carcinomas were arrayed in a tissue microarray (TMA) and immunostained for CCN6, IGF2BP2, and HMGA2. RESULTS CCN6 regulates IGF2BP2 and HMGA2 protein expression in MMTV-cre;Ccn6fl/fl tumors, in MDA-MB-231 and - 468, and in HME cells. CCN6 recombinant protein reduced IGF2BP2 and HMGA2 protein expression, and decreased growth of MMTV-cre;Ccn6fl/fl tumors in vivo. IGF2BP2 shRNA knockdown was sufficient to reverse the invasive abilities conferred by CCN6 knockdown in HME cells. Analyses of the TCGA Breast Cancer Cohort (n = 1238) showed that IGF2BP2 and HMGA2 are significantly upregulated in metaplastic carcinoma compared to other breast cancer subtypes. In clinical samples, low CCN6 is frequent in tumors with high IGF2BP2/HMGA2 with spindle and squamous differentiation. CONCLUSIONS These data shed light into the pathogenesis of metaplastic carcinoma and demonstrate a novel CCN6/IGF2BP2/HMGA2 oncogenic pathway with biomarker and therapeutic implications.
Collapse
Affiliation(s)
- Emily R McMullen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stephanie L Skala
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mai Tran
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dafydd Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sabra I Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kelley M Kidwell
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
The Roles of Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 in Cancer and Cancer Stem Cells. Stem Cells Int 2018; 2018:4217259. [PMID: 29736175 PMCID: PMC5874980 DOI: 10.1155/2018/4217259] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/12/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. The insulin-like growth factor (IGF) 2 mRNA-binding protein (IGF2BP, IMP) family comprises three RBPs, IGF2BP1, IGF2BP2, and IGF2BP3, capable of associating with IGF2 and other transcripts and mediating their processing. IGF2BP2 represents the least understood member of this family of RBPs; however, it has been reported to participate in a wide range of physiological processes, such as embryonic development, neuronal differentiation, and metabolism. Its dysregulation is associated with insulin resistance, diabetes, and carcinogenesis and may potentially be a powerful biomarker and candidate target for relevant diseases. This review summarizes the structural features, regulation, and functions of IGF2BP2 and their association with cancer and cancer stem cells.
Collapse
|
36
|
Kimura A, Matsuda T, Sakai A, Murao N, Nakashima K. HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev Dyn 2017; 247:229-238. [PMID: 28771884 DOI: 10.1002/dvdy.24559] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although quiescent neural stem cells (NSCs) in the adult hippocampus proliferate in response to neurogenic stimuli and subsequently give rise to new neurons continuously throughout life, misregulation of NSCs in pathological conditions, including aging, leads to the impairment of learning and memory. High mobility group B family 1 (HMGB1) and HMGB2, HMG family proteins that function as transcriptional activators through the modulation of chromatin structure, have been assumed to play some role in the regulation of adult NSCs; however, their precise functions and even expression patterns in the adult hippocampus remain elusive. RESULTS Here we show that expression of HMGB2 but not HMGB1 is restricted to the subset of NSCs and their progenitors. Furthermore, running, a well-known positive neurogenic stimulus, increased the proliferation of HMGB2-expressing cells, whereas aging was accompanied by a marked decrease in these cells. Intriguingly, HMGB2-expressing quiescent NSCs, which were shifted toward the proliferative state, were decreased as aging progressed. CONCLUSIONS HMGB2 expression is strongly associated with transition from the quiescent to the proliferative state of NSCs, supporting the possibility that HMGB2 is involved in the regulation of adult neurogenesis and can be used as a novel marker to identify NSCs primed for activation in the adult hippocampus. Developmental Dynamics 247:229-238, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ayaka Kimura
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsuhiko Sakai
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Murao
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Davidson MA, Shanks EJ. 3q26-29 Amplification in head and neck squamous cell carcinoma: a review of established and prospective oncogenes. FEBS J 2017; 284:2705-2731. [PMID: 28317270 DOI: 10.1111/febs.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is significantly underrepresented in worldwide cancer research, yet survival rates for the disease have remained static for over 50 years. Distant metastasis is often present at the time of diagnosis, and is the primary cause of death in cancer patients. In the absence of routine effective targeted therapies, the standard of care treatment remains chemoradiation in combination with (often disfiguring) surgery. A defining characteristic of HNSCC is the amplification of a region of chromosome 3 (3q26-29), which is consistently associated with poorer patient outcome. This review provides an overview of the role the 3q26-29 region plays in HNSCC, in terms of both known and as yet undiscovered processes, which may have potential clinical relevance.
Collapse
|
38
|
Dai N, Ji F, Wright J, Minichiello L, Sadreyev R, Avruch J. IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1. eLife 2017; 6:27155. [PMID: 28753127 PMCID: PMC5576481 DOI: 10.7554/elife.27155] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the Insulin-like Growth Factor 2 mRNA binding protein 2/IMP2 is amplified and overexpressed in many human cancers, accompanied by a poorer prognosis. Mice lacking IMP2 exhibit a longer lifespan and a reduced tumor burden at old age. Herein we show in a diverse array of human cancer cells that IMP2 overexpression stimulates and IMP2 elimination diminishes proliferation by 50–80%. In addition to its known ability to promote the abundance of Insulin-like Growth Factor 2/IGF2, we find that IMP2 strongly promotes IGF action, by binding and stabilizing the mRNA encoding the DNA binding protein HMGA1, a known oncogene. HMGA1 suppresses the abundance of IGF binding protein 2/IGFBP2 and Grb14, inhibitors of IGF action. IMP2 stabilization of HMGA1 mRNA plus IMP2 stimulated IGF2 production synergistically drive cancer cell proliferation and account for IMP2’s tumor promoting action. IMP2’s ability to promote proliferation and IGF action requires IMP2 phosphorylation by mTOR. Some types of cancers develop when genes known as oncogenes or tumor promoters become faulty, and are present at abnormally high levels or inappropriately turned on. For example, cancer cells often have extra copies of the gene IMP2 and therefore produce too much the IMP2 protein. Previous research has shown that mice that lack the IMP2 protein develop fewer cancers and live longer, while patients whose cancers make too much IMP2 have a poorer prognosis. In healthy cells, the IMP2 protein normally helps to make new gene products by stabilising certain newly produced RNA molecules – the precursors of proteins, and in some cases by promoting the translation of these RNAs into proteins. For example, IMP2 binds to the mRNA that encodes the protein IGF2, which is a protein that helps cells to grow and is commonly produced in large quantities by cancer cells. However, until now it was not clear whether IMP2 only acts by increasing the production of IGF2 or also contributes to cancer growth in other ways. Using a range of human cancer cell lines, and healthy mouse cells, Dai et al. first confirmed that without IMP2, cancer cells made less IGF2 and grew less quickly. When IGF2 was added to the cells lacking IMP2, it only partially restored their ability to grow. Further experiments revealed that cells without IMP2 had increased levels of proteins that counteract the effects of IGF2. Usually, IMP2 binds and stabilizes the mRNA that encodes the oncogenic protein HMGA1, which is known to regulate the number of ‘anti-IGF2 proteins’. However, without IMP2, the HMGA1 levels drop, which causes an increase of the anti-IGF2 proteins. This indicates that IMP2 promotes cancer cell growth both by enabling cells to produce more IGF2 and by suppressing inhibitors of IGF2 action. This suggests that cancer patients whose tumors have abnormally high levels of IMP2 may be especially sensitive to drugs that target and inhibit IGF2.
Collapse
Affiliation(s)
- Ning Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Jason Wright
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Pathology, Harvard Medical School, Boston, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|
39
|
Degrauwe N, Suvà ML, Janiszewska M, Riggi N, Stamenkovic I. IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev 2017; 30:2459-2474. [PMID: 27940961 PMCID: PMC5159662 DOI: 10.1101/gad.287540.116] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review by Degrauwe et al. summarizes our current understanding of the functions of IMPs during normal development and focuses on a series of recent observations that have provided new insight into how their physiological functions enable IMPs to play a potentially key role in cancer stem cell maintenance and tumor growth. IMPs, also known as insulin-like growth factor 2 (IGF2) messenger RNA (mRNA)-binding proteins (IGF2BPs), are highly conserved oncofetal RNA-binding proteins (RBPs) that regulate RNA processing at several levels, including localization, translation, and stability. Three mammalian IMP paralogs (IMP1–3) have been identified that are expressed in most organs during embryogenesis, where they are believed to play an important role in cell migration, metabolism, and stem cell renewal. Whereas some IMP2 expression is retained in several adult mouse organs, IMP1 and IMP3 are either absent or expressed at very low levels in most tissues after birth. However, all three paralogs can be re-expressed upon malignant transformation and are found in a broad range of cancer types where their expression often correlates with poor prognosis. IMPs appear to resume their physiological functions in malignant cells, which not only contribute to tumor progression but participate in the establishment and maintenance of tumor cell hierarchies. This review summarizes our current understanding of the functions of IMPs during normal development and focuses on a series of recent observations that have provided new insight into how their physiological functions enable IMPs to play a potentially key role in cancer stem cell maintenance and tumor growth.
Collapse
Affiliation(s)
- Nils Degrauwe
- Department of Medicine, Centre Hospitalier Universitaire Vaudois/University of Lausanne, Lausanne CH-1011, Switzerland
| | - Mario-Luca Suvà
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Michalina Janiszewska
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Nicolo Riggi
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois/University of Lausanne, Lausanne CH-1011, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois/University of Lausanne, Lausanne CH-1011, Switzerland
| |
Collapse
|
40
|
p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer. Oncotarget 2016; 6:32656-68. [PMID: 26416451 PMCID: PMC4741720 DOI: 10.18632/oncotarget.5328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022] Open
Abstract
p62/IMP2 is an oncofetal protein that is overexpressed in several types of cancer, and is a member of the family of insulin-like growth factor 2 mRNA binding proteins. We previously reported that high levels of p62/IMP2 autoantibody are present in sera from cancer patients, compared to healthy individuals. Here, we report the overexpression of p62/IMP2 in tumor tissues of 72 out of 104 cases of human breast cancer, and high levels of p62/IMP2 autoantibody in patients’ sera (in 63 out of 216 cases). To explore the role of p62/IMP2 in breast cancer progression, we generated p62/IMP2 transfected variants of two human breast cancer cell lines: MDA-MB-231 and LM2-4. Using in vitro assays we found that overexpression of p62/IMP2 can increase cell migration, and reduce cell adhesion to extracellular matrix (ECM) proteins. A Human Extracellular Matrix and Adhesion Molecules qPCR array was performed with our generated variants, and it identified a group of mRNAs whose expression was altered with p62/IMP2 overexpression, including connective tissue growth factor (CTGF) mRNA – which we show to be a p62/IMP2 binding partner. Overall, our results provide new insights into the molecular mechanism by which p62/IMP2 can contribute to breast cancer progression.
Collapse
|
41
|
Jun-Hao ET, Gupta RR, Shyh-Chang N. Lin28 and let-7 in the Metabolic Physiology of Aging. Trends Endocrinol Metab 2016; 27:132-141. [PMID: 26811207 DOI: 10.1016/j.tem.2015.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
The Lin28/let-7 molecular switch has emerged as a central regulator of growth signaling pathways and metabolic enzymes. Initially discovered to regulate developmental timing in the nematode, the Lin28/let-7 pathway of RNA regulation has gained prominence for its role in mammalian stem cells, cancer cells, tissue development, and aging. By regulating RNAs, the pathway coordinates cellular growth and cellular metabolism to influence metabolic physiology. Here, we review this regulatory mechanism and its impact on cancers, which reactivate Lin28, cardiovascular diseases, which implicate let-7, human genome-wide association studies (GWAS) of growth, and metabolic diseases, which implicate the Lin28/let-7 pathway. We also highlight questions relating to Barker's Hypothesis and the potential actions of the Lin28/let-7 pathway on programming long-lasting epigenetic effects.
Collapse
Affiliation(s)
- Elwin Tan Jun-Hao
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Renuka Ravi Gupta
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ng Shyh-Chang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
42
|
Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas. Br J Cancer 2016; 114:554-61. [PMID: 26889980 PMCID: PMC4782211 DOI: 10.1038/bjc.2016.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/09/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background: Ovarian and endometrial high-grade serous carcinomas (HGSCs) have similar clinical and pathological characteristics; however, exhaustive protein expression profiling of these cancers has yet to be reported. Methods: We performed protein expression profiling on 14 cases of HGSCs (7 ovarian and 7 endometrial) and 18 endometrioid carcinomas (9 ovarian and 9 endometrial) using iTRAQ-based exhaustive and quantitative protein analysis. Results: We identified 828 tumour-expressed proteins and evaluated the statistical similarity of protein expression profiles between ovarian and endometrial HGSCs using unsupervised hierarchical cluster analysis (P<0.01). Using 45 statistically highly expressed proteins in HGSCs, protein ontology analysis detected two enriched terms and proteins composing each term: IMP2 and MCM2. Immunohistochemical analyses confirmed the higher expression of IMP2 and MCM2 in ovarian and endometrial HGSCs as well as in tubal and peritoneal HGSCs than in endometrioid carcinomas (P<0.01). The knockdown of either IMP2 or MCM2 by siRNA interference significantly decreased the proliferation rate of ovarian HGSC cell line (P<0.01). Conclusions: We demonstrated the statistical similarity of the protein expression profiles of ovarian and endometrial HGSC beyond the organs. We suggest that increased IMP2 and MCM2 expression may underlie some of the rapid HGSC growth observed clinically.
Collapse
|
43
|
D'Armiento J, Shiomi T, Marks S, Geraghty P, Sankarasharma D, Chada K. Mesenchymal Tumorigenesis Driven by TSC2 Haploinsufficiency Requires HMGA2 and Is Independent of mTOR Pathway Activation. Cancer Res 2016; 76:844-54. [PMID: 26837766 DOI: 10.1158/0008-5472.can-15-1287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022]
Abstract
Tuberous sclerosis (TSC) is a tumor suppressor gene syndrome that is associated with the widespread development of mesenchymal tumor types. Genetically, TSC is said to occur through a classical biallelic inactivation of either TSC genes (TSC1, hamartin or TSC2, tuberin), an event that is implicated in the induction of the mTOR pathway and subsequent tumorigenesis. High Mobility Group A2 (HMGA2), an architectural transcription factor, is known to regulate mesenchymal differentiation and drive mesenchymal tumorigenesis in vivo. Here, we investigated the role of HMGA2 in the pathogenesis of TSC using the TSC2(+/-) mouse model that similarly mirrors human disease and human tumor samples. We show that HMGA2 expression was detected in 100% of human and mouse TSC tumors and that HMGA2 activation was required for TSC mesenchymal tumorigenesis in genetically engineered mouse models. In contrast to the current dogma, the mTOR pathway was not activated in all TSC2(+/-) tumors and was elevated in only 50% of human mesenchymal tumors. Moreover, except for a subset of kidney tumors, tuberin was expressed in both human and mouse tumors. Therefore, haploinsufficiency of one TSC tumor suppressor gene was required for tumor initiation, but further tumorigenesis did not require the second hit, as previously postulated. Collectively, these findings demonstrate that tissue-specific genetic mechanisms are employed to promote tumor pathogenesis in TSC and identify a novel, critical pathway for potential therapeutic targeting.
Collapse
Affiliation(s)
- Jeanine D'Armiento
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.
| | - Takayuki Shiomi
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Sarah Marks
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Patrick Geraghty
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Devipriya Sankarasharma
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Kiran Chada
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
44
|
Zhao XP, Zhang H, Jiao JY, Tang DX, Wu YL, Pan CB. Overexpression of HMGA2 promotes tongue cancer metastasis through EMT pathway. J Transl Med 2016; 14:26. [PMID: 26818837 PMCID: PMC4730598 DOI: 10.1186/s12967-016-0777-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metastasis to long distance organs is the main reason leading to morality of tongue squamous cell carcinoma (TSCC); however, the molecular mechanisms are still unknown. High mobility group AT-hook 2 (HMGA2) is highly expressed in multiple metastatic carcinomas, in which it contributes to cancer progression, metastasis and poor prognosis by upregulating Snail expression and inducing epithelial mesenchymal transition (EMT). This study focuses on investigating the role and mechanism of regulation of HMGA2 in the metastasis of TSCC. METHODS HMGA2 mRNA and protein expression were examined in TSCC specimens by quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry (IHC). Western blotting, IHC and immunofluorescence were also used to measure the expression and localization of EMT marker E-Cadherin and Vimentin both in TSCC cells and tissues. Knockdown assay was performed in vitro in TSCC cell lines using small interfering RNAs and the functional assay was carried out to determine the role of HMGA2 in TSCC cell migration and invasion. RESULTS TSCC mRNA and protein expression were significantly up-regulated in tumor tissues when compared to adjacent non-tumor tissues, and the overexpression of HMGA2 was closely correlated with lymph nodes metastasis. Clinicopathological analysis indicated that HMGA2 expression was associated with clinical stage (P = 0.001), lymph node metastasis (P = 0.000), histological differentiation (P = 0.002) and survival (P = 0.000). Silencing the HMGA2 expression in Cal27 and UM1 resulted in the inhibition of cell migration and invasion, meanwhile down-regulation of HMGA2 impaired the phenotype of EMT in TSCC cell lines and tissues. The Multivariate survival analysis indicates that HMGA2 can be an independent prognosis biomarker in TSCC. CONCLUSION Our findings demonstrate that HMGA2 promotes TSCC invasion and metastasis; additionally, HMGA2 is an independent prognostic factor which implied that HMGA2 can be a biomarker both for prognosis and therapeutic target of TSCC.
Collapse
Affiliation(s)
- Xiao-Peng Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| | - Jiu-Yang Jiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Dong-Xiao Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yu-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chao-Bin Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
45
|
Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A 2016; 113:1315-20. [PMID: 26787895 DOI: 10.1073/pnas.1518752113] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Uterine leiomyomas are common benign smooth muscle tumors that impose a major burden on women's health. Recent sequencing studies have revealed recurrent and mutually exclusive mutations in leiomyomas, suggesting the involvement of molecularly distinct pathways. In this study, we explored transcriptional differences among leiomyomas harboring different genetic drivers, including high mobility group AT-hook 2 (HMGA2) rearrangements, mediator complex subunit 12 (MED12) mutations, biallelic inactivation of fumarate hydratase (FH), and collagen, type IV, alpha 5 and collagen, type IV, alpha 6 (COL4A5-COL4A6) deletions. We also explored the transcriptional consequences of 7q22, 22q, and 1p deletions, aiming to identify possible target genes. We investigated 94 leiomyomas and 60 corresponding myometrial tissues using exon arrays, whole genome sequencing, and SNP arrays. This integrative approach revealed subtype-specific expression changes in key driver pathways, including Wnt/β-catenin, Prolactin, and insulin-like growth factor (IGF)1 signaling. Leiomyomas with HMGA2 aberrations displayed highly significant up-regulation of the proto-oncogene pleomorphic adenoma gene 1 (PLAG1), suggesting that HMGA2 promotes tumorigenesis through PLAG1 activation. This was supported by the identification of genetic PLAG1 alterations resulting in expression signatures as seen in leiomyomas with HMGA2 aberrations. RAD51 paralog B (RAD51B), the preferential translocation partner of HMGA2, was up-regulated in MED12 mutant lesions, suggesting a role for this gene in the genesis of leiomyomas. FH-deficient leiomyomas were uniquely characterized by activation of nuclear factor erythroid 2-related factor 2 (NRF2) target genes, supporting the hypothesis that accumulation of fumarate leads to activation of the oncogenic transcription factor NRF2. This study emphasizes the need for molecular stratification in leiomyoma research and possibly in clinical practice as well. Further research is needed to determine whether the candidate biomarkers presented herein can provide guidance for managing the millions of patients affected by these lesions.
Collapse
|
46
|
Zhou X, Li M, Huang H, Chen K, Yuan Z, Zhang Y, Nie Y, Chen H, Zhang X, Chen L, Chen Y, Mo D. HMGB2 regulates satellite cell-mediated skeletal muscle regeneration via IGF2BP2. J Cell Sci 2016; 129:4305-4316. [DOI: 10.1242/jcs.189944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/17/2016] [Indexed: 12/23/2022] Open
Abstract
Although the mechanism underlying modulation of transcription factors in myogenesis has been well elucidated, the function of the transcription cofactors involved in this process remains poorly understood. Here, we identified HMGB2 as an essential nuclear transcriptional co-regulator in myogenesis. HMGB2 was highly expressed in undifferentiated myoblasts and regenerating muscle. Knockdown of HMGB2 inhibited myoblast proliferation and stimulated its differentiation. HMGB2 depletion down-regulated Myf5 and Cyclin A2 on the protein but not mRNA level. In contrast, overexpression of HMGB2 promoted Myf5 and Cyclin A2 protein upregulation. Furthermore, we found that the RNA-binding protein IGF2BP2 is a downstream target of HMGB2, as previously shown for HMGA2. IGF2BP2 binds to mRNAs of Myf5 or Cyclin A2, resulting in translation enhancement or mRNA stabilization, respectively. Notably, overexpression of IGF2BP2 could partially rescue protein levels of Myf5 and Cyclin A2, in response to HMGB2 decrease. Moreover, depletion of HMGB2 in vivo severely attenuated muscle repair; this was due to a decrease in satellite cells. Together, these results highlight the previously undiscovered and critical role of HMGB2-IGF2BP2 axis in myogenesis and muscle regeneration.
Collapse
Affiliation(s)
- Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuning Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
47
|
Wu Z, Eguchi-Ishimae M, Yagi C, Iwabuki H, Gao W, Tauchi H, Inukai T, Sugita K, Ishii E, Eguchi M. HMGA2 as a potential molecular target in KMT2A-AFF1-positive infant acute lymphoblastic leukaemia. Br J Haematol 2015; 171:818-29. [PMID: 26403224 DOI: 10.1111/bjh.13763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) in infants is an intractable cancer in childhood. Although recent intensive chemotherapy progress has considerably improved ALL treatment outcome, disease cure is often accompanied by undesirable long-term side effects, and efficient, less toxic molecular targeting therapies have been anticipated. In infant ALL cells with KMT2A (MLL) fusion, the microRNA let-7b (MIRLET7B) is significantly downregulated by DNA hypermethylation of its promoter region. We show here that the expression of HMGA2, one of the oncogenes repressed by MIRLET7B, is reversely upregulated in infant ALL leukaemic cells, particularly in KMT2A-AFF1 (MLL-AF4) positive ALL. In addition to the suppression of MIRLET7B, KMT2A fusion proteins positively regulate the expression of HMGA2. HMGA2 is one of the negative regulators of CDKN2A gene, which encodes the cyclin-dependent kinase inhibitor p16(INK4A) . The HMGA2 inhibitor netropsin, when combined with demethylating agent 5-azacytidine, upregulated and sustained the expression of CDKN2A, which resulted in growth suppression of KMT2A-AFF1-expressing cell lines. This effect was more apparent compared to treatment with 5-azacytidine alone. These results indicate that the MIRLET7B-HMGA2-CDKN2A axis plays an important role in cell proliferation of leukaemic cells and could be a possible molecular target for the therapy of infant ALL with KMT2A-AFF1.
Collapse
Affiliation(s)
- Zhouying Wu
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | - Chihiro Yagi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hidehiko Iwabuki
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Wenming Gao
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hisamichi Tauchi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takeshi Inukai
- Department of Paediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kanji Sugita
- Department of Paediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiichi Ishii
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mariko Eguchi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
48
|
Kloth L, Gottlieb A, Helmke B, Wosniok W, Löning T, Burchardt K, Belge G, Günther K, Bullerdiek J. HMGA2 expression distinguishes between different types of postpubertal testicular germ cell tumour. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2015; 1:239-51. [PMID: 27499908 PMCID: PMC4939894 DOI: 10.1002/cjp2.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
The group of postpubertal testicular germ cell tumours encompasses lesions with highly diverse differentiation – seminomas, embryonal carcinomas, yolk sac tumours, teratomas and choriocarcinomas. Heterogeneous differentiation is often present within individual tumours and the correct identification of the components is of clinical relevance. HMGA2 re‐expression has been reported in many tumours, including testicular germ cell tumours. This is the first study investigating HMGA2 expression in a representative group of testicular germ cell tumours with the highly sensitive method of quantitative real‐time PCR as well as with immunohistochemistry. The expression of HMGA2 and HPRT was measured using quantitative real‐time PCR in 59 postpubertal testicular germ cell tumours. Thirty specimens contained only one type of tumour and 29 were mixed neoplasms. With the exception of choriocarcinomas, at least two pure specimens from each subgroup of testicular germ cell tumour were included. In order to validate the quantitative real‐time PCR data and gather information about the localisation of the protein, additional immunohistochemical analysis with an antibody specific for HMGA2 was performed in 23 cases. Expression of HMGA2 in testicular germ cell tumours depended on the histological differentiation. Seminomas and embryonal carcinomas showed no or very little expression, whereas yolk sac tumours strongly expressed HMGA2 at the transcriptome as well as the protein level. In teratomas, the expression varied and in choriocarcinomas the expression was moderate. In part, these results contradict data from previous studies but HMGA2 seems to represent a novel marker to assist pathological subtyping of testicular germ cell tumours. The results indicate a critical role in yolk sac tumours and some forms of teratoma.
Collapse
Affiliation(s)
- Lars Kloth
- Center for Human Genetics University of Bremen Bremen Germany
| | - Andrea Gottlieb
- Center for Human Genetics University of Bremen Bremen Germany
| | - Burkhard Helmke
- Institute for Pathology, Elbe Clinic Stade-Buxtehude Buxtehude Germany
| | - Werner Wosniok
- Institute of Statistics, University of Bremen Bremen Germany
| | - Thomas Löning
- Department of Pathology Albertinen Hospital Hamburg Germany
| | - Käte Burchardt
- Department of Pathology Clinical Centre Bremen-Mitte Bremen Germany
| | - Gazanfer Belge
- Center for Human Genetics University of Bremen Bremen Germany
| | - Kathrin Günther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS GmbH Bremen Germany
| | - Jörn Bullerdiek
- Center for Human GeneticsUniversity of Bremen BremenGermany; Institute for Medical Genetics, University of Rostock, University Medicine RostockGermany
| |
Collapse
|
49
|
Madison BB, Jeganathan AN, Mizuno R, Winslow MM, Castells A, Cuatrecasas M, Rustgi AK. Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2. PLoS Genet 2015; 11:e1005408. [PMID: 26244988 PMCID: PMC4526516 DOI: 10.1371/journal.pgen.1005408] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Let-7 miRNAs comprise one of the largest and most highly expressed family of miRNAs among vertebrates, and is critical for promoting differentiation, regulating metabolism, inhibiting cellular proliferation, and repressing carcinogenesis in a variety of tissues. The large size of the Let-7 family of miRNAs has complicated the development of mutant animal models. Here we describe the comprehensive repression of all Let-7 miRNAs in the intestinal epithelium via low-level tissue-specific expression of the Lin28b RNA-binding protein and a conditional knockout of the MirLet7c-2/Mirlet7b locus. This ablation of Let-7 triggers the development of intestinal adenocarcinomas concomitant with reduced survival. Analysis of both mouse and human intestinal cancer specimens reveals that stem cell markers were significantly associated with loss of Let-7 miRNA expression, and that a number of Let-7 targets were elevated, including Hmga1 and Hmga2. Functional studies in 3-D enteroids revealed that Hmga2 is necessary and sufficient to mediate many characteristics of Let-7 depletion, namely accelerating cell cycle progression and enhancing a stem cell phenotype. In addition, inactivation of a single Hmga2 allele in the mouse intestine epithelium significantly represses tumorigenesis driven by Lin28b. In aggregate, we conclude that Let-7 depletion drives a stem cell phenotype and the development of intestinal cancer, primarily via Hmga2. Cancer develops following multiple genetic mutations (i.e. in tumor suppressors and oncogenes), and mutations that cooperate or synergize are often advantageous to cancer cell growth. To study how multiple genes might cooperate, it is usually informative to generate candidate mutations in cells or in mice. Large gene families, such as the Let-7 family, are difficult to silence or mutate because of the large amount of redundancy that exists between similar copies of the same gene; the mutation of one will often be masked or compensated by the continued function of others. In the mouse intestine we have achieved comprehensive depletion of all Let-7 miRNAs in this large multi-genic family through use of an inhibitory protein, called LIN28B, that specifically represses Let-7, and genetic inactivation of another gene cluster called MirLet7c-2/Mirlet7b. Mice with this comprehensive depletion of Let-7 develop intestinal cancers that resemble human colon cancers. Our further analysis identified another gene, HMGA2, downstream of this pathway that is critical to this outcome.
Collapse
Affiliation(s)
- Blair B. Madison
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Arjun N. Jeganathan
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rei Mizuno
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, CIBERehd, IDIBAPS, Barcelona, Catalonia, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Pharmacology and Microbiology, Hospital Clínic, CDB, University of Barcelona, Barcelona, Catalonia, Spain
| | - Anil K. Rustgi
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Yang E, Cisowski J, Nguyen N, O'Callaghan K, Xu J, Agarwal A, Kuliopulos A, Covic L. Dysregulated protease activated receptor 1 (PAR1) promotes metastatic phenotype in breast cancer through HMGA2. Oncogene 2015; 35:1529-40. [PMID: 26165842 DOI: 10.1038/onc.2015.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/24/2022]
Abstract
As the majority of patients with basal-like breast carcinoma present with invasive, metastatic disease that do not respond to available therapies, it is essential to identify new therapeutic targets that impact invasion and metastasis. Protease-activated receptor 1 (PAR1), a G-protein coupled receptor has been shown to act as an oncogene, but underlying mechanisms are not well understood. Here, we show that ectopic expression of functionally active PAR1 in MCF-7 cells induced a hormone-refractory, invasive phenotype representative of advanced basal-like breast carcinoma that readily formed metastatic lesions in lungs of mice. PAR1 was found to globally upregulate mesenchymal markers, including vimentin, a direct target of PAR1, and downregulate the epithelial markers including E-cadherin, as well as estrogen receptor. In contrast, non-signaling PAR1 mutant receptor did not lead to an invasive, hormone refractory phenotype. PAR1 expression increased spheroid formation and the level of stemness markers and self-renewal capacity in human breast cancer cells. We identified HMGA2 (high mobility group A2) as an important regulator of PAR1-mediated invasion. Inhibition of PAR1 signaling suppresses HMGA2-driven invasion in breast cancer cells. HMGA2 gene and protein are highly expressed in metastatic breast cancer cells. Overall, our results show that PAR1/HMGA2 pathway may present a novel therapeutic target.
Collapse
Affiliation(s)
- E Yang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Biochemistry and Tufts Medical Center, Boston, MA, USA
| | - J Cisowski
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - N Nguyen
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - K O'Callaghan
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - J Xu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - A Agarwal
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - A Kuliopulos
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Biochemistry and Tufts Medical Center, Boston, MA, USA.,Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - L Covic
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Biochemistry and Tufts Medical Center, Boston, MA, USA.,Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|