1
|
Zhang S, Penkova A, Jia X, Sebag J, Sadhal SS. Effective Prediction of Drug Transport in a Partially Liquefied Vitreous Humor: Physics-informed Neural Network Modeling for Irregular Liquefaction Geometry. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024; 138:109262. [PMID: 39398231 PMCID: PMC11466275 DOI: 10.1016/j.engappai.2024.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
As the medium for intravitreal drug delivery, the vitreous body can significantly influence drug delivery because of various possible liquefaction geometries. This work innovatively proposes a varying-porosity approach that is capable of solving the pressure and velocity fields in the heterogeneous vitreous with randomly-shaped liquefaction geometry, validated with a finite difference model. Doing so enables patient-specific treatment for intravitreal drug delivery and can significantly improve treatment efficacy. A physics-informed neural network (PINN) model is also established for the simulation, and three cases are used for validation. Despite limited information, the PINN model, together with the varying-porosity approach, captured fluid and drug transport in the partially liquefied vitreous. This opens the possibility for optimizing intravitreal drug delivery based on ultrasonography in clinical practice.
Collapse
Affiliation(s)
- Shuqi Zhang
- University of Southern California, Los Angeles, CA, USA.; Convergent Science, Madison, WI, USA
| | - Anita Penkova
- University of Southern California, Los Angeles, CA, USA
| | | | - Jerry Sebag
- University of California, Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Wei S, Li J, Zhang Y, Li Y, Wang Y. Ferroptosis in eye diseases: a systematic review. Eye (Lond) 2024:10.1038/s41433-024-03371-z. [PMID: 39379520 DOI: 10.1038/s41433-024-03371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis is a type of iron-dependent cell death that differs from apoptosis, necroptosis, autophagy, and other forms of cell death. It is mainly characterized by the accumulation of intracellular lipid peroxides, redox imbalance, and reduced levels of glutathione and glutathione peroxidase 4. Studies have demonstrated that ferroptosis plays an important regulatory role in the occurrence and development of neurodegenerative diseases, stroke, traumatic brain injury, and ischemia-reperfusion injuries. Multiple mechanisms, such as iron metabolism, ferritinophagy, p53, and p62/Keap1/Nrf2, as well as the combination of FSP1/CoQ/NADPH and hepcidin/FPN-1 can alter the vulnerability to ferroptosis. Nevertheless, there has been limited research on the development and management of ferroptosis in the realm of eye disorders, with most studies focusing on retinal conditions such as age-related macular degeneration and retinitis pigmentosa. This review offers a thorough examination of the disruption of iron homeostasis in eye disorders, investigating the underlying mechanisms. We anticipate that the occurrence of ferroptotic cell death will not only establish a fresh field of study in eye diseases, but also present a promising therapeutic target for treating these diseases.
Collapse
Affiliation(s)
- Shengsheng Wei
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Jing Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yaohua Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yan Wang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China.
- Nankai University Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Hagström A, Sabazade S, Gill V, Stålhammar G. Association of female sex with cataract surgery in the general population but not in plaque brachytherapy-treated uveal melanoma patients. Sci Rep 2024; 14:22016. [PMID: 39317717 PMCID: PMC11422500 DOI: 10.1038/s41598-024-73346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Cataract is a leading cause of blindness worldwide, necessitating a deeper understanding of its risk factors. We analyzed two cohorts: 1000 individuals from the general Swedish population and 933 patients who received plaque brachytherapy for uveal melanoma. Using Kaplan-Meier and cumulative incidence analyses, as well as Cox and competing risk regressions, we assessed whether there is a relationship between sex and cataract surgery. In the general population, female sex was a significant risk factor for cataract surgery, with a 10-year incidence of 16% compared to 10% for males (subdistribution hazard ratio adjusted for age, 1.35, P < 0.001). In the brachytherapy cohort, female sex was not associated with an increased incidence of cataract surgery, with a 10-year incidence of 25% versus 23% for males (HR 1.08, P = 0.61). Visual acuity at the time of cataract surgery did not significantly differ between sexes in either cohort, suggesting that differences in surgery rates are not due to health-seeking behavior or surgery assessment thresholds. These findings indicate that female sex is associated with a higher risk of cataract surgery in the general population, but not among those treated with plaque brachytherapy for uveal melanoma.
Collapse
Affiliation(s)
- Anna Hagström
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden
| | - Shiva Sabazade
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden
- Ocular Oncology Service, St. Erik Eye Hospital, Stockholm, Sweden
| | - Viktor Gill
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden
- Department of Pathology, Västmanland Hospital Västerås, Västerås, Sweden
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden.
- Ocular Oncology Service, St. Erik Eye Hospital, Stockholm, Sweden.
- St. Erik Ophthalmic Pathology Laboratory, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Caixinha M, Santos J, Santos M, Nunes S. Animal model for in-vivo Nuclear Cataract. Lens hardness and elasticity assessment. J Mech Behav Biomed Mater 2024; 157:106610. [PMID: 38838543 DOI: 10.1016/j.jmbbm.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Age-related cataract is the most frequent cause of blindness in the world being responsible for 48% of blindness and affecting more than 10% of the working population. Currently there is no objective data of the lens biomechanical properties so the process by which the cataract affects the lens's properties (e.g. hardness and elasticity) is still unclear. A modified animal model was produced to create different severities of nuclear cataract. Different doses of sodium selenite were injected in two different moments of the rat' eyes maturation resulting in 12, 13 and 11 rats with incipient, moderate and severe cataract, respectively. The nucleus and cortex's hardness and the stiffness were measured using NanoTest™. Statistically significant differences were found between healthy and cataractous lenses. Statistically significant differences were also found between the different nuclear cataract degrees (p = 0.016), showing that the lens' hardness increases with cataract formation. The nucleus shows a higher hardness increase with cataract formation (p = 0.049). The animal model used in this study allowed for the first time the characterization of the lens's hardness and elasticity in two regions of the lens, in healthy and cataractous lenses.
Collapse
Affiliation(s)
- Miguel Caixinha
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Portugal; Department of Physics, Univ Beira Interior, Portugal; Department of Electrical and Computer Engineering, Univ Coimbra, Portugal.
| | - Jaime Santos
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Portugal; Department of Electrical and Computer Engineering, Univ Coimbra, Portugal
| | - Mário Santos
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Portugal; Department of Electrical and Computer Engineering, Univ Coimbra, Portugal
| | - Sandrina Nunes
- Department of Electrical and Computer Engineering, Univ Coimbra, Portugal
| |
Collapse
|
6
|
Fu L, Yang Q, Han Y, Sun F, Jin J, Wang J. Slit2 Promotes H 2O 2-Induced Lens Epithelial Cells Oxidative Damage and Age-Related Cataract. Curr Eye Res 2024:1-10. [PMID: 39143744 DOI: 10.1080/02713683.2024.2388698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE To analyze the role of Slit2 in lens epithelial cell oxidative damage and its underlying mechanism. METHODS Human lens epithelial cells (SRA01/04 cells) and rat transparent lens were cultured with H2O2 to establish cell oxidative stress models and rat cataract models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot assays were employed to detect Slit2 levels within age-related cataracts(ARC) lens anterior capsule samples, rat cataract models, and cell oxidative stress models. In this study, qRT-PCR and Western blot assays were performed to derermine E-cadherin, N-cadherin, occludens1(ZO-1), α-SMA(α‑smooth muscle actin), Bcl-2, Bax, p-AKT, and AKT levels. In addition, Flow cytometry were performed to examine reactive oxygen species (ROS) and cell apoptosis. Cell viability, invasion, and migration were detected by CCK8, Transwell, and Wound healing. RESULTS Increased expression of Slit2 was found in ARC lens anterior capsule samples, H2O2-induced rat cataract models, and Human lens epithelial cells (HLECs) oxidative stress models. H2O2 significantly increased cell apoptosis and ROS generation, also accelerating cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, H2O2 treatment repressed AKT phosphorylation and cell viability. Knock-down of Slit2 promoted cell viability and AKT phosphorylation levels, as well as repressed cell invasion, migration, apoptosis, ROS production and EMT. CONCLUSION Slit2 promoted lens epithelial cells oxidative stress damage via the AKT signalling pathways, providing a novel insight in ARC treatment.
Collapse
Affiliation(s)
- Lingzhi Fu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, Anhui, China
| | - Qing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuanyuan Han
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Feng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jiacheng Jin
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Jianfeng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
7
|
Chen L, Chen Z, Hao S, Chen R, Chen S, Gu Y, Sheng F, Zhao W, Lu B, Wu Y, Xu Y, Wu D, Han Y, Qu S, Yao K, Fu Q. Characterization of mechanical stress in the occurrence of cortical opacification in age-related cataracts using three-dimensional finite element model of the human lens and RNA-seq. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167265. [PMID: 38810918 DOI: 10.1016/j.bbadis.2024.167265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Cataract is the leading cause of blindness across the world. Age-related cataract (ARC) is the most common type of cataract, but its pathogenesis is not fully understood. Using three-dimensional finite element modeling combining experimental biotechnology, our study demonstrates that external forces during accommodation cause mechanical stress predominantly in lens cortex, basically matching the localization of opacities in cortical ARCs. We identified the cellular senescence and upregulation of PIEZO1 mRNA in HLECs under mechanical stretch. This mechano-induced senescence in HLECs might be mediated by PIEZO1-related pathways, portraying a potential biomechanical cause of cortical ARCs. Our study updates the fundamental insight towards cataractogenesis, paving the way for further exploration of ARCs pathogenesis and nonsurgical treatment.
Collapse
Affiliation(s)
- Lu Chen
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Zhe Chen
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Rongrong Chen
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Shuying Chen
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Yuzhou Gu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Feiyin Sheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Wei Zhao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Bing Lu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Yuhao Wu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Yili Xu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Di Wu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Yu Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Shaoxing Qu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China.
| |
Collapse
|
8
|
Hong Y, Sun Y, Ainiwaer M, Xiao B, Zhang S, Ning L, Zhu X, Ji Y. A role for YAP/FOXM1/Nrf2 axis in oxidative stress and apoptosis of cataract induced by UVB irradiation. FASEB J 2024; 38:e23832. [PMID: 39046354 DOI: 10.1096/fj.202400848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
This study aims to investigate the hypothesis that Yes-associated protein (YAP) significantly regulates antioxidant potential and anti-apoptosis in UVB-induced cataract by exploring the underlying molecular mechanisms. To investigate the association between YAP and cataract, various experimental techniques were employed, including cell viability assessment, Annexin V FITC/PI assay, measurement of ROS production, RT-PCR, Western blot assay, and Immunoprecipitation. UVB exposure on human lens epithelium cells (HLECs) reduced total and nuclear YAP protein expression, increased cleaved/pro-caspase 3 ratios, decreased cell viability, and elevated ROS levels compared to controls. Similar Western blot results were observed in in vivo experiments involving UVB-treated mice. YAP knockdown in vitro demonstrated a decrease in the protein expression of FOXM1, Nrf2, and HO-1, which correlated with the mRNA expression, accompanied by an increase in cell apoptosis, caspase 3 activation, and the release of ROS. Conversely, YAP overexpression mitigated these effects induced by UVB irradiation. Immunoprecipitation revealed a FOXM1-YAP interaction. Notably, inhibiting FOXM1 decreased Nrf2 and HO-1, activating caspase 3. Additionally, administering the ROS inhibitor N-acetyl-L-cysteine (NAC) effectively mitigated the apoptotic effects induced by oxidative stress from UVB irradiation, rescuing the protein expression levels of YAP, FOXM1, Nrf2, and HO-1. The initial findings of our study demonstrate the existence of a feedback loop involving YAP, FOXM1, Nrf2, and ROS that significantly influences the cell apoptosis in HLECs under UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Maierdanjiang Ainiwaer
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Binghe Xiao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Ning
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
9
|
Yu Y, Zhang J, Wu H. Optimizing Mouse Primary Lens Epithelial Cell Culture: A Comprehensive Guide to Trypsinization. J Vis Exp 2024:10.3791/65912. [PMID: 38975789 PMCID: PMC11259111 DOI: 10.3791/65912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Lens epithelial cells (LECs) play multiple important roles in maintaining the homeostasis and normal function of the lens. LECs determine lens growth, development, size, and transparency. Conversely, dysfunctional LECs can lead to cataract formation and posterior capsule opacification (PCO). Consequently, establishing a robust primary LEC culture system is important to researchers engaged in lens development, biochemistry, cataract therapeutics, and PCO prevention. However, cultivating primary LECs has long presented challenges due to their limited availability, slow proliferation rate, and delicate nature. This study addresses these hurdles by presenting a comprehensive protocol for primary LEC culture. The protocol encompasses essential steps such as the formulation of an optimized culture medium, precise isolation of lens capsules, trypsinization techniques, subculture procedures, harvest protocols, and guidelines for storage and shipment. Throughout the culture process, cell morphology was monitored using phase-contrast microscopy. To confirm the authenticity of the cultured LECs, immunofluorescence assays were conducted to detect the presence and subcellular distribution of critical lens proteins, namely αA- and γ-crystallins. This detailed protocol equips researchers with a valuable resource for cultivating and characterizing primary LECs, enabling advancements in our comprehension of lens biology and the development of therapeutic strategies for lens-related disorders.
Collapse
Affiliation(s)
- Yu Yu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center
| | - Jinmin Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center; North Texas Eye Research Institute, University of North Texas Health Science Center;
| |
Collapse
|
10
|
Qiang B, Xu Q, Hu A, Fang J, Shen C, Zhang Y, Wang J. Feasibility of shear wave elastography for evaluating lens stiffness in patients with age-related cataracts: A quantitative analysis. Heliyon 2024; 10:e32255. [PMID: 38882265 PMCID: PMC11180308 DOI: 10.1016/j.heliyon.2024.e32255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Background Shear wave elastography (SWE) is a novel imaging technique that provides quantitative assessments of tissue stiffness. This non-invasive method offers real-time, quantitative measurements and has been widely applied to various tissues, providing valuable diagnostic insights. Purpose This study aimed to investigate the feasibility of using SWE to evaluate the stiffness of the lens in patients with age-related cataracts. Materials and methods A comparative analysis involving 92 patients diagnosed with age-related cataracts and 39 healthy controls was conducted. Lens stiffness was quantified using SWE measurements. The lens nucleus of all participants was graded based on the Lens Opacities Classification System II (LOCS II). Correlations between the stiffness of the lens and age were also analyzed. Results The study indicates that both the stiffness of the lens and the lens nucleus were significantly higher in patients with age-related cataracts compared to healthy controls (P < 0.001). In patients with age-related cataracts, although lens nucleus stiffness variations across different grades of cataract severity were not statistically significant, all grades displayed increased stiffness relative to healthy controls. Additionally, a significant positive correlation between lens stiffness and age was observed in all participants (P < 0.001). Conclusion SWE appears to be a promising imaging technique for quantitatively assessing the mechanical characteristics of the lens in patients with age-related cataracts.
Collapse
Affiliation(s)
- Banghong Qiang
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, 241000, Anhui, China
| | - Qiancheng Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, Anhui, China
| | - Aili Hu
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, 241000, Anhui, China
| | - Jiagui Fang
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, 241000, Anhui, China
| | - Chunyun Shen
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, 241000, Anhui, China
| | - Yu Zhang
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, 241000, Anhui, China
| | - Junli Wang
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, 241000, Anhui, China
| |
Collapse
|
11
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
12
|
Alanazi RS, Alshammari AF, Albladi FH, Alanizy A, Ali A, Shalabi N. Knowledge and Attitudes Regarding Cataracts and Their Associated Factors Among Hail Region Residents in Saudi Arabia. Cureus 2024; 16:e60444. [PMID: 38882987 PMCID: PMC11179688 DOI: 10.7759/cureus.60444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Background Cataract is a condition that affects the lens, causing separation and/or aggregation of proteins and disrupting the regular alignment of cell fibers. Cataracts have many known risk factors contributing to their development, such as diabetes, oral steroid therapy, smoking, and high body mass index. Good knowledge about cataracts may improve the quality of treatment through early diagnosis. Unfortunately, poor knowledge is still a significant barrier to reducing blindness caused by cataracts in developing countries. Methodology This cross-sectional study was conducted using a pre-validated questionnaire and online questionnaires. Participants were approached through multiple social media platforms from June 2022 to August 2022. Results Of the 307 participants, with a mean age of 32.4 ± 12.8 years, 51.5% had good knowledge of cataracts and their related risk factors, while 28.7% had a favorable attitude about cataracts. Of all participants, 50.5% reported a diagnosis of cataract. The majority of participants, 58.6%, who did not have cataracts, had good knowledge versus 44.5% of others with (p = 0.014). Moreover, 75% of participants aged 50 years or older had good overall cataract knowledge levels compared to 38.9% of others aged 30-39 years (p = 0.002). Conclusions Cataracts are a preventable cause of blindness that can be corrected by surgery. In this study, we discovered extremely concerning rates of knowledge, awareness, and attitudes regarding cataracts among the populations of Hail City. More educational programs should be directed toward spreading knowledge about cataracts to patients and the public.
Collapse
Affiliation(s)
| | | | | | | | - Abrar Ali
- Ophthalmology, Hail University, Hail, SAU
| | | |
Collapse
|
13
|
Qiu X, Zhang S, Zhang Y, Cai L, Li D, Lu Y. Reduction of ETV1 is Identified as a Prominent Feature of Age-Related Cataract. Curr Eye Res 2024; 49:496-504. [PMID: 38200696 DOI: 10.1080/02713683.2024.2302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE To identify the inactive genes in cataract lenses and explore their function in lens epithelial cells (LECs). METHODS Lens epithelium samples obtained from both age-related cataract (ARC) patients and normal donors were subjected to two forms of histone H3 immunoprecipitation: H3K9ac and H3K27me3 chromatin immunoprecipitation (ChIP), followed by ChIP-seq. The intersection set of "active genes in normal controls" and "repressed genes in cataract lenses" was identified. To validate the role of a specific gene, ETV1, within this set, quantitative polymerase chain reaction (qPCR), western blot, and immunofluorescence were performed using clinical lens epithelium samples. Small interference RNA (siRNA) was utilized to reduce the mRNA level of ETV1 in cultured LECs. Following this, transwell assay and western blot was performed to examine the migration ability of the cells. Furthermore, RNA-seq analysis was conducted on both cell samples with ETV1 knockdown and control cells. Additionally, the expression level of ETV1 in LECs was examined using qPCR under H2O2 treatment. RESULTS Six genes were identified in the intersection set of "active genes in normal controls" and "repressed genes in ARC lenses". Among these genes, ETV1 showed the most significant fold-change decrease in the cataract samples compared to the control samples. After ETV1 knockdown by siRNA in cultured LECs, reduced cell migration was observed, along with a decrease in the expression of β-Catenin and Vimentin, two specific genes associated with cell migration. In addition, under the oxidative stress induced by H2O2 treatment, the expression level of ETV1 in LECs significantly decreased. CONCLUSIONS Based on the findings of this study, it can be concluded that ETV1 is significantly reduced in human ARC lenses. The repression of ETV1 in ARC lenses appears to contribute to the disrupted differentiation of lens epithelium, which is likely caused by the inhibition of both cell differentiation and migration processes.
Collapse
Affiliation(s)
- Xiaodi Qiu
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shaohua Zhang
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Youmeng Zhang
- Department of Stomatology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Lei Cai
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Dan Li
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
14
|
Wei Z, Hao C, Radeen KR, Srinivasagan R, Chen JK, Sharma S, McGee-Lawrence ME, Hamrick MW, Monnier VM, Fan X. Prevention of age-related truncation of γ-glutamylcysteine ligase catalytic subunit (GCLC) delays cataract formation. SCIENCE ADVANCES 2024; 10:eadl1088. [PMID: 38669339 PMCID: PMC11051666 DOI: 10.1126/sciadv.adl1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kazi Rafsan Radeen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vincent M. Monnier
- Department of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Kim JM, Choi YJ. Myopia and Nutrient Associations with Age-Related Eye Diseases in Korean Adults: A Cross-Sectional KNHANES Study. Nutrients 2024; 16:1276. [PMID: 38732522 PMCID: PMC11085160 DOI: 10.3390/nu16091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This study assessed the prevalence of myopia, cataracts, glaucoma, and macular degeneration among Koreans over 40, utilizing data from the 7th Korea National Health and Nutrition Examination Survey (KNHANES VII, 2018). We analyzed 204,973 adults (44% men, 56% women; mean age 58.70 ± 10.75 years), exploring the association between myopia and these eye diseases through multivariate logistic regression, adjusting for confounders and calculating adjusted odds ratios (ORs) with 95% confidence intervals (CIs). Results showed a myopia prevalence of 44.6%, cataracts at 19.4%, macular degeneration at 16.2%, and glaucoma at 2.3%, with significant differences across ages and genders. A potential link was found between myopia and an increased risk of cataracts and macular degeneration, but not with glaucoma. Additionally, a higher dietary intake of carbohydrates, polyunsaturated and n-6 fatty acids, vitamins, and minerals correlated with lower risks of these diseases, underscoring the importance of the diet in managing and preventing age-related eye conditions. These findings highlight the need for dietary considerations in public health strategies and confirm myopia as a significant risk factor for specific eye diseases in the aging Korean population.
Collapse
Affiliation(s)
- Jeong-Mee Kim
- Department of Visual Optics, Far East University, Eumseong 27601, Republic of Korea;
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
16
|
Baghel M, Baghel I, Kumari P, Bharkatiya M, Joshi G, Sakure K, Badwaik H. Nano-delivery Systems and Therapeutic Applications of Phytodrug Mangiferin. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04906-6. [PMID: 38526662 DOI: 10.1007/s12010-024-04906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
In order to cure a range of ailments, scientists have investigated a number of bioactive antioxidant compounds produced from natural sources. Mangiferin, a C-glycosyl xanthone-structured yellow polyphenol, is abundant in mangoes and other dietary sources. In-depth examinations found that it is effective in the treatment of a variety of disorders due to its antiviral, anti-inflammatory, antiproliferative, antigenotoxic, antiatherogenic, radioprotective, nephroprotective, antihyperlipidemic, and antidiabetic properties. However, it is recognised that mangiferin's poor bioavailability, volatility, and limited solubility restrict its therapeutic usefulness. Over time, effective solutions to these problems have arisen in the shape of effective delivery methods. The current articles present a summary of the several researches that have updated Mangiferin's biopharmaceutical characteristics. Additionally, strategies for enhancing the bioavailability, stability, and solubility of this phytodrug have been discussed. This review provides detailed information on the development of innovative Mangiferin delivery methods such as nanoparticles, liposomes, micelles, niosomes, microspheres, metal nanoparticles, and complexation, as well as its therapeutic applications in a variety of sectors. This article provides effective guidance for researchers who desire to work on the formulation and development of an effective delivery method for improved magniferin therapeutic effectiveness.
Collapse
Affiliation(s)
- Madhuri Baghel
- Apollo College of Pharmacy, Anjora, Durg, 491001, Chhattisgarh, India
| | - Ishita Baghel
- Foothill High School, 4375, Foothill Road, Pleasanton, CA, 94588, USA
| | | | - Meenakshi Bharkatiya
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Bhupal Nobles' University, Udaipur, 313001, India
| | - Garvita Joshi
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490023, CG, India
| | - Hemant Badwaik
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, 490020, Chhattisgarh, India.
| |
Collapse
|
17
|
Guo M, Higashita R, Lin C, Hu L, Chen W, Li F, Lai GWK, Nguyen A, Sakata R, Okamoto K, Tang B, Xu Y, Fu H, Gao F, Aihara M, Zhang X, Yuan J, Lin S, Leung CKS, Liu J. Crystalline lens nuclear age prediction as a new biomarker of nucleus degeneration. Br J Ophthalmol 2024; 108:513-521. [PMID: 37495263 DOI: 10.1136/bjo-2023-323176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND The crystalline lens is a transparent structure of the eye to focus light on the retina. It becomes muddy, hard and dense with increasing age, which makes the crystalline lens gradually lose its function. We aim to develop a nuclear age predictor to reflect the degeneration of the crystalline lens nucleus. METHODS First we trained and internally validated the nuclear age predictor with a deep-learning algorithm, using 12 904 anterior segment optical coherence tomography (AS-OCT) images from four diverse Asian and American cohorts: Zhongshan Ophthalmic Center with Machine0 (ZOM0), Tomey Corporation (TOMEY), University of California San Francisco and the Chinese University of Hong Kong. External testing was done on three independent datasets: Tokyo University (TU), ZOM1 and Shenzhen People's Hospital (SPH). We also demonstrate the possibility of detecting nuclear cataracts (NCs) from the nuclear age gap. FINDINGS In the internal validation dataset, the nuclear age could be predicted with a mean absolute error (MAE) of 2.570 years (95% CI 1.886 to 2.863). Across the three external testing datasets, the algorithm achieved MAEs of 4.261 years (95% CI 3.391 to 5.094) in TU, 3.920 years (95% CI 3.332 to 4.637) in ZOM1-NonCata and 4.380 years (95% CI 3.730 to 5.061) in SPH-NonCata. The MAEs for NC eyes were 8.490 years (95% CI 7.219 to 9.766) in ZOM1-NC and 9.998 years (95% CI 5.673 to 14.642) in SPH-NC. The nuclear age gap outperformed both ophthalmologists in detecting NCs, with areas under the receiver operating characteristic curves of 0.853 years (95% CI 0.787 to 0.917) in ZOM1 and 0.909 years (95% CI 0.828 to 0.978) in SPH. INTERPRETATION The nuclear age predictor shows good performance, validating the feasibility of using AS-OCT images as an effective screening tool for nucleus degeneration. Our work also demonstrates the potential use of the nuclear age gap to detect NCs.
Collapse
Affiliation(s)
- Mengjie Guo
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, Guangdong, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Risa Higashita
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Tomey Corporation, Nagoya, Aichi, Japan
| | - Chen Lin
- Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Lingxi Hu
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wan Chen
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fei Li
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Gilda Wing Ki Lai
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Anwell Nguyen
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Rei Sakata
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | | | - Bo Tang
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanwu Xu
- Intelligent Healthcare Unit, Baidu Inc, Beijing, China
| | - Huazhu Fu
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Fei Gao
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Makoto Aihara
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Xiulan Zhang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin Yuan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shan Lin
- Department of Ophthalmology, University of California, San Francisco, California, USA
- Glaucoma Center of San Francisco, San Francisco, California, USA
| | - Christopher Kai-Shun Leung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Ophthalmology and Visual Sciences, The Chinese University, Hong Kong, Hong Kong
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Cixi, Zhejiang, China
| |
Collapse
|
18
|
Yuan M, He Q, Xiang W, Deng Y, Lin S, Zhang R. Natural compounds efficacy in Ophthalmic Diseases: A new twist impacting ferroptosis. Biomed Pharmacother 2024; 172:116230. [PMID: 38350366 DOI: 10.1016/j.biopha.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Ferroptosis, a distinct form of cell death, is characterized by the iron-mediated oxidation of lipids and is finely controlled by multiple cellular metabolic pathways. These pathways encompass redox balance, iron regulation, mitochondrial function, as well as amino acid, lipid, and sugar metabolism. Additionally, various disease-related signaling pathways also play a role in the regulation of ferroptosis. In recent years, with the introduction of the concept of ferroptosis and the deepening of research on its mechanism, ferroptosis is closely related to various biological conditions of eye diseases, including eye organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanism of ferroptosis, and its latest research progress in ophthalmic diseases and reviews the research on ferroptosis in ocular diseases within the framework of metabolism, active oxygen biology, and iron biology. Key regulators and mechanisms of ferroptosis in ocular diseases introduce important concepts and major open questions in the field of ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs will be made in the regulation mechanism of ferroptosis and the use of ferroptosis to promote the treatment of eye diseases. At the same time, natural compounds may be the direction of new drug development for the potential treatment of ferroptosis in the future. Open up a new way for clinical ophthalmologists to research and prevent diseases.
Collapse
Affiliation(s)
- Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shibin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
19
|
Lv Y, Zhai C, Sun G, He Y. Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review. J Biol Eng 2024; 18:18. [PMID: 38388386 PMCID: PMC10885467 DOI: 10.1186/s13036-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Yan Lv
- Department of Ophthalmology, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Chenglei Zhai
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Gang Sun
- Department of General Surgery, Jilin Province FAW General Hospital, Changchun, 130011, China.
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
20
|
Kasetty VM, Monsalve PF, Sethi D, Yousif C, Hessburg T, Kumar N, Hamad AE, Desai UR. Cataract progression after primary pars plana vitrectomy for uncomplicated rhegmatogenous retinal detachments in young adults. Int J Retina Vitreous 2024; 10:19. [PMID: 38383511 PMCID: PMC10882894 DOI: 10.1186/s40942-024-00538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Scleral buckling is typically implemented to repair rhegmatogenous retinal detachments (RRD) in young patients. Therefore, there is limited data on post-pars plana vitrectomy (PPV) cataract formation in this cohort. We report the rates and risk factors of cataract progression after PPV for RRD repair in young eyes. METHODS Retrospective single-center cohort study. Medical records of patients between the ages of 15 to 45 undergoing PPV for uncomplicated RRD between 2014 and 2020 were reviewed. RESULTS Twenty-eight eyes from 26 patients met inclusion criteria. Cataracts developed in 20/28 (71%) eyes after PPV. After PPV, nuclear sclerotic cataract (NSC) rates were higher in patients above 35 (65%) compared to below 35 years (18%) (p = 0.024). Cataracts developed more frequently after macula-off RRDs (88%) compared to macula-on RRDs (50%) (p = 0.044) with NSC more common in macula-off detachments (p = 0.020). At postoperative month 2, all eyes with C3F8 gas developed cataracts compared to 59% of eyes with no gas (p = 0.040). CONCLUSIONS Cataract formation was common and frequent after PPV. After PPV, young eyes and macula-on detachments developed cataracts less frequently than older eyes and macula-off detachments. If appropriate, a shorter acting gas tamponade should be considered in young eyes to minimize cataract formation.
Collapse
Affiliation(s)
| | - Pedro F Monsalve
- Department of Ophthalmology, Henry Ford Health System, Detroit, MI, USA
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN, USA
| | - Dhruv Sethi
- Department of Ophthalmology, Henry Ford Health System, Detroit, MI, USA
| | - Candice Yousif
- Department of Ophthalmology, Henry Ford Health System, Detroit, MI, USA
| | - Thomas Hessburg
- Department of Ophthalmology, Henry Ford Health System, Detroit, MI, USA
| | - Nitin Kumar
- Department of Ophthalmology, Henry Ford Health System, Detroit, MI, USA
| | | | - Uday R Desai
- Department of Ophthalmology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
21
|
Hazen P, Trossi-Torres G, Timsina R, Khadka NK, Mainali L. Association of Alpha-Crystallin with Human Cortical and Nuclear Lens Lipid Membrane Increases with the Grade of Cortical and Nuclear Cataract. Int J Mol Sci 2024; 25:1936. [PMID: 38339214 PMCID: PMC10855980 DOI: 10.3390/ijms25031936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.
Collapse
Affiliation(s)
- Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Laxman Mainali
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| |
Collapse
|
22
|
Timsina R, Hazen P, Trossi-Torres G, Khadka NK, Kalkat N, Mainali L. Cholesterol Content Regulates the Interaction of αA-, αB-, and α-Crystallin with the Model of Human Lens-Lipid Membranes. Int J Mol Sci 2024; 25:1923. [PMID: 38339200 PMCID: PMC10855794 DOI: 10.3390/ijms25031923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Navdeep Kalkat
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| |
Collapse
|
23
|
Niazi S, Moshirfar M, Dastjerdi MH, Niazi F, Doroodgar F, Ambrósio R. Association between obesity and age-related cataract: an updated systematic review and dose-response meta-analysis of prospective cohort studies. Front Nutr 2024; 10:1215212. [PMID: 38357464 PMCID: PMC10866009 DOI: 10.3389/fnut.2023.1215212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
Objective There are inconsistent findings on the association between obesity and age-related cataract (ARC). This systematic review was done to summarize available findings on the association between obesity [defined by body mass index (BMI)] and ARC by performing a dose-response meta-analysis on eligible prospective cohort studies. Methods We performed a systematic search in PubMed, Scopus, ISI Web of Knowledge, and Google Scholar until June 2022 to identify eligible publications. Results In total, 16 studies with a total sample size of 1,607,125 participants were included. Among all of these studies, there were 103,897 cases of ARC. In the follow-up periods ranging between 4 and 28 years, 4,870 cases of nuclear cataract, 1,611 cases of cortical cataract, and 1,603 cases of posterior subcapsular cataracts (PSC) were detected. By comparing the highest and lowest categories of BMI, we found that higher BMI was associated with an increased risk of ARC (RR: 1.18, 95% CI: 1.09-1.28) and PSC (RR: 1.44, 95% CI: 1.08-1.90). In the dose-response analysis, each 5 kg/m2 increase in BMI was associated with a 6 and 27% increased risk of ARC (RR: 1.06, 95% CI: 1.01-1.12) and PSC (RR: 1.27, 95% CI: 1.14-1.41), respectively. In addition, we found a positive association for cortical cataract among high-quality studies, in which higher BMI was associated with a 20% increased risk of cortical cataract (RR: 1.20, 95% CI: 1.02-1.42). In terms of nuclear cataract, we found no significant association either in the comparison between the highest and lowest categories of BMI or in the dose-response meta-analysis. Conclusion Obesity (defined by BMI) was associated with an increased risk of ARC, PSC, and cortical cataract in adults. However, such a positive association was not seen for nuclear cataract. PROSPERO registration CRD42022357132.
Collapse
Affiliation(s)
- Sana Niazi
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran, Iran
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Moshirfar
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Mohammad H. Dastjerdi
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Feizollah Niazi
- Clinical Research Development Center, Shahid Modarres Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Doroodgar
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran, Iran
- Negah Specialty Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Renato Ambrósio
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil
- BrAIN: Brazilian Artificial Intelligence Networking in Medicine, Rio de Janeiro, Brazil
- Department of Ophthalmology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Department of Ophthalmology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Li Y, Tang L, Dang G, Ma M, Tang X. Scinderin Promotes Hydrogen Peroxide-induced Lens Epithelial Cell Injury in Age-related Cataract. Curr Mol Med 2024; 24:1426-1436. [PMID: 37936437 DOI: 10.2174/0115665240250050231030110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Scinderin (SCIN) is a calcium-dependent protein implicated in cell growth and apoptosis by regulating actin cleavage and capping. In this study, we investigated the role of SCIN in hydrogen peroxide-induced lens epithelial cell (LEC) injury related to age-related cataract (ARC). METHODS Anterior lens capsules from ARC patients were collected to examine SCIN expression levels. Immortalized human LEC cell line SRA01/04 and lens capsules freshly isolated from mice were induced by H2O2 to mimic the oxidative stress in ARC. The role of SCIN was investigated by gain-of-function (overexpression) and loss-offunction (knockdown) experiments. Flow cytometry (FCM) and Western-blot (WB) assays were performed to investigate the effect of SCIN on apoptosis. The oxidative stress (OS) was examined by detecting malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) activity. The interaction between SCIN mRNA and miR-489-3p was predicted by StarBase and miRDB databases and validated by luciferase reporter activity assay. RESULTS SCIN was significantly elevated in cataract samples, and the expression levels were positively correlated with the nuclear sclerosis grades. SCIN overexpression promoted OS and apoptosis in H2O2-induced SRA01/04 cells, while SCIN silencing showed the opposite effect. We further showed that miR-489-3p was a negative regulator of SCIN. miR-489-3p overexpression suppressed apoptosis and OS in H2O2-induced SRA01/04 cells by targeting SCIN. CONCLUSION Our study identified SCIN as an upregulated gene in ARC, which is negatively regulated by miR-489-3p. Targeting miR-489-3p/SCIN axis could attenuate OS-induced apoptosis in LECs.
Collapse
Affiliation(s)
- Yan Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Li Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Guanxing Dang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Mengyuan Ma
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Xingfang Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| |
Collapse
|
25
|
Kai JY, Zhou M, Li DL, Zhu KY, Wu Q, Zhang XF, Pan CW. Smoking, dietary factors and major age-related eye disorders: an umbrella review of systematic reviews and meta-analyses. Br J Ophthalmol 2023; 108:51-57. [PMID: 36575624 DOI: 10.1136/bjo-2022-322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is accumulating evidence of the associations between age-related eye diseases (AREDs) and smoking or dietary factors. We aimed to provide an umbrella review of the published literature pertaining to smoking or dietary intake as risk factors for major AREDs including cataract, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy. METHODS We searched for pertinent systematic reviews or meta-analyses in PubMed and Web of Science until 16 April 2022. We reperformed the meta-analysis of each association using random effects models. The heterogeneity and 95% prediction interval were calculated. The presence of small-study effect or excess significance bias was also assessed. RESULTS In total, 64 associations from 25 meta-analyses and 41 associations from 10 qualitative systematic reviews were evaluated. There was convincing (class I) evidence for only one association, namely current smoking and cataract. Two factors had highly suggestive (class II) evidence, namely ever smoking associated with cataract and fish consumption associated with AMD. We also found suggestive (class III) evidence for associations between the dietary intake of omega-3 polyunsaturated fatty acid, lutein, zeaxanthin, vitamin C and the risk of cataract. CONCLUSIONS Smoking as a risk factor for cataract was the most robust association we identified. We also identified several dietary elements associated with AREDs. Large prospective studies are warranted to further examine the associations discussed in this review. PROSPERO REGISTRATION NUMBER CRD42022339082.
Collapse
Affiliation(s)
- Jia-Yan Kai
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Miao Zhou
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Dan-Lin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ke-Yao Zhu
- Pasteurien College of Soochow University, Suzhou, China
| | - Qian Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiao-Feng Zhang
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Doki Y, Nakazawa Y, Sukegawa M, Petrova RS, Ishida Y, Endo S, Nagai N, Yamamoto N, Funakoshi-Tago M, Donaldson PJ. Piezo1 channel causes lens sclerosis via transglutaminase 2 activation. Exp Eye Res 2023; 237:109719. [PMID: 37951336 DOI: 10.1016/j.exer.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Presbyopia is caused by age-related lenticular hardening, resulting in near vision loss, and it occurs in almost every individual aged ≥50 years. The lens experiences mechanical pressure during for focal adjustment to change its thickness. As lenticular stiffening results in incomplete thickness changes, near vision is reduced, which is known as presbyopia. Piezo1 is a mechanosensitive channel that constantly senses pressure changes during the regulation of visual acuity, and changes in Piezo1 channel activity may contribute to presbyopia. However, no studies have reported on Piezo1 activation or the onset of presbyopia. To elucidate the relevance of Piezo1 activation and cross-linking in the development of presbyopia, we analysed the function of Piezo1 in the lens. The addition of Yoda1, a Piezo1 activator, induced an increase in transglutaminase 2 (TGM2) mRNA expression and activity through the extra-cellular signal-regulated kinase (ERK) 1/2 and c-Jun-NH2-terminal kinase1/2 pathways. In ex vivo lenses, Yoda1 treatment induced γ-crystallin cross-linking via TMG2 activation. Furthermore, Yoda1 eye-drops in mice led to lenticular hardening via TGM2 induction and activation in vivo, suggesting that Yoda1-treated animals could serve as a model for presbyopia. Our findings indicate that this presbyopia-animal model could be useful for screening drugs for lens-stiffening inhibition.
Collapse
Affiliation(s)
- Yuri Doki
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Yuki Ishida
- R&D Division, Hayashibara Co., Ltd, Okayama, Japan
| | - Shin Endo
- R&D Division, Hayashibara Co., Ltd, Okayama, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Naoki Yamamoto
- Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Japan
| | | | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
27
|
Abdolalizadeh P, Falavarjani KG. The Correlation of Global Burden of Vision Impairment and Ambient Atmospheric Fine Particulate Matter. J Curr Ophthalmol 2023; 35:387-394. [PMID: 39281396 PMCID: PMC11392291 DOI: 10.4103/joco.joco_125_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/16/2023] [Accepted: 11/10/2023] [Indexed: 09/18/2024] Open
Abstract
Purpose To assess the correlation between the worldwide burden of vision impairment (VI) and fine particulate matter (PM) 2.5. Methods In this retrospective cross-sectional study, global and national prevalence and disability-adjusted lost year (DALY) numbers and rates of total VI, glaucoma, cataract, and age-related macular degeneration (AMD) were obtained from the Global Burden of Disease database. The global and national levels of PM2.5 levels were also extracted. The main outcome measures were the correlation of PM2.5 levels with total VI and three ocular diseases in different age, sex, and socioeconomic subgroups. Results In 2019, the worldwide prevalence of total VI and exposure level of PM2.5 was 9.6% (95% uncertainty interval: 8.0-11.3) and 42.5 μg/m3, respectively. The national age-standardized prevalence rates of total VI (r p = 0.52, P < 0.001), glaucoma (r p = 0.65, P < 0.001), AMD (r p = 0.67, P < 0.001), and cataract (r p = 0.44, P < 0.001) have a positive correlation with PM2.5 levels. In addition, the national age-standardized DALY rates of total VI (r p = 0.62, P < 0.001), glaucoma (r p = 0.62, P < 0.001), AMD (r p = 0.54, P < 0.001), and cataract (r p = 0.45, P < 0.001) significantly correlated with PM2.5 levels. The correlations remained significant in different age, sex, and sociodemographic subgroups. Conclusion National prevalence rates of VI and three major ocular diseases correlate significantly with PM2.5 exposure levels, worldwide.
Collapse
Affiliation(s)
- Parya Abdolalizadeh
- Department of Ophthalmology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Kundakci YE, Bilir A, Atay E, Vurmaz A, Firat F, Arikan ES. Protective Effects of Different Doses of Ginsenoside-Rb1 Experimental Cataract Model That in Chick Embryos. Curr Eye Res 2023; 48:817-825. [PMID: 37260421 DOI: 10.1080/02713683.2023.2221415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE There has been increased interest in phytochemical antioxidants to prevent protein damage and aggregate formation in cataract treatment. In this study, the protective effect of different doses of Rb1 (GRb1), one of the ginsenosides of Panax Ginseng, in the experimental cataract model formed in chick embryos was investigated. METHODS Five different experimental groups were formed with 100 SPF fertilized eggs: Control (0.9% NaCl to physiological saline), hydrocortisone hemisuccinate sodium (HC), low dose (HC + L-GRb1 (1 mg/kg)), medium dose (HC+). M-GRb1 (2.5 mg/kg)), and high dose (HC + H-GRb1 (5 mg/kg)). All solutions were given to air sack at 15 days of incubation. On the 17th day, the bulbous oculi of the chick embryos were dissected. Cataract formations of the lenses, glutathione (GSH), malondialdehyde (MDA), total antioxidant (TAS), total oxidant (TOS) levels, Caspase-3 H-score, and TUNEL index were determined. In addition, crystalline alpha A (CRYAA) gene expression was evaluated. RESULTS Cataracts were observed in the control, HC, HC + L-GRb1, HC + M-GRb1, and HC + H-GRb1 groups with a frequency of 0%, 100%, 75%, 56.25%, and 100%, respectively. There were statistically significant differences between the control and HC groups in terms of TAS, TOS, MDA, GSH, Caspase-3 H-score, and TUNEL index (p < .05). When the therapeutic effect of the GRb1 groups was evaluated, the HC group showed significant differences with the HC + L-GRb1 and HC + M-GRb1 groups in almost all parameters (p < .05), while there was no statistical difference with the HC + H-GRb1 group (p > .05). In addition, gene expression levels differed between the groups, although not statistically significant (p > .05). CONCLUSION 1 mg/kg and 2.5 mg/kg GRb1 applications show therapeutic properties on the HC-induced cataract model. This effect is more pronounced at 2.5 mg/kg.
Collapse
Affiliation(s)
- Yunus Emre Kundakci
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Abdulkadir Bilir
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ayhan Vurmaz
- Department of Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Fatma Firat
- Department of Histology and Embryology, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Evrim Suna Arikan
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
29
|
Li X, Xie J, Xu J, Deng L, Cao G, Huang S, Zeng C, Liu C, Zhu S, He G, Lin Z, Ma W, Yang P, Liu T. Long-Term Exposure to Ambient PM 2.5 and Age-Related Cataracts among Chinese Middle-Aged and Older Adults: Evidence from Two National Cohort Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11792-11802. [PMID: 37534997 DOI: 10.1021/acs.est.3c02646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Cataract is one key cause of visual disability and blindness. Ambient particulate matter is more likely to increase cataract risk due to eye continuous exposure to the environment. However, less is known about whether long-term exposure to particulate matter 2.5 (PM2.5) is related to age-related cataracts. We conducted a population-based study among 22,298 adults from two multicenter cohort studies [China Family Panel Studies (CFPS) and Chinese Longitudinal Healthy Longevity Survey (CLHLS)]. The associations between PM2.5 and age-related cataracts were analyzed by Cox proportional hazard regression models, which were also stratified according to demographic characteristics. The restricted cubic spline (RCS) model was used to explore the dose-response relationships between PM2.5 and age-related cataracts. The population attributable fraction (PAF) was calculated to assess the burden of age-related cataracts that can be attributed to PM2.5. In the final analysis, 1897 participants reported age-related cataracts during follow-up. Long-term exposure to PM2.5 was associated with age-related cataracts, with HRs of 1.165 (1.130, 1.201), 1.138 (1.103, 1.173), and 1.091 (1.057, 1.126) for per 10 μg/m3 increase at one-, two-, and three-year before the end of follow-up, respectively. Furthermore, associations between PM2.5 and age-related cataracts were also demonstrated in RCS models. The PAF of age-related cataracts to PM2.5 in the total participants was 24.63%. Our research found that long-term exposure to PM2.5 may increase the risk of age-related cataracts, and age-related cataracts should be considered as an important public health issue due to air pollution.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ganxiang Cao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chenyan Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Ali F, Richardson RB. Electron, Photon, and Neutron Dose Conversion Coefficients of Lens and Non-Lens Tissues Using a Multi-Tissue Eye Model to Assess Risk of Cataracts and Retinitis. Radiat Res 2023; 200:162-175. [PMID: 37410087 DOI: 10.1667/rade-23-00023.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Previous publications describe the estimation of the dose from ionizing radiation to the whole lens or parts of it but have not considered other eye tissues that are implicated in cataract development; this is especially critical for low-dose, low-ionizing-density exposures. A recent review of the biological mechanisms of radiation-induced cataracts showed that lenticular oxidative stress can be increased by inflammation and vascular damage to non-lens tissues in the eye. Also, the radiation oxygen effect indicates different radiosensitivities for the vascular retina and the severely hypoxic lens. Therefore, this study uses the Monte Carlo N-Particle simulations to quantify dose conversion coefficients for several eye tissues for incident antero-posterior exposure to electrons, photons, and neutrons (and the tertiary electron component of neutron exposure). A stylized, multi-tissue eye model was developed by modifying a model by Behrens etal. (2009) to include the retina, uvea, sclera, and lens epithelial cell populations. Electron exposures were simulated as a single eye, whereas photon and neutron exposures were simulated employing two eyes embedded in the ADAM-EVA phantom. For electrons and photons, dose conversion coefficients are highest for either anterior tissues for low-energy incident particles or posterior tissues for high-energy incident particles. Neutron dose conversion coefficients generally increase with increasing incident energy for all tissues. The ratio of the absorbed dose delivered to each tissue to the absorbed dose delivered to the whole lens demonstrated the considerable deviation of non-lens tissue doses from lens doses, depending on particle type and its energy. These simulations demonstrate that there are large variations in the dose to various ocular tissues depending on the incident radiation dose coefficients; this large variation will potentially impact cataract development.
Collapse
Affiliation(s)
- Fawaz Ali
- Canadian Nuclear Laboratories, Chalk River, Canada
| | - Richard B Richardson
- Canadian Nuclear Laboratories, Chalk River, Canada
- McGill University, Montreal, Canada
| |
Collapse
|
31
|
Park J, MacGavin S, Niederbrach L, Mchaourab HS. Interplay between Nrf2 and αB-crystallin in the lens and heart of zebrafish under proteostatic stress. Front Mol Biosci 2023; 10:1185704. [PMID: 37577747 PMCID: PMC10422029 DOI: 10.3389/fmolb.2023.1185704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
A coordinated oxidative stress response, partly triggered by the transcription factor Nrf2, protects cells from the continual production of reactive oxygen species. Left unbuffered, reactive oxygen species can lead to protein aggregation that has been implicated in a spectrum of diseases such as cataract of the ocular lens and myopathy of the heart. While proteostasis is maintained by diverse families of heat shock proteins, the interplay between the oxidative and proteostatic stress responses in the lens and heart has not been investigated. Capitalizing on multiple zebrafish lines that have compromised function of Nrf2 and/or the two zebrafish small heat shock proteins αBa- and αBb-crystallin, we uncovered a transcriptional relationship that leads to a substantial increase in αBb-crystallin transcripts in the heart in response to compromised function of Nrf2. In the lens, the concomitant loss of function of Nrf2 and αBa-crystallin leads to upregulation of the cholesterol biosynthesis pathway, thus mitigating the phenotypic consequences of the αBa-crystallin knockout. By contrast, abrogation of Nrf2 function accentuates the penetrance of a heart edema phenotype characteristic of embryos of αB-crystallin knockout lines. Multiple molecular pathways, such as genes involved in extracellular interactions and implicated in cardiomyopathy, are revealed from transcriptome profiling, thus identifying novel targets for further investigation. Together, our transcriptome/phenotypic analysis establishes an intersection between oxidative stress and chaperone responses in the lens and heart.
Collapse
Affiliation(s)
| | | | | | - Hassane S. Mchaourab
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
32
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
33
|
Boix-Lemonche G, Nagymihaly RM, Lumi X, Petrovski G. The human lens is capable of trilineage differentiation towards osteo-, chondro-, and adipogenesis-a model for studying cataract pathogenesis. Front Bioeng Biotechnol 2023; 11:1164795. [PMID: 37324433 PMCID: PMC10264667 DOI: 10.3389/fbioe.2023.1164795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The potential for trilineage differentiation of cells in tissues represents a model for studying disease pathogenesis and regeneration pathways. Human lens trilineage differentiation has not yet been demonstrated, and so has calcification and osteogenic differentiation of human lens epithelial cells in the whole human lens. Such changes can pose a risk for complications during cataract surgery. Human lens capsules (n = 9) from cataract patients undergoing uneventful surgery were trilineage-differentiated toward osteogenesis, chondrogenesis, and adipogenesis. Furthermore, whole human healthy lenses (n = 3) collected from cadaveric eyes were differentiated into bone and characterized by immunohistochemistry. The cells in the human lens capsules were capable of undergoing trilineage differentiation, while the whole human healthy lenses could undergo osteogenesis differentiation, expressing osteocalcin, collagen I, and pigment epithelium-derived factor. We, hereby, show an ex vivo model for cataract formation through different stages of opacification, as well as provide in vivo evidence from patients undergoing calcified lens extraction with bone-like consistency.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Department of Ophthalmology, Center for Eye Research and Innovative Diagnostics, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Center for Eye Research and Innovative Diagnostics, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| |
Collapse
|
34
|
Ma DY, Liu JX, Wang LD, Zhi XY, Luo L, Zhao JY, Qin Y. GSK-3β-dependent Nrf2 antioxidant response modulates ferroptosis of lens epithelial cells in age-related cataract. Free Radic Biol Med 2023; 204:161-176. [PMID: 37156294 DOI: 10.1016/j.freeradbiomed.2023.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in age-related cataract (ARC) with severe visual impairment, in which ferroptosis is gradually receiving numerous attention resulting from lipid peroxide accumulation and reactive oxygen species (ROS) overproduction. However, the essential pathogenic factors and the targeted medical strategies still remain skeptical and indistinct. In this work, by transmission electron microscopy (TEM) analysis, the major pathological courses in the LECs of ARC patients have been identified as ferroptosis, which was manifested with remarkable mitochondrial alterations, and similar results were found in aged mice (24-month-old). Furthermore, the primary pathological processes in the NaIO3-induced mice and HLE-B3 cell model have also been verified to be ferroptosis with an irreplaceable function of Nrf2, proved by the increased sensitivity to ferroptosis when Nrf2 was blocked in Nrf2-KO mice and si-Nrf2-treated HLE-B3 cells. Importantly, it has been found that an increased expression of GSK-3β was indicated in low-Nrf2-expressed tissues and cells. Subsequently, the contributions of abnormal GSK-3β expression to NaIO3-induced mice and HLE-B3 cell model were further evaluated, inhibition of GSK-3β utilizing SB216763 significantly alleviated LECs ferroptosis with less iron accumulation and ROS generation, as well as reversed expression alterations of ferroptosis markers, including GPX4, SLC7A11, SLC40A1, FTH1 and TfR1, in vitro and in vivo. Collectively, our findings conclude that targeting GSK-3β/Nrf2 balance might be a promising therapeutic strategy to mitigate LECs ferroptosis and thus probably delay the pathogenesis and development of ARC.
Collapse
Affiliation(s)
- Dong-Yue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jin-Xia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Lu-di Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xin-Yu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Li Luo
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
35
|
Karimi S, Nouri H, Mahmoudinejad-Azar S, Abtahi SH. Smoking and environmental tobacco smoke exposure: implications in ocular disorders. Cutan Ocul Toxicol 2023; 42:1-7. [PMID: 36369835 DOI: 10.1080/15569527.2022.2144874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE This article aims to gather and review the available knowledge on several implications of smoking and environmental tobacco smoke (ETS) exposure in ocular disorders and provides pathomechanistic insights where applicable. MATERIALS AND METHODS PubMed and Scopus databases were searched for relevant studies on the association of smoking and ETS exposure with various ocular disorders. Studies with different evidence levels, e.g., in-vivo, case-control, cohort, and meta-analysis, were included. RESULTS Smoking is an established, modifiable risk factor in several ocular diseases, including cataract, age-related macular degeneration, and Graves' ophthalmopathy; smokers are subject to more severe disease courses and less favorable treatment outcomes. Uveitis is twice as likely in smokers; smoking may also delay its resolution. Smoking and ETS exposure are major risk factors for diseases of other organs, with associated ocular complications as well, such as diabetes mellitus. ETS exposure is also associated with ocular surface pathologies, including dry eye syndrome. In children, early-life ETS exposure and maternal smoking during pregnancy are strongly associated with refractive errors and strabismus. Currently, available data on potential risks attributable to ETS exposure regarding ocular diseases are scarce and, in some instances, controversial. CONCLUSION In addition to smoking, ETS exposure is also a significant public health concern with possible links to several ocular diseases. However, the level of education of at-risk populations in this regard does not match the strength of the evidence.
Collapse
Affiliation(s)
- Saeed Karimi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Torfe Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Torfe Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Nouri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Sahar Mahmoudinejad-Azar
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Torfe Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Torfe Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Torfe Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Çetinkaya Yaprak A, Erkan Pota Ç. Comparison of retinochoroidal microvascular circulation in menstrual and postmenopausal periods using swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2023; 261:367-373. [PMID: 35984487 DOI: 10.1007/s00417-022-05807-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE We aimed to examine the possible effects of the postmenopausal period on retinal and choroidal microvascular circulation using swept-source optical coherence tomography angiography (SS-OCTA). METHODS This cross-sectional study included 45 eyes of 45 subjects in menstrual group and 40 eyes of 40 subjects in postmenopausal group. SS-OCTA was used for the assessment of vessel density (VD), foveal avascular zone (FAZ), choroidal thickness (CT), choriocapillaris VD, central macular thickness (CMT), nerve fiber layer thickness (RNFL), and ganglion cell layer (GCL) measurements. RESULT The VDs of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) measurements were similar in both group. FAZ area was wider in postmenopausal group (0.305 mm2 (range, 0.212-0.498 mm2)) compared to menstrual group (0.271 mm2 (range, 0.131-0.464 mm2)) (p = 0.013). Choriocapillaris VD was significantly lower in postmenopausal group (p = 0.049). CT was thicker in the postmenopausal group, but with no statistically significant difference (p = 0.066). Central macular thickness, RNFL, and GCL were similar in both groups. CONCLUSION This is the first study in the literature to evaluate the retinochoroidal microcirculation in the menstrual and postmenopausal periods with SS-OCTA. We observed an increase in both superficial and deep FAZ area and a decrease in choroidal blood flow in the postmenopausal period. We think that this enlargement in the FAZ area may be related to the decreased amount of estrogen.
Collapse
Affiliation(s)
- Aslı Çetinkaya Yaprak
- Department of Ophthalmology, Akdeniz University Faculty of Medicine, PınarbaşıMah. AkdenizÜniversitesi Tıp FakültesiHastanesi, 07070, Konyaaltı/Antalya, Turkey.
| | - Çisil Erkan Pota
- Department of Ophthalmology, Manavgat State Hospital, Antalya, Turkey
| |
Collapse
|
37
|
Caesary AG, Handayani N, Sujuti H. Effect of epigallocatechin gallate in green tea on preventing lens opacity and αB-crystallin aggregation in rat model of diabetes. Int J Ophthalmol 2023; 16:342-347. [PMID: 36935798 PMCID: PMC10009592 DOI: 10.18240/ijo.2023.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
AIM To evaluate the effect of epigallocatechin gallate (EGCG) in preventing lens opacity and the aggregation of lens αB-crystallin in model rats of diabetes mellitus (DM). METHODS This experimental study included Wistar rats for DM as in vivo models and divided into 5 groups. The treatment groups were administered EGCG by orally for 20d and were then assessed for their degree of lens opacity with binocular microscope and lens αB-crystallin expression from Western blot analyze. RESULTS Pearson correlation test and regression analysis on EGCG exposure and final random blood sugar (RBS) obtained a significance level of P<0.05. EGCG exposure can significantly lower RBS with an R 2 of 0.5634 (56.34%). The same analysis on EGCG exposure and the degree of lens opacity obtained a significance level of P<0.05 and increased exposure to EGCG can significantly lower the degree of lens opacity with an R 2 of 0.8577 (85.77%). Correlation analysis between EGCG and the expression of lens αB-crystallin can be concluded that the higher the EGCG exposure administered, the higher the native lens αB-crystallin expression and the lower the aggregate lens αB-crystallin expression. There was also significant effect in which every 1 mg/kg body weight dose of EGCG can increase the native lens αB-crystallin expression by 0.0063 and decrease the aggregate lens αB-crystallin expression by 0.0076. CONCLUSION The administration of EGCG at a dose of 300, 600, and 1200 mg shows a significant effect on preventing lens opacity and aggregation of αB-crystallin in diabetic rat models and this research could be a biomolecular prevention of cataract.
Collapse
Affiliation(s)
- Andita Gustria Caesary
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65111, Indonesia
| | - Nina Handayani
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65111, Indonesia
| | - Hidayat Sujuti
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65111, Indonesia
| |
Collapse
|
38
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
39
|
Bellucci C, Benatti L, Rossi M, Tedesco SA, Carta A, Calzetti G, Gandolfi S, Mora P. Cataract progression following lens-sparing pars plana vitrectomy for rhegmatogenous retinal detachment. Sci Rep 2022; 12:22064. [PMID: 36543919 PMCID: PMC9772327 DOI: 10.1038/s41598-022-26415-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Lens-sparing pars plana vitrectomy (PPV) is often followed by cataract development. However, there have been few prospective studies evaluating the timing of cataract progression and potential associated factors. This was an observational study conducted at the Ophthalmology Unit of the University Hospital of Parma (Parma, Italy). Patients presenting with rhegmatogenous retinal detachment (RRD), who underwent PPV with preservation of the lens, were examined according to a scheduled follow-up (3, 6 and 12 months after PPV) and then preoperatively when cataract extraction surgery (CES) was indicated, or at the end of the study follow-up period (May 2021). The primary outcome was the interval between PPV and CES indication (based on predefined refractive criteria). A total of 36 eyes of 36 patients (mean age: 52 ± 10 years) were included in the study. Nineteen eyes (53%) were indicated for CES a median of 14.5 months (IQR: 12.0-24.8) after PPV. The nuclear and posterior subcapsular forms of cataract progressed significantly starting at 6 months after PPV. Older age at the time of PPV, silicone oil tamponade and RRD without macular involvement were significantly and independently associated with an earlier indication for CES. Patient age and the use of silicone oil tamponade must be taken into consideration when evaluating the risk of cataract development after PPV.
Collapse
Affiliation(s)
- Carlo Bellucci
- grid.411482.aOphthalmology Unit, University Hospital of Parma, Parma, Italy
| | - Lucia Benatti
- grid.411482.aOphthalmology Unit, University Hospital of Parma, Parma, Italy
| | - Maurizio Rossi
- grid.411482.aDepartment of Clinical and Experimental Medicine, University Hospital of Parma, Parma, Italy
| | | | - Arturo Carta
- grid.411482.aOphthalmology Unit, University Hospital of Parma, Parma, Italy
| | - Giacomo Calzetti
- grid.411482.aOphthalmology Unit, University Hospital of Parma, Parma, Italy ,grid.508836.0Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland ,grid.410567.1Department of Ophthalmology, University Hospital of Basel, Basel, Switzerland
| | - Stefano Gandolfi
- grid.411482.aOphthalmology Unit, University Hospital of Parma, Parma, Italy
| | - Paolo Mora
- grid.411482.aOphthalmology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
40
|
Mastronikolis S, Kagkelaris K, Pagkalou M, Tsiambas E, Plotas P, Georgakopoulos CD. Antioxidant Defense and Pseudoexfoliation Syndrome: An Updated Review. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10040068. [PMID: 36548003 PMCID: PMC9785126 DOI: 10.3390/medsci10040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress (OS) affects the anterior ocular tissues, rendering them susceptible to several eye diseases. On the other hand, protection of the eye from harmful factors is achieved by unique defense mechanisms, including enzymatic and non-enzymatic antioxidants. The imbalance between oxidants and antioxidants could be the cause of pseudoexfoliation syndrome (PEXS), a condition of defective extracellular matrix (ECM) remodeling. A systematic English-language literature review was conducted from May 2022 to June 2022. The main antioxidant enzymes protecting the eye from reactive oxygen species (ROS) are superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which catalyze the reduction of specific types of ROS. Similarly, non-enzymatic antioxidants such as vitamins A, E and C, carotenoids and glutathione (GSH) are involved in removing ROS from the cells. PEXS is a genetic disease, however, environmental and dietary factors also influence its development. Additionally, many OS products disrupting the ECM remodeling process and modifying the antioxidative defense status could lead to PEXS. This review discusses the antioxidative defense of the eye in association with PEXS, and the intricate link between OS and PEXS. Understanding the pathways of PEXS evolution, and developing new methods to reduce OS, are crucial to control and treat this disease. However, further studies are required to elucidate the molecular pathogenesis of PEXS.
Collapse
Affiliation(s)
- Stylianos Mastronikolis
- Department of Ophthalmology, Medical School, University of Patras, 26504 Patras, Greece
- Department of Neurosurgery, James Cook University Hospital, Middlesbrough TS4 3BW, UK
- Correspondence: (S.M.); (P.P.)
| | | | - Marina Pagkalou
- Department of Chemistry, University of Crete, 71500 Heraklion, Greece
| | | | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece
- Correspondence: (S.M.); (P.P.)
| | | |
Collapse
|
41
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. Differentially expressed gene profiles and associated ceRNA network in ATG7-Deficient lens epithelial cells under oxidative stress. Front Genet 2022; 13:1088943. [PMID: 36568386 PMCID: PMC9768497 DOI: 10.3389/fgene.2022.1088943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidation is an essential factor during cataract development. Autophagy, usually a cytoprotective process, is always found elevated in lens epithelial cells under oxidation, yet its roles and associated molecular mechanisms under such circumstances are rarely elucidated. Herein, we extracted and re-analyzed the RNA sequencing data of the GSE161701 dataset from the Gene Expression Omnibus database to identify the differentially expressed mRNAs and lncRNAs by using the R package "DESeq2". Further analyses of gene ontology and KEGG enrichment were implemented via the packages "clusterProfiler" and "enrichplot". We found that after the knockout of ATG7, differentially expressed genes were more associated with hemopoiesis, vasculature development, axonogenesis, and hypoxia regulation. When stimulated with H2O2, LECs displayed a gene expression profile correlating with apoptotic and proliferative pathways, such as the MAPK signaling pathway and FoxO signaling pathway. The differentially expressed gene profiles of the two types of LECs (wild type and ATG7 deficient) under oxidation were distinct to a large extent. Furthermore, 1,341 up-regulated and 1912 down-regulated differential mRNAs and 263 up-regulated and 336 down-regulated differential lncRNAs between these two types of LECs subjected to H2O2 were detected, among which 292 mRNAs and 24 lncRNAs possibly interacted with ten cataract-related miRNAs. A competing endogenous lncRNA-miRNA-mRNA network based on such interactions was finally constructed.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China,Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Zi Ye, ; Zhaohui Li,
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China,Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Zi Ye, ; Zhaohui Li,
| |
Collapse
|
42
|
Exosomal microRNA-222-3p increases UVB sensitivity of lens epithelium cells by suppressing MGMT. Int Ophthalmol 2022; 43:1611-1628. [PMID: 36319884 DOI: 10.1007/s10792-022-02560-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Age-related cataract (ARC) is a leading cause of blindness worldwide with multiple pathogenic factors. Oxidative damage of lens epithelium cells (LECs) is one of the well-accepted pathogenesis of ARC which can be regulated by DNA repair genes (DRGs). The present research aimed to clarify the regulatory mechanism of exosomal microRNAs (miRNAs) on DRGs in LECs. METHODS The LECs oxidative damage model was established by UVB-irradiation on SRA01/04 (human lens epithelium cell line). Exosomes from UVB-irradiated cells (UVB-exo) and exosomes from normal control cells (NC-exo) were collected from the culture medium. To explore the functions of LECs exosomes, SRA01/04 were incubated with UVB-exo/NC-exo. Then, we detected SRA01/04 proliferation, viability and apoptosis respectively using 5'-ethynyl-2'-deoxyuridine (EdU), cell-counting kit-8 (CCK-8) and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay. Next, the miRNA expression profiles of UVB-exo and NC-exo were identified by miRNA microarrays. RNA expression in exosomes, cells, and clinical samples was verified by qRT-PCR. The location and expression of MGMT and CD63 proteins were detected by immunofluorescence and western blot. The 3'UTR regulation of miR-222-3p to MGMT was verified by luciferase analyses. RESULTS MGMT down-regulated while miR-222-3p up-regulated in LECs sub-central anterior capsule from ARC lenses. MGMT and miR-222-3p expressions in central and peripheral LECs from anterior lens capsules were differential. UVB-exo can transport the up-regulated miR-222-3p from oxidative-damaged LECs to normal LECs, which could suppress MGMT expression and increase UVB sensitivity of LECs. CONCLUSIONS Findings on exosomal miRNA functions provided novel insights into pathogenesis of ARC. Exosomal miR-222-3p can be a potential target for prevention and cure of ARC.
Collapse
|
43
|
Kim BR, Yoo TK, Kim HK, Ryu IH, Kim JK, Lee IS, Kim JS, Shin DH, Kim YS, Kim BT. Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine. EPMA J 2022; 13:367-382. [PMID: 36061832 PMCID: PMC9437169 DOI: 10.1007/s13167-022-00292-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 12/08/2022]
Abstract
Aims Sarcopenia is characterized by a gradual loss of skeletal muscle mass and strength with increased adverse outcomes. Recently, large-scale epidemiological studies have demonstrated a relationship between several chronic disorders and ocular pathological conditions using an oculomics approach. We hypothesized that sarcopenia can be predicted through eye examinations, without invasive tests or radiologic evaluations in the context of predictive, preventive, and personalized medicine (PPPM/3PM). Methods We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training set (80%, randomly selected from 2008 to 2010) data were used to construct the machine learning models. Internal (20%, randomly selected from 2008 to 2010) and external (from the KNHANES 2011) validation sets were used to assess the ability to predict sarcopenia. We included 8092 participants in the final dataset. Machine learning models (XGBoost) were trained on ophthalmological examinations and demographic factors to detect sarcopenia. Results In the exploratory analysis, decreased levator function (odds ratio [OR], 1.41; P value <0.001), cataracts (OR, 1.31; P value = 0.013), and age-related macular degeneration (OR, 1.38; P value = 0.026) were associated with an increased risk of sarcopenia in men. In women, an increased risk of sarcopenia was associated with blepharoptosis (OR, 1.23; P value = 0.038) and cataracts (OR, 1.29; P value = 0.010). The XGBoost technique showed areas under the receiver operating characteristic curves (AUCs) of 0.746 and 0.762 in men and women, respectively. The external validation achieved AUCs of 0.751 and 0.785 for men and women, respectively. For practical and fast hands-on experience with the predictive model for practitioners who may be willing to test the whole idea of sarcopenia prediction based on oculomics data, we developed a simple web-based calculator application (https://knhanesoculomics.github.io/sarcopenia) to predict the risk of sarcopenia and facilitate screening, based on the model established in this study. Conclusion Sarcopenia is treatable before the vicious cycle of sarcopenia-related deterioration begins. Therefore, early identification of individuals at a high risk of sarcopenia is essential in the context of PPPM. Our oculomics-based approach provides an effective strategy for sarcopenia prediction. The proposed method shows promise in significantly increasing the number of patients diagnosed with sarcopenia, potentially facilitating earlier intervention. Through patient oculometric monitoring, various pathological factors related to sarcopenia can be simultaneously analyzed, and doctors can provide personalized medical services according to each cause. Further studies are needed to confirm whether such a prediction algorithm can be used in real-world clinical settings to improve the diagnosis of sarcopenia. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00292-3.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Ophthalmology, Hangil Eye Hospital, Incheon, Republic of Korea
| | - Tae Keun Yoo
- B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, Republic of Korea
- VISUWORKS, Seoul, Republic of Korea
| | - Hong Kyu Kim
- Department of Ophthalmology, Dankook University College of Medicine, Dankook University Hospital, Cheonan, Republic of Korea
| | - Ik Hee Ryu
- B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, Republic of Korea
- VISUWORKS, Seoul, Republic of Korea
| | - Jin Kuk Kim
- B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, Republic of Korea
- VISUWORKS, Seoul, Republic of Korea
| | - In Sik Lee
- B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, Republic of Korea
| | | | | | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea
| | - Bom Taeck Kim
- Department of Family Practice & Community Health, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499 Republic of Korea
| |
Collapse
|
44
|
Mastronikolis S, Pagkalou M, Plotas P, Kagkelaris K, Georgakopoulos C. Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Exp Ther Med 2022; 24:602. [PMID: 35949329 PMCID: PMC9353531 DOI: 10.3892/etm.2022.11539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudoexfoliation syndrome (PEXS) is a systemic disease caused by defects in the extracellular matrix (ECM) remodelling process leading to the chronic deposition of extracellular, fibrillary, white flaky pseudoexfoliation material (PEXM) throughout the body. Specifically, PEXM deposits on the lens capsule cause open-angle glaucoma, cataracts and blindness in patients with PEXS. Several gene single nucleotide polymorphisms are linked to the development of PEXS in humans, including lysyl oxidase-like 1 gene, clusterin and fibulin-5. The exact reason for the PEXM generation and its resulting pathogenesis is not well understood. However, defective ECM remodelling and oxidative stress (OS) have been hypothesized as significant events leading to the PEXM. Specifically, the link between OS and PEXS has been well studied, although the investigation is still ongoing. The present review explored recent advances in various aspects of PEXS and the involvement of OS in the eye for PEXS development.
Collapse
Affiliation(s)
| | - Marina Pagkalou
- Department of Chemistry, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26334 Patras, Greece
| | | | | |
Collapse
|
45
|
Martin JB, Herman K, Houssin NS, Rich W, Reilly MA, Plageman TF. Arvcf Dependent Adherens Junction Stability is Required to Prevent Age-Related Cortical Cataracts. Front Cell Dev Biol 2022; 10:840129. [PMID: 35874813 PMCID: PMC9297370 DOI: 10.3389/fcell.2022.840129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The etiology of age-related cortical cataracts is not well understood but is speculated to be related to alterations in cell adhesion and/or the changing mechanical stresses occurring in the lens with time. The role of cell adhesion in maintaining lens transparency with age is difficult to assess because of the developmental and physiological roles that well-characterized adhesion proteins have in the lens. This report demonstrates that Arvcf, a member of the p120-catenin subfamily of catenins that bind to the juxtamembrane domain of cadherins, is an essential fiber cell protein that preserves lens transparency with age in mice. No major developmental defects are observed in the absence of Arvcf, however, cortical cataracts emerge in all animals examined older than 6-months of age. While opacities are not obvious in young animals, histological anomalies are observed in lenses at 4-weeks that include fiber cell separations, regions of hexagonal lattice disorganization, and absence of immunolabeled membranes. Compression analysis of whole lenses also revealed that Arvcf is required for their normal biomechanical properties. Immunofluorescent labeling of control and Arvcf-deficient lens fiber cells revealed a reduction in membrane localization of N-cadherin, β-catenin, and αN-catenin. Furthermore, super-resolution imaging demonstrated that the reduction in protein membrane localization is correlated with smaller cadherin nanoclusters. Additional characterization of lens fiber cell morphology with electron microscopy and high resolution fluorescent imaging also showed that the cellular protrusions of fiber cells are abnormally elongated with a reduction and disorganization of cadherin complex protein localization. Together, these data demonstrate that Arvcf is required to maintain transparency with age by mediating the stability of the N-cadherin protein complex in adherens junctions.
Collapse
Affiliation(s)
- Jessica B. Martin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Kenneth Herman
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Nathalie S. Houssin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Wade Rich
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Timothy F. Plageman
- College of Optometry, The Ohio State University, Columbus, OH, United States
- *Correspondence: Timothy F. Plageman Jr.,
| |
Collapse
|
46
|
Richardson RB. The role of oxygen and the Goldilocks range in the development of cataracts induced by space radiation in US astronauts. Exp Eye Res 2022; 223:109192. [DOI: 10.1016/j.exer.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
|
47
|
Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel) 2022; 11:antiox11071285. [PMID: 35883773 PMCID: PMC9311900 DOI: 10.3390/antiox11071285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
A cataract is a condition that causes 17 million people to experience blindness and is the most significant cause of vision loss, around 47.9%. The formation of cataracts is linked to both the production of reactive oxygen species (ROS) and the reduction of endogenous antioxidants. ROS are highly reactive molecules produced by oxygen. Examples of ROS include peroxides, super-oxides, and hydroxyl radicals. ROS are produced in cellular responses to xenobiotics and bacterial invasion and during mitochondrial oxidative metabolism. Excessive ROS can trigger oxidative stress that initiates the progression of eye lens opacities. ROS and other free radicals are highly reactive molecules because their outer orbitals have one or more unpaired electrons and can be neutralized by electron-donating compounds, such as antioxidants. Examples of natural antioxidant compounds are vitamin C, vitamin E, and beta-carotene. Numerous studies have demonstrated that plants contain numerous antioxidant compounds that can be used as cataract preventatives or inhibitors. Natural antioxidant extracts for cataract therapy may be investigated further in light of these findings, which show that consuming a sufficient amount of antioxidant-rich plants is an excellent approach to cataract prevention. Several other natural compounds also prevent cataracts by inhibiting aldose reductase and preventing apoptosis of the eye lens.
Collapse
Affiliation(s)
- Eva Imelda
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Ophthalmology, General Hospital Dr. Zainoel Abidin, Banda Aceh 23126, Indonesia
- Department of Ophthalmology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence:
| | - Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Rodiah Rahmawaty Lubis
- Department of Ophthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia;
| | - Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| | - Ade John Nursalim
- Department of Ophthalmology, General Hospital Prof. Dr. R. D. Kandou, Manado 955234, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| |
Collapse
|
48
|
Teng H, Hong Y, Cao J, Li H, Tian F, Sun J, Wen K, Han G, Whelchel A, Zhang X, Li X, Dong L. Senescence marker protein30 protects lens epithelial cells against oxidative damage by restoring mitochondrial function. Bioengineered 2022; 13:12955-12971. [PMID: 35615975 PMCID: PMC9275934 DOI: 10.1080/21655979.2022.2079270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Etiology and pathogenesis of age-related cataract is not entirely clear till now. Senescence marker protein 30 (SMP30) is a newly discovered anti-aging factor, which plays an important role in preventing apoptosis and reducing oxidative stress damage. Mitochondria are located at the intersection of key cellular pathways, such as energy substrate metabolism, reactive oxygen species (ROS) production and apoptosis. Oxidative stress induced by 4-hydroxynonenal (4-HNE) is closely related to neurodegenerative diseases and aging. Our study focused on the effect of SMP30 on mitochondrial homeostasis of human lens epithelial cells (HLECs) induced by 4-HNE. Western blots and qPCR were used to compare the expression of SMP30 protein in the residual lens epithelial cells in the lens capsule of age-related cataract (ARC) patients and the donated transparent lens capsule. On this basis, SMP30 overexpression plasmid and SMP30 shRNA interference plasmid were introduced to explore the effect of SMP30 on the biological behavior in HLECs under the condition of oxidative stress induced by 4-HNE through immunohistochemistry, ROS evaluation, metabolic spectrum analysis and JC-1 fluorescence measurement. Given that Nuclear Factor erythroid 2-Related Factor 2 (Nrf2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway is the most important antioxidant stress pathway, we further analyzed the regulatory effect of SMP30 by WB to explore its molecular mechanism. Our study indicated that SMP30 may inhibit ROS accumulation, restore mitochondrial function, activate Nrf2/Keap1 signaling pathway, therefore protecting lens epithelial cells from oxidative stress-induced cell damage.
Collapse
Affiliation(s)
- He Teng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Jingjing Cao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Fang Tian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Jing Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Kai Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Amy Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, Ok, USA
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| |
Collapse
|
49
|
Schindler P, Mautone L, Druchkiv V, Katz T, Spitzer MS, Skevas C. Predicting speed of progression of lens opacification after pars plana vitrectomy with silicone oil. PLoS One 2022; 17:e0268377. [PMID: 35594273 PMCID: PMC9122216 DOI: 10.1371/journal.pone.0268377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose An increasing number of posterior segment disorders is routinely managed with pars plana vitrectomy (PPV). In older, phakic patients cataract formation is expected within the first two years after surgery. For younger patients its progression is individually fluctuating. This study uses an objective quantitative measurement for lens-status-monitoring after PPV with silicone oil to derive predictions for progression and severity of post-operative lens opacification evaluated in patients with rhegmatogenous retinal detachment (RRD). Methods Data acquisition was performed prospectively between March 2018 and March 2021. PentacamHR® Nucleus Staging mode (PNS) was used to objectively gather data about nuclear cataracts after PPV at different time points. Data was grouped into training and test sets for a mathematical prediction model. Via backward variable selection method a mathematical formula was set up by means of which predictions about lens densitometry (LD) can be calculated. Results 20 males [58.8%] and 14 females [41.2%] matched the inclusion criteria (mean age 50.6 years [23–75; ±12.3]). Average follow-up was 8.1 months (3,4–17.4; ±3.4). Mean baseline LD of the treated and fellow eye before surgery was 11.1% (7.7%-17.6%; ±2.0) and 11.2% (7.7%-14.8%; ±1.5), respectively. Predicted LD values by the model for five pre-selected patients closely match the observed data with an average deviation of 1.06%. Conclusions Using an objective parameter like LD delivered by the PentacamHR® PNS mode additionally to the patient’s age allows us to make an individual prediction for any time after PPV with silicone oil due to RRD for all ages. The accuracy of the model was stronger influenced by baseline LD as cofactor in the equation than patient’s age. The application for the prediction lens opacification [which can be accessed for free under the following link (https://statisticarium.com/apps/sample-apps/LensDensityOil/)] can help vitreoretinal surgeons for patient consultation on the possibility to combine PPV with cataract surgery.
Collapse
Affiliation(s)
- Philipp Schindler
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Luca Mautone
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vasyl Druchkiv
- Department of Research & Development, Clínica Baviera, Valencia, Spain
| | - Toam Katz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christos Skevas
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Zhang J, Sheng S, Wang W, Dai J, Zhong Y, Ren J, Jiang K, Li S, Bian X, Liu L. Molecular Mechanisms of Iron Mediated Programmed Cell Death and Its Roles in Eye Diseases. Front Nutr 2022; 9:844757. [PMID: 35495915 PMCID: PMC9038536 DOI: 10.3389/fnut.2022.844757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Ferroptosis, a newly identified, iron-dependent type of programmed cell death, is active in several diseases, such as heart disease, brain damage, and cancer. Its main characteristics commonly involve excess iron accumulation, elevated lipid peroxides and reactive oxygen species, and reduced levels of glutathione and glutathione peroxidase 4 levels. The effects of ferroptosis in eye diseases cannot be underestimated, with ferroptosis becoming a research target in ocular disorders and emerging evidence from a series of in vivo and in vitro researches into ferroptosis revealing its role in eye conditions. However, no report provides comprehensive information on the pathophysiology of ferroptosis in eye diseases and its possible treatments. In the current review, we present an up-to-date overview of ferroptosis biology and its involvement in the pathological processes of ocular diseases. Furthermore, we pose several outstanding questions and areas for future research in this topic. We deem ferroptosis-associated cell death a pivotal new field of scientific study in ocular diseases and consider it a new therapeutic target in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Public Health, Weifang Medical University, Weifang, China.,Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Shuai Sheng
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Wenting Wang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Jiazhen Dai
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiantao Ren
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Keke Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Shuchan Li
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Xiaoyan Bian
- Department of Ocular Surface, Baotou Chaoju Eye Hospital, Boatou, China
| | - Lei Liu
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|