1
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Yanagi M, Hashimoto M. Dysfunctional Parvalbumin Neurons in Schizophrenia and the Pathway to the Clinical Application of Kv3 Channel Modulators. Int J Mol Sci 2024; 25:8696. [PMID: 39201380 PMCID: PMC11354421 DOI: 10.3390/ijms25168696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Based on the pathophysiological changes observed in schizophrenia, the gamma-aminobutyric acid (GABA) hypothesis may facilitate the development of targeted treatments for this disease. This hypothesis, mainly derived from postmortem brain results, postulates dysfunctions in a subset of GABAergic neurons, particularly parvalbumin-containing interneurons. In the cerebral cortex, the fast spike firing of parvalbumin-positive GABAergic interneurons is regulated by the Kv3.1 and Kv3.2 channels, which belong to a potassium channel subfamily. Decreased Kv3.1 levels have been observed in the prefrontal cortex of patients with schizophrenia, prompting the investigation of Kv3 channel modulators for the treatment of schizophrenia. However, biomarkers that capture the dysfunction of parvalbumin neurons are required for these modulators to be effective in the pharmacotherapy of schizophrenia. Electroencephalography and magnetoencephalography studies have demonstrated impairments in evoked gamma oscillations in patients with schizophrenia, which may reflect the dysfunction of cortical parvalbumin neurons. This review summarizes these topics and provides an overview of how the development of therapeutics that incorporate biomarkers could innovate the treatment of schizophrenia and potentially change the targets of pharmacotherapy.
Collapse
Affiliation(s)
- Masaya Yanagi
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | |
Collapse
|
3
|
He H, Long J, Song X, Li Q, Niu L, Peng L, Wei X, Zhang R. A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fMRI. Schizophr Res 2024; 270:202-211. [PMID: 38924938 DOI: 10.1016/j.schres.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Aberrant resting-state functional connectivity is a neuropathological feature of schizophrenia (SCZ). Prior investigations into functional connectivity abnormalities have primarily employed seed-based connectivity analysis, necessitating predefined seed locations. To address this limitation, a data-driven multivariate method known as connectome-wide association study (CWAS) has been proposed for exploring whole-brain functional connectivity. METHODS We conducted a CWAS analysis involving 46 patients with SCZ and 40 age- and sex-matched healthy controls. Multivariate distance matrix regression (MDMR) was utilized to identify key nodes in the brain. Subsequently, we conducted a follow-up seed-based connectivity analysis to elucidate specific connectivity patterns between regions of interest (ROIs). Additionally, we explored the spatial correlation between changes in functional connectivity and underlying molecular architectures by examining correlations between neurotransmitter/transporter distribution densities and functional connectivity. RESULTS MDMR revealed the right medial frontal gyrus and the left calcarine sulcus as two key nodes. Follow-up analysis unveiled hypoconnectivity between the right medial frontal superior gyrus and the right fusiform gyrus, as well as hypoconnectivity between the left calcarine sulcus and the right lingual gyrus in SCZ. Notably, a significant association between functional connectivity strength and positive symptom severity was identified. Furthermore, altered functional connectivity patterns suggested potential dysfunctions in the dopamine, serotonin, and gamma-aminobutyric acid systems. CONCLUSIONS This study elucidated reduced functional connectivity both within and between the medial frontal regions and the occipital cortex in patients with SCZ. Moreover, it indicated potential alterations in molecular architecture, thereby expanding current knowledge regarding neurobiological changes associated with SCZ.
Collapse
Affiliation(s)
- Huawei He
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PRC, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for PsychiatricDisorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, PR China.
| |
Collapse
|
4
|
Thompson SM. Modulators of GABA A receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 2024; 49:83-95. [PMID: 37709943 PMCID: PMC10700661 DOI: 10.1038/s41386-023-01728-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
The predominant inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), acts at ionotropic GABAA receptors to counterbalance excitation and regulate neuronal firing. GABAA receptors are heteropentameric channels comprised from subunits derived from 19 different genes. GABAA receptors have one of the richest and well-developed pharmacologies of any therapeutic drug target, including agonists, antagonists, and positive and negative allosteric modulators (PAMs, NAMs). Currently used PAMs include benzodiazepine sedatives and anxiolytics, barbiturates, endogenous and synthetic neurosteroids, and general anesthetics. In this article, I will review evidence that these drugs act at several distinct binding sites and how they can be used to alter the balance between excitation and inhibition. I will also summarize existing literature regarding (1) evidence that changes in GABAergic inhibition play a causative role in major depression, anxiety, postpartum depression, premenstrual dysphoric disorder, and schizophrenia and (2) whether and how GABAergic drugs exert beneficial effects in these conditions, focusing on human studies where possible. Where these classical therapeutics have failed to exert benefits, I will describe recent advances in clinical and preclinical drug development. I will also highlight opportunities to advance a generation of GABAergic therapeutics, such as development of subunit-selective PAMs and NAMs, that are engendering hope for novel tools to treat these devastating conditions.
Collapse
Affiliation(s)
- Scott M Thompson
- Center for Novel Therapeutics, Department of Psychiatry, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Vivien J, El Azraoui A, Lheraux C, Lanore F, Aouizerate B, Herry C, Humeau Y, Bienvenu TCM. Axo-axonic cells in neuropsychiatric disorders: a systematic review. Front Cell Neurosci 2023; 17:1212202. [PMID: 37435048 PMCID: PMC10330806 DOI: 10.3389/fncel.2023.1212202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Imbalance between excitation and inhibition in the cerebral cortex is one of the main theories in neuropsychiatric disorder pathophysiology. Cortical inhibition is finely regulated by a variety of highly specialized GABAergic interneuron types, which are thought to organize neural network activities. Among interneurons, axo-axonic cells are unique in making synapses with the axon initial segment of pyramidal neurons. Alterations of axo-axonic cells have been proposed to be implicated in disorders including epilepsy, schizophrenia and autism spectrum disorder. However, evidence for the alteration of axo-axonic cells in disease has only been examined in narrative reviews. By performing a systematic review of studies investigating axo-axonic cells and axo-axonic communication in epilepsy, schizophrenia and autism spectrum disorder, we outline convergent findings and discrepancies in the literature. Overall, the implication of axo-axonic cells in neuropsychiatric disorders might have been overstated. Additional work is needed to assess initial, mostly indirect findings, and to unravel how defects in axo-axonic cells translates to cortical dysregulation and, in turn, to pathological states.
Collapse
Affiliation(s)
- Juliette Vivien
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Anass El Azraoui
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
- Univ Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Cloé Lheraux
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Frederic Lanore
- Centre Hospitalier Charles Perrens, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Bruno Aouizerate
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
- Centre Hospitalier Charles Perrens, Inserm Neurocentre Magendie U1215, Bordeaux, France
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Cyril Herry
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Yann Humeau
- Univ Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Thomas C. M. Bienvenu
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
- Centre Hospitalier Charles Perrens, Inserm Neurocentre Magendie U1215, Bordeaux, France
| |
Collapse
|
6
|
Qin Y, Mahdavi A, Bertschy M, Anderson PM, Kulikova S, Pinault D. The psychotomimetic ketamine disrupts the transfer of late sensory information in the corticothalamic network. Eur J Neurosci 2023; 57:440-455. [PMID: 36226598 PMCID: PMC10092610 DOI: 10.1111/ejn.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex integration processes, like sensory perception, induce transient, large-scale synchronised beta/gamma oscillations in a time window of a few hundred ms (200-700 ms) after the presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an electrophysiological multisite network approach to investigate, in lightly anesthetised rats, the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on sensory stimulus-induced oscillations. Ketamine transiently increased the power of baseline beta/gamma oscillations and decreased sensory-induced beta/gamma oscillations. In addition, it disrupted information transferability in both the somatosensory thalamus and the related cortex and decreased the sensory-induced thalamocortical connectivity in the broadband gamma range. The present findings support the hypothesis that NMDA receptor antagonism disrupts the transfer of perceptual information in the somatosensory cortico-thalamo-cortical system.
Collapse
Affiliation(s)
- Yi Qin
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- Netherlands Institute for NeuroscienceThe Netherlands
| | - Ali Mahdavi
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- The University of Freiburg, Bernstein Center FreiburgFreiburgGermany
| | - Marine Bertschy
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| | - Paul M. Anderson
- Dept. Cognitive Neurobiology, Center for Brain ResearchMedical University ViennaAustria
| | - Sofya Kulikova
- National Research University Higher School of EconomicsPermRussia
| | - Didier Pinault
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| |
Collapse
|
7
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
8
|
Ekinci O, Ekinci A. Short-term, but not long-term, beneficial effects of concomitant benzodiazepine use on clinical course in patients with schizophrenia. Int Clin Psychopharmacol 2022; 37:143-150. [PMID: 35045532 DOI: 10.1097/yic.0000000000000392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study aims to examine possible differences in the effect on the course characteristics of the disease in cases of no use, short-term use and long-term use of benzodiazepines in patients with schizophrenia. In this retrospective observational study, the sample comprised patients with schizophrenia who were admitted to our psychiatric clinics from January 2015 to January 2019. Patients were also retrospectively tracked from the date of the first admission during the specified time until the end of the observation period (24 months) for clinical course characteristics. Data for 1710 patients with schizophrenia were included in the analyses. Patients with short-term benzodiazepines use had fewer psychiatric hospitalizations and shorter lengths of stay at psychiatric services than patients with no use or long-term use. Rates of antipsychotic drug discontinuation and suicidal behavior were also significantly lower among short-term benzodiazepines users than among those with no use or long-term use. In conclusion, our study indicates that short-term benzodiazepines use is associated with a better clinical course in patients with schizophrenia. Future studies should evaluate the effects of different benzodiazepines use patterns on disease prognosis with longer-term follow-up and prospective methodology and should concomitantly examine psychopathological variables.
Collapse
Affiliation(s)
- Okan Ekinci
- Department of Psychiatry, Usak University, Usak Merkez, Turkey
| | - Asli Ekinci
- Usak Education and Research Hospital, Psychiatry Department, Usak, Turkey
| |
Collapse
|
9
|
Miyazawa A, Kanahara N, Shiko Y, Ozawa Y, Kawasaki Y, Komatsu H, Masumo Y, Nakata Y, Iyo M. The cortical silent period in schizophrenia: A systematic review and meta-analysis focusing on disease stage and antipsychotic medication. J Psychopharmacol 2022; 36:479-488. [PMID: 35475374 DOI: 10.1177/02698811221078751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although numerous studies reported some changes of cortical silent period (CSP), an indicator of gamma-aminobutyric acid (GABA) function in central nervous system, in schizophrenia patients, it has been unknown how the disease stage and antipsychotic medication affect CSP values. METHODS The present study conducted a systematic review of previous literature comparing CSP between schizophrenia patients and healthy subjects, and then performed meta-analysis on the effects of (1) the disease stage and (2) antipsychotics on CSP. RESULTS (1) In the comparison of the disease stage comprising a total of 17 reports, there was no significant difference in CSP between patients under drug-naïve first-episode psychoses and healthy controls, or between patients with antipsychotic medication and healthy controls. (2) In the comparison of the antipsychotic class, patients treated with clozapine were longer in CSP compared to healthy controls. Patients treated with olanzapine/quetiapine or with other type of antipsychotics were not different from healthy controls. Regarding other type of antipsychotics, the iteration analysis after leaving out one literature showed that patients were shorter in CSP than healthy controls. CONCLUSION The results showed that clozapine seems to surely prolong CSP, indicating the enhancement of GABA transmission via GABAB receptors, suggesting the possible relationship between the CSP prolongation by clozapine and its high efficacy in psychopathology. The finding of shorter CSP in patients with other type of antipsychotics was distinct from clozapine/olanzapine/quetiapine, but was difficult to interpret since this group included a variety of transcranial magnetic stimulation (TMS) methodologies and patients' background.
Collapse
Affiliation(s)
- Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yoshihito Ozawa
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hiroshi Komatsu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuto Masumo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
10
|
Yanagi M, Tsuchiya A, Hosomi F, Ozaki S, Shirakawa O. Application of evoked response audiometry for specifying aberrant gamma oscillations in schizophrenia. Sci Rep 2022; 12:287. [PMID: 34997139 PMCID: PMC8741931 DOI: 10.1038/s41598-021-04278-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Gamma oscillations probed using auditory steady-state response (ASSR) are promising clinical biomarkers that may give rise to novel therapeutic interventions for schizophrenia. Optimizing clinical settings for these biomarker-driven interventions will require a quick and easy assessment system for gamma oscillations in psychiatry. ASSR has been used in clinical otolaryngology for evoked response audiometry (ERA) in order to judge hearing loss by focusing on the phase-locked response detectability via an automated analysis system. Herein, a standard ERA system with 40- and 46-Hz ASSRs was applied to evaluate the brain pathophysiology of patients with schizophrenia. Both ASSRs in the ERA system showed excellent detectability regarding the phase-locked response in healthy subjects and sharply captured the deficits of the phase-locked response caused by aberrant gamma oscillations in individuals with schizophrenia. These findings demonstrate the capability of the ERA system to specify patients who have aberrant gamma oscillations. The ERA system may have a potential to serve as a real-world clinical medium for upcoming biomarker-driven therapeutics in psychiatry.
Collapse
Affiliation(s)
- Masaya Yanagi
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Aki Tsuchiya
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Fumiharu Hosomi
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| | | | - Osamu Shirakawa
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| |
Collapse
|
11
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Selvaraj P, Tanaka M, Wen J, Zhang Y. The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model. Cells 2021; 10:cells10123454. [PMID: 34943962 PMCID: PMC8700188 DOI: 10.3390/cells10123454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3212
| |
Collapse
|
13
|
Mira A, Rubio-Camacho M, Alarcón D, Rodríguez-Cañas E, Fernández-Carvajal A, Falco A, Mallavia R. L-Menthol-Loadable Electrospun Fibers of PMVEMA Anhydride for Topical Administration. Pharmaceutics 2021; 13:1845. [PMID: 34834260 PMCID: PMC8618103 DOI: 10.3390/pharmaceutics13111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) of 119 and 139 molecular weights (P119 and P139, respectively) were electrospun to evaluate the resulting fibers as a topical delivery vehicle for (L-)menthol. Thus, electrospinning parameters were optimized for the production of uniform bead-free fibers from 12% w/w PMVEMA (±2.3% w/w menthol) solutions, and their morphology and size were characterized by field emission scanning electron microscopy (FESEM). The fibers of P119 (F119s) and P139 (F139s) showed average diameter sizes of approximately 534 and 664 nm, respectively, when unloaded, and 837 and 1369 nm when loaded with menthol. The morphology of all types of fibers was cylindrical except for F139s, which mostly displayed a double-ribbon-like shape. Gas chromatography-mass spectrometry (GC-MS) analysis determined that not only was the menthol encapsulation efficiency higher in F139s (92% versus 68% in F119s) but also that its stability over time was higher, given that in contrast with F119s, no significant losses in encapsulated menthol were detected in the F139s after 10 days post-production. Finally, in vitro biological assays showed no significant induction of cytotoxicity for any of the experimental fibers or in the full functionality of the encapsulated menthol, as it achieved equivalent free-menthol levels of activation of its specific receptor, the (human) transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8).
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Falco
- Institute of Research Development and Innovation in Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (A.M.); (M.R.-C.); (D.A.); (E.R.-C.); (A.F.-C.)
| | - Ricardo Mallavia
- Institute of Research Development and Innovation in Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (A.M.); (M.R.-C.); (D.A.); (E.R.-C.); (A.F.-C.)
| |
Collapse
|
14
|
Maksymetz J, Byun NE, Luessen DJ, Li B, Barry RL, Gore JC, Niswender CM, Lindsley CW, Joffe ME, Conn PJ. mGlu 1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Rep 2021; 37:109950. [PMID: 34731619 PMCID: PMC8628371 DOI: 10.1016/j.celrep.2021.109950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Evidence for prefrontal cortical (PFC) GABAergic dysfunction is one of the most consistent findings in schizophrenia and may contribute to cognitive deficits. Recent studies suggest that the mGlu1 subtype of metabotropic glutamate receptor regulates cortical inhibition; however, understanding the mechanisms through which mGlu1 positive allosteric modulators (PAMs) regulate PFC microcircuit function and cognition is essential for advancing these potential therapeutics toward the clinic. We report a series of electrophysiology, optogenetic, pharmacological magnetic resonance imaging, and animal behavior studies demonstrating that activation of mGlu1 receptors increases inhibitory transmission in the prelimbic PFC by selective excitation of somatostatin-expressing interneurons (SST-INs). An mGlu1 PAM reverses cortical hyperactivity and concomitant cognitive deficits induced by N-methyl-d-aspartate (NMDA) receptor antagonists. Using in vivo optogenetics, we show that prelimbic SST-INs are necessary for mGlu1 PAM efficacy. Collectively, these findings suggest that mGlu1 PAMs could reverse cortical GABAergic deficits and exhibit efficacy in treating cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nellie E Byun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Brianna Li
- Vanderbilt University, Nashville, TN 37232, USA
| | - Robert L Barry
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Reversing the Psychiatric Effects of Neurodevelopmental Cannabinoid Exposure: Exploring Pharmacotherapeutic Interventions for Symptom Improvement. Int J Mol Sci 2021; 22:ijms22157861. [PMID: 34360626 PMCID: PMC8346164 DOI: 10.3390/ijms22157861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental exposure to psychoactive compounds in cannabis, specifically THC, is associated with a variety of long-term psychopathological outcomes. This increased risk includes a higher prevalence of schizophrenia, mood and anxiety disorders, and cognitive impairments. Clinical and pre-clinical research continues to identify a wide array of underlying neuropathophysiological sequelae and mechanisms that may underlie THC-related psychiatric risk vulnerability, particularly following adolescent cannabis exposure. A common theme among these studies is the ability of developmental THC exposure to induce long-term adaptations in the mesocorticolimbic system which resemble pathological endophenotypes associated with these disorders. This narrative review will summarize recent clinical and pre-clinical evidence that has elucidated these THC-induced developmental risk factors and examine how specific pharmacotherapeutic interventions may serve to reverse or perhaps prevent these cannabis-related risk outcomes.
Collapse
|
16
|
Kogure M, Kanahara N, Miyazawa A, Oishi K, Nakata Y, Oda Y, Iyo M. Interacting Roles of COMT and GAD1 Genes in Patients with Treatment-Resistant Schizophrenia: a Genetic Association Study of Schizophrenia Patients and Healthy Controls. J Mol Neurosci 2021; 71:2575-2582. [PMID: 34125398 DOI: 10.1007/s12031-021-01866-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The projection from dopaminergic neurons to gamma-aminobutyric acid (GABA) interneurons in the prefrontal cortex is involved in the etiology of schizophrenia. The impact of interacting effects between dopamine signals and the expression of GABA on the clinical phenotypes of schizophrenia has not been studied. Since these interactions could be closely involved in prefrontal cortex functions, patients with specific alleles of these relevant molecules (which lead to lower or vulnerable genetic functions) may develop treatment-refractory symptoms. We conducted a genetic association study focusing on COMT and GAD1 genes for a treatment-resistant schizophrenia (TRS) group (n=171), a non-TRS group (n=592), and healthy controls (HC: n=447), and we examined allelic combinations specific to TRS. The results revealed that the percentage of subjects with Met allele of rs4680 on the COMT gene and C/C homozygote of rs3470934 on the GAD1 gene was significantly higher in the TRS group than the other two groups. There was no significant difference between the non-TRS group and HC groups. Considering the direction of functions of these single-nucleotide polymorphisms revealed by previous studies, we speculate that subjects with the Met/CC allelic combination could have a higher dopamine level and a lower expression of GABA in the prefrontal cortex. Our results suggest that an interaction between the dopaminergic signal and GABA signal intensities could differ between TRS patients and patients with other types of schizophrenia and healthy subjects.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Chiba, Japan
| | - Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Cyclic Innovation, Japan Agency for Medical Research Development, Tokyo, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
17
|
Vanaveski T, Molchanova S, Pham DD, Schäfer A, Pajanoja C, Narvik J, Srinivasan V, Urb M, Koivisto M, Vasar E, Timmusk T, Minkeviciene R, Eriksson O, Lalowski M, Taira T, Korhonen L, Voikar V, Lindholm D. PGC-1α Signaling Increases GABA(A) Receptor Subunit α2 Expression, GABAergic Neurotransmission and Anxiety-Like Behavior in Mice. Front Mol Neurosci 2021; 14:588230. [PMID: 33597848 PMCID: PMC7882546 DOI: 10.3389/fnmol.2021.588230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1α expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of γ-aminobutyric acid (GABA) type A receptor-α2 subunit (GABARα2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1α in neurons. Along with this, GABARα2 expression was enhanced in the hippocampus of the PGC-1α Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABARα2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1α Tg mice compared with controls. To study whether drugs acting on PPARγ can affect GABARα2, we employed pioglitazone that elevated GABARα2 expression in primary cultured neurons. Similar results were obtained using the specific PPARγ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1α regulates GABARα2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABARα2 expression via the PPARγ/PGC-1α system.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Svetlana Molchanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dan Duc Pham
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Schäfer
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ceren Pajanoja
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jane Narvik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Vignesh Srinivasan
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Maria Koivisto
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tönis Timmusk
- Protobios LCC, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vootele Voikar
- Neuroscience Center and Laboratory Animal Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
18
|
GSK3β inhibition restores cortical gamma oscillation and cognitive behavior in a mouse model of NMDA receptor hypofunction relevant to schizophrenia. Neuropsychopharmacology 2020; 45:2207-2218. [PMID: 32859995 PMCID: PMC7784891 DOI: 10.1038/s41386-020-00819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Cortical gamma oscillations are believed to be involved in mental processes which are disturbed in schizophrenia. For example, the magnitudes of sensory-evoked oscillations, as measured by auditory steady-state responses (ASSRs) at 40 Hz, are robustly diminished, whereas the baseline gamma power is enhanced in schizophrenia. Such dual gamma oscillation abnormalities are also present in a mouse model of N-methyl-D-aspartate receptor hypofunction (Ppp1r2cre/Grin1 knockout mice). However, it is unclear whether the abnormal gamma oscillations are associated with dysfunction in schizophrenia. We found that glycogen synthase kinase-3 (GSK3) is overactivated in corticolimbic parvalbumin-positive GABAergic interneurons in Grin1 mutant mice. Here we addressed whether GSK3β inhibition reverses both abnormal gamma oscillations and behavioral deficits with high correlation by pharmacological and genetic approach. We demonstrated that the paralog selective-GSK3β inhibitor, but not GSK3α inhibitor, normalizes the diminished ASSRs, excessive baseline gamma power, and deficits in spatial working memory and prepulse inhibition (PPI) of acoustic startle in Grin1 mutant mice. Cell-type specific GSK3B knockdown, but not GSK3A knockdown, also reversed abnormal gamma oscillations and behavioral deficits. Moreover, GSK3B knockdown, but not GSK3A knockdown, reverses the mutants' in vivo spike synchrony deficits. Finally, ex vivo patch-clamp recording from pairs of neighboring cortical pyramidal neurons showed a reduction of synchronous spontaneous inhibitory-postsynaptic-current events in mutants, which was reversed by GSK3β inhibition genetically and pharmacologically. Together, GSK3β inhibition in corticolimbic interneurons ameliorates the deficits in spatial working memory and PPI, presumably by restoration of synchronous GABA release, synchronous spike firing, and evoked-gamma power increase with lowered baseline power.
Collapse
|
19
|
iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry 2020; 25:2873-2888. [PMID: 31019265 PMCID: PMC6813882 DOI: 10.1038/s41380-019-0423-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder. Thus, studying pathogenetic mechanisms underlying SCZ requires studying the development of brain cells. Cortical interneurons (cINs) are consistently observed to be abnormal in SCZ postmortem brains. These abnormalities may explain altered gamma oscillation and cognitive function in patients with SCZ. Of note, currently used antipsychotic drugs ameliorate psychosis, but they are not very effective in reversing cognitive deficits. Characterizing mechanisms of SCZ pathogenesis, especially related to cognitive deficits, may lead to improved treatments. We generated homogeneous populations of developing cINs from 15 healthy control (HC) iPSC lines and 15 SCZ iPSC lines. SCZ cINs, but not SCZ glutamatergic neurons, show dysregulated Oxidative Phosphorylation (OxPhos) related gene expression, accompanied by compromised mitochondrial function. The OxPhos deficit in cINs could be reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) but not by other chemicals previously identified as increasing mitochondrial function. The restoration of mitochondrial function by ALA/ALC was accompanied by a reversal of arborization deficits in SCZ cINs. OxPhos abnormality, even in the absence of any circuit environment with other neuronal subtypes, appears to be an intrinsic deficit in SCZ cINs.
Collapse
|
20
|
Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nat Neurosci 2020; 23:1352-1364. [PMID: 33097921 PMCID: PMC7769122 DOI: 10.1038/s41593-020-00724-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
The mechanisms by which prenatal immune activation increase risk for neuropsychiatric disorders are unclear. Here, we generated developmental cortical interneurons (cINs), known to be affected in schizophrenia (SCZ) when matured, from induced pluripotent stem cells (iPSCs) from healthy controls (HC) and SCZ patients, and cocultured them with or without activated microglia. Coculture with activated microglia disturbed metabolic pathways, as indicated by unbiased transcriptome analysis, and impaired mitochondrial function, arborization, synapse formation and synaptic GABA release. Deficits in mitochondrial function and arborization were reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) treatments that boost mitochondrial function. Notably, activated microglia-conditioned medium altered metabolism in cINs and HC-derived iPSCs but not in SCZ-patient-derived iPSCs or in glutamatergic neurons. After removal of activated microglia-conditioned medium, SCZ cINs but not HC cINs showed prolonged metabolic deficits, suggesting an interaction between SCZ genetic backgrounds and environmental risk factors.
Collapse
|
21
|
Yang JM, Shen CJ, Chen XJ, Kong Y, Liu YS, Li XW, Chen Z, Gao TM, Li XM. erbb4 Deficits in Chandelier Cells of the Medial Prefrontal Cortex Confer Cognitive Dysfunctions: Implications for Schizophrenia. Cereb Cortex 2020; 29:4334-4346. [PMID: 30590426 DOI: 10.1093/cercor/bhy316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
erbb4 is a known susceptibility gene for schizophrenia. Chandelier cells (ChCs, also known as axo-axonic cells) are a distinct GABAergic interneuron subtype that exclusively target the axonal initial segment, which is the site of pyramidal neuron action potential initiation. ChCs are a source of ErbB4 expression and alterations in ChC-pyramidal neuron connectivity occur in the medial prefrontal cortex (mPFC) of schizophrenic patients and animal models of schizophrenia. However, the contribution of ErbB4 in mPFC ChCs to the pathogenesis of schizophrenia remains unknown. By conditional deletion or knockdown of ErbB4 from mPFC ChCs, we demonstrated that ErbB4 deficits led to impaired ChC-pyramidal neuron connections and cognitive dysfunctions. Furthermore, the cognitive dysfunctions were normalized by L-838417, an agonist of GABAAα2 receptors enriched in the axonal initial segment. Given that cognitive dysfunctions are a core symptom of schizophrenia, our results may provide a new perspective for understanding the etiology of schizophrenia and suggest that GABAAα2 receptors may be potential pharmacological targets for its treatment.
Collapse
Affiliation(s)
- Jian-Ming Yang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chen-Jie Shen
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Juan Chen
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Kong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Si Liu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhong Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Al-Absi AR, Qvist P, Okujeni S, Khan AR, Glerup S, Sanchez C, Nyengaard JR. Layers II/III of Prefrontal Cortex in Df(h22q11)/+ Mouse Model of the 22q11.2 Deletion Display Loss of Parvalbumin Interneurons and Modulation of Neuronal Morphology and Excitability. Mol Neurobiol 2020; 57:4978-4988. [PMID: 32820460 DOI: 10.1007/s12035-020-02067-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/09/2020] [Indexed: 11/26/2022]
Abstract
The 22q11.2 deletion has been identified as a risk factor for multiple neurodevelopmental disorders. Behavioral and cognitive impairments are common among carriers of the 22q11.2 deletion. Parvalbumin expressing (PV+) interneurons provide perisomatic inhibition of excitatory neuronal circuits through GABAA receptors, and a deficit of PV+ inhibitory circuits may underlie a multitude of the behavioral and functional deficits in the 22q11.2 deletion syndrome. We investigated putative deficits of PV+ inhibitory circuits and the associated molecular, morphological, and functional alterations in the prefrontal cortex (PFC) of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. We detected a significant decrease in the number of PV+ interneurons in layers II/III of PFC in Df(h22q11)/+ mice together with a reduction in the mRNA and protein levels of GABAA (α3), a PV+ putative postsynaptic receptor subunit. Pyramidal neurons from the same layers further experienced morphological reorganizations of spines and dendrites. Accordingly, a decrease in the levels of the postsynaptic density protein 95 (PSD95) and a higher neuronal activity in response to the GABAA antagonist bicuculline were measured in these layers in PFC of Df(h22q11)/+ mice compared with their wild-type littermates. Our study shows that a hemizygotic deletion of the 22q11.2 locus leads to deficit in the GABAergic control of network activity and involves molecular and morphological changes in both the inhibitory and excitatory synapses of parvalbumin interneurons and pyramidal neurons specifically in layers II/III PFC.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Centre for Molecular Morphology, Section for Stereology and Microscopy; Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard, 99 8200, Aarhus N, Denmark.
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Samora Okujeni
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering IMTEK, University of Freiburg, Freiburg, Germany
| | - Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Centre for Molecular Morphology, Section for Stereology and Microscopy; Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard, 99 8200, Aarhus N, Denmark
| |
Collapse
|
23
|
Naringin Confers Protection against Psychosocial Defeat Stress-Induced Neurobehavioral Deficits in Mice: Involvement of Glutamic Acid Decarboxylase Isoform-67, Oxido-Nitrergic Stress, and Neuroinflammatory Mechanisms. J Mol Neurosci 2020; 71:431-445. [PMID: 32767187 DOI: 10.1007/s12031-020-01664-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Psychosocial stress has been widely reported to contribute to psychiatric disturbances. Perturbations in the enzymes of GABAergic and cholinergic systems have been implicated as precursors in different stress-related neuropsychiatric diseases. Targeting glutamic acid decarboxylase-67 kDa (GAD67) and acetylcholinesterase (AChE) via oxidative, nitrergic, and neuroinflammatory mechanisms have been recognized as prospective strategies for the prevention of psychosocial stress-induced behavioral impairments. Naringin, a neuro-active flavonoid compound isolated from citrus fruits, has been shown to produce memory-enhancing, antiepileptic, antidepressant, and anti-inflammatory activities similarly to ginseng, a very potent adaptogen. In this communication, we assessed the effect of naringin on social-defeat stress (SDS)-induced behavioral, GABAergic, cholinergic, oxidative, nitrergic, and neuroinflammatory changes in mice using the resident-intruder paradigm. The intruder male mice were culled into six groups. Groups 1 and 2 (normal- and SDS-controls) received sterile saline, groups 3-5 were given naringin (25-100 mg/kg, i.p.) whereas group 6 had ginseng (50 mg/kg, i.p.) daily for 14 days, but followed by 10 min SDS (physical and psychological) exposure to groups 2-6 with aggressor-resident mice. Behavioral effects using Y-maze, elevated-plus maze, sociability, and tail-suspension tests were assessed on day 14. GAD67, AChE enzymes, and biomarkers of oxidative, nitrergic, and neuroinflammatory changes were assayed in the striatum, prefrontal cortex, and hippocampus. Naringin and ginseng reversed all SDS-induced behavioral impairments. Naringin increased the levels of GAD67 and decreased AChE activities in the striatum, prefrontal cortex, and hippocampus. Furthermore, naringin reduced pro-inflammatory cytokines (TNF-α, IL-6), malondialdehyde, nitrite concentrations, and increased glutathione levels in a region-dependent manner. Our study suggests that naringin attenuated SDS-induced behavioral endophenotypes of neuropsychiatric disease through increased GAD67 synthesis, inhibition of AChE activity, oxidative, nitrergic stress, and neuroinflammatory processes in stress-sensitive brain regions.
Collapse
|
24
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
25
|
Ben-Azu B, Emokpae O, Ajayi AM, Jarikre TA, Orhode V, Aderibigbe AO, Umukoro S, Iwalewa EO. Repeated psychosocial stress causes glutamic acid decarboxylase isoform-67, oxidative-Nox-2 changes and neuroinflammation in mice: Prevention by treatment with a neuroactive flavonoid, morin. Brain Res 2020; 1744:146917. [PMID: 32474018 DOI: 10.1016/j.brainres.2020.146917] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Psychosocial stress and biological predispositions are linked to mood and personality disorders related to psychiatric behaviors. Targeting neuroinflammation and oxidative stress has been recognized as a potential strategy for the prevention of psychosocial stress-induced psychiatric disorders. Morin, a bioactive compound isolated from mulberry leaf has been shown to produce antiamnesic, antipsychotic and anti-inflammatory effects relative to ginseng, a well-known adaptogen. Hence, the present study investigated the effect of morin on social-defeat stress (SDS)-induced behavioral, neurochemical, neuroimmune and neurooxidative changes in mice using intruder-resident paradigm. The intruder male mice were distributed into 6 groups (n = 10). Groups 1 (normal-control) and 2 (SDS-control) received normal saline, groups 3-5 had morin (25-100 mg/kg) while group 6 received ginseng (50 mg/kg) intraperitoneally daily for 14 days. Thirty minutes after treatment from days 7-14 onwards, mice in groups 2-6 were exposed to SDS for 10 min physical and psychological confrontations respectively with aggressive-resident mice. Neurobehavioral effects (locomotor activity, cognitive performance, anxiety- and depressive-like behavior) were assessed on day 14. Biomarkers of oxidative/nitrergic stress and neuroinflammation; acetylcholinesterase (AChE) and glutamic-acid decarboxylase-67 (GAD67) were measured in the striatum, prefrontal-cortex and hippocampus. Behavioral deficits induced by SDS were attenuated by morin and ginseng. Both morin and ginseng decreasedmalondialdehyde, nitrite levels and increased glutathione concentrations in the brain regions. They also reduced inflammatory mediators (TNF-α, IL-6, COX-2 and NF-κB), AChE activity and Nox-2 expression in the specific brain regions. However, morin increased the levels of GAD67 in the striatum, prefrontal-cortex and hippocampus in contrast to ginseng. Our results suggest that morin mitigates SDS-induced neurobehavioral deficits through enhancement of GAD67, inhibition of AChE activity, oxidative stress, Nox-2 and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria; Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Valiant Orhode
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Inflammatory and Immunopharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
26
|
Jatczak-Śliwa M, Kisiel M, Czyzewska MM, Brodzki M, Mozrzymas JW. GABA A Receptor β 2E155 Residue Located at the Agonist-Binding Site Is Involved in the Receptor Gating. Front Cell Neurosci 2020; 14:2. [PMID: 32116555 PMCID: PMC7026498 DOI: 10.3389/fncel.2020.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1β2γ2L receptors, the mutation of the β2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the β2E155C mutation on binding and gating of the α1β2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the β2E155C mutation caused a vast right shift of the dose–response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the β2E155 residue is involved in both binding and gating (primarily preactivation).
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
27
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
28
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
29
|
Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis 2019; 131:104208. [PMID: 29936230 PMCID: PMC6309598 DOI: 10.1016/j.nbd.2018.06.020] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Certain clinical features of schizophrenia, such as working memory disturbances, appear to emerge from altered gamma oscillatory activity in the prefrontal cortex (PFC). Given the essential role of GABA neurotransmission in both working memory and gamma oscillations, understanding the cellular substrate for their disturbances in schizophrenia requires evidence from in vivo neuroimaging studies, which provide a means to link markers of GABA neurotransmission to gamma oscillations and working memory, and from postmortem studies, which provide insight into GABA neurotransmission at molecular and cellular levels of resolution. Here, we review findings from both types of studies which converge on the notions that 1) inhibitory GABA signaling in the PFC, especially between parvalbumin positive GABAergic basket cells and excitatory pyramidal cells, is required for gamma oscillatory activity and working memory function; and 2) disturbances in this signaling contribute to altered gamma oscillations and working memory in schizophrenia. Because the PFC is only one node in a distributed cortical network that mediates working memory, we also review evidence of GABA abnormalities in other cortical regions in schizophrenia.
Collapse
Affiliation(s)
- Samuel J Dienel
- Medical Scientist Training Program, University of Pittsburgh, United States; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.
| |
Collapse
|
30
|
Kraus MS, Gold JM, Barch DM, Walker TM, Chun CA, Buchanan RW, Csernansky JG, Goff DC, Green MF, Jarskog LF, Javitt DC, Kimhy D, Lieberman JA, McEvoy JP, Mesholam-Gately RI, Seidman LJ, Ball MP, Kern RS, McMahon RP, Robinson J, Marder SR, Keefe RSE. The characteristics of cognitive neuroscience tests in a schizophrenia cognition clinical trial: Psychometric properties and correlations with standard measures. SCHIZOPHRENIA RESEARCH-COGNITION 2019; 19:100161. [PMID: 31832342 PMCID: PMC6889798 DOI: 10.1016/j.scog.2019.100161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/24/2019] [Accepted: 08/25/2019] [Indexed: 11/28/2022]
Abstract
In comparison to batteries of standard neuropsychological tests, cognitive neuroscience tests may offer a more specific assessment of discrete neurobiological processes that may be aberrant in schizophrenia. However, more information regarding psychometric properties and correlations with standard neuropsychological tests and functional measures is warranted to establish their validity as treatment outcome measures. The N-back and AX-Continuous Performance Task (AX-CPT) are two promising cognitive neuroscience tests designed to measure specific components of working memory and contextual processing respectively. In the current study, we report the psychometric properties of multiple outcome measures from these two tests as well as their correlations with standard neuropsychological measures and functional capacity measures. The results suggest that while the AX-CPT and N-back display favorable psychometric properties, they do not exhibit greater sensitivity or specificity with functional measures than standard neurocognitive tests.
Collapse
Affiliation(s)
- Michael S Kraus
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - James M Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Trina M Walker
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| | | | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - John G Csernansky
- Department of Psychiatry, Northwestern Feinberg School of Medicine, Chicago, IL, United States of America
| | - Donald C Goff
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, United States of America
| | - Michael F Green
- UCLA Semel Institute for Neuroscience and Human Behavior, United States of America.,VA VISN 22 Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, United States of America
| | - L Fredrik Jarskog
- North Carolina Psychiatric Research Center, Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Daniel C Javitt
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, New York University School of Medicine, New York, NY, United States of America
| | - David Kimhy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jeffrey A Lieberman
- Department of Psychiatry, New York State Psychiatric Institute and College of Physicians and Surgeons, Columbia University, United States of America
| | - Joseph P McEvoy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Raquelle I Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, United States of America.,Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - M Patricia Ball
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Robert S Kern
- UCLA Semel Institute for Neuroscience and Human Behavior, United States of America.,VA VISN 22 Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, United States of America
| | - Robert P McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James Robinson
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, New York University School of Medicine, New York, NY, United States of America
| | - Stephen R Marder
- UCLA Semel Institute for Neuroscience and Human Behavior, United States of America.,VA VISN 22 Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, United States of America
| | - Richard S E Keefe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
31
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
32
|
Taylor SF, Grove TB, Ellingrod VL, Tso IF. The Fragile Brain: Stress Vulnerability, Negative Affect and GABAergic Neurocircuits in Psychosis. Schizophr Bull 2019; 45:1170-1183. [PMID: 31150555 PMCID: PMC6811817 DOI: 10.1093/schbul/sbz046] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persons with schizophrenia exhibit sensitivity to stress and negative affect (NA), both strongly correlated with poor functional outcome. This theoretical review suggests that NA reflects a "fragile brain," ie, vulnerable to stress, including events not experienced as stressful by healthy individuals. Based on postmortem evidence of altered gamma-aminobutyric acid (GABA) function in parvalbumin positive interneurons (PVI), animal models of PVI abnormalities and neuroimaging data with GABAergic challenge, it is suggested that GABAergic disruptions weaken cortical regions, which leads to stress vulnerability and excessive NA. Neurocircuits that respond to stressful and salient environmental stimuli, such as the hypothalamic-pituitary-adrenal axis and the amygdala, are highly dysregulated in schizophrenia, exhibiting hypo- and hyper-activity. PVI abnormalities in lateral prefrontal cortex and hippocampus have been hypothesized to affect cognitive function and positive symptoms, respectively; in the medial frontal cortex (dorsal anterior cingulate cortex and dorsal medial prefrontal cortex), these abnormalities may lead to vulnerability to stress, NA and dysregulation of stress responsive systems. Given that postmortem PVI disruptions have been identified in other conditions, such as bipolar disorder and autism, stress vulnerability may reflect a transdiagnostic dimension of psychopathology.
Collapse
Affiliation(s)
- Stephan F Taylor
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI,To whom correspondence should be addressed; tel: 734-936-4955, fax: 734-936-7868, e-mail:
| | - Tyler B Grove
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI
| | | | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI
| |
Collapse
|
33
|
Tang Y, Zhou Q, Chang M, Chekroud A, Gueorguieva R, Jiang X, Zhou Y, He G, Rowland M, Wang D, Fu S, Yin Z, Leng H, Wei S, Xu K, Wang F, Krystal JH, Driesen NR. Altered functional connectivity and low-frequency signal fluctuations in early psychosis and genetic high risk. Schizophr Res 2019; 210:172-179. [PMID: 30685394 DOI: 10.1016/j.schres.2018.12.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Studying individuals at increased genetic risk for schizophrenia may generate important theories regarding the emergence of the illness. In this investigation, genetic high-risk individuals (GHR, n = 37) were assessed with functional magnetic resonance imaging and compared to individuals in the first episode of schizophrenia (FESZ, n = 42) and healthy comparison subjects (HCS, n = 59). Measures of functional connectivity and the amplitude of low-frequency fluctuation (ALFF) were obtained in a global, data-driven analysis. The functional connectivity measure, termed degree centrality, assessed each voxel's connectivity with all the other voxels in the brain. GHR and FESZ displayed increased degree centrality globally and locally. On ALFF measures, GHR were indistinguishable from HCS in the majority of areas but resembled FESZ in insula, basal ganglia and hippocampus. FESZ evidenced reduced amplitude of the global neural signal as compared to HCS and GHR. Results support the hypothesis that schizophrenia diathesis involves functional connectivity and ALFF abnormalities. In addition, they further an emerging theory suggesting that increased connectivity and metabolism may be involved in schizophrenia vulnerability and early stages of the illness.
Collapse
Affiliation(s)
- Yanqing Tang
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China; Department of Gerontology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Qian Zhou
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Miao Chang
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Adam Chekroud
- Department of Psychology, Yale University, USA; Centre for Outcomes Research and Evaluation, Yale-New Haven Hospital, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yifang Zhou
- Department of Gerontology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - George He
- Department of Psychology, Yale University, USA
| | - Margaret Rowland
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Veterans Affairs Connecticut Health System, West Haven, CT 06516, USA
| | - Dahai Wang
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shinan Fu
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhiyang Yin
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Haixia Leng
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shengnan Wei
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ke Xu
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Fei Wang
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Psychology, Yale University, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Veterans Affairs Connecticut Health System, West Haven, CT 06516, USA
| | - Naomi R Driesen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Veterans Affairs Connecticut Health System, West Haven, CT 06516, USA
| |
Collapse
|
34
|
Duchatel RJ, Shannon Weickert C, Tooney PA. White matter neuron biology and neuropathology in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:10. [PMID: 31285426 PMCID: PMC6614474 DOI: 10.1038/s41537-019-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Schizophrenia is considered a neurodevelopmental disorder as it often manifests before full brain maturation and is also a cerebral cortical disorder where deficits in GABAergic interneurons are prominent. Whilst most neurons are located in cortical and subcortical grey matter regions, a smaller population of neurons reside in white matter tracts of the primate and to a lesser extent, the rodent brain, subjacent to the cortex. These interstitial white matter neurons (IWMNs) have been identified with general markers for neurons [e.g., neuronal nuclear antigen (NeuN)] and with specific markers for neuronal subtypes such as GABAergic neurons. Studies of IWMNs in schizophrenia have primarily focused on their density underneath cortical areas known to be affected in schizophrenia such as the dorsolateral prefrontal cortex. Most of these studies of postmortem brains have identified increased NeuN+ and GABAergic IWMN density in people with schizophrenia compared to healthy controls. Whether IWMNs are involved in the pathogenesis of schizophrenia or if they are increased because of the cortical pathology in schizophrenia is unknown. We also do not understand how increased IWMN might contribute to brain dysfunction in the disorder. Here we review the literature on IWMN pathology in schizophrenia. We provide insight into the postulated functional significance of these neurons including how they may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
35
|
Contreras A, Hines DJ, Hines RM. Molecular Specialization of GABAergic Synapses on the Soma and Axon in Cortical and Hippocampal Circuit Function and Dysfunction. Front Mol Neurosci 2019; 12:154. [PMID: 31297048 PMCID: PMC6607995 DOI: 10.3389/fnmol.2019.00154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The diversity of inhibitory interneurons allows for the coordination and modulation of excitatory principal cell firing. Interneurons that release GABA (γ-aminobutyric acid) onto the soma and axon exert powerful control by virtue of proximity to the site of action potential generation at the axon initial segment (AIS). Here, we review and examine the cellular and molecular regulation of soma and axon targeting GABAergic synapses in the cortex and hippocampus. We also describe their role in controlling network activity in normal and pathological states. Recent studies have demonstrated a specific role for postsynaptic dystroglycan in the formation and maintenance of cholecystokinin positive basket cell terminals contacting the soma, and postsynaptic collybistin in parvalbumin positive chandelier cell contacts onto the AIS. Unique presynaptic molecular contributors, LGI2 and FGF13, expressed in parvalbumin positive basket cells and chandelier cells, respectively, have also recently been identified. Mutations in the genes encoding proteins critical for somatic and AIS inhibitory synapses have been associated with human disorders of the nervous system. Dystroglycan dysfunction in some congenital muscular dystrophies is associated with developmental brain malformations, intellectual disability, and rare epilepsy. Collybistin dysfunction has been linked to hyperekplexia, epilepsy, intellectual disability, and developmental disorders. Both LGI2 and FGF13 mutations are implicated in syndromes with epilepsy as a component. Advancing our understanding of the powerful roles of somatic and axonic GABAergic contacts in controlling activity patterns in the cortex and hippocampus will provide insight into the pathogenesis of epilepsy and other nervous system disorders.
Collapse
Affiliation(s)
- April Contreras
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dustin J Hines
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
36
|
Timing matters in elaborative processing of positive stimuli: Gamma band reactivity in schizophrenia compared to depression and healthy adults. Schizophr Res 2019; 204:111-119. [PMID: 30121184 PMCID: PMC6377351 DOI: 10.1016/j.schres.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/12/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
Abstract
Some individuals with schizophrenia report similar feelings of positive affect "in the moment" compared to control participants but report decreased trait positive affect overall. One possible explanation for this disconnection between state and trait positive affect is the extent to which individuals with schizophrenia engage in elaborative processing of positive stimuli. To assess this, we examined evoked gamma band activity in response to positive words over several seconds in a group with schizophrenia, a group with major depressive disorder, and a healthy control group. From a pre-stimulus baseline to 2000 ms after onset of the stimulus (henceforth, "early period"), the schizophrenia group showed a reliable increase in gamma activity compared to both the control and depressed groups, who did not differ from each other. In contrast, the depressed group showed a reliable increase in gamma activity from 2001 to 8000 ms (henceforth, "late period") compared to the other groups, who did not differ from each other. At the same time, the schizophrenia group showed a reliable decrease from the early to late period while the depressed group showed the opposite pattern. In addition, self-reported depression and social anhedonia in the schizophrenia group were related to decreased gamma band activity over the entire processing window. Overall, these results suggest that schizophrenia is associated with increased initial reactivity but decreased sustained elaborative processing over time, which could be related to decreased trait positive affect. The results also highlight the importance of considering depressive symptomology and anhedonia when examining emotional abnormalities in schizophrenia.
Collapse
|
37
|
Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell-derived cortical interneurons from subjects with schizophrenia. Nat Neurosci 2019; 22:229-242. [PMID: 30664768 PMCID: PMC6373728 DOI: 10.1038/s41593-018-0313-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
We generated cortical interneurons (cINs) from iPSCs derived from14 healthy controls (HC cINs) and 14 patients with schizophrenia (SCZ cINs). Both HC cINs and SCZ cINs were authentic, fired spontaneously, received functional excitatory inputs from host neurons, and induced GABA-mediated inhibition in host neurons in vivo. However, SCZ cINs had dysregulated expression of protocadherin genes, which lie within documented SCZ loci. Mice lacking protocadherin α showed defective arborization and synaptic density of prefrontal cortex cINs and behavioral abnormalities. SCZ cINs similarly showed defects in synaptic density and arborization, which were reversed by inhibitors of Protein Kinase C, a downstream kinase in the protocadherin pathway. These findings reveal an intrinsic abnormality in SCZ cINs in the absence of any circuit-driven pathology. They also demonstrate the utility of homogenous and functional populations of a relevant neuronal subtype for probing pathogenesis mechanisms during development.
Collapse
|
38
|
The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review. J Psychiatr Res 2019; 108:57-83. [PMID: 30055853 DOI: 10.1016/j.jpsychires.2018.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/28/2023]
Abstract
Since the discovery of chlorpromazine in the 1950's, antipsychotic drugs have been the cornerstone of treatment of schizophrenia, and all attenuate dopamine transmission at the dopamine-2 receptor. Drug development for schizophrenia since that time has led to improvements in side effects and tolerability, and limited improvements in efficacy, with the exception of clozapine. However, the reasons for clozapine's greater efficacy remain unclear, despite the great efforts and resources invested therewith. We performed a comprehensive review of the literature to determine the fate of previously tested, non-dopamine-2 receptor experimental treatments. Overall we included 250 studies in the review from the period 1970 to 2017 including treatments with glutamatergic, serotonergic, cholinergic, neuropeptidergic, hormone-based, dopaminergic, metabolic, vitamin/naturopathic, histaminergic, infection/inflammation-based, and miscellaneous mechanisms. Despite there being several promising targets, such as allosteric modulation of the NMDA and α7 nicotinic receptors, we cannot confidently state that any of the mechanistically novel experimental treatments covered in this review are definitely effective for the treatment of schizophrenia and ready for clinical use. We discuss potential reasons for the relative lack of progress in developing non-dopamine-2 receptor treatments for schizophrenia and provide recommendations for future efforts pursuing novel drug development for schizophrenia.
Collapse
|
39
|
Rajagopal L, Huang M, Michael E, Kwon S, Meltzer HY. TPA-023 attenuates subchronic phencyclidine-induced declarative and reversal learning deficits via GABA A receptor agonist mechanism: possible therapeutic target for cognitive deficit in schizophrenia. Neuropsychopharmacology 2018; 43:2468-2477. [PMID: 30093697 PMCID: PMC6180114 DOI: 10.1038/s41386-018-0160-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
GABAergic drugs are of interest for the treatment of anxiety, depression, bipolar disorder, pain, cognitive impairment associated with schizophrenia (CIAS), and other neuropsychiatric disorders. Some evidence suggests that TPA-023, (7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b] pyridazine), a GABAA α2,3 subtype-selective GABAA partial agonist and α1/5 antagonist, and the neurosteroid, pregnenolone sulfate, a GABAA antagonist, may improve CIAS in pilot clinical trials. The goal of this study was to investigate the effect of TPA-023 in mice after acute or subchronic (sc) treatment with the N-methyl-D-aspartate receptor (NMDAR) antagonist, phencyclidine (PCP), on novel object recognition (NOR), reversal learning (RL), and locomotor activity (LMA) in rodents. Acute TPA-023 significantly reversed scPCP-induced NOR and RL deficits. Co-administration of sub-effective dose (SED) TPA-023 with SEDs of the atypical antipsychotic drug, lurasidone, significantly potentiated the effect of TPA-023 in reversing the scPCP-induced NOR deficit. Further, scTPA-023 co-administration significantly prevented scPCP-induced NOR deficit for 5 weeks. Also, administration of TPA-023 for 7 days following scPCP reversed the NOR deficit for 1 week. However, TPA-023 did not blunt acute PCP-induced hyperactivity, suggesting lack of efficacy as a treatment for psychosis. Systemic TPA-023 significantly blocked lurasidone-induced increases in cortical acetylcholine, dopamine, and glutamate without affecting increases in norepinephrine and with minimal effect on basal release of these neurotransmitters. TPA-023 significantly inhibited PCP-induced cortical and striatal dopamine, serotonin, norepinephrine, and glutamate efflux. These results suggest that TPA-023 and other GABAA agonists may be of benefit to treat CIAS.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Mei Huang
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Eric Michael
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sunoh Kwon
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Herbert Y. Meltzer
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
40
|
Efficacy of different types of cognitive enhancers for patients with schizophrenia: a meta-analysis. NPJ SCHIZOPHRENIA 2018; 4:22. [PMID: 30361502 PMCID: PMC6202388 DOI: 10.1038/s41537-018-0064-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Cognitive impairment is a core feature of schizophrenia, which is predictive for functional outcomes and is, therefore, a treatment target in itself. Yet, literature on efficacy of different pharmaco-therapeutic options is inconsistent. This quantitative review provides an overview of studies that investigated potential cognitive enhancers in schizophrenia. We included pharmacological agents, which target different neurotransmitter systems and evaluated their efficacy on overall cognitive functioning and seven separate cognitive domains. In total, 93 studies with 5630 patients were included. Cognitive enhancers, when combined across all different neurotransmitter systems, which act on a large number of different mechanisms, showed a significant (yet small) positive effect size of 0.10 (k = 51, p = 0.023; 95% CI = 0.01 to 0.18) on overall cognition. Cognitive enhancers were not superior to placebo for separate cognitive domains. When analyzing each neurotransmitter system separately, agents acting predominantly on the glutamatergic system showed a small significant effect on overall cognition (k = 29, Hedges’ g = 0.19, p = 0.01), as well as on working memory (k = 20, Hedges’ g = 0.13, p = 0.04). A sub-analysis of cholinesterase inhibitors (ChEI) showed a small effect on working memory (k = 6, Hedges’ g = 0.26, p = 0.03). Other sub-analyses were positively nonsignificant, which may partly be due to the low number of studies we could include per neurotransmitter system. Overall, this meta-analysis showed few favorable effects of cognitive enhancers for patients with schizophrenia, partly due to lack of power. There is a lack of studies involving agents acting on other than glutamatergic and cholinergic systems, especially of those targeting the dopaminergic system.
Collapse
|
41
|
Wierońska JM, Pilc A. Depression and schizophrenia viewed from the perspective of amino acidergic neurotransmission: Antipodes of psychiatric disorders. Pharmacol Ther 2018; 193:75-82. [PMID: 30149102 DOI: 10.1016/j.pharmthera.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Depression and schizophrenia are burdensome, costly serious and disabling mental disorders. Moreover the existing treatments are not satisfactory. As amino-acidergic (AA) neurotransmitters built a vast majority of brain neurons, in this article we plan to focus on drugs influencing AA neurotransmission in both diseases: we will discuss several facts concerning glutamatergic and GABA-ergic neurotransmission in these diseases, based mainly on preclinical experiments that used stimulators and/or blockers of both neurotransmitter systems. In general a picture emerges showing, that treatments that increase excitatory effects (with either antagonists or agonists) tend to evoke antidepressant effects, while treatments that increase inhibitory effects tend to display antipsychotic properties. Moreover, it seems that the antidepressant activity of a given compound excludes it as a potential antipsychotic and vice versa.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| |
Collapse
|
42
|
Soria V, González-Rodríguez A, Huerta-Ramos E, Usall J, Cobo J, Bioque M, Barbero JD, García-Rizo C, Tost M, Monreal JA, Labad J. Targeting hypothalamic-pituitary-adrenal axis hormones and sex steroids for improving cognition in major mood disorders and schizophrenia: a systematic review and narrative synthesis. Psychoneuroendocrinology 2018; 93:8-19. [PMID: 29680774 DOI: 10.1016/j.psyneuen.2018.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
Cognitive deficits are a core feature of serious mental illnesses such as schizophrenia, major depressive disorder (MDD) and bipolar disorder (BD) and are a common cause of functional disability. There is limited efficacy of pharmacological interventions for improving the cognitive deficits in these disorders. As pro-cognitive pharmacological treatments are lacking, hormones or drugs that target the endocrine system may become potential candidates for 'repurposing' trials aiming to improve cognition. We aimed to study whether treatment with drugs targeting the hypothalamic-pituitary-adrenal (HPA) axis and sex steroids can improve cognition in patients with schizophrenia, MDD or BD. A systematic search was performed using PubMed (Medline), PsychInfo and clinicaltrials.gov, and a narrative synthesis was included. The systematic review identified 12 studies dealing with HPA-related drugs (mifepristone [n = 3], cortisol synthesis inhibitors [ketoconazole, n = 2], dehydroepiandrosterone [n = 5], fludrocortisone [n = 2]) and 14 studies dealing with sex steroids (oestradiol [n = 2], selective oestrogen receptor modulators [raloxifene, n = 7], pregnenolone [n = 5]). Positive trials were found for BD (mifepristone), MDD (dehydroepiandrosterone and fludrocortisone) and schizophrenia (dehydroepiandrosterone, raloxifene and pregnenolone). A replication of positive findings by at least two clinical trials was found for mifepristone in BD and raloxifene and pregnenolone in schizophrenia. The use of drugs targeting hormones related to the HPA axis and sex steroids is a promising field of research that might help to improve the cognitive outcome of patients with schizophrenia, bipolar disorder and major depressive disorder in the near future.
Collapse
Affiliation(s)
- Virginia Soria
- Department of Psychiatry, Bellvitge University Hospital, Universitat de Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain
| | - Alexandre González-Rodríguez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, I3PT, Sabadell, Barcerlona, Spain
| | - Elena Huerta-Ramos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Research and Development Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Judith Usall
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Research and Development Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Jesús Cobo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, I3PT, Sabadell, Barcerlona, Spain
| | - Miquel Bioque
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan David Barbero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, I3PT, Sabadell, Barcerlona, Spain
| | - Clemente García-Rizo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Meritxell Tost
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, I3PT, Sabadell, Barcerlona, Spain
| | - José Antonio Monreal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, I3PT, Sabadell, Barcerlona, Spain
| | | | - Javier Labad
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, I3PT, Sabadell, Barcerlona, Spain.
| |
Collapse
|
43
|
Ben-Azu B, Aderibigbe AO, Omogbiya IA, Ajayi AM, Owoeye O, Olonode ET, Iwalewa EO. Probable mechanisms involved in the antipsychotic-like activity of morin in mice. Biomed Pharmacother 2018; 105:1079-1090. [PMID: 30021344 DOI: 10.1016/j.biopha.2018.06.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Evidence derived from preliminary studies suggests that morin, a neuroactive flavonoid with proven antioxidant and antiinflammatory properties possess antipsychotic-like activity. The present study was designed to evaluate the probable mechanisms involve in the antipsychotic-like activity of morin in ketamine model of schizophrenia. The effects of morin, haloperidol and risperidone on neurobehavioral and anti-schizophrenia-like effects were evaluated in mice (n = 7) following intraperitoneal (i.p.) administration of morin (25-100 mg/kg), haloperidol (1 mg/kg) and risperidone (0.5 mg/kg) alone or in combination with ketamine (20 mg/kg, i.p.) for 10 days. Neurobehavioral and schizophrenia-like activities consisting of open-field (positive symptoms), Y-maze, novel-object recognition (cognitive symptoms), social interaction (negative symptoms) tests were assessed. Also, wood-block catalepsy and rota-rod tests were employed to evaluate extrapyramidal side effects of morin. Thereafter, brain levels of biomarkers of oxidative, nitrergic and acetylcholinesterase alterations as well as histomorphological changes in the striatum and prefrontal-cortex were determined. Administration of morin and risperidone alone but not haloperidol significantly (p > 0.05) prevented ketamine-induced hyperlocomotion, social withdrawal and cognitive impairments relative to controls, and were devoid of extrapyramidal side effects. Morin alone or in combination with ketamine significantly increased glutathione concentration, superoxide dismutase and catalase activities compared with saline- or ketamine-treated mice. Moreover, morin alone or in combination with ketamine also significantly decreased malondialdehyde, nitrite and acetylcholinesterase alterations in mice brains. Furthermore, morin prevented ketamine-induced brain neuronal alterations in the striatum and prefrontal-cortex. Together, our findings suggest that morin may demonstrate antipsychotic-like therapeutic effect via modulation of oxidative/nitrergic, cholinergic actions and neuroprotection.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Itivere Adrian Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olatunde Owoeye
- Neurotrauma & Neuroregeneration Unit, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Elizabeth Toyin Olonode
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
44
|
Ferguson BR, Gao WJ. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits 2018; 12:37. [PMID: 29867371 PMCID: PMC5964203 DOI: 10.3389/fncir.2018.00037] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Elucidating the prefrontal cortical microcircuit has been challenging, given its role in multiple complex behaviors, including working memory, cognitive flexibility, attention, social interaction and emotional regulation. Additionally, previous methodological limitations made it difficult to parse out the contribution of certain neuronal subpopulations in refining cortical representations. However, growing evidence supports a fundamental role of fast-spiking parvalbumin (PV) GABAergic interneurons in regulating pyramidal neuron activity to drive appropriate behavioral responses. Further, their function is heavily diminished in the prefrontal cortex (PFC) in numerous psychiatric diseases, including schizophrenia and autism. Previous research has demonstrated the importance of the optimal balance of excitation and inhibition (E/I) in cortical circuits in maintaining the efficiency of cortical information processing. Although we are still unraveling the mechanisms of information representation in the PFC, the E/I balance seems to be crucial, as pharmacological, chemogenetic and optogenetic approaches for disrupting E/I balance induce impairments in a range of PFC-dependent behaviors. In this review, we will explore two key hypotheses. First, PV interneurons are powerful regulators of E/I balance in the PFC, and help optimize the representation and processing of supramodal information in PFC. Second, diminishing the function of PV interneurons is sufficient to generate an elaborate symptom sequelae corresponding to those observed in a range of psychiatric diseases. Then, using this framework, we will speculate on whether this circuitry could represent a platform for the development of therapeutic interventions in disorders of PFC function.
Collapse
Affiliation(s)
- Brielle R Ferguson
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States.,Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
45
|
Xu MY, Wong AHC. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol Sin 2018; 39:733-753. [PMID: 29565038 DOI: 10.1038/aps.2017.172] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/25/2017] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia is considered primarily as a cognitive disorder. However, functional outcomes in schizophrenia are limited by the lack of effective pharmacological and psychosocial interventions for cognitive impairment. GABA (gamma-aminobutyric acid) interneurons are the main inhibitory neurons in the central nervous system (CNS), and they play a critical role in a variety of pathophysiological processes including modulation of cortical and hippocampal neural circuitry and activity, cognitive function-related neural oscillations (eg, gamma oscillations) and information integration and processing. Dysfunctional GABA interneuron activity can disrupt the excitatory/inhibitory (E/I) balance in the cortex, which could represent a core pathophysiological mechanism underlying cognitive dysfunction in schizophrenia. Recent research suggests that selective modulation of the GABAergic system is a promising intervention for the treatment of schizophrenia-associated cognitive defects. In this review, we summarized evidence from postmortem and animal studies for abnormal GABAergic neurotransmission in schizophrenia, and how altered GABA interneurons could disrupt neuronal oscillations. Next, we systemically reviewed a variety of up-to-date subtype-selective agonists, antagonists, positive and negative allosteric modulators (including dual allosteric modulators) for α5/α3/α2 GABAA and GABAB receptors, and summarized their pro-cognitive effects in animal behavioral tests and clinical trials. Finally, we also discuss various representative histone deacetylases (HDAC) inhibitors that target GABA system through epigenetic modulations, GABA prodrug and presynaptic GABA transporter inhibitors. This review provides important information on current potential GABA-associated therapies and future insights for development of more effective treatments.
Collapse
|
46
|
Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AEO, Umukoro S, Iwalewa EO. Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 2018; 139:292-306. [PMID: 29548911 DOI: 10.1016/j.brainresbull.2018.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/26/2022]
Abstract
GABAergic (Gamma-aminobutyric acid) and neurotrophic derangements have important implication in schizophrenia, a neuropsychiatric disease. Previous studies have shown that nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) alters GABAergic and neurotrophic activities via inflammatory and oxidative pathways. Thus, it has been proposed that agents with anti-oxidant and anti-inflammatory properties might be beneficial for the treatment of the disease. Morin is neuroactive bioflavonoid compound, which has been reported to demonstrate antipsychotic and anti-oxidant/anti-inflammatory activities. In this study, we further evaluated its effects on the brain markers of GABAergic, neurotrophic and oxidative alterations in the preventive and reversal of schizophrenia-like behavior induced by ketamine (KET). In the prevention protocol, adult mice were treated intraperitoneally with morin (100 mg/kg/day), haloperidol (1 mg/kg/day), risperidone (0.5 mg/kg/day), or saline (10 mL/kg/day) for 14 consecutive days. In addition, the animals were administered KET (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days. From 8th to 14th days mice were additionally treated with morin, haloperidol, risperidone or saline. Schizophrenic-like behaviors consisting of positive (stereotypy test), negative (behavioral despair in forced swim test) and cognitive (novel-object recognition test) symptoms were evaluated. Afterwards, brain levels of biomarkers of GABAergic (Glutamic acid decarboxylase-67, GAD67), neurotrophic (Brain-derived neurotrophic factor, BDNF) and oxidative [NADPH-oxidase, superoxide dismutase, (SOD) and catalase (CAT)] alterations were determined in the striatum, prefrontal cortex (PFC) and hippocampus, respectively. Morin significantly (p < 0.05) prevented and reversed KET-induced increased stereotypy, behavioral despair and deficit in cognitive functions when compared with KET-treated mice respectively. Also, morin and risperidone but not haloperidol, significantly (p < 0.05) prevented and reversed the decreases in expressions of GAD67 and BDNF immunoreactivity in the striatum, PFC and hippocampus caused by KET. Moreover, morin and risperidone significantly (p < 0.05) decreased regional brain expressions of NADPH-oxidase immunopositive cells and increased endogenous anti-oxidant enzymes (SOD and CAT) in the striatum, PFC and hippocampus relative to KET controls respectively. Taken together, these findings further suggest that the antipsychotic-like activity of morin may be mediated via mechanisms related to enhancement of GABAergic neurotransmission and neurotrophic factor, and suppression of NADPH-oxidase induced oxidative damage in mice.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
47
|
Skilbeck KJ, Johnston GA, Hinton T. Long-lasting effects of early-life intervention in mice on adulthood behaviour, GABA A receptor subunit expression and synaptic clustering. Pharmacol Res 2018; 128:179-189. [DOI: 10.1016/j.phrs.2017.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
|
48
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
49
|
Renard J, Rushlow WJ, Laviolette SR. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front Psychiatry 2018; 9:281. [PMID: 30013490 PMCID: PMC6036125 DOI: 10.3389/fpsyt.2018.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.
Collapse
Affiliation(s)
- Justine Renard
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
50
|
Renard J, Szkudlarek HJ, Kramar CP, Jobson CEL, Moura K, Rushlow WJ, Laviolette SR. Adolescent THC Exposure Causes Enduring Prefrontal Cortical Disruption of GABAergic Inhibition and Dysregulation of Sub-Cortical Dopamine Function. Sci Rep 2017; 7:11420. [PMID: 28900286 PMCID: PMC5595795 DOI: 10.1038/s41598-017-11645-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic adolescent marijuana use has been linked to the later development of psychiatric diseases such as schizophrenia. GABAergic hypofunction in the prefrontal cortex (PFC) is a cardinal pathological feature of schizophrenia and may be a mechanism by which the PFC loses its ability to regulate sub-cortical dopamine (DA) resulting in schizophrenia-like neuropsychopathology. In the present study, we exposed adolescent rats to Δ-9-tetra-hydrocannabinol (THC), the psychoactive component in marijuana. At adulthood, we characterized the functionality of PFC GABAergic neurotransmission and its regulation of sub-cortical DA function using molecular, behavioral and in-vivo electrophysiological analyses. Our findings revealed a persistent attenuation of PFC GABAergic function combined with a hyperactive neuronal state in PFC neurons and associated disruptions in cortical gamma oscillatory activity. These PFC abnormalities were accompanied by hyperactive DAergic neuronal activity in the ventral tegmental area (VTA) and behavioral and cognitive abnormalities similar to those observed in psychiatric disorders. Remarkably, these neuronal and behavioral effects were reversed by pharmacological activation of GABAA receptors in the PFC. Together, these results identify a mechanistic link between dysregulated frontal cortical GABAergic inhibition and sub-cortical DAergic dysregulation, characteristic of well-established neuropsychiatric endophenotypes.
Collapse
Affiliation(s)
- Justine Renard
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Hanna J Szkudlarek
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Cecilia P Kramar
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Christina E L Jobson
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Kyra Moura
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Walter J Rushlow
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.,Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Steven R Laviolette
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|