1
|
Abusara OH, Hammad AM, Debas R, Al-Shalabi E, Waleed M, Scott Hall F. The inflammation and oxidative status of rat lung tissue following smoke/vapor exposure via E-cigarette, cigarette, and waterpipe. Gene 2024; 935:149066. [PMID: 39491601 DOI: 10.1016/j.gene.2024.149066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Tobacco smoking is a major worldwide health issue that contributes to millions of deaths annually. Electronic cigarettes (E-cigarettes) are also harmful. Smoke/vapor from E-cigarettes and tobacco products consists of free radicals and other toxic substances. Tissue damage in smokers, such as lungs, is highly observed and is linked to oxidative damage and inflammation. METHODS The inflammation and oxidative status of rat lung tissues was examined following whole-body smoke/vapor exposure via E-cigarette, cigarette, and waterpipe for 2 h daily, 5 days per week for 8 weeks. RESULTS Lung tissue damage was higher in cigarettes and waterpipe groups compared to the E-cigarette group. Collectively, there was a significant increase (p < 0.05) in the mRNA expression of pro-inflammatory mediators (TNF-α, NF-κB, IL-1β) with the exception of IL-1β in the E-cigarettes group. As for the anti-inflammatory mediators (Nrf2 and IL-10), a significant reduction (p < 0.05) of mRNA expression was observed with the exception of Nrf2 in the E-cigarette group. As for IL-6, there was a significant increase in its mRNA expression (p < 0.05) in the cigarette and waterpipe groups. There was also a significant decrease (p < 0.05) in the antioxidant activity of all antioxidants tested (GPx, SOD, and CAT) in all groups with the exception of SOD in the cigarette group. CONCLUSION Smoke/vapor administered via E-cigarette, cigarette, and waterpipe elicits inflammation and oxidative stress in rat lungs that is accompanied by histopathological changes.
Collapse
Affiliation(s)
- Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eveen Al-Shalabi
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammed Waleed
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
2
|
El Gizawy HA, Boshra SA. Pachira macrocarpa Schltdl. & Cham., HPLC Profile, and Neuroprotective Potential via Regulation of JNK, miRNA132, and miRNA-125b. ACS OMEGA 2023; 8:27238-27246. [PMID: 37546684 PMCID: PMC10398696 DOI: 10.1021/acsomega.3c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
In this study, we investigated the polyphenolic profile of Pachira macrocarpa Schltdl. & Cham. by HPLC analysis and we also isolated three compounds from the ethyl acetate leaf extract, which were identified by different spectral data as vitexin 1, luteolin 2, and ferulic acid 3. Moreover, we investigated the three isolated compounds and the plant extract for their therapeutic potential against AlCl3 exposure-induced neurotoxicity in rats. This investigation aims to determine whether vitexin, luteolin, and ferulic acid in Pachira macrocarpa Schltdl. & Cham. extract (P. macrocarpa) have the ability to treat AlCl3-induced brain toxicity in rats. Six groups of rats were created: group 1 (normal group), group 2 treated with AlCl3, and groups 3, 4, 5, and 6 treated with AlCl3 with vitexin, luteolin, ferulic acid, and P. macrocarpa extract, respectively, for 28 days. Neurotoxicity was assessed by measuring plasma IL-8 and IL-33 as well as brain superoxide dismutase (SOD), glutathione reductase (GSR), B-cell lymphoma-2 (BcL-2), B-cell lymphoma-2 associated-x (Bax), and neurogranin using the ELISA technique and c-Jun N-terminal kinase (JNK), miRNA-125b, and miRNA-132 levels using western blot and PCR. HPLC analysis identified major phenolics and flavonoids. Among the phenolics identified, chlorogenic acid was prevalent (2159.14 μg/g), and regarding flavonoids, rutin was prevalent (204.69 μg/g). A significant elevation of IL-8 and IL-33 as well as brain Bax, neurogranin, and JNK levels and of miRNA-125b gene expression levels was observed following AlCl3 exposure. However, significant depletion of SOD, GSR, BcL-2, total protein, and miRNA-132 gene expression was observed in AlCl3-treated rats. Administration of the P. macrocarpa extract and its isolated compounds significantly increased SOD, GSR, BcL-2, total protein, and miRNA132 gene expression and decreased IL-8 and IL-33 as well as brain Bax, neurogranin, and JNK levels and brain miRNA-125b gene expression compared to AlCl3-treated rats. P. macrocarpa extract and its isolated compounds ameliorated AlCl3-induced oxidative stress and neurotoxicity in rats.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Department
of Pharmacognosy, Faculty of Pharmacy, October
6 University (O6U), October
6 City, Giza 12585, Egypt
| | - Sylvia A. Boshra
- Department
of Biochemistry, Faculty of Pharmacy, October
6 University (O6U), October
6 City, Giza 12585, Egypt
| |
Collapse
|
3
|
Tyrrell J, Ghosh A, Manzo ND, Randell SH, Tarran R. Evaluation of chronic cigarette smoke exposure in human bronchial epithelial cultures. J Appl Toxicol 2023; 43:862-873. [PMID: 36594405 DOI: 10.1002/jat.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.
Collapse
Affiliation(s)
- Jean Tyrrell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arunava Ghosh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas D Manzo
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Das M, Saha A. Probe on Various Experimental Cigarette Smoke Subjection Structure. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Different methods of subjection to smoke from experimental cigarettes are essential for understanding tobacco smoke. The major toxicants found in tobacco are acetaldehyde, acetone, acrolein, acrylonitrile, ammonia, benzene, cadmium, catechol, chromium, cyanide hydrogen, arsenic, nickel, nitric oxide, nicotine last but not least, mono-oxide gases. While experts say, cigarette smoke contains more than 4000 different compounds. These are substantially toxic and can destroy cells, and many of them are carcinogenic. Various smoke-exposure devices are used for in-vitro tobacco smoke generation, dilution, and distribution.
Such devices are used widely by well-known manufacturers or can be tailor-made setups. We can set up different in-vitro models to better treat smoke-related diseases using these subjection structures. The fundamental goal will be to build a tobacco-free society of available subjection systems. Some have been identified and established as biological endpoints in some published scientific literature. In the scientific field, many new technologies are coming out and showing their presence. There are many systems of exposure to cigarette smoke in vitro which offer a more flexible approach to the challenges of exposure to tobacco smoke. This review covers some topics such as the description of available new subjection structures and reviews their work, setting up and application for Scenarios of in-vitro treatment. The benefits and disadvantages of both subjection mechanisms and the similarities between the setups and the data extracted from these structures. Measuring the smoke dose is also discussed here as an important field of research, particularly in the preclinical phase.
Keywords: Cigarette smoke; Cigarette Subjection Structures; Cigarette Subjection Mechanisms; Cigarette Subjection Advantages; Cigarette Subjection Use; Cigarette Subjection Modern advancements.
Collapse
Affiliation(s)
- Moulima Das
- M.Pharm Grad., Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd., Kolkata - 700053, WB
| | - Anupam Saha
- M.Pharm Grad., Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd., Kolkata - 700053, WB
| |
Collapse
|
5
|
Bishop E, Terry A, East N, Breheny D, Gaca M, Thorne D. A 3D in vitro comparison of two undiluted e-cigarette aerosol generating systems. Toxicol Lett 2022; 358:69-79. [PMID: 35032609 DOI: 10.1016/j.toxlet.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
In vitro studies play an important role in supporting the toxicological assessment of e-cigarettes, with many current methods reliant on sophisticated in vitro exposure systems designed for conventional cigarette testing. In this study, we have compared two distinct systems; the modified Vitrocell VC10 and Borgwaldt LM4E designed to deliver undiluted e-cigarette aerosol. We assessed the cytotoxicity response of 3D reconstituted lung tissue (MucilAir) exposed to undiluted aerosol from ePen3 (closed modular e-cigarette) using these two exposure systems. As the induced cytotoxicity profiles were comparable, we then compared these responses against historical eBox (open modular e-cigarette) and 3R4F reference cigarette data to show evolution of product technology. This latter approach was deemed possible by monitoring intrinsic donor-to-donor control variability over a three-year period, bridging between exposure systems and observed biological responses. Despite the differences in the technology, on a puff-by-puff basis these machines gave remarkably similar cytotoxicity profiles for ePen3, as determined by MTT, and consistency of pre-cytotoxicity markers: transepithelial electrical resistance (TEER), cilia beat frequency and cilia active area. When responses are compared as a function of exposed nicotine concentration, we see differences due to the dynamics of the exposure systems. The parity of responses between the systems in generated undiluted aerosol has allowed us to compare back to previously published eBox data, irrespective of aerosol generating system and MucilAir donor, showing how evolution from open systems to podmod e-cigarette design can make a step change in the cytotoxicity profile of the product.
Collapse
Affiliation(s)
- E Bishop
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - A Terry
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - N East
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - M Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
6
|
Zheng K, Liu X, Ji W, Lu J, Cui J, Li W. The Efficacy of Different Inflammatory Markers for the Prognosis of Patients with Malignant Tumors. J Inflamm Res 2021; 14:5769-5785. [PMID: 34764670 PMCID: PMC8573157 DOI: 10.2147/jir.s334941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation is considered essential in cancer progression, as it affects the nutritional status and prognosis of patients. In this study, we aim to analyze the efficacy of various inflammatory markers in predicting prognosis in cancer patients. Methods Patients with malignant tumor were included as primary and validation cohort. Basic clinical information, anthropometric indicators, body composition analysis, and serological indicators were recorded. After proposing the optimal thresholds by time-dependent receiver operating characteristic (ROC), univariate and multivariate Cox regression analyses were performed to analyze the association between inflammatory markers and overall survival (OS). A nomogram was established to develop a scored-inflammatory marker system. Eight inflammatory models based on combinations of inflammatory markers were assessed. Cox regression analysis was used to analyze the relationship of each inflammatory model and mortality of participants. Then, subanalysis of specific tumor types was conducted by Cox regression. Logistic regression models were used to analyze the relationship between different inflammatory models and malnutrition. Results Univariate and multivariate Cox regression analyses indicated that pack-years of cigarette smoking, C-reactive protein (CRP), and systemic immune-inflammation index (SII) were related to the OS of cancer patients. A nomogram was constructed to develop a scored-inflammatory marker system. Among the eight inflammatory models, patients in model A had worst prognosis compared with patients in other models. Subanalysis next showed lung cancer, breast cancer and digestive system neoplasms patients in model A suffered the worst prognosis. Logistic regression indicated that model A was also with predictive value for malnutrition. Conclusion A scored-inflammatory marker system was established to predict the OS of cancer patients. The inflammatory models established in this study can be used to predict prognosis, as well as cancer-related malnutrition. Inflammatory model A suffered the worst OS and was with the predictive efficacy for malnutrition.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Cancer Center, the First Hospital of JiLin University, Changchun, Jilin, People's Republic of China
| | - Xiangliang Liu
- Cancer Center, the First Hospital of JiLin University, Changchun, Jilin, People's Republic of China
| | - Wei Ji
- Cancer Center, the First Hospital of JiLin University, Changchun, Jilin, People's Republic of China
| | - Jin Lu
- Cancer Center, the First Hospital of JiLin University, Changchun, Jilin, People's Republic of China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of JiLin University, Changchun, Jilin, People's Republic of China
| | - Wei Li
- Cancer Center, the First Hospital of JiLin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
7
|
Mastalerz M, Dick E, Chakraborty AA, Hennen E, Schamberger AC, Schröppel A, Lindner M, Hatz R, Behr J, Hilgendorff A, Schmid O, Staab-Weijnitz CA. Validation of in vitro models for smoke exposure of primary human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 322:L129-L148. [PMID: 34668416 DOI: 10.1152/ajplung.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RATIONALE The bronchial epithelium is constantly challenged by inhalative insults including cigarette smoke (CS), a key risk factor for lung disease. In vitro exposure of bronchial epithelial cells using CS extract (CSE) is a widespread alternative to whole CS (wCS) exposure. However, CSE exposure protocols vary considerably between studies, precluding direct comparison of applied doses. Moreover, they are rarely validated in terms of physiological response in vivo and the relevance of the findings is often unclear. METHODS We tested six different exposure settings in primary human bronchial epithelial cells (phBECs), including five CSE protocols in comparison with wCS exposure. We quantified cell-delivered dose and directly compared all exposures using expression analysis of 10 well-established smoke-induced genes in bronchial epithelial cells. CSE exposure of phBECs was varied in terms of differentiation state, exposure route, duration of exposure, and dose. Gene expression was assessed by quantitative Real-Time PCR (qPCR) and Western Blot analysis. Cell type-specific expression of smoke-induced genes was analyzed by immunofluorescent analysis. RESULTS Three surprisingly dissimilar exposure types, namely chronic CSE treatment of differentiating phBECs, acute CSE treatment of submerged basal phBECs, and wCS exposure of differentiated phBECs performed best, resulting in significant upregulation of seven (chronic CSE) and six (acute wCS, acute submerged CSE exposure) out of 10 genes. Acute apical or basolateral exposure of differentiated phBECs with CSE was much less effective despite similar doses used. CONCLUSIONS Our findings provide guidance for the design of human in vitro CS exposure models in experimental and translational lung research.
Collapse
Affiliation(s)
- Michal Mastalerz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ashesh Anjankumar Chakraborty
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Hennen
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea C Schamberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Schröppel
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität (LMU), Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
8
|
Ji X, Sheng Y, Guan Y, Li Y, Xu Y, Tang L. Evaluation of Calu-3 cell lines as an in vitro model to study the inhalation toxicity of flavoring extracts. Toxicol Mech Methods 2021; 32:171-179. [PMID: 34488543 DOI: 10.1080/15376516.2021.1977880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to evaluate the characteristics of Calu-3 cells as a model to examine the toxicological responses of inhalable substances. Calu-3 cells were grown to the confluence at an air-liquid interface (ALI) using a Transwell® permeable support system. The ALI resulted in biomimetic native bronchial epithelium displaying pseudostratified columnar epithelium with more microvilli and secretory vesicles. We further characterized and optimized the Calu-3 cell line model using ALI culturing conditions, immunolabeling of protein expression, ultrastructural analysis using scanning electron microscopy (SEM), and transepithelial electrical resistance (TEER) measurements, and then screened for the cytotoxicity of tobacco flavoring extracts. Calu-3 cells displayed dose-dependent responses when treated with the flavoring extract. Within 8-10 days, cell monolayers developed TEER ≥1000 Ω·cm2. During this time, Calu-3 cells exposed to flavoring extracts X01 and X06 exhibited a loss of cellular integrity and decreased ZO-1 and E-cadherin protein expression. In conclusion, we investigated the Calu-3 cell line culture conditions, culture time, and barrier integrity and tested the effect of six new synthetic tobacco flavoring extracts. Our data demonstrate that the Calu-3 human bronchial epithelial cell monolayer system is a potential in vitro model to assess the inhalation toxicity of inhalable substances.
Collapse
Affiliation(s)
- Xiaoli Ji
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China.,NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| | - Yunhua Sheng
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China.,NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| | - Ying Guan
- China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yinxia Li
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Yuqiong Xu
- China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China.,NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| |
Collapse
|
9
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
10
|
Bagam P, Kaur G, Singh DP, Batra S. In vitro study of the role of FOXO transcription factors in regulating cigarette smoke extract-induced autophagy. Cell Biol Toxicol 2021; 37:531-553. [PMID: 33146789 DOI: 10.1007/s10565-020-09556-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Cigarette smoking is the chief etiological factor for chronic obstructive pulmonary disease (COPD). Oxidative stress induced by cigarette smoke (CS) causes protein degradation, DNA damage, and cell death, thereby resulting in acute lung injury (ALI). In this regard, autophagy plays a critical role in regulating inflammatory responses by maintaining protein and organelle homeostasis and cellular viability. Expression of autophagy-related proteins (ARPs) is regulated by the fork head box class O (FOXO) transcription factors. In the current study, we examined the role of FOXO family proteins-FOXO1 and FOXO3a-in regulating CS extract (CSE)-induced autophagy. Using human lung adenocarcinoma cells with type II alveolar epithelial characteristics (A549), we observed CSE-mediated downregulation of FOXO3a. In contrast, there was a pronounced increase in the expression of FOXO1 at both the transcriptional and translational levels in the CSE-challenged cells compared with controls. Interestingly, knockdown of FOXO3a heightened the CSE-mediated increase in expression of cytokines/chemokines (IL-6, IL-8, and MCP-1), ARPs, and the FOXO1 transcription factor. Moreover, FOXO1 knockdown rescued CSE-mediated upregulation of ARPs in A549 cells. In addition, using the ROS inhibitor N-acetyl-L-cysteine (NAC), we observed abrogated mRNA expression of several ARPs and production of inflammatory cytokines/chemokines (IL-6, IL-8, MCP-1, and CCL-5) in the CSE-challenged cells suggesting an important role of ROS in regulating CSE-induced autophagy. Chromatin immunoprecipitation of FOXO1 and FOXO3a demonstrated increased binding of the former to promoter regions of autophagy genes- BECLIN1, ATG5, ATG12, ATG16, and LC3 in CSE challenged cells. These findings suggest the role of FOXO1 in regulating the expression of these genes during CSE exposure. Overall, our findings provide evidence for FOXO3a-dependent FOXO1-mediated regulation of autophagy in the CSE-challenged cells. Graphical abstract.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra Pratap Singh
- Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
11
|
Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells 2021; 10:1602. [PMID: 34206722 PMCID: PMC8304815 DOI: 10.3390/cells10071602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.
Collapse
Affiliation(s)
- Tanya J. Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Avineet Randhawa
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica Hua
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Haswell LE, Smart D, Jaunky T, Baxter A, Santopietro S, Meredith S, Camacho OM, Breheny D, Thorne D, Gaca MD. The development of an in vitro 3D model of goblet cell hyperplasia using MUC5AC expression and repeated whole aerosol exposures. Toxicol Lett 2021; 347:45-57. [PMID: 33892128 DOI: 10.1016/j.toxlet.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Goblet cell hyperplasia and overproduction of airway mucin are characteristic features of the lung epithelium of smokers and COPD patients. Tobacco heating products (THPs) are a potentially less risky alternative to combustible cigarettes, and through continued use solus THPs may reduce smoking-related disease risk. Using the MucilAir™ in vitro lung model, a 6-week feasibility study was conducted investigating the effect of repeated cigarette smoke (1R6F), THP aerosol and air exposure. Tissues were exposed to nicotine-matched whole aerosol doses 3 times/week. Endpoints assessed were dosimetry, tight-junction integrity, cilia beat frequency (CBF) and active area (AA), cytokine secretion and airway mucin MUC5AC expression. Comparison of incubator and air exposed controls indicated exposures did not have a significant effect on the transepithelial electrical resistance (TEER), CBF and AA of the tissues. Cytokine secretion indicated clear differences in secretion patterns in response to 1R6F and THP exposure. 1R6F exposure resulted in a significant decrease in the TEER and AA (p=0.000 and p=0.000, respectively), and an increase in MUC5AC positive cells (p=0.002). Repeated THP exposure did not result in a significant change in MUC5AC positive cells. This study demonstrates repeated cigarette smoke whole aerosol exposure can induce these morphological changes in vitro.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - David Smart
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | | | - Stuart Meredith
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
13
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
14
|
An experimental aerosol air-agar interface mouse lymphoma assay methodology. Mutat Res 2020; 856-857:503230. [PMID: 32928375 DOI: 10.1016/j.mrgentox.2020.503230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022]
Abstract
This work investigates a completely novel and experimental concept of exposing L5178Y cells at the air-agar-interface to mainstream cigarette smoke aerosol (Kentucky reference 3R4F). This study highlights the associated challenges of combining a suspension cell line alongside an in vitro aerosol exposure system. To achieve a monolayer, cells were 'seeded' in a concentrated cell super-mix suspension onto an RPMI/agar-matrix -base. The resulting cell suspension media was adsorbed into the agar base leaving the L5178Y cells lightly suspended on the agar surface, approximating a monolayer. Cells were deemed supportable on the agar-matrix, viable and recoverable. Using Vitrocell VC 10 exposure system and the Ames 4 exposure module, L5178Y cells were successfully exposed to a dynamic cigarette smoke aerosol, recovered and assessed for mutant frequencies, using standard assay procedures. Method development included assessment of flowing air conditions, plating efficiency and recovery of L5178Y cells from the agar-matrix surface. Positive controls MMS and B[a]P were successfully incorporated into the agar-matrix and metabolic activation was achieved by S-9 incorporation into the same agar-base-matrix. B[a]P demonstrated metabolic activation and positive response, suggesting a clear cellular interaction with the agar-matrix. Whole smoke exposed cells in the presence of metabolic activation showed a clear dose response and increasing mutant frequencies, well in excess of the controls (air and incubator) and the global evaluation factor following a 2 or 3 day expression period. This experimental concept demonstrates that L5178Y cells can be exposed to cigarette smoke aerosol, using a completely novel and a previously untested approach. Although this work successfully demonstrates the approach is viable and cells can be plated and maintained on an agar-matrix, more optimisation and robustness assessment is required before it can be considered fully adapted and used alongside other whole aerosol methodologies for the assessment of cigarette smoke and other inhaled aerosols.
Collapse
|
15
|
Benam KH, Novak R, Ferrante TC, Choe Y, Ingber DE. Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips. Nat Protoc 2020; 15:183-206. [PMID: 31925401 DOI: 10.1038/s41596-019-0230-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
Exposure of lung tissues to cigarette smoke is a major cause of human disease and death worldwide. Unfortunately, adequate model systems that can reliably recapitulate disease biogenesis in vitro, including exposure of the human lung airway to fresh whole cigarette smoke (WCS) under physiological breathing airflow, are lacking. This protocol extension builds upon, and can be used with, our earlier protocol for microfabrication of human organs-on-chips. Here, we describe the engineering, assembly and operation of a microfluidically coupled, multi-compartment platform that bidirectionally 'breathes' WCS through microchannels of a human lung small airway microfluidic culture device, mimicking how lung cells may experience smoke in vivo. Several WCS-exposure systems have been developed, but they introduce smoke directly from above the cell cultures, rather than tangentially as naturally occurs in the lung due to lateral airflow. We detail the development of an organ chip-compatible microrespirator and a smoke machine to simulate breathing behavior and smoking topography parameters such as puff time, inter-puff interval and puffs per cigarette. Detailed design files, assembly instructions and control software are provided. This novel platform can be fabricated and assembled in days and can be used repeatedly. Moderate to advanced engineering and programming skills are required to successfully implement this protocol. When coupled with the small airway chip, this protocol can enable prediction of patient-specific biological responses in a matched-comparative manner. We also demonstrate how to adapt the protocol to expose living ciliated airway epithelial cells to smoke generated by electronic cigarettes (e-cigarettes) on-chip.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine and Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Youngjae Choe
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA. .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Mathyssen C, Serré J, Sacreas A, Everaerts S, Maes K, Verleden S, Verlinden L, Verstuyf A, Pilette C, Gayan-Ramirez G, Vanaudenaerde B, Janssens W. Vitamin D Modulates the Response of Bronchial Epithelial Cells Exposed to Cigarette Smoke Extract. Nutrients 2019; 11:E2138. [PMID: 31500220 PMCID: PMC6770037 DOI: 10.3390/nu11092138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD), the bronchial epithelium is the first immune barrier that is triggered by cigarette smoke. Although vitamin D (vitD) has proven anti-inflammatory and antimicrobial effects in alveolar macrophages, little is known about the direct role of vitD on cigarette smoke-exposed bronchial epithelial cells. We examined the effects of vitD on a human bronchial epithelial cell line (16HBE) and on air-liquid culture of primary bronchial epithelial cells (PBEC) of COPD patients and controls exposed for 24 h to cigarette smoke extract (CSE). VitD decreased CSE-induced IL-8 secretion by 16HBE cells, but not by PBEC. VitD significantly increased the expression of the antimicrobial peptide cathelicidin in 16HBE and PBEC of both COPD subjects and controls. VitD did not affect epithelial to mesenchymal transition or epithelial MMP-9 expression and was not able to restore impaired wound healing by CSE in 16HBE cells. VitD increased the expression of its own catabolic enzyme CYP24A1 thereby maintaining its negative feedback. In conclusion, vitD supplementation may potentially reduce infectious exacerbations in COPD by the upregulation of cathelicidin in the bronchial epithelium.
Collapse
Affiliation(s)
| | - Jef Serré
- Lab of Respiratory Diseases, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Annelore Sacreas
- Lab of Respiratory Diseases, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | | | - Karen Maes
- Lab of Respiratory Diseases, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Stijn Verleden
- Lab of Respiratory Diseases, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Charles Pilette
- Institute of Experimental & Clinical Research-Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), 1200 Brussels, Belgium.
| | | | | | - Wim Janssens
- Lab of Respiratory Diseases, CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Chandrala LD, Afshar-Mohajer N, Nishida K, Ronzhes Y, Sidhaye VK, Koehler K, Katz J. A Device for measuring the in-situ response of Human Bronchial Epithelial Cells to airborne environmental agents. Sci Rep 2019; 9:7263. [PMID: 31086226 PMCID: PMC6513995 DOI: 10.1038/s41598-019-43784-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/01/2019] [Indexed: 02/03/2023] Open
Abstract
Measuring the time evolution of response of Normal Human Bronchial Epithelial (NHBE) cells to aerosols is essential for understanding the pathogenesis of airway disease. This study introduces a novel Real-Time Examination of Cell Exposure (RTECE) system, which enables direct in situ assessment of functional responses of the cell culture during and following exposure to environmental agents. Included are cell morphology, migration, and specialised responses, such as ciliary beat frequency (CBF). Utilising annular nozzles for aerosol injection and installing windows above and below the culture, the cells can be illuminated and examined during exposure. The performance of RTECE is compared to that of the commercial Vitrocell by exposing NHBE cells to cigarette smoke. Both systems show the same mass deposition and similar trends in smoke-induced changes to monolayer permeability, CBF and transepithelial resistance. In situ measurements performed during and after two exposures to smoke show that the CBF decreases gradually during both exposures, recovering after the first, but decreasing sharply after the second. Using Particle image velocimetry, the cell motions are monitored for twelve hours. Exposure to smoke increases the spatially-averaged cell velocity by an order of magnitude. The relative motion between cells peaks shortly after each exposure, but remains elevated and even increases further several hours later.
Collapse
Affiliation(s)
- Lakshmana D. Chandrala
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| | - Nima Afshar-Mohajer
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA
| | - Kristine Nishida
- 0000 0001 2171 9311grid.21107.35Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, 21205 USA
| | - Yury Ronzhes
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| | - Venkataramana K. Sidhaye
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA ,0000 0001 2171 9311grid.21107.35Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, 21205 USA
| | - Kirsten Koehler
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA
| | - Joseph Katz
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| |
Collapse
|
18
|
Oxidative stress induced by electronic nicotine delivery systems (ENDS): Focus on respiratory system. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Zavala J, Ledbetter AD, Morgan DS, Dailey LA, Puckett E, McCullough SD, Higuchi M. A new cell culture exposure system for studying the toxicity of volatile chemicals at the air-liquid interface. Inhal Toxicol 2018; 30:169-177. [PMID: 30086657 DOI: 10.1080/08958378.2018.1483983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A cell culture exposure system (CCES) was developed to expose cells established at an air-liquid interface (ALI) to volatile chemicals. We characterized the CCES by exposing indigo dye-impregnated filter inserts inside culture wells to 125 ppb ozone (O3) for 1 h at flow rates of 5 and 25 mL/min/well; the reaction of O3 with an indigo dye produces a fluorescent product. A 5-fold increase in fluorescence at 25 mL/min/well versus 5 mL/min/well was observed, suggesting higher flows were more effective. We then exposed primary human bronchial epithelial cells (HBECs) to 0.3 ppm acrolein for 2 h at 3, 5, and 25 mL/min/well and compared our results against well-established in vitro exposure chambers at the U.S. EPA's Human Studies Facility (HSF Chambers). We measured transcript changes of heme oxygenase-1 (HMOX1) and interleukin-8 (IL-8), as well as lactate dehydrogenase (LDH) release, at 0, 1, and 24 h post-exposure. Comparing responses from HSF Chambers to the CCES, differences were only observed at 1 h post-exposure for HMOX1. Here, the HSF Chamber produced a ∼6-fold increase while the CCES at 3 and 5 mL/min/well produced a ∼1.7-fold increase. Operating the CCES at 25 mL/min/well produced a ∼4.5-fold increase; slightly lower than the HSF Chamber. Our biological results, supported by our comparison against the HSF Chambers, agree with our fluorescence results, suggesting that higher flows through the CCES are more effective at delivering volatile chemicals to cells. This new CCES will be deployed to screen the toxicity of volatile chemicals in EPA's chemical inventories.
Collapse
Affiliation(s)
- Jose Zavala
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| | - Allen D Ledbetter
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| | - David S Morgan
- b NHEERL, U.S. Environmental Protection Agency , Chapel Hill , NC , USA
| | - Lisa A Dailey
- b NHEERL, U.S. Environmental Protection Agency , Chapel Hill , NC , USA
| | - Earl Puckett
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| | | | - Mark Higuchi
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| |
Collapse
|
20
|
Benam KH. Disrupting Experimental Strategies for Inhalation Toxicology: The Emergence of Microengineered Breathing-Smoking Human Lung-on-a-Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kambez H. Benam
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
21
|
Thorne D, Bishop E, Haswell L, Gaça M. A Case Study for the Comparison ofIn VitroData Across Multiple Aerosol Exposure Studies with Extrapolation to Human Dose. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David Thorne
- British American Tobacco Group R&D, Southampton, United Kingdom
| | - Emma Bishop
- British American Tobacco Group R&D, Southampton, United Kingdom
| | - Linsey Haswell
- British American Tobacco Group R&D, Southampton, United Kingdom
| | - Marianna Gaça
- British American Tobacco Group R&D, Southampton, United Kingdom
| |
Collapse
|
22
|
Fowler K, Fields W, Hargreaves V, Reeve L, Bombick B. Development, qualification, validation and application of the Ames test using a VITROCELL ® VC10 ® smoke exposure system. Toxicol Rep 2018; 5:542-551. [PMID: 29854624 PMCID: PMC5977537 DOI: 10.1016/j.toxrep.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Smoke-induced mutagenicity at air agar interface was developed and validated. The VITROCELL® VC10® system was validated by equipment qualification protocols. Differentiation of mutagenicity by 3R4F and Eclipse cigarettes was demonstrated.
The Ames test has established use in the assessment of potential mutagenicity of tobacco products but has generally been performed using partitioned exposures (e.g. total particulate matter [TPM], gas vapor phase [GVP]) rather than whole smoke (WS). The VITROCELL®VC10® smoke exposure system offers multiple platforms for air liquid interface (ALI), or air agar interface (AAI) in the case of the Ames test exposure to mimic in vivo-like conditions for assessing the toxicological impact of fresh WS in in vitro assays. The goals of this study were to 1) qualify the VITROCELL®VC10® to demonstrate functionality of the system, 2) develop and validate the Ames test following WS exposure with the VITROCELL®VC10® and 3) assess the ability of the Ames test to differentiate between a reference combustible product (3R4F Kentucky reference cigarette) and a primarily tobacco heating product (Eclipse). Based on critical function assessments, the VITROCELL®VC10® was demonstrated to be fit for the purpose of consistent generation of WS. Assay validation was conducted for 5 bacterial strains (TA97, TA98, TA100, TA1535 and TA102) and reproducible exposure–related changes in revertants were observed for TA98 and TA100 in the presence of rat liver S-9 following exposure to 3R4F WS. In the comparative studies, exposure-related changes in in vitro mutagenicity following exposure of TA98 and TA100 in the presence of S9 to both 3R4F and Eclipse WS were observed, with the response for Eclipse being significantly less than that for 3R4F (p < 0.001) which is consistent with the fewer chemical constituents liberated by primarily-heating the product.
Collapse
Affiliation(s)
- Kathy Fowler
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Wanda Fields
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | | | | | - Betsy Bombick
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
23
|
Higham A, Bostock D, Booth G, Dungwa JV, Singh D. The effect of electronic cigarette and tobacco smoke exposure on COPD bronchial epithelial cell inflammatory responses. Int J Chron Obstruct Pulmon Dis 2018; 13:989-1000. [PMID: 29615835 PMCID: PMC5870631 DOI: 10.2147/copd.s157728] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Electronic cigarettes (e-cigs) are used to help smoking cessation. However, these devices contain harmful chemicals, and there are safety concerns. We have investigated the effects of e-cigs on the inflammatory response and viability of COPD bronchial epithelial cells (BECs). Methods BECs from COPD patients and controls were exposed to e-cig vapor extract (ECVE) and the levels of interleukin (IL)-6, C-X-C motif ligand 8 (CXCL8), and lactate dehydrogenase release were measured. We also examined the effect of ECVE pretreatment on polyinosinic:polycytidylic acid (poly I:C)-stimulated cytokine release from BECs. Parallel experiments using Calu-3 cells were performed. Comparisons were made with cigarette smoke extract (CSE). Results ECVE and CSE caused an increase in the release of IL-6 and CXCL8 from Calu-3 cells. ECVE only caused toxicity in BECs and Calu-3 cells. Furthermore, ECVE and CSE dampened poly I:C-stimulated C-X-C motif ligand 10 release from both cell culture models, reaching statistical significance for CSE at an optical density of 0.3. Conclusion ECVE caused toxicity and reduced the antiviral response to poly I:C. This raises concerns over the safety of e-cig use.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK
| | - Declan Bostock
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - George Booth
- Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK
| | - Josiah V Dungwa
- Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|
24
|
Adamson J, Jaunky T, Thorne D, Gaça MD. Characterisation of the borgwaldt LM4E system for in vitro exposures to undiluted aerosols from next generation tobacco and nicotine products (NGPs). Food Chem Toxicol 2018; 113:337-344. [PMID: 29421647 DOI: 10.1016/j.fct.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/30/2022]
Abstract
Traditional in vitro exposure to combustible tobacco products utilise exposure systems that include the use of smoking machines to generate, dilute and deliver smoke to in vitro cell cultures. With reported lower emissions from next generation tobacco and nicotine products (NGPs), including e-cigarettes and tobacco heating products (THPs), diluting the aerosol is potentially not required. Herein we present a simplified exposure scenario to undiluted NGP aerosols, using a new puffing system called the LM4E. Nicotine delivery from an e-cigarette was used as a dosimetry marker, and was measured at source across 4 LM4E ports and in the exposure chamber. Cell viability studies, using Neutral Red Uptake (NRU) assay, were performed using H292 human lung epithelial cells, testing undiluted aerosols from an e-cigarette and a THP. E-cigarette mean nicotine generated at source was measured at 0.084 ± 0.005 mg/puff with no significant differences in delivery across the 4 different ports, p = 0.268 (n = 10/port). Mean nicotine delivery from the e-cigarette to the in vitro exposure chamber (measured up to 100 puffs) was 0.046 ± 0.006 mg/puff, p = 0.061. Aerosol penetration within the LM4E was 55% from source to chamber. H292 cells were exposed to undiluted e-cigarette aerosol for 2 h (240 puffs) or undiluted THP aerosol for 1 h (120 puffs). There were positive correlations between puff number and nicotine in the exposed culture media, R2 = 0.764 for the e-cigarette and R2 = 0.970 for the THP. NRU determined cell viability for e-cigarettes after 2 h' exposure resulted in 21.5 ± 17.0% cell survival, however for the THP, full cytotoxicity was reached after 1-h exposure.
Collapse
Affiliation(s)
- Jason Adamson
- British American Tobacco Research & Development Centre, Regents Park Rd, Southampton, SO15 8TL, UK.
| | - Tomasz Jaunky
- British American Tobacco Research & Development Centre, Regents Park Rd, Southampton, SO15 8TL, UK
| | - David Thorne
- British American Tobacco Research & Development Centre, Regents Park Rd, Southampton, SO15 8TL, UK
| | - Marianna D Gaça
- British American Tobacco Research & Development Centre, Regents Park Rd, Southampton, SO15 8TL, UK
| |
Collapse
|
25
|
Assessment of tobacco heating product THP1.0. Part 5: In vitro dosimetric and cytotoxic assessment. Regul Toxicol Pharmacol 2017; 93:52-61. [PMID: 28987911 DOI: 10.1016/j.yrtph.2017.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
Tobacco heating products (THPs) represent a subset of the next-generation nicotine and tobacco product category, in which tobacco is typically heated at temperatures of 250-350 °C, thereby avoiding many of the harmful combustion-related toxicant emissions of conventional cigarettes. In this study, we have assessed aerosol generation and cytotoxicity from two commercially available THPs, THP1.0 and THS, relative to tobacco smoke from 3R4F reference cigarettes, using an adapted Borgwaldt RM20S Smoking Machine. Quantification of nicotine in the exposed cell-culture media showed greater delivery of nicotine from both THPs than from the cigarette. Using Neutral Red Uptake assay, THPs demonstrated reduced in vitro cytotoxicity in H292 human bronchial epithelial cells as compared with 3R4F cigarette exposure at the air-liquid interface (p < 0.0001). Both THPs demonstrated a statistically similar reduction in biological response, with >87% viability relative to 3R4F at a common aerosol dilution (1:40, aerosol:air). A similar response was observed when plotted against nicotine; a statistical difference between 3R4F and THPs (p < 0.0001) and no difference between the THPs (p = 0.0186). This pre-clinical in vitro biological testing forms part of a larger package of data to help assess the safety and risk reduction potential of next-generation tobacco products relative to cigarettes, using a weight of evidence approach.
Collapse
|
26
|
Breheny D, Adamson J, Azzopardi D, Baxter A, Bishop E, Carr T, Crooks I, Hewitt K, Jaunky T, Larard S, Lowe F, Oke O, Taylor M, Santopietro S, Thorne D, Zainuddin B, Gaça M, Liu C, Murphy J, Proctor C. A novel hybrid tobacco product that delivers a tobacco flavour note with vapour aerosol (Part 2): In vitro biological assessment and comparison with different tobacco-heating products. Food Chem Toxicol 2017; 106:533-546. [PMID: 28595930 DOI: 10.1016/j.fct.2017.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/05/2017] [Accepted: 05/11/2017] [Indexed: 01/10/2023]
Abstract
This study assessed the toxicological and biological responses of aerosols from a novel hybrid tobacco product. Toxicological responses from the hybrid tobacco product were compared to those from a commercially available Tobacco Heating Product (c-THP), a prototype THP (p-THP) and a 3R4F reference cigarette, using in vitro test methods which were outlined as part of a framework to substantiate the risk reduction potential of novel tobacco and nicotine products. Exposure matrices used included total particulate matter (TPM), whole aerosol (WA), and aqueous aerosol extracts (AqE) obtained after machine-puffing the test products under the Health Canada Intense smoking regime. Levels of carbonyls and nicotine in these matrices were measured to understand the aerosol dosimetry of the products. The hybrid tobacco product tested negative across the in vitro assays including mutagenicity, genotoxicity, cytotoxicity, tumour promotion, oxidative stress and endothelial dysfunction. All the THPs tested demonstrated significantly reduced responses in these in vitro assays when compared to 3R4F. The findings suggest these products have the potential for reduced health risks. Further pre-clinical and clinical assessments are required to substantiate the risk reduction of these novel products at individual and population levels.
Collapse
Affiliation(s)
- Damien Breheny
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK.
| | - Jason Adamson
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - David Azzopardi
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Andrew Baxter
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Emma Bishop
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Tony Carr
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Ian Crooks
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Katherine Hewitt
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Tomasz Jaunky
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Sophie Larard
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Frazer Lowe
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Oluwatobiloba Oke
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Mark Taylor
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Simone Santopietro
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - David Thorne
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Benjamin Zainuddin
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Marianna Gaça
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Chuan Liu
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - James Murphy
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Christopher Proctor
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
27
|
Oke O, Azzopardi D, Corke S, Hewitt K, Carr T, Cockcroft N, Foss-Smith G, Taylor M, Lowe F. Assessment of AcuteIn VitroHuman Cellular Responses to Smoke Extracts from a Reduced Toxicant Prototype Cigarette. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oluwatobiloba Oke
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - David Azzopardi
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Sarah Corke
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Katherine Hewitt
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Tony Carr
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Natalia Cockcroft
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Geoff Foss-Smith
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Mark Taylor
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Frazer Lowe
- Research and Development, British American Tobacco, Southampton, United Kingdom
| |
Collapse
|
28
|
Zavala J, Greenan R, Krantz QT, DeMarini DM, Higuchi M, Gilmour MI, White PA. Regulating temperature and relative humidity in air-liquid interface in vitro systems eliminates cytotoxicity resulting from control air exposures. Toxicol Res (Camb) 2017; 6:448-459. [PMID: 30090513 DOI: 10.1039/c7tx00109f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
VITROCELL® systems permit cell exposures at the air-liquid interface (ALI); however, there are inconsistent methodologies in the literature for their operation. Some studies find that exposure to air (vehicle control) induced cytotoxicity relative to incubator controls; others do not mention if any cytotoxicity was encountered. We sought to test whether temperature and relative humidity (temp/RH) influence cytotoxicity with an unmodified (conditions A & B) and modified (condition C) VITROCELL® 6 CF with temp/RH controls to permit conditioning of the sampled air-flow. We exposed BEAS-2B cells for 1 h to air and measured viability (WST-1 cell proliferation assay) and lactate dehydrogenase (LDH) release 6 h post-exposure. Relative to controls, cells exposed to air at (A) 22 °C and 18% RH had a 47.9% ± 3.2% (p < 0.0001) reduction in cell viability and 10.7% ± 2.0% (p < 0.0001) increase in LDH release (B) 22 °C and 55% RH had a 40.3% ± 5.8% (p < 0.0001) reduction in cell viability and 2.6% ± 2.0% (p = 0.2056) increase in LDH release, or (C) 37 °C and >75% RH showed no changes in cell viability and no increase in LDH release. Furthermore, cells exposed to air at 37 °C and >75% RH 24 h post-exposure showed no changes in viability or LDH release relative to incubator controls. Thus, reductions in cell viability were induced under conditions used typically in the literature (conditions A & B). However, our modifications (condition C) overcome this shortcoming by preventing cell desiccation; regulating temp/RH is essential for conducting adequate ALI exposures.
Collapse
Affiliation(s)
- Jose Zavala
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - Rebecca Greenan
- Mechanistic Studies Division , Environmental Health Science and Research Bureau , Health Canada , Ottawa , Ontario K1A 0K9 , Canada . ; ; Tel: +1-613-941-7373
| | - Q Todd Krantz
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - David M DeMarini
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - Mark Higuchi
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - M Ian Gilmour
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - Paul A White
- Mechanistic Studies Division , Environmental Health Science and Research Bureau , Health Canada , Ottawa , Ontario K1A 0K9 , Canada . ; ; Tel: +1-613-941-7373
| |
Collapse
|
29
|
Fields W, Fowler K, Hargreaves V, Reeve L, Bombick B. Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system. Toxicol In Vitro 2017; 40:144-152. [PMID: 28062357 DOI: 10.1016/j.tiv.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/09/2016] [Accepted: 01/02/2017] [Indexed: 01/29/2023]
Abstract
Cytotoxicity assessment of combustible tobacco products by neutral red uptake (NRU) has historically used total particulate matter (TPM) or solvent captured gas vapor phase (GVP), rather than fresh whole smoke. Here, the development, validation and application of the NRU assay in Chinese Hamster Ovary (CHO) cells, following exposure to fresh whole smoke generated with the VITROCELL® VC10® system is described. Whole smoke exposure is particularly important as both particulate and vapor phases of tobacco smoke show cytotoxicity in vitro. The VITROCELL® VC10® system provides exposure at the air liquid interface (ALI) to mimic in vivo conditions for assessing the toxicological impact of smoke in vitro. Instrument and assay validations are crucial for comparative analyses. GOALS OF THIS STUDY 1) demonstrate functionality of the VITROCELL® VC10® system by installation, operational and performance qualification, 2) develop and validate a cellular system for assessing cytotoxicity following whole smoke exposure and 3) assess the whole smoke NRU assay sensitivity for statistical differentiation between a reference combustible cigarette (3R4F) and a primarily "heat-not-burn" cigarette (Eclipse). RESULTS The VITROCELL® VC10® provided consistent generation and delivery of whole smoke; exposure-related changes in in vitro cytotoxicity were observed with reproducible IC50 values; comparative analysis showed that the heat-not-burn cigarette was significantly (P<0.001) less cytotoxic than the 3R4F combustible cigarette, consistent with the lower levels of chemical constituents liberated by primarily-heating the cigarette versus burning.
Collapse
Affiliation(s)
- Wanda Fields
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA.
| | - Kathy Fowler
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Victoria Hargreaves
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG1 3PY, UK
| | - Lesley Reeve
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG1 3PY, UK
| | - Betsy Bombick
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
30
|
Fields W, Maione A, Keyser B, Bombick B. Characterization and Application of the VITROCELL VC1 Smoke Exposure System and 3D EpiAirway Models for Toxicological and e-Cigarette Evaluations. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wanda Fields
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| | | | - Brian Keyser
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| | - Betsy Bombick
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| |
Collapse
|
31
|
Evaluating Adverse Effects of Inhaled Nanoparticles by Realistic In Vitro Technology. NANOMATERIALS 2017; 7:nano7020049. [PMID: 28336883 PMCID: PMC5333034 DOI: 10.3390/nano7020049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
The number of daily products containing nanoparticles (NP) is rapidly increasing. NP in powders, dispersions, or sprays are a yet unknown risk for incidental exposure, especially at workplaces during NP production and processing, and for consumers of any health status and age using NP containing sprays. We developed the nano aerosol chamber for in vitro toxicity (NACIVT), a portable instrument for realistic safety testing of inhaled NP in vitro and evaluated effects of silver (Ag) and carbon (C) NP—which belong to the most widely used nanomaterials—on normal and compromised airway epithelia. We review the development, physical performance, and suitability of NACIVT for short and long-term exposures with air-liquid interface (ALI) cell cultures in regard to the prerequisites of a realistic in vitro test system for inhalation toxicology and in comparison to other commercially available, well characterized systems. We also review doses applied to cell cultures in vitro and acknowledge that a single exposure to realistic doses of spark generated 20-nm Ag- or CNP results in small, similar cellular responses to both NP types and that cytokine release generally increased with increasing NP dose.
Collapse
|
32
|
Thorne D, Larard S, Baxter A, Meredith C, Gaҫa M. The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements. Toxicol Lett 2016; 265:170-178. [PMID: 27965004 DOI: 10.1016/j.toxlet.2016.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
DNA damage can be caused by a variety of external and internal factors and together with cellular responses, can establish genomic instability through multiple pathways. DNA damage therefore, is considered to play an important role in the aetiology and early stages of carcinogenesis. The DNA-damage inducing potential of tobacco smoke aerosols in vitro has been extensively investigated; however, the ability of e-cigarette aerosols to induce DNA damage has not been extensively investigated. E-cigarette use has grown globally in recent years and the health implications of long term e-cigarette use are still unclear. Therefore, this study has assessed the induction of double-strand DNA damage in vitro using human lung epithelial cells to e-cigarette aerosols from two different product variants (a "cigalike" and a closed "modular" system) and cigarette smoke. A Vitrocell® VC 10 aerosol exposure system was used to generate and dilute cigarette smoke and e-cigarette aerosols, which were delivered to human bronchial epithelial cells (BEAS-2Bs) housed at the air-liquid-interface (ALI) for up to 120min exposure (diluting airflow, 0.25-1L/min). Following exposure, cells were immediately fixed, incubated with primary (0.1% γH2AX antibody in PBS) and secondary antibodies (DyLight™ 549 conjugated goat anti-mouse IgG) containing Hoechst dye DNA staining solution (0.2% secondary antibody and 0.01% Hoechst in PBS), and finally screened using the Cellomics Arrayscan VTI platform. The results from this study demonstrate a clear DNA damage-induced dose response with increasing smoke concentrations up to cytotoxic levels. In contrast, e-cigarette aerosols from two product variants did not induce DNA damage at equivalent to or greater than doses of cigarette smoke aerosol. In this study dosimetry approaches were used to contextualize exposure, define exposure conditions and facilitate comparisons between cigarette smoke and e-cigarette aerosols. Quartz crystal microbalance (QCM) technology and quantified nicotine delivery were both assessed at the exposure interface. Nicotine was eluted from the QCM surface to give a quantifiable measure of exposure to support deposited mass. Dose measured as deposited mass (μg/cm2) and nicotine (ng/mL) demonstrated that in vitro e-cigarette exposures were conducted at doses up to 12-28 fold to that of cigarette smoke and demonstrated a consistent negative finding.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, R&D Centre, Southampton, Hampshire, SO15 8TL, UK.
| | - Sophie Larard
- British American Tobacco, R&D Centre, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco, R&D Centre, Southampton, Hampshire, SO15 8TL, UK
| | - Clive Meredith
- British American Tobacco, R&D Centre, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna Gaҫa
- British American Tobacco, R&D Centre, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
33
|
Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. Cell Syst 2016; 3:456-466.e4. [DOI: 10.1016/j.cels.2016.10.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022]
|
34
|
Li X. In vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure: A review. Toxicol In Vitro 2016; 36:105-113. [PMID: 27470133 DOI: 10.1016/j.tiv.2016.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
Cigarette smoke is a complex aerosol comprising particulate phase and gaseous vapour phase. The air-liquid interface exposure provides a possible technical means to implement whole smoke exposure for the assessment of tobacco products. In this review, the research progress in the in vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure is summarized. The contents presented involve mainly cytotoxicity, genotoxicity, oxidative stress, inflammation, systems toxicology, 3D culture and cigarette smoke dosimetry related to cigarette smoke, as well as the assessment of electronic cigarette aerosol. Prospect of the application of the air-liquid interface exposure method in assessing the biological effects of tobacco smoke is discussed.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China.
| |
Collapse
|
35
|
Azzopardi D, Patel K, Jaunky T, Santopietro S, Camacho OM, McAughey J, Gaça M. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol Mech Methods 2016; 26:477-491. [PMID: 27690199 PMCID: PMC5309870 DOI: 10.1080/15376516.2016.1217112] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
Electronic cigarettes (E-cigarettes) are a potential means of addressing the harm to public health caused by tobacco smoking by offering smokers a less harmful means of receiving nicotine. As e-cigarettes are a relatively new phenomenon, there are limited scientific data on the longer-term health effects of their use. This study describes a robust in vitro method for assessing the cytotoxic response of e-cigarette aerosols that can be effectively compared with conventional cigarette smoke. This was measured using the regulatory accepted Neutral Red Uptake assay modified for air-liquid interface (ALI) exposures. An exposure system, comprising a smoking machine, traditionally used for in vitro tobacco smoke exposure assessments, was adapted for use with e-cigarettes to expose human lung epithelial cells at the ALI. Dosimetric analysis methods using real-time quartz crystal microbalances for mass, and post-exposure chemical analysis for nicotine, were employed to detect/distinguish aerosol dilutions from a reference Kentucky 3R4F cigarette and two commercially available e-cigarettes (Vype eStick and ePen). ePen aerosol induced 97%, 94% and 70% less cytotoxicity than 3R4F cigarette smoke based on matched EC50 values at different dilutions (1:5 vs. 1:153 vol:vol), mass (52.1 vs. 3.1 μg/cm2) and nicotine (0.89 vs. 0.27 μg/cm2), respectively. Test doses where cigarette smoke and e-cigarette aerosol cytotoxicity were observed are comparable with calculated daily doses in consumers. Such experiments could form the basis of a larger package of work including chemical analyses, in vitro toxicology tests and clinical studies, to help assess the safety of current and next generation nicotine and tobacco products.
Collapse
Affiliation(s)
- David Azzopardi
- British American Tobacco, R&D Centre,
Southampton,
Hampshire,
UK
| | - Kharishma Patel
- British American Tobacco, R&D Centre,
Southampton,
Hampshire,
UK
| | - Tomasz Jaunky
- British American Tobacco, R&D Centre,
Southampton,
Hampshire,
UK
| | | | - Oscar M. Camacho
- British American Tobacco, R&D Centre,
Southampton,
Hampshire,
UK
| | - John McAughey
- British American Tobacco, R&D Centre,
Southampton,
Hampshire,
UK
| | - Marianna Gaça
- British American Tobacco, R&D Centre,
Southampton,
Hampshire,
UK
| |
Collapse
|
36
|
Donovan C, Seow HJ, Bourke JE, Vlahos R. Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to β-adrenoceptor agonists in mouse lung. Clin Sci (Lond) 2016; 130:829-37. [PMID: 27128803 PMCID: PMC5233570 DOI: 10.1042/cs20160093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 11/27/2022]
Abstract
β2-adrenoceptor agonists are the mainstay therapy for patients with asthma but their effectiveness in cigarette smoke (CS)-induced lung disease such as chronic obstructive pulmonary disease (COPD) is limited. In addition, bronchodilator efficacy of β2-adrenoceptor agonists is decreased during acute exacerbations of COPD (AECOPD), caused by respiratory viruses including influenza A. Therefore, the aim of the present study was to assess the effects of the β2-adrenoceptor agonist salbutamol (SALB) on small airway reactivity using mouse precision cut lung slices (PCLS) prepared from CS-exposed mice and from CS-exposed mice treated with influenza A virus (Mem71, H3N1). CS exposure alone reduced SALB potency and efficacy associated with decreased β2-adrenoceptor mRNA expression, and increased tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression. This impaired relaxation was restored by day 12 in the absence of further CS exposure. In PCLS prepared after Mem71 infection alone, responses to SALB were transient and were not well maintained. CS exposure prior to Mem71 infection almost completely abolished relaxation, although β2-adrenoceptor and TNFα and IL-1β expression were unaltered. The present study has shown decreased sensitivity to SALB after CS or a combination of CS and Mem71 occurs by different mechanisms. In addition, the PCLS technique and our models of CS and influenza infection provide a novel setting for assessment of alternative bronchodilators.
Collapse
Affiliation(s)
- Chantal Donovan
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Huei Jiunn Seow
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
37
|
Shen Y, Wolkowicz MJ, Kotova T, Fan L, Timko MP. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci Rep 2016; 6:23984. [PMID: 27041137 PMCID: PMC4819171 DOI: 10.1038/srep23984] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/17/2016] [Indexed: 12/04/2022] Open
Abstract
Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products.
Collapse
Affiliation(s)
- Yifei Shen
- Research Center for Air Pollution and Health and Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | | | - Tatyana Kotova
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lonjiang Fan
- Research Center for Air Pollution and Health and Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
38
|
Meng Q, Schwander S, Son Y, Rivas C, Delveno C, Graber J, Giovenco D, Bruen U, Mathew R, Robson M. Has the mist been peered through? Revisiting the building blocks of human health risk assessment for electronic cigarette use. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2016; 22:558-579. [PMID: 38162291 PMCID: PMC10756495 DOI: 10.1080/10807039.2015.1100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Background Electronic cigarettes, battery-powered nicotine delivery devices, have been increasingly used in the past decade. However, human health risks associated with E-vapor inhalation have not been fully characterized. Aims This critical review aims at revisiting the building blocks of human health risk assessment, summarizing the state of the science, and identifying major knowledge gaps in exposure assessment and toxicity assessment. Approach A qualitative research synthesis was conducted based on scientific findings reported to date in peer-reviewed publications and our own preliminary experimental results. Results There are a limited number of studies across all lines of evidence on E-vapor exposure and the health impacts of E-vapor inhalation. E-cigarette may be as efficient as traditional cigarettes in nicotine delivery, especially for experienced users, and studies suggest lower emissions of air toxics from E-cigarette vapor and lower second- and third-hand vapor exposures. But some toxic emissions may surpass those of traditional cigarettes, especially under high voltage vaping conditions. Experimentally, E-vapor/E-liquid exposures reduce cell viability and promote pro-inflammatory cytokine release. User vulnerability to concomitant environmental agent exposures, such as viruses and bacteria, may potentially be increased. Conclusion While evidence to date suggests that e-cigarettes release fewer toxins and carcinogens and compared to cigarettes, E-vapor is not safe and might adversely affect human immune functions. Major knowledge gaps hinder risk quantification and effective regulation of E-cigarette products including: 1) lack of long-term exposure studies; 2) lack of understanding of biological mechanisms associated with exposure; and 3) lack of integration of exposure and toxicity assessments.,. Better data are needed to inform human health risk assessments and to better understand the public health impact of E-vapor exposures.
Collapse
Affiliation(s)
- Qingyu Meng
- School of Public Health, Rutgers University, Piscataway, NJ, USA
- Center for Tobacco Studies, Rutgers University, New Brunswick, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Stephan Schwander
- School of Public Health, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Yeongkwon Son
- School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Cesar Rivas
- School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Cristine Delveno
- School of Public Health, Rutgers University, Piscataway, NJ, USA
- Center for Tobacco Studies, Rutgers University, New Brunswick, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Judith Graber
- School of Public Health, Rutgers University, Piscataway, NJ, USA
- Center for Tobacco Studies, Rutgers University, New Brunswick, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Daniel Giovenco
- School of Public Health, Rutgers University, Piscataway, NJ, USA
- Center for Tobacco Studies, Rutgers University, New Brunswick, NJ, USA
| | - Uma Bruen
- School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Rose Mathew
- School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Mark Robson
- School of Public Health, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- School of Environmental and Biological Sciences Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
39
|
Azzopardi D, Haswell LE, Foss-Smith G, Hewitt K, Asquith N, Corke S, Phillips G. Evaluation of an air-liquid interface cell culture model for studies on the inflammatory and cytotoxic responses to tobacco smoke aerosols. Toxicol In Vitro 2015; 29:1720-8. [PMID: 26096598 DOI: 10.1016/j.tiv.2015.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/16/2015] [Accepted: 06/08/2015] [Indexed: 11/22/2022]
Abstract
In vitro toxicological studies for tobacco product assessment have traditionally been undertaken using the particulate phase of tobacco smoke. However, this does not truly reflect exposure conditions that occur in smokers. Thus in vitro cell culture systems are required in which cells are exposed to tobacco whole smoke (WS) at the air-liquid interface (ALI). In this study bronchial epithelial cells were cultured on semi-permeable membranes, transitioned to the ALI and the robustness and sensitivity of the cells to tobacco WS and vapour phase (VP) assessed. Although no effect of air exposure was observed on cell viability, IL-6 and IL-8 release was increased. Exposure to WS resulted in a significant dose dependent decrease in cell viability and a significant non-dose dependent increase in inflammatory mediator secretion. The VP was found to contribute approximately 90% of the total cytotoxicity derived from WS. The cell culture system was also able to differentiate between two smoking regimens and was sensitive to passage number with increased inflammatory mediator secretion and lower cell viability observed in cell cultures of low passage number following WS exposure. This simple cell culture system may facilitate studies on the toxicological impact of future tobacco products and nicotine delivery devices.
Collapse
Affiliation(s)
- David Azzopardi
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK
| | - Linsey E Haswell
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK
| | - Geoff Foss-Smith
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK
| | - Katherine Hewitt
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK
| | - Nathan Asquith
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK
| | - Sarah Corke
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK
| | - Gary Phillips
- British American Tobacco (Investments) Limited, Group R&D, Regents Park Road, Southampton SO15 8TL, UK.
| |
Collapse
|
40
|
Thorne D, Dalrymple A, Dillon D, Duke M, Meredith C. A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test. Inhal Toxicol 2015; 27:629-40. [PMID: 26339773 PMCID: PMC4732453 DOI: 10.3109/08958378.2015.1080773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D,
Southampton, Hampshire,
UK
| | | | - Deborah Dillon
- British American Tobacco, Group R&D,
Southampton, Hampshire,
UK
| | - Martin Duke
- British American Tobacco, Group R&D,
Southampton, Hampshire,
UK
| | - Clive Meredith
- British American Tobacco, Group R&D,
Southampton, Hampshire,
UK
| |
Collapse
|
41
|
Koul A, Bala S, Arora N. Aloe vera affects changes induced in pulmonary tissue of mice caused by cigarette smoke inhalation. ENVIRONMENTAL TOXICOLOGY 2015; 30:999-1013. [PMID: 24615921 DOI: 10.1002/tox.21973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/04/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
This study was undertaken to determine the influence of Aloe vera (AV) on changes induced in pulmonary tissue of cigarette smoke (CS) inhaling mice. CS inhalation for 4 weeks caused pulmonary damage as evident by histoarchitectural alterations and enhanced serum and tissue lactate dehydrogenase (LDH) activities. CS inhalation also led to increased mucin production as revealed by mucicarmine and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining. Studies on bronchoalveolar lavage fluid (balf) of CS exposed animals revealed structural changes in phospholipids and increase in surface tension when compared with control counterparts. These changes were accompanied by enhanced nitric oxide (NO) levels, citrulline levels, peroxidative damage, and differential modulation of antioxidant defense system. AV administration (seven weeks, 500 mg/kg b.w. daily) to CS inhaling mice led to modulation of CS induced pulmonary changes as revealed by lesser degree of histoarchitectural alterations, lesser mucin production, decreased NO levels, citrulline levels, peroxidative damage, and serum LDH activity. AV treatment to CS inhaling mice was associated with varying response to antioxidant defense system, however balf of CS + AV treated animals did not exhibit appreciable changes when compared with that of CS exposed animals. These observations suggest that AV has the potential to modulate CS induced changes in the pulmonary tissue which could have implications in management of CS associated pulmonary diseases, however, further investigations are required to explore its complete mechanism of action.
Collapse
Affiliation(s)
- Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shashi Bala
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neha Arora
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
42
|
Mathis C, Gebel S, Poussin C, Belcastro V, Sewer A, Weisensee D, Hengstermann A, Ansari S, Wagner S, Peitsch MC, Hoeng J. A systems biology approach reveals the dose- and time-dependent effect of primary human airway epithelium tissue culture after exposure to cigarette smoke in vitro. Bioinform Biol Insights 2015; 9:19-35. [PMID: 25788831 PMCID: PMC4357630 DOI: 10.4137/bbi.s19908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
To establish a relevant in vitro model for systems toxicology-based mechanistic assessment of environmental stressors such as cigarette smoke (CS), we exposed human organotypic bronchial epithelial tissue cultures at the air liquid interface (ALI) to various CS doses. Previously, we compared in vitro gene expression changes with published human airway epithelia in vivo data to assess their similarities. Here, we present a follow-up evaluation of these in vitro transcriptomics data, using complementary computational approaches and an integrated mRNA-microRNA (miRNA) analysis. The main cellular pathways perturbed by CS exposure were related to stress responses (oxidative stress and xenobiotic metabolism), inflammation (inhibition of nuclear factor-κB and the interferon gamma-dependent pathway), and proliferation/differentiation. Within post-exposure periods up to 48 hours, a transient kinetic response was observed at lower CS doses, whereas higher doses resulted in more sustained responses. In conclusion, this systems toxicology approach has potential for product testing according to "21st Century Toxicology".
Collapse
Affiliation(s)
- Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dirk Weisensee
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Arnd Hengstermann
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sandra Wagner
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
43
|
Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, Robinson R, Rahman I. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One 2015; 10:e0116732. [PMID: 25658421 PMCID: PMC4319729 DOI: 10.1371/journal.pone.0116732] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 01/26/2023] Open
Abstract
Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences.
Collapse
Affiliation(s)
- Chad A. Lerner
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Isaac K. Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hongwei Yao
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Scott McIntosh
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Risa Robinson
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
44
|
Wang WM, Ye P, Qian YJ, Gao YF, Li JJ, Sun FF, Zhang WY, Wang X. Effects of whole cigarette smoke on human beta defensins expression and secretion by oral mucosal epithelial cells. Tob Induc Dis 2015; 13:3. [PMID: 25635179 PMCID: PMC4310021 DOI: 10.1186/s12971-015-0029-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/10/2015] [Indexed: 01/10/2023] Open
Abstract
Background Cigarette smoke a recognized risk factor for many systemic diseases and also oral diseases. Human beta defensins (HBDs), a group of important antimicrobial peptides expressed by the epithelium, are crucial for local defense and tissue homeostasis of oral cavity. The aim of this study was to evaluate potential effects of whole cigarette smoke (WCS) exposure on the expression and secretion of HBDs by oral mucosal epithelial cells. Methods Immortalized human oral mucosal epithelial (Leuk-1) cells were exposed to WCS for various time periods. HBD-1, -2 and -3 expression and subcellular localization were detected by real time qPCR, immunofluorescence assay and confocal microscopy. According to the relative fluorescent intensity, the expression levels of HBD-1, -2 and -3 were evaluated by digital image analysis system. The alteration of HBD-1, -2 and -3 secretion levels was measured by the Enzyme-Linked Immunosorbent Assay. Results WCS exposure remarkably attenuated HBD-1 expression and secretion while clearly enhanced HBD-2, -3 expression levels and HBD-2 secretion by Leuk-l cells. It appeared that there was no significant effect of WCS exposure on HBD-3 secretion. Conclusions WCS exposure could modulate expression and secretion of HBDs by oral mucosal epithelial cells, establishing a link between cigarette smoke and abnormal levels of antimicrobial peptides. The present results may give a new perspective to investigate smoking-related local defense suppression and oral disease occurrence.
Collapse
Affiliation(s)
- Wen-Mei Wang
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, 210008 China
| | - Pei Ye
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, 210008 China
| | - Ya-Jie Qian
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, 210008 China
| | - Ya-Fan Gao
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, 210008 China
| | - Jing-Jing Li
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, 210008 China
| | - Fang-Fang Sun
- Department of Prosthodontics, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, 21008 China.,Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| | - Wei-Yun Zhang
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| | - Xiang Wang
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, 210008 China.,Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| |
Collapse
|
45
|
Majeed S, Frentzel S, Wagner S, Kuehn D, Leroy P, Guy PA, Knorr A, Hoeng J, Peitsch MC. Characterization of the Vitrocell® 24/48 in vitro aerosol exposure system using mainstream cigarette smoke. Chem Cent J 2014; 8:62. [PMID: 25411580 PMCID: PMC4236458 DOI: 10.1186/s13065-014-0062-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/15/2014] [Indexed: 11/10/2022] Open
Abstract
Background Only a few exposure systems are presently available that enable cigarette smoke exposure of living cells at the air–liquid interface, of which one of the most versatile is the Vitrocell® system (Vitrocell® Systems GmbH). To assess its performance and optimize the exposure conditions, we characterized a Vitrocell® 24/48 system connected to a 30-port carousel smoking machine. The Vitrocell® 24/48 system allows for simultaneous exposure of 48 cell culture inserts using dilution airflow rates of 0–3.0 L/min and exposes six inserts per dilution. These flow rates represent cigarette smoke concentrations of 7–100%. Results By characterizing the exposure inside the Vitrocell® 24/48, we verified that (I) the cigarette smoke aerosol distribution is uniform across all inserts, (II) the utility of Vitrocell® crystal quartz microbalances for determining the online deposition of particle mass on the inserts, and (III) the amount of particles deposited per surface area and the amounts of trapped carbonyls and nicotine were concentration dependent. At a fixed dilution airflow of 0.5 L/min, the results showed a coefficient of variation of 12.2% between inserts of the Vitrocell® 24/48 module, excluding variations caused by different runs. Although nicotine and carbonyl concentrations were linear over the tested dilution range, particle mass deposition increased nonlinearly. The observed effect on cell viability was well-correlated with increasing concentration of cigarette smoke. Conclusions Overall, the obtained results highlight the suitability of the Vitrocell® 24/48 system to assess the effect of cigarette smoke on cells under air–liquid interface exposure conditions, which is closely related to the conditions occurring in human airways.
Collapse
Affiliation(s)
- Shoaib Majeed
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Sandra Wagner
- Eurofins Umwelt West GmbH, Vorgebirgsstraße 20, D-50389 Wesseling, Germany
| | - Diana Kuehn
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Philippe A Guy
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Arno Knorr
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris Research and Development, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
46
|
Wood TT, Winden DR, Marlor DR, Wright AJ, Jones CM, Chavarria M, Rogers GD, Reynolds PR. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L758-64. [PMID: 25260756 DOI: 10.1152/ajplung.00185.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time.
Collapse
Affiliation(s)
- Tyler T Wood
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Duane R Winden
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Derek R Marlor
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Alex J Wright
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Cameron M Jones
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Michael Chavarria
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Geraldine D Rogers
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
47
|
Garcia-Canton C, Errington G, Anadon A, Meredith C. Characterisation of an aerosol exposure system to evaluate the genotoxicity of whole mainstream cigarette smoke using the in vitro γH2AX assay by high content screening. BMC Pharmacol Toxicol 2014; 15:41. [PMID: 25056295 PMCID: PMC4122049 DOI: 10.1186/2050-6511-15-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 07/16/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The genotoxic effect of cigarette smoke is routinely measured by treating cells with cigarette Particulate Matter (PM) at different dose levels in submerged cell cultures. However, PM exposure cannot be considered as a complete exposure as it does not contain the gas phase component of the cigarette smoke. The in vitro γH2AX assay by High Content Screening (HCS) has been suggested as a complementary tool to the standard battery of genotoxicity assays as it detects DNA double strand breaks in a high-throughput fashion. The aim of this study was to further optimise the in vitro γH2AX assay by HCS to enable aerosol exposure of human bronchial epithelial BEAS-2B cells at the air-liquid interface (ALI). METHODS Whole mainstream cigarette smoke (WMCS) from two reference cigarettes (3R4F and M4A) were assessed for their genotoxic potential. During the study, a further characterisation of the Borgwaldt RM20S® aerosol exposure system to include single dilution assessment with a reference gas was also carried out. RESULTS The results of the optimisation showed that both reference cigarettes produced a positive genotoxic response at all dilutions tested. However, the correlation between dose and response was low for both 3R4F and M4A (Pearson coefficient, r = -0.53 and -0.44 respectively). During the additional characterisation of the exposure system, it was observed that several pre-programmed dilutions did not perform as expected. CONCLUSIONS Overall, the in vitro γH2AX assay by HCS could be used to evaluate WMCS in cell cultures at the ALI. Additionally, the extended characterisation of the exposure system indicates that assessing the performance of the dilutions could improve the existing routine QC checks.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
- Department of Toxicology and Pharmacology, Universidad Complutense de Madrid, Madrid, Spain
| | - Graham Errington
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Arturo Anadon
- Department of Toxicology and Pharmacology, Universidad Complutense de Madrid, Madrid, Spain
| | - Clive Meredith
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
48
|
Zavala J, Lichtveld K, Ebersviller S, Carson JL, Walters GW, Jaspers I, Jeffries HE, Sexton KG, Vizuete W. The Gillings Sampler--an electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem Biol Interact 2014; 220:158-68. [PMID: 25010910 DOI: 10.1016/j.cbi.2014.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 11/17/2022]
Abstract
There is growing interest in studying the toxicity and health risk of exposure to multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Additionally, the Health Effects Institute's strategic plan aims to develop and apply next-generation multi-pollutant approaches to understanding the health effects of air pollutants. There's increasing concern that conventional in vitro exposure methods are not adequate to meet EPA's strategic plan to demonstrate a direct link between air pollution and health effects. To meet the demand for new in vitro technology that better represents direct air-to-cell inhalation exposures, a new system that exposes cells at the air-liquid interface was developed. This new system, named the Gillings Sampler, is a modified two-stage electrostatic precipitator that provides a viable environment for cultured cells. Polystyrene latex spheres were used to determine deposition efficiencies (38-45%), while microscopy and imaging techniques were used to confirm uniform particle deposition. Negative control A549 cell exposures indicated the sampler can be operated for up to 4h without inducing any significant toxic effects on cells, as measured by lactate dehydrogenase (LDH) and interleukin-8 (IL-8). A novel positive aerosol control exposure method, consisting of a p-tolualdehyde (TOLALD) impregnated mineral oil aerosol (MOA), was developed to test this system. Exposures to the toxic MOA at a 1 ng/cm(2) dose of TOLALD yielded a reproducible 1.4 and 2-fold increase in LDH and IL-8 mRNA levels over controls. This new system is intended to be used as an alternative research tool for aerosol in vitro exposure studies. While further testing and optimization is still required to produce a "commercially ready" system, it serves as a stepping-stone in the development of cost-effective in vitro technology that can be made accessible to researchers in the near future.
Collapse
Affiliation(s)
- Jose Zavala
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Kim Lichtveld
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Seth Ebersviller
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Johnny L Carson
- Department of Pediatrics, University of North Carolina at Chapel Hill, United States; Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, United States
| | - Glenn W Walters
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Ilona Jaspers
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, United States; Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, United States
| | - Harvey E Jeffries
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Kenneth G Sexton
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - William Vizuete
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
49
|
Thorne D, Kilford J, Payne R, Haswell L, Dalrymple A, Meredith C, Dillon D. Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system. BMC Res Notes 2014; 7:367. [PMID: 24935030 PMCID: PMC4067082 DOI: 10.1186/1756-0500-7-367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/12/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tobacco smoke toxicity has traditionally been assessed using the particulate fraction under submerged culture conditions which omits the vapour phase elements from any subsequent analysis. Therefore, methodologies that assess the full interactions and complexities of tobacco smoke are required. Here we describe the adaption of a modified BALB/c 3T3 neutral red uptake (NRU) cytotoxicity test methodology, which is based on the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) protocol for in vitro acute toxicity testing. The methodology described takes into account the synergies of both the particulate and vapour phase of tobacco smoke. This is of particular importance as both phases have been independently shown to induce in vitro cellular cytotoxicity. FINDINGS The findings from this study indicate that mainstream tobacco smoke and the gas vapour phase (GVP), generated using the Vitrocell® VC 10 smoke exposure system, have distinct and significantly different toxicity profiles. Within the system tested, mainstream tobacco smoke produced a dilution IC50 (dilution (L/min) at which 50% cytotoxicity is observed) of 6.02 L/min, whereas the GVP produced a dilution IC50 of 3.20 L/min. In addition, we also demonstrated significant dose-for-dose differences between mainstream cigarette smoke and the GVP fraction (P < 0.05). This demonstrates the importance of testing the entire tobacco smoke aerosol and not just the particulate fraction, as has been the historical preference. CONCLUSIONS We have adapted the NRU methodology based on the ICCVAM protocol to capture the full interactions and complexities of tobacco smoke. This methodology could also be used to assess the performance of traditional cigarettes, blend and filter technologies, tobacco smoke fractions and individual test aerosols.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Joanne Kilford
- Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - Rebecca Payne
- Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - Linsey Haswell
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Annette Dalrymple
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Clive Meredith
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Deborah Dillon
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
50
|
Nyunoya T, Mebratu Y, Contreras A, Delgado M, Chand HS, Tesfaigzi Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol 2014; 50:471-82. [PMID: 24111585 DOI: 10.1165/rcmb.2013-0348tr] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke contains numerous chemical compounds, including abundant reactive oxygen/nitrogen species and aldehydes, and many other carcinogens. Long-term cigarette smoking significantly increases the risk of various lung diseases, including chronic obstructive pulmonary disease and lung cancer, and contributes to premature death. Many in vitro and in vivo studies have elucidated mechanisms involved in cigarette smoke-induced inflammation, DNA damage, and autophagy, and the subsequent cell fates, including cell death, cellular senescence, and transformation. In this Translational Review, we summarize the known pathways underlying these processes in airway epithelial cells to help reveal future challenges and describe possible directions of research that could lead to better management and treatment of these diseases.
Collapse
Affiliation(s)
- Toru Nyunoya
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, and
| | | | | | | | | | | |
Collapse
|