1
|
Urbano T, Maramotti R, Tondelli M, Gallingani C, Carbone C, Iacovino N, Vinceti G, Zamboni G, Chiari A, Bedin R. Comparison of Serum and Cerebrospinal Fluid Neurofilament Light Chain Concentrations Measured by Ella™ and Lumipulse™ in Patients with Cognitive Impairment. Diagnostics (Basel) 2024; 14:2408. [PMID: 39518375 PMCID: PMC11544876 DOI: 10.3390/diagnostics14212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Neurofilament light chain proteins (NfLs) are considered a promising biomarker of neuroaxonal damage in several neurological diseases. Their measurement in the serum and cerebrospinal fluid (CSF) of patients with dementia may be especially useful. Our aim was to compare the NfL measurement performance of two advanced technologies, specifically the Ella™ microfluidic platform and the Lumipulse™ fully automated system, in patients with cognitive disorders. METHODS Thirty subjects with neurodegenerative cognitive disorders (10 with Alzheimer's Disease, 10 with Frontotemporal Dementia, and 10 with non-progressive Mild Cognitive Impairment) seen at the Cognitive Neurology Clinic of Modena University Hospital (Italy) underwent CSF and serum NfL measurement with both the Ella™ microfluidic platform (Bio-Techne, Minneapolis, MN, USA)) and the Lumipulse™ fully automated system for the CLEIA (Fujirebio Inc., Ghent, Belgium). Correlation and regression analyses were applied to assess the association between NfL concentrations obtained with the two assays in CSF and serum. The Passing-Bablok regression method was employed to evaluate the agreement between the assays. RESULTS There were high correlations between the two assays (r = 0.976, 95% CI. 0.950-0.989 for CSF vs. r = 0.923, 95% CI 0.842-0.964 for serum). A Passing-Bablok regression model was estimated to explain the relationship between the two assays, allowing us to switch from one to the other when only one assay was available. CONCLUSIONS We found a good degree of correlation between the two methods in patients with neurocognitive disorders. We also established a method that will allow comparisons between results obtained with either technique, allowing for meta-analyses and larger sample sizes.
Collapse
Affiliation(s)
- Teresa Urbano
- Neuroimmunology Laboratory, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Baggiovara Hospital, 41126 Modena, Italy; (T.U.); (R.B.)
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Maramotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Mathematics and Computer Science, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Chiara Gallingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Najara Iacovino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giulia Vinceti
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Annalisa Chiari
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Roberta Bedin
- Neuroimmunology Laboratory, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Baggiovara Hospital, 41126 Modena, Italy; (T.U.); (R.B.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| |
Collapse
|
2
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
3
|
Sjöbom U, Öhrfelt A, Pivodic A, Nilsson AK, Blennow K, Zetterberg H, Hellström W, Danielsson H, Gränse L, Sävman K, Wackernagel D, Hansen-Pupp I, Ley D, Hellström A, Löfqvist C. Neurofilament light chain associates with IVH and ROP in extremely preterm infants. Pediatr Res 2024:10.1038/s41390-024-03587-5. [PMID: 39317698 DOI: 10.1038/s41390-024-03587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Neurofilament light chain (NfL) is known for indicating adult brain injury, but the role of NfL in extremely preterm infants is less studied. This study examines the relationship between NfL and neurovascular morbidities in these infants. METHODS A secondary analysis of the Mega Donna Mega trial was conducted on preterm infants <28 weeks gestational age (GA). The study measured NfL levels and proteomic profiles related to the blood-brain barrier in serum from birth to term-equivalent age, investigating the association of NfL with GA, retinopathy of prematurity (ROP), intraventricular hemorrhage (IVH), and blood-brain barrier proteins. RESULTS Higher NfL levels were seen in the first month in infants with severe IVH and for those born <25 weeks GA (independent of ROP or IVH). Additionally, infants born at 25-27 weeks GA with high NfL were at increased risk of developing severe ROP (independent of IVH). NfL was significantly associated with the proteins CDH5, ITGB1, and JAM-A during the first month. CONCLUSION NfL surges after birth in extremely preterm infants, particularly in those with severe IVH and ROP, and in the most immature infants regardless of IVH or ROP severity. These findings suggest NfL as a potential predictor of neonatal morbidities, warranting further validation studies. IMPACT STATEMENT This study shows that higher NfL levels are related to neurovascular morbidities in extremely preterm infants. The degree of immaturity seems important as infants born <25 weeks gestational age exhibited high postnatal serum NfL levels irrespective of neurovascular morbidities. Our findings suggest a potential link between NfL and neurovascular morbidities possibly affected by a more permeable blood-brain barrier.
Collapse
Affiliation(s)
- Ulrika Sjöbom
- Learning and Leadership for Health Care Professionals, Institute of Health and Care Science at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Annika Öhrfelt
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Aldina Pivodic
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College of London Institute of Neurology, London, UK
- UK Dementia Research Institute, University College of London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Danielsson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Sach's Children's and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Lotta Gränse
- Department of Clinical Sciences, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dirk Wackernagel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Division of Neonatology, Department of Pediatrics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ingrid Hansen-Pupp
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Learning and Leadership for Health Care Professionals, Institute of Health and Care Science at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Gao T, Dang W, Jiang Z, Jiang Y. Exploring the Missing link between vitamin D and autism spectrum disorder: Scientific evidence and new perspectives. Heliyon 2024; 10:e36572. [PMID: 39281535 PMCID: PMC11401093 DOI: 10.1016/j.heliyon.2024.e36572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Aim This study aims to address the key question of the causal relationship between serum levels of 25-hydroxyvitamin D (vitamin D) and autism spectrum disorders (ASD). Methods Publicly available Genome-Wide Association Study (GWAS) datasets were used to conduct the bidirectional Two-sample MR analyses using methods including inverse-variance weighted (IVW), weighted median, MR-Egger regression, simple mode, MR-PRESSO test, Steiger filtering, and weighted mode, followed by BWMR for validation. Results The MR analysis indicated that there was no causal relationship between Vitamin D as the exposure and ASD as the outcome in the positive direction of the MR analysis (IVW: OR = 0.984, 95 % CI: 0.821-1.18, P = 0.866). The subsequent BWMR validation stage yielded consistent results (OR = 0.984, 95 % CI 0.829-1.20, P = 0.994). Notably, in the reverse MR analysis with ASD as the exposure and Vitamin D as the outcome, the results suggested that the occurrence of ASD could lead to decreased Vitamin D levels (IVW: OR = 0.976, 95 % CI: 0.961-0.990, P = 0.000855), with BWMR findings in the validation stage confirming the discovery phase (OR = 0.975, 95 % CI: 0.958-0.991, P = 0.00297). For the positive MR analysis, no pleiotropy was detected in the instrumental variables. Similarly, no pleiotropy or heterogeneity was detected in the instrumental variables for the reverse MR analysis. Sensitivity analysis using the leave-one-out approach for both positive and reverse instrumental variables suggested that the MR analysis results were robust. Conclusion Through the discovery and validation analysis process, we can confidently assert that there is no causative link between Vitamin D and ASD, and that supplementing Vitamin D is not expected to provide effective improvement for patients with ASD. Our study significantly advances a new perspective in ASD research and has a positive impact on medication guidance for patients with ASD.
Collapse
Affiliation(s)
- Tianci Gao
- College of Clinical Medicine, Jiamusi University, Hei longJiang Province, China
| | - Wenjun Dang
- Jiamusi College, HeiLongJiang University of Chinese Medicine, Hei longJiang Province, China
| | - Zhimei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Hei longJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang province, China
| | - Yuwei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Hei longJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang province, China
| |
Collapse
|
5
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Sladojević M, Nikolić S, Živanović Ž, Simić S, Sakalaš L, Spasić I, Ilinčić B, Čabarkapa V. Determination of systemic inflammatory biomarkers in multiple sclerosis. J Med Biochem 2024; 43:257-264. [PMID: 38699700 PMCID: PMC11062333 DOI: 10.5937/jomb0-45083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/08/2023] [Indexed: 05/05/2024] Open
Abstract
Background Multiple sclerosis (MS) is one of the most common demyelinating diseases of the central nervous system. We aimed to investigate serum and cerebrospinal fluid levels of different laboratory inflammatory biomarkers in patients with MS. Methods A total of 120 subjects participated in the study, 60 of whom were diagnosed with MS, 30 with the final diagnosis of non-inflammatory diseases of the central nervous system (CNS), and 30 healthy subjects representing the control group. Regarding the progression of radiological findings after 2 years from the initial diagnosis, the MS group was divided into stationary radiological findings (n=30) and radiologically proven disease progression (n=30). In all patients, we analyzed levels of laboratory inflammatory biomarkers: C reactive protein (CRP), Neutrophil-to-lymphocyte ratio (NLR), Growth differentiation factor 15 (GDF15) in serum samples, and neurofilaments (NFs) in cerebrospinal fluid (CSF). NFs and GDF15 were analyzed initially, while CRP and NLR values were analyzed initially and after two years. Results We found statistically lower GDF15 values and initial CRP values in the MS group regarding the group with non-inflammatory diseases of the CNS (p<0.0001). On the other side, we determined a significant elevation of laboratory markers CRP and NLR, initially and after a two-year period, in the MS subgroup with the progression of magnetic resonance imaging (MRI) findings (p<0.0001 and p=0.050, respectively). Also, we found a positive correlation between CRP and NFs (r=0.243, p=0.04), as well as a positive correlation between CRP and GDF15 in patients with MS (r=0.769, p<0.0001). Conclusions We found a significant elevation of laboratory markers of systemic inflammation, CRP, and NLR in MS patients who developed disease progression based on MRI findings. There is a need for further studies to validate current parameters to be considered as useful markers of MS activity and disability.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Spasić
- Department of Laboratory Diagnostics Medlab, Novi Sad
| | | | | |
Collapse
|
7
|
Zhao Y, Chen C, Xiao X, Fang L, Cheng X, Chang Y, Peng F, Wang J, Shen S, Wu S, Huang Y, Cai W, Zhou L, Qiu W. Teriflunomide Promotes Blood-Brain Barrier Integrity by Upregulating Claudin-1 via the Wnt/β-catenin Signaling Pathway in Multiple Sclerosis. Mol Neurobiol 2024; 61:1936-1952. [PMID: 37819429 DOI: 10.1007/s12035-023-03655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6 months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.
Collapse
Affiliation(s)
- Yipeng Zhao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiuqing Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ling Fang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shishi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shilin Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yiying Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Linli Zhou
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Goldman-Yassen A, Lee A, Gombolay G. Leptomeningeal Enhancement in Pediatric Anti-Myelin Oligodendrocyte Glycoprotein Antibody Disease, Multiple Sclerosis, and Neuromyelitis Optica Spectrum Disorder. Pediatr Neurol 2024; 153:125-130. [PMID: 38382244 PMCID: PMC10940200 DOI: 10.1016/j.pediatrneurol.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Anti-myelin oligodendrocyte glycoprotein (MOG) antibody disease (MOGAD) is a type of acquired demyelinating disease that is distinct from multiple sclerosis (MS) and aquaporin-4 antibody neuromyelitis optica spectrum disorder (AQP4-NMOSD). Leptomeningeal enhancement (LME) has been reported in children and adults with MOGAD, and in adults with MS and AQP4-NMOSD, but less is known about LME in pediatric-onset MS (POMS) and pediatric AQP4-NMOSD. Here we compare the rates of LME in children with MOGAD, POMS, and AQP4-NMOSD. METHODS A retrospective chart review was performed in patients with MOGAD, POMS, and AQP4-NMOSD who presented to our institution. Clinical characteristics, imaging features, and relapsing data were included. Descriptive statistics were used, including chi-square or Fischer exact test, to compare proportions. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. RESULTS A total of 42 children were included: 16 with POMS, six with AQP4-NMOSD, and 20 with MOGAD. Brain LME was only observed in the MOGAD group (six of 20 = 30%) when compared with zero (0%) POMS and AQP4-NMOSD (P = 0.012). Relapsing disease occurred in nine of 20 (45%), but LME did not associate with relapse. CONCLUSIONS LME is only observed in pediatric MOGAD and not in POMS or pediatric AQP4-NMOSD. LME did not predict relapses in MOGAD. Further work is needed to determine the clinical significance of LME in pediatric MOGAD.
Collapse
Affiliation(s)
- Adam Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta Georgia
| | - Azalea Lee
- Emory University School of Medicine, Atlanta, Georgia
| | - Grace Gombolay
- Division of Pediatric Neurology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.
| |
Collapse
|
9
|
Hansra GK, Jayasena T, Hosoki S, Poljak A, Lam BCP, Rust R, Sagare A, Zlokovic B, Thalamuthu A, Sachdev PS. Fluid biomarkers of the neurovascular unit in cerebrovascular disease and vascular cognitive disorders: A systematic review and meta-analysis. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100216. [PMID: 38510579 PMCID: PMC10951911 DOI: 10.1016/j.cccb.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Background The disruption of the neurovascular unit (NVU), which maintains the integrity of the blood brain barrier (BBB), has been identified as a critical mechanism in the development of cerebrovascular and neurodegenerative disorders. However, the understanding of the pathophysiological mechanisms linking NVU dysfunction to the disorders is incomplete, and reliable blood biomarkers to measure NVU dysfunction are yet to be established. This systematic review and meta-analysis aimed to identify biomarkers associated with BBB dysfunction in large vessel disease, small vessel disease (SVD) and vascular cognitive disorders (VCD). Methods A literature search was conducted in PubMed, EMBASE, Scopus and PsychINFO to identify blood biomarkers related to dysfunction of the NVU in disorders with vascular pathologies published until 20 November 2023. Studies that assayed one or more specific markers in human serum or plasma were included. Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. Effects were pooled and methodological heterogeneity examined using the random effects model. Results A total of 112 studies were included in this review. Where study numbers allowed, biomarkers were analysed using random effect meta-analysis for VCD (1 biomarker; 5 studies) and cerebrovascular disorders, including stroke and SVD (9 biomarkers; 29 studies) while all remaining biomarkers (n = 17 biomarkers; 78 studies) were examined through qualitative analysis. Results of the meta-analysis revealed that cerebrospinal fluid/serum albumin quotient (Q-Alb) reliably differentiates VCD patients from healthy controls (MD = 2.77; 95 % CI = 1.97-3.57; p < 0.0001) while commonly measured biomarkers of endothelial dysfunction (VEGF, VCAM-1, ICAM-1, vWF and E-selectin) and neuronal injury (NfL) were significantly elevated in vascular pathologies. A qualitative assessment of non-meta-analysed biomarkers revealed NSE, NfL, vWF, ICAM-1, VCAM-1, lipocalin-2, MMP-2 and MMP-9 levels to be upregulated in VCD, although these findings were not consistently replicated. Conclusions This review identifies several promising biomarkers of NVU dysfunction which require further validation. A panel of biomarkers representing multiple pathophysiological pathways may offer greater discriminative power in distinguishing possible disease mechanisms of VCD.
Collapse
Affiliation(s)
- Gurpreet Kaur Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, National Cerebral and Cardiovascular Centre, Suita, Japan
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, NSW, Australia
| | - Ben Chun Pan Lam
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Kilgore MO, Hubbard WB. Effects of Low-Level Blast on Neurovascular Health and Cerebral Blood Flow: Current Findings and Future Opportunities in Neuroimaging. Int J Mol Sci 2024; 25:642. [PMID: 38203813 PMCID: PMC10779081 DOI: 10.3390/ijms25010642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Low-level blast (LLB) exposure can lead to alterations in neurological health, cerebral vasculature, and cerebral blood flow (CBF). The development of cognitive issues and behavioral abnormalities after LLB, or subconcussive blast exposure, is insidious due to the lack of acute symptoms. One major hallmark of LLB exposure is the initiation of neurovascular damage followed by the development of neurovascular dysfunction. Preclinical studies of LLB exposure demonstrate impairment to cerebral vasculature and the blood-brain barrier (BBB) at both early and long-term stages following LLB. Neuroimaging techniques, such as arterial spin labeling (ASL) using magnetic resonance imaging (MRI), have been utilized in clinical investigations to understand brain perfusion and CBF changes in response to cumulative LLB exposure. In this review, we summarize neuroimaging techniques that can further our understanding of the underlying mechanisms of blast-related neurotrauma, specifically after LLB. Neuroimaging related to cerebrovascular function can contribute to improved diagnostic and therapeutic strategies for LLB. As these same imaging modalities can capture the effects of LLB exposure in animal models, neuroimaging can serve as a gap-bridging diagnostic tool that permits a more extensive exploration of potential relationships between blast-induced changes in CBF and neurovascular health. Future research directions are suggested, including investigating chronic LLB effects on cerebral perfusion, exploring mechanisms of dysautoregulation after LLB, and measuring cerebrovascular reactivity (CVR) in preclinical LLB models.
Collapse
Affiliation(s)
- Madison O. Kilgore
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
11
|
Jung Y, Damoiseaux JS. The potential of blood neurofilament light as a marker of neurodegeneration for Alzheimer's disease. Brain 2024; 147:12-25. [PMID: 37540027 PMCID: PMC11484517 DOI: 10.1093/brain/awad267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL. In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer's continuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we determine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hypometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by Alzheimer's disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker for predicting the progression of neurodegeneration in patients with Alzheimer's disease but also as a susceptibility/risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unimpaired individuals with a higher risk of developing Alzheimer's disease (e.g. those with a higher amyloid-β). There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer's disease-related neurodegeneration in clinical settings, as well as in research settings.
Collapse
Affiliation(s)
- Youjin Jung
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
12
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
13
|
Zahoor I, Mir S, Giri S. Profiling blood-based brain biomarkers and cytokines in experimental autoimmune encephalomyelitis model of multiple sclerosis using single-molecule array technology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.25.573285. [PMID: 38234812 PMCID: PMC10793409 DOI: 10.1101/2023.12.25.573285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Experimental autoimmune encephalomyelitis (EAE) remains a widely used pre-clinical animal model to study multiple sclerosis (MS). Blood-based cytokines and CNS biomarkers are increasingly used as predictors of neurodegeneration, disease activity, and disability in MS. However, there exists variation in animal model characterization and disease course across animal strains/studies due to understudied confounding factors, limiting the utility of these biomarkers to predict disease activity in EAE. In this study, we investigated the profile of blood-based analytes including, cytokines (IL6, IL17, IL12p70, IL10, and TNFα) and neural markers (NFL and GFAP) in the plasma of relapsing-remitting (RR) (SJL) and chronic (B6) models of EAE during different phases (acute, chronic, and progressive) of disease course using ultrasensitive single molecule array technology (SIMoA, Quanterix), which can detect ultra-low levels of a wide range of analytes. NFL showed a substantial increase during post-disease onset at peak, chronic, and progressive phases in both RR SJL and chronic B6 models of EAE. The increase was markedly pronounced in the chronic B6 model. The leakage of GFAP from CNS into the periphery was also higher after disease onset in EAE, however, it was highest during the acute phase in B6. Out of all cytokines, only IL10 showed consistently lower levels in both models of EAE along the disease duration. We report that NFL, GFAP, and IL10 may be more useful predictors of disease activity and neurological outcome in EAE, which would make them potential candidates for use as surrogate markers for preclinical testing of therapeutic interventions in MS.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Sajad Mir
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
14
|
Newsome SD, Binns C, Kaunzner UW, Morgan S, Halper J. No Evidence of Disease Activity (NEDA) as a Clinical Assessment Tool for Multiple Sclerosis: Clinician and Patient Perspectives [Narrative Review]. Neurol Ther 2023; 12:1909-1935. [PMID: 37819598 PMCID: PMC10630288 DOI: 10.1007/s40120-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
The emergence of high-efficacy therapies for multiple sclerosis (MS), which target inflammation more effectively than traditional disease-modifying therapies, has led to a shift in MS management towards achieving the outcome assessment known as no evidence of disease activity (NEDA). The most common NEDA definition, termed NEDA-3, is a composite of three related measures of disease activity: no clinical relapses, no disability progression, and no radiological activity. NEDA has been frequently used as a composite endpoint in clinical trials, but there is growing interest in its use as an assessment tool to help patients and healthcare professionals navigate treatment decisions in the clinic. Raising awareness about NEDA may therefore help patients and clinicians make more informed decisions around MS management and improve overall MS care. This review aims to explore the potential utility of NEDA as a clinical decision-making tool and treatment target by summarizing the literature on its current use in the context of the expanding treatment landscape. We identify current challenges to the use of NEDA in clinical practice and detail the proposed amendments, such as the inclusion of alternative outcomes and biomarkers, to broaden the clinical information captured by NEDA. These themes are further illustrated with the real-life perspectives and experiences of our two patient authors with MS. This review is intended to be an educational resource to support discussions between clinicians and patients on this evolving approach to MS-specialized care.
Collapse
Affiliation(s)
- Scott D Newsome
- Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD, 21287, USA.
| | - Cherie Binns
- Multiple Sclerosis Foundation, 6520 N Andrews Avenue, Fort Lauderdale, FL, 33309, USA
| | | | - Seth Morgan
- National Multiple Sclerosis Society, 1 M Street SE, Suite 510, Washington, DC, 20003, USA
| | - June Halper
- Consortium of Multiple Sclerosis Centers, 3 University Plaza Drive Suite A, Hackensack, NJ, 07601, USA
| |
Collapse
|
15
|
Ghezzi A, Neuteboom RF. Neurofilament Light Chain in Adult and Pediatric Multiple Sclerosis: A Promising Biomarker to Better Characterize Disease Activity and Personalize MS Treatment. Neurol Ther 2023; 12:1867-1881. [PMID: 37682513 PMCID: PMC10630260 DOI: 10.1007/s40120-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Many biological markers have been explored in multiple sclerosis (MS) to better quantify disease burden and better evaluate response to treatments, beyond clinical and MRI data. Among these, neurofilament light chain (Nf-L), although non-specific for this disease and found to be increased in other neurological conditions, has been shown to be the most promising biomarker for assessing axonal damage in MS, with a definite role in predicting the development of MS in patients at the first neurological episode suggestive of MS, and also in a preclinical phase. There is strong evidence that Nf-L levels are increased more in relapsing versus stable MS patients, and that they predict future disease evolution (relapses, progression, MRI measures of activity/progression) in MS patients, providing information on response to therapy, helping to anticipate clinical decisions in patients with an apparently stable evolution, and identifying patient non-responders to disease-modifying treatments. Moreover, Nf-L can contribute to the better understanding of the mechanisms of demyelination and axonal damage in adult and pediatric MS. A fundamental requirement for its clinical use is the accurate standardization of normal values, corrected for confounding factors, in particular age, sex, body mass index, and presence of comorbidities. In this review, a guide is provided to update clinicians on the use of Nf-L in clinical activity.
Collapse
Affiliation(s)
- Angelo Ghezzi
- Dipartimento di Scienze della Salute, Università Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100, Novara, Italy.
| | - R F Neuteboom
- Department of Neurology, ErasMS Center, Erasmus MC, PO Box 2040, 3000, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Domínguez-Mozo MI, González-Suárez I, Villar LM, Costa-Frossard L, Villarrubia N, Aladro Y, Pilo B, Montalbán X, Comabella M, Casanova-Peño I, Martínez-Ginés ML, García-Domínguez JM, García-Martínez MÁ, Arroyo R, Álvarez-Lafuente R. Teriflunomide and Epstein-Barr virus in a Spanish multiple sclerosis cohort: in vivo antiviral activity and clinical response. Front Immunol 2023; 14:1248182. [PMID: 37841253 PMCID: PMC10570817 DOI: 10.3389/fimmu.2023.1248182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) have been associated with multiple sclerosis (MS). Teriflunomide is an oral disease-modifying therapy approved for treatment of relapsing forms of MS. In the preclinical Theiler's murine encephalitis virus model of MS, the drug demonstrated an increased rate of viral clearance versus the vehicle placebo. Furthermore, teriflunomide inhibits lytic EBV infection in vitro. Objective 1. To evaluate the humoral response against EBV and HHV-6 prior to teriflunomide treatment and 6 months later. 2. To correlate the variation in the humoral response against EBV and HHV-6 with the clinical and radiological response after 24 months of treatment with teriflunomide. 3. To analyze the utility of different demographic, clinical, radiological, and environmental data to identify early biomarkers of response to teriflunomide. Methods A total of 101 MS patients (62 women; mean age: 43.4 years) with one serum prior to teriflunomide onset and another serum sample 6 months later were recruited. A total of 80 had been treated for at least 24 months, 13 had stopped teriflunomide before 24 months, and 8 were currently under teriflunomide therapy but with less than 24 months of follow-up. We analyzed the levels of the viral antibodies titers abovementioned in serum samples with ELISA commercial kits, and the levels of serum neurofilament light chain (Nf-L). Results Antiviral antibody titers decreased for EBNA-1 IgG (74.3%), VCA IgG (69%), HHV-6 IgG (60.4%), and HHV-6 IgM (73.3%) after 6 months of teriflunomide. VCA IgG titers at baseline correlated with Nf-L levels measured at the same time (r = 0.221; p = 0.028) and 6 months later (r = 0.240; p = 0.017). We found that higher EBNA-1 titers (p = 0.001) and a higher age (p = 0.04) at baseline were associated with NEDA-3 conditions. Thus, 77.8% of patients with EBNA-1 >23.0 AU and >42.8 years (P50 values) were NEDA-3. Conclusion Treatment with teriflunomide was associated with a reduction of the levels of IgG antibody titers against EBV and HHV-6. Furthermore, higher EBNA-1 IgG titers prior to teriflunomide initiation were associated with a better clinical response.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Inés González-Suárez
- Unidad de Enfermedades Desmielinizantes, Hospital Álvaro Cunqueiro, Red de Enfermedades Inflamatorias (REI), Vigo, Spain
| | - Luisa María Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Lucienne Costa-Frossard
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Noelia Villarrubia
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Yolanda Aladro
- Servicio de Neurología, Hospital Universitario de Getafe, Getafe, Spain
| | - Belén Pilo
- Servicio de Neurología, Hospital Universitario de Getafe, Getafe, Spain
| | - Xavier Montalbán
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Casanova-Peño
- Servicio de Neurología, Hospital Universitario de Torrejón, Torrejón de Ardoz, Spain
| | - María Luisa Martínez-Ginés
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón/Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Jose Manuel García-Domínguez
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón/Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - María Ángel García-Martínez
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Rafael Arroyo
- Departamento de Neurología, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| |
Collapse
|
17
|
Sievert T, Didriksson I, Spångfors M, Lilja G, Blennow K, Zetterberg H, Frigyesi A, Friberg H. Neurofilament light chain on intensive care admission is an independent predictor of mortality in COVID-19: a prospective multicenter study. Intensive Care Med Exp 2023; 11:66. [PMID: 37768470 PMCID: PMC10539241 DOI: 10.1186/s40635-023-00547-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and total-tau protein (tau) are novel blood biomarkers of neurological injury, and may be used to predict outcomes in critical COVID-19. METHODS A prospective multicentre cohort study of 117 consecutive and critically ill COVID-19 patients in six intensive care units (ICUs) in southern Sweden between May and November 2020. Serial NfL, GFAP and tau were analysed in relation to mortality, the Glasgow Outcome Scale Extended (GOSE) and the physical (PCS) and mental (MCS) components of health-related quality of life at one year. RESULTS NfL, GFAP and tau on ICU admission predicted one-year mortality with an area under the curve (AUC) of 0.82 (95% confidence interval [CI] 0.74[Formula: see text]0.90), 0.72 (95% CI 0.62[Formula: see text]0.82) and 0.66 (95% CI 0.54[Formula: see text]0.77). NfL on admission was an independent predictor of one-year mortality (p = 0.039). Low NfL and GFAP values were associated with good PCS ([Formula: see text]45) at one year but not with good MCS ([Formula: see text]45) or GOSE ([Formula: see text]5). CONCLUSIONS NfL on ICU admission was an independent predictor of mortality. High levels of NfL, GFAP and tau were associated with mortality but not with poor GOSE in survivors at one year. Low levels of NfL and GFAP were associated with improved physical health-related quality of life.
Collapse
Affiliation(s)
- Theodor Sievert
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, SE-22185 Sweden
| | - Ingrid Didriksson
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, SE-20502 Sweden
| | - Martin Spångfors
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Anaesthesia and Intensive Care, Kristianstad Hospital, Kristianstad, SE-29133 Sweden
| | - Gisela Lilja
- Department of Neurology, Skåne University Hospital, Lund, SE-22185 Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, SE-43180 Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-43180 Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, SE-43180 Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-43180 Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
- United Kingdom Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States of America
| | - Attila Frigyesi
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, SE-22185 Sweden
| | - Hans Friberg
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, SE-20502 Sweden
| |
Collapse
|
18
|
Li C, Chen S, Siedhoff HR, Grant D, Liu P, Balderrama A, Jackson M, Zuckerman A, Greenlief CM, Kobeissy F, Wang KW, DePalma RG, Cernak I, Cui J, Gu Z. Low-intensity open-field blast exposure effects on neurovascular unit ultrastructure in mice. Acta Neuropathol Commun 2023; 11:144. [PMID: 37674234 PMCID: PMC10481586 DOI: 10.1186/s40478-023-01636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shanyan Chen
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Pei Liu
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley Balderrama
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Marcus Jackson
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
| | - Amitai Zuckerman
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Kevin W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, 31207, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA.
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA.
| |
Collapse
|
19
|
Collins JM, Bindoff AD, Roccati E, Alty JE, Vickers JC, King AE. Does serum neurofilament light help predict accelerated cognitive ageing in unimpaired older adults? Front Neurosci 2023; 17:1237284. [PMID: 37638317 PMCID: PMC10448959 DOI: 10.3389/fnins.2023.1237284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Neurofilament light (NfL) is a blood biomarker of neurodegeneration. While serum NfL levels have been demonstrated to increase with normal ageing, the relationship between serum NfL levels and normal age-related changes in cognitive functions is less well understood. Methods The current study investigated whether cross-sectional serum NfL levels measured by single molecule array technology (Simoa®) mediated the effect of age on cognition, measured by a battery of neuropsychological tests administered biannually for 8 years, in a cohort of 174 unimpaired older adults (≥50 years) from the Tasmanian Healthy Brain Project. Mediation analysis was conducted using latent variables representing cognitive test performance on three cognitive domains - episodic memory, executive function, and language (vocabulary, comprehension, naming). Cognitive test scores for the three domains were estimated for each participant, coincident with blood collection in 2018 using linear Bayesian hierarchical models. Results Higher serum NfL levels were significantly positively associated with age (p < 0.001 for all domains). Cognitive test scores were significantly negatively associated with age across the domains of executive function (p < 0.001), episodic memory (p < 0.001) and language (p < 0.05). However, serum NfL levels did not significantly mediate the relationship between age and cognitive test scores across any of the domains. Discussion This study adds to the literature on the relationship between serum NfL levels and cognition in unimpaired older adults and suggests that serum NfL is not a pre-clinical biomarker of ensuing cognitive decline in unimpaired older adults.
Collapse
Affiliation(s)
- Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Aidan D. Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jane E. Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
- Royal Hobart Hospital, Hobart, TAS, Australia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
20
|
Fedičová M, Mikula P, Gdovinová Z, Vitková M, Žilka N, Hanes J, Frigová L, Szilasiová J. Annual Plasma Neurofilament Dynamics Is a Sensitive Biomarker of Disease Activity in Patients with Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050865. [PMID: 37241097 DOI: 10.3390/medicina59050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Neurofilament light chain (NfL) is a sensitive biomarker of neuroaxonal damage. This study aimed to assess the relationship between the annual change in plasma NfL (pNfL) and disease activity in the past year, as defined by the concept no evidence of disease activity (NEDA) in a cohort of multiple sclerosis (MS) patients. Materials and Methods: Levels of pNfL (SIMOA) were examined in 141 MS patients and analyzed in relationship to the NEDA-3 status (absence of relapse, disability worsening, and MRI activity) and NEDA-4 (NEDA-3 extended by brain volume loss ≤ 0.4%) during the last 12 months. Patients were divided into two groups: annual pNfL change with an increase of less than 10% (group 1), and pNfL increases of more than 10% (group 2). Results: The mean age of the study participants (n = 141, 61% females) was 42.33 years (SD, 10.17), and the median disability score was 4.0 (3.5-5.0). The ROC analysis showed that a pNfL annual change ≥ 10% correlates with the absence of the NEDA-3 status (p < 0.001; AUC: 0.92), and the absence of the NEDA-4 status (p < 0.001; AUC: 0.839). Conclusions: Annual plasma NfL increases of more than 10% appear to be a useful tool for assessing disease activity in treated MS patients.
Collapse
Affiliation(s)
- Miriam Fedičová
- Department of Neurology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Pavol Mikula
- Department of Social and Behavioural Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Zuzana Gdovinová
- Department of Neurology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Marianna Vitková
- Department of Neurology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Norbert Žilka
- Institute of Neuroimmunology, Slovak Academy of Science, 845 10 Bratislava, Slovakia
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Science, 845 10 Bratislava, Slovakia
| | - Lýdia Frigová
- Magnetic Resonance Imaging, ProMagnet, 041 91 Košice, Slovakia
| | - Jarmila Szilasiová
- Department of Neurology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
21
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
22
|
Gigase FAJ, Smith E, Collins B, Moore K, Snijders GJLJ, Katz D, Bergink V, Perez-Rodriquez MM, De Witte LD. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:1502-1515. [PMID: 37055513 PMCID: PMC10266485 DOI: 10.1038/s41380-023-01976-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Neuroinflammatory processes have been hypothesized to play a role in the pathogenesis of psychiatric and neurological diseases. Studies on this topic often rely on analysis of inflammatory biomarkers in peripheral blood. Unfortunately, the extent to which these peripheral markers reflect inflammatory processes in the central nervous system (CNS) is unclear. METHODS We performed a systematic review and found 29 studies examining the association between inflammatory marker levels in blood and cerebrospinal (CSF) samples. We performed a random effects meta-analysis of 21 studies (pooled n = 1679 paired samples) that reported the correlation of inflammatory markers in paired blood-CSF samples. RESULTS A qualitative review revealed moderate to high quality of included studies with the majority of studies reporting no significant correlation of inflammatory markers between paired blood-CSF. Meta-analyses revealed a significant low pooled correlation between peripheral and CSF biomarkers (r = 0.21). Meta-analyses of individual cytokines revealed a significant pooled correlation for IL-6 (r = 0.26) and TNFα (r = 0.3) after excluding outlier studies, but not for other cytokines. Sensitivity analyses showed that correlations were highest among participants with a median age above 50 (r = 0.46) and among autoimmune disorder patients (r = 0.35). CONCLUSION This systematic review and meta-analysis revealed poor correlation between peripheral and central inflammatory markers in paired blood-CSF samples, with increased correlations in certain study populations. Based on the current findings, peripheral inflammatory markers are a poor reflection of the neuroinflammatory profile.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Clinical and Medical Psychology, Tilburg University, Tilburg, The Netherlands.
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Emma Smith
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brett Collins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kendall Moore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gijsje J L J Snijders
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Katz
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
23
|
Kim JS. Protein biomarkers in multiple sclerosis. ENCEPHALITIS 2023; 3:54-63. [PMID: 37469674 PMCID: PMC10295828 DOI: 10.47936/encephalitis.2022.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/18/2023] [Indexed: 07/21/2023] Open
Abstract
This review aimed to elucidate protein biomarkers in body fluids, such as blood and cerebrospinal fluid (CSF), to identify those that may be used for early diagnosis of multiple sclerosis (MS), prediction of disease activity, and monitoring of treatment response among MS patients. The potential biomarkers elucidated in this review include neurofilament proteins (NFs), glial fibrillary acidic protein (GFAP), leptin, brain-derived neurotrophic factor (BDNF), chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine 13 (CXCL13), and osteopontin (OPN), with each biomarker playing a different role in MS. GFAP, leptin, and CHI3L1 levels were increased in MS patient groups compared to the control group. NFs are the most studied proteins in the MS field, and significant correlations with disease activity, future progression, and treatment outcomes are evident. GFAP CSF level shows a different pattern by MS subtype. Increased concentration of CHI3L1 in the blood/CSF of clinically isolated syndrome (CIS) is an independent predictive factor of conversion to definite MS. BDNF may be affected by chronic progression of MS. CHI3L1 has potential as a biomarker for early diagnosis of MS and prediction of disability progression, while CXCL13 has potential as a biomarker of prognosis of CIS and reflects MS disease activity. OPN was an indicator of disease severity. A periodic detailed patient evaluation should be performed for MS patients, and broadly and easily accessible biomarkers with higher sensitivity and specificity in clinical settings should be identified.
Collapse
Affiliation(s)
- Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Bavato F, Kexel AK, Kluwe-Schiavon B, Maceski A, Baumgartner MR, Seifritz E, Kuhle J, Quednow BB. A Longitudinal Investigation of Blood Neurofilament Light Chain Levels in Chronic Cocaine Users. Mol Neurobiol 2023; 60:3935-3944. [PMID: 37000398 DOI: 10.1007/s12035-023-03327-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The identification of a blood marker of brain pathology that is sensitive to substance-induced neurotoxicity and dynamically responds to longitudinal changes in substance intake would substantially improve clinical monitoring in the field of substance use and addiction. Here, we explored the hypothesis that plasma levels of neurofilament light chain (NfL), a promising marker of neuroaxonal pathology, are elevated in chronic cocaine users and longitudinally associated with changes in cocaine use. Plasma NfL levels were determined using single molecule array (SIMOA) technology at baseline and at a 4-month follow-up. Substance use was subjectively assessed with an extensive interview and objectively measured via toxicological analysis of urine and 4-month hair samples. In a generalized linear model corrected for sex, age, and body mass index, NfL plasma levels were elevated in cocaine users (n=35) compared to stimulant-naïve healthy controls (n=35). A positive correlation between cocaine hair concentration and NfL levels was also found. Changes in cocaine hair concentration (group analysis of increasers vs. decreasers) over the 4-month interval predicted NfL levels at follow-up, indicating a rise in NfL with increased cocaine use and a reduction with decreased use. No associations between use or change of use of other substances (including the neurotoxic cocaine adulterant levamisole) and NfL levels were found. Our findings demonstrate that NfL is a sensitive marker for assessing cocaine-related neuroaxonal pathology, supporting the utility of blood NfL analysis in addiction research but also suggesting the detailed assessment of substance use in neurological studies and diagnostics.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland.
| | - Ann-Kathrin Kexel
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland
| | - Bruno Kluwe-Schiavon
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland
| | - Aleksandra Maceski
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Markus R Baumgartner
- Center of Forensic Hairanalytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Ferlini L, Gaspard N. What's new on septic encephalopathy? Ten things you need to know. Minerva Anestesiol 2023; 89:217-225. [PMID: 35833857 DOI: 10.23736/s0375-9393.22.16689-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sepsis associated encephalopathy (SAE) is a frequent complication of sepsis and is associated with a higher risk of short-term mortality and long-term cognitive impairment. The EEG is a sensitive complement of the clinical examination that can also detect and quantify encephalopathy and identify features with prognostic value, such as lack of reactivity. Moreover, despite their effect on outcome is still debated, the EEG is the only tool to detect non-convulsive seizures which can occur in a septic setting. Understanding the pathophysiology of SAE is fundamental to define potential therapeutic targets. Neuroinflammation plays an important role in the development of SAE and many blood and imaging biomarkers have recently shown a promising ability to distinguish SAE form non-SAE patient. In recent years, some interesting mediators of inflammation were successfully targeted in animal models, with a significant reduction in the neuroinflammation and in sepsis-induced cognitive decline. However, the complexity of the host response to sepsis currently limits the use of immunomodulation therapies in humans. Alteration in regulatory systems of cerebral blood flow, namely cerebral autoregulation (CA) and neurovascular coupling, contribute to SAE development. Nowadays, clinicians have access to different tools to assess them at the bedside and CA-based blood pressure protocols should be implemented to optimize cerebral perfusion. Its inauspicious consequences, its complex physiopathology and the lack of efficacious treatment make of SAE a highly active research subject.
Collapse
Affiliation(s)
- Lorenzo Ferlini
- Department of Neurology, Hôpital Erasme, University of Brussels, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Hôpital Erasme, University of Brussels, Brussels, Belgium -
| |
Collapse
|
26
|
Rattanawong W, Ongphichetmetha T, Hemachudha T, Thanapornsangsuth P. Neurofilament light is associated with clinical outcome and hemorrhagic transformation in moderate to severe ischemic stroke. J Cent Nerv Syst Dis 2023; 15:11795735221147212. [PMID: 36632518 PMCID: PMC9827527 DOI: 10.1177/11795735221147212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Background Ischemic stroke is a leading cause of morbidity and mortality worldwide. One possible predictor is the use of biomarkers especially neurofilament light chain (NFL). Objectives To explore whether NFL could predict clinical outcome and hemorrhagic transformation in moderate to severe stroke. Design Single center prospective cohort study. Methods Fifty-one moderate to severe ischemic stroke patients were recruited. Blood NFL was obtained from patients at admission (First sample) and 24-96 hours later (Second sample). NFL was analyzed with the ultrasensitive single molecule array (Simoa). Later, we calculated incremental rate NFL (IRN) by changes in NFL per day from baseline. We evaluated National Institute of Health stroke scale (NIHSS), modified Rankins score (mRs), and the presence of hemorrhagic transformation (HT). Results IRN was found to be higher in patients with unfavorable outcome (7.12 vs 24.07, P = .04) as well as Second sample (49.06 vs 71.41, P = .011), while NFL First sample was not significant. IRN had a great correlation with mRS (r = .552, P < .001). Univariate logistic regression model showed OR of IRN and Second sample to be 1.081 (95% CI 1.016-1.149, P = .013) and 1.019 (1.002-1.037, P = .03), respectively. Multiple logistic regression model has shown to be significant. In receiver operating analysis, IRN, Second sample, combined IRN with NIHSS and combined Second sample with NIHSS showed AUC (.744, P = .004; 0.713, P = .01; 0.805, P < .001; 0.803, P < .001, respectively). For HT, First sample and Second sample had significant difference with HT (Z = 2.13, P = .033; Z = 2.487, P = .013, respectively). Conclusion NFL was found to correlate and predict clinical outcome. In addition, it was found to correlate with HT.
Collapse
Affiliation(s)
- Wanakorn Rattanawong
- Department of Medicine, Faculty of
Medicine, King Mongkut’s Institute of
Technology Ladkrabang, Bangkok, Thailand,Division of Neurology, Department
of Medicine, Faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand
| | - Tatchaporn Ongphichetmetha
- Division of Neurology, Department
of Medicine, Faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand
| | - Thiravat Hemachudha
- Division of Neurology, Department
of Medicine, Faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand,Thai Red Cross Emerging Infectious
Diseases Health Science Centre, World Health Organization Collaborating Centre
for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital
The Thai Red Cross Society, Bangkok, Thailand
| | - Poosanu Thanapornsangsuth
- Division of Neurology, Department
of Medicine, Faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand,Thai Red Cross Emerging Infectious
Diseases Health Science Centre, World Health Organization Collaborating Centre
for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital
The Thai Red Cross Society, Bangkok, Thailand,Poosanu Thanapornsangsuth MD, Thai Red
Cross Emerging Infectious Diseases Health Science Centre, World Health
Organization Collaborating Centre for Research and Training on Viral Zoonoses,
King Chulalongkorn Memorial Hospital The Thai Red Cross Society, 9th Floor, Aor
Por Ror Building, 1873 Rama IV Road, Pathumwan, Bangkok, Thailand 10330. E-mail:
| |
Collapse
|
27
|
Delaby C, Bousiges O, Bouvier D, Fillée C, Fourier A, Mondésert E, Nezry N, Omar S, Quadrio I, Rucheton B, Schraen-Maschke S, van Pesch V, Vicca S, Lehmann S, Bedel A. Neurofilaments contribution in clinic: state of the art. Front Aging Neurosci 2022; 14:1034684. [PMID: 36389064 PMCID: PMC9664201 DOI: 10.3389/fnagi.2022.1034684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Neurological biomarkers are particularly valuable to clinicians as they can be used for diagnosis, prognosis, or response to treatment. This field of neurology has evolved considerably in recent years with the improvement of analytical methods, allowing the detection of biomarkers not only in cerebrospinal fluid (CSF) but also in less invasive fluids like blood. These advances greatly facilitate the repeated quantification of biomarkers, including at asymptomatic stages of the disease. Among the various informative biomarkers of neurological disorders, neurofilaments (NfL) have proven to be of particular interest in many contexts, such as neurodegenerative diseases, traumatic brain injury, multiple sclerosis, stroke, and cancer. Here we discuss these different pathologies and the potential value of NfL assay in the management of these patients, both for diagnosis and prognosis. We also describe the added value of NfL compared to other biomarkers currently used to monitor the diseases described in this review.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olivier Bousiges
- Laboratoire de biochimie et biologie moléculaire (LBBM)—Pôle de biologie Hôpital de Hautepierre—CHU de Strasbourg, CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France
| | - Damien Bouvier
- Service de Biochimie et Génétique Moléculaire, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Fillée
- Cliniques universitaires Saint-Luc UCLouvain, Service de Biochimie Médicale, Brussels, Belgium
| | - Anthony Fourier
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Etienne Mondésert
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Nicolas Nezry
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Souheil Omar
- Laboratoire de biologie médicale de l’Institut de Neurologie de Tunis, Tunis, Tunisia
| | - Isabelle Quadrio
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Benoit Rucheton
- Laboratoire de Biologie, Institut Bergonié, Bordeaux, France
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Vincent van Pesch
- Cliniques universitaires Saint-Luc UCLouvain, Service de Neurologie, Brussels, Belgium
| | - Stéphanie Vicca
- Hôpital Necker-Enfants malades, Paris, Laboratoire de Biochimie générale, DMU BioPhyGen, AP-HP.Centre—Université de Paris, Paris, France
| | - Sylvain Lehmann
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Aurelie Bedel
- Service de Biochimie, CHU Pellegrin, Bordeaux, France
| |
Collapse
|
28
|
Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022; 11:cells11162480. [PMID: 36010557 PMCID: PMC9406414 DOI: 10.3390/cells11162480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023] Open
Abstract
Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood–brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.
Collapse
|
29
|
Wai CH, Jin J, Cyrklaff M, Genoud C, Funaya C, Sattler J, Maceski A, Meier S, Heiland S, Lanzer M, Frischknecht F, Kuhle J, Bendszus M, Hoffmann A. Neurofilament light chain plasma levels are associated with area of brain damage in experimental cerebral malaria. Sci Rep 2022; 12:10726. [PMID: 35750882 PMCID: PMC9232608 DOI: 10.1038/s41598-022-14291-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Neurofilament light chain (NfL), released during central nervous injury, has evolved as a powerful serum marker of disease severity in many neurological disorders, including infectious diseases. So far NfL has not been assessed in cerebral malaria in human or its rodent model experimental cerebral malaria (ECM), a disease that can lead to fatal brain edema or reversible brain edema. In this study we assessed if NfL serum levels can also grade disease severity in an ECM mouse model with reversible (n = 11) and irreversible edema (n = 10). Blood–brain-barrier disruption and brain volume were determined by magnetic resonance imaging. Neurofilament density volume as well as structural integrity were examined by electron microscopy in regions of most severe brain damage (olfactory bulb (OB), cortex and brainstem). NfL plasma levels in mice with irreversible edema (317.0 ± 45.01 pg/ml) or reversible edema (528.3 ± 125.4 pg/ml) were significantly increased compared to controls (103.4 ± 25.78 pg/ml) by three to five fold, but did not differ significantly in mice with reversible or irreversible edema. In both reversible and irreversible edema, the brain region most affected was the OB with highest level of blood–brain-barrier disruption and most pronounced decrease in neurofilament density volume, which correlated with NfL plasma levels (r = − 0.68, p = 0.045). In cortical and brainstem regions neurofilament density was only decreased in mice with irreversible edema and strongest in the brainstem. In reversible edema NfL plasma levels, MRI findings and neurofilament volume density normalized at 3 months’ follow-up. In conclusion, NfL plasma levels are elevated during ECM confirming brain damage. However, NfL plasma levels fail short on reliably indicating on the final outcomes in the acute disease stage that could be either fatal or reversible. Increased levels of plasma NfL during the acute disease stage are thus likely driven by the anatomical location of brain damage, the olfactory bulb, a region that serves as cerebral draining pathway into the nasal lymphatics.
Collapse
Affiliation(s)
- Chi Ho Wai
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Jin
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Cyrklaff
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Julia Sattler
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Aleksandra Maceski
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Lanzer
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Friedrich Frischknecht
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
| |
Collapse
|
30
|
Wong YY, Wu CY, Yu D, Kim E, Wong M, Elez R, Zebarth J, Ouk M, Tan J, Liao J, Haydarian E, Li S, Fang Y, Li P, Pakosh M, Tartaglia MC, Masellis M, Swardfager W. Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 101:119-128. [PMID: 35760718 DOI: 10.1016/j.parkreldis.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mixed evidence supports blood-brain barrier (BBB) dysfunction in Lewy body spectrum diseases. METHODS We compare biofluid markers in people with idiopathic Parkinson's disease (PD) and people with PD dementia (PDD) and/or dementia with Lewy bodies (DLB), compared with healthy controls (HC). Seven databases were searched up to May 10, 2021. Outcomes included cerebrospinal fluid to blood albumin ratio (Qalb), and concentrations of 7 blood protein markers that also reflect BBB disruption and/or neurodegenerative co-pathology. We further explore differences between PD patients with and without evidence of dementia. Random-effects models were used to obtain standardized mean differences (SMD) with 95% confidence interval. RESULTS Of 13,949 unique records, 51 studies were meta-analyzed. Compared to HC, Qalb was higher in PD (NPD/NHC = 224/563; SMD = 0.960 [0.227-1.694], p = 0.010; I2 = 92.2%) and in PDD/DLB (NPDD/DLB/NHC = 265/670; SMD = 1.126 [0.358-1.893], p < 0.001; I2 = 78.2%). Blood neurofilament light chain (NfL) was higher in PD (NPD/NHC = 1848/1130; SMD = 0.747 [0.442-1.052], p < 0.001; I2 = 91.9%) and PDD/DLB (NPDD/DLB/NHC = 183/469; SMD = 1.051 [0.678-1.423], p = 0.004; I2 = 92.7%) than in HC. p-tau 181 (NPD/NHC = 276/164; SMD = 0.698 [0.149-1.247], p = 0.013; I2 = 82.7%) was also higher in PD compared to HC. In exploratory analyses, blood NfL was higher in PD without dementia (NPDND/NHC = 1005/740; SMD = 0.252 [0.042-0.462], p = 0.018; I2 = 71.8%) and higher in PDD (NPDD/NHC = 100/111; SMD = 0.780 [0.347-1.214], p < 0.001; I2 = 46.7%) compared to HC. Qalb (NPDD/NPDND = 63/191; SMD = 0.482 [0.189-0.774], p = 0.010; I2<0.001%) and NfL (NPDD/NPDND = 100/223; SMD = 0.595 [0.346-0.844], p < 0.001; I2 = 3.4%) were higher in PDD than in PD without dementia. CONCLUSIONS Biofluid markers suggest BBB disruption and neurodegenerative co-pathology involvement in common Lewy body diseases. Greater evidence of BBB breakdown was seen in Lewy body disease with cognitive impairment.
Collapse
Affiliation(s)
- Yuen Yan Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Di Yu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Esther Kim
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Renata Elez
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Zebarth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jocelyn Tan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jiamin Liao
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Eileen Haydarian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Siming Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yaolu Fang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Peihao Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maureen Pakosh
- Library & Information Services, UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Shahim P, Zetterberg H, Simren J, Ashton NJ, Norato G, Schöll M, Tegner Y, Diaz-Arrastia R, Blennow K. Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes. Neurology 2022; 99:e347-e354. [PMID: 35654597 DOI: 10.1212/wnl.0000000000200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether the brain biomarkers total-tau (T-tau), glial fibrillary acidic protein (GFAP), and β-amyloid (Aβ) isomers 40 and 42 in plasma relate to the corresponding concentrations in cerebrospinal fluid (CSF), blood-brain barrier integrity, and duration of post-concussion syndrome (PCS) due to repetitive head impacts (RHI) in professional athletes. METHOD In this cross-sectional study, professional athletes with persistent PCS due to RHI (median of 1.5 years after recent concussion) and uninjured controls were assessed with blood and CSF sampling. The diagnosis of PCS was based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). The athletes were enrolled through information flyers about the study sent to the Swedish hockey league (SHL) and the SHL Medicine Committee. The controls were enrolled through flyers at University of Gothenburg and Sahlgrenska University Hospital, Sweden. The participants underwent lumbar puncture and blood assessment at Sahlgrenska University Hospital. The main outcome measures were history of RHI and PCS severity (PCS> 1 year versus PCS< 1 year) in relation to plasma and CSF concentrations of T-tau, GFAP, Aβ40, and Aβ42. Plasma T-tau, GFAP, Aβ40, and Aβ42 were quantified using an ultrasensitive assay technology. RESULTS A total of 47 participants (28 athletes [median age 28 years, range 18-52] with persistent PCS, due to RHI and 19 controls [median age, 25 years, range 21-35]) underwent paired blood and cerebrospinal fluid (CSF) sampling. T-tau, Aβ40 and Aβ42 concentrations measured in plasma did not correlate with the corresponding CSF concentrations, while there was a correlation between plasma and CSF levels of GFAP (r=0.45, p=0.020). There were no significant relationships between plasma T-tau, GFAP, and blood-brain barrier integrity as measured by CSF:serum albumin ratio. T-tau, GFAP, Aβ40, and Aβ42 measured in plasma did not relate to PCS severity. None of the markers measured in plasma correlated with number of concussions, except decreased Aβ42 in those with higher number of concussions (r=-0.40, p=0.04). CONCLUSIONS T-tau, GFAP, Aβ40 and Aβ42 measured in plasma do not correspond to CSF measures, and may have limited utility for the evaluation of the late effects of RHI, compared with when measured in CSF. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in professional athletes with post-concussion symptoms, plasma concentrations of T-tau, GFAP, Aβ40, and Aβ42 are not informative in the diagnosis of late effects of repetitive head injuries.
Collapse
Affiliation(s)
- Pashtun Shahim
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Joel Simren
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael Schöll
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yelverton Tegner
- Division of Health, Medicine and Rehabilitation, Department of Health Science, Luleå University of Technology, Luleå, Sweden
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
32
|
Sveijer M, von Bahr Greenwood T, Jädersten M, Kvedaraite E, Zetterberg H, Blennow K, Lourda M, Gavhed D, Henter JI. Screening for neurodegeneration in Langerhans cell histiocytosis with neurofilament light in plasma. Br J Haematol 2022; 198:721-728. [PMID: 35582775 PMCID: PMC9420236 DOI: 10.1111/bjh.18247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/07/2023]
Abstract
Patients with Langerhans cell histiocytosis (LCH) may develop progressive neurodegeneration in the central nervous system (ND‐CNS‐LCH). Neurofilament light protein (NFL) in cerebrospinal fluid (CSF) is a promising biomarker to detect and monitor ND‐CNS‐LCH. We compared paired samples of NFL in plasma (p‐NFL) and CSF in 10 patients (19 samples). Nine samples had abnormal CSF‐NFL (defined as ≥380 ng/l) with corresponding p‐NFL ≥ 2 ng/l. Ten samples had CSF‐NFL < 380 ng/l; eight (80%) with p‐NFL < 2 ng/l (p < 0.001; Fisher's exact test). Thus, our results suggest that p‐NFL may be used to screen for ND‐CNS‐LCH. Further studies are encouraged, including the role of p‐NFL for monitoring of ND‐CNS‐LCH.
Collapse
Affiliation(s)
- Malin Sveijer
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Eskilstuna Hospital, Eskilstuna, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Jädersten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Stockholm, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Magda Lourda
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Désirée Gavhed
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
van den Bosch A, Fransen N, Mason M, Rozemuller AJ, Teunissen C, Smolders J, Huitinga I. Neurofilament Light Chain Levels in Multiple Sclerosis Correlate With Lesions Containing Foamy Macrophages and With Acute Axonal Damage. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1154. [PMID: 35241571 PMCID: PMC8893592 DOI: 10.1212/nxi.0000000000001154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
Background and Objectives To investigate whether white matter lesion activity, acute axonal damage, and axonal density in MS associate with CSF neurofilament light chain (NfL) levels. Methods Of 101 brain donors with MS (n = 92 progressive MS, n = 9 relapsing-remitting MS), ventricular CSF was collected, and NfL levels were measured. White matter lesions were classified as active, mixed, inactive, or remyelinated, and microglia/macrophage morphology in active and mixed lesions was classified as ramified, ameboid, or foamy. In addition, axonal density and acute axonal damage were assessed using Bielschowsky and amyloid precursor protein (APP) (immune)histochemistry. Results CSF NfL measurements of donors with recent (<1 year) or clinically silent stroke were excluded. CSF NfL levels correlated negatively with disease duration (p = 6.9e-3, r = 0.31). In donors without atrophy, CSF NfL levels correlated positively with the proportion of active and mixed lesions containing foamy microglia/macrophages (p = 9.85e-10 and p = 1.75e-3, respectively), but not with those containing ramified microglia. CSF NfL correlated negatively with proportions of inactive (p = 5.66e-3) and remyelinated lesions (p = 0.03). In the normal appearing pyramid tract, axonal density negatively correlated with CSF NfL levels (Bielschowsky, p = 0.02, r = −0.31), and the presence of acute axonal damage in lesions was related to higher NfL levels (APP, p = 1.17e-6). The amount of acute axonal damage was higher in active lesions with foamy microglia/macrophages and in the rim of mixed lesions with foamy microglia/macrophages when compared with active lesions containing ramified microglia/macrophages (p = 4.6e-3 and p = 0.02, respectively), the center and border of mixed lesions containing ramified microglia/macrophages (center: p = 4.6e-3, border, p = 4.6e-3, and n.s., p = 4.6e-3, respectively), the center of mixed lesions containing foamy microglia/macrophages (p = 4.6e-3 and p = 0.02, respectively), inactive lesions (p = 4.6e-3 and p = 4.6e-3, respectively), and remyelinated lesions (p = 0.03 and p = 0.04, respectively). Discussion Our results demonstrated that active and mixed white matter MS lesions with foamy microglia show high acute axonal damage and correlate with elevated CSF NfL levels. Our data support the use of this biomarker to monitor inflammatory demyelinating lesion activity with axonal damage in MS.
Collapse
Affiliation(s)
- Aletta van den Bosch
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands.
| | - Nina Fransen
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands
| | - Matthew Mason
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands
| | - Annemieke Johanna Rozemuller
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands
| | - Charlotte Teunissen
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands
| | - Joost Smolders
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands
| | - Inge Huitinga
- From the Neuroimmunology Research Group (A.B., N.F., M.M., J.S., I.H.), Netherlands Institute for Neuroscience; Department Pathology (A.J.R.), Amsterdam UMC; Neurochemistry Lab (C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit; Department of Neurology and Immunology (J.S.), MS Center ErasMS, ErasmusMC, Rotterdam; and Swammerdam Institute for Life Sciences (I.H.), University of Amsterdam, the Netherlands
| |
Collapse
|
34
|
Bu Shen Yi Sui Capsules Promote Remyelination by Regulating MicroRNA-219 and MicroRNA-338 in Exosomes to Promote Oligodendrocyte Precursor Cell Differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3341481. [PMID: 35463062 PMCID: PMC9020954 DOI: 10.1155/2022/3341481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Remyelination is a refractory feature of demyelinating diseases such as multiple sclerosis (MS). Studies have shown that promoting oligodendrocyte precursor cell (OPC) differentiation, which cannot be achieved by currently available therapeutic agents, is the key to enhancing remyelination. Bu Shen Yi Sui capsule (BSYSC) is a traditional Chinese herbal medicine over many years of clinical practice. We have found that BSYSC can effectively treat MS. In this study, the effects of BSYSC in promoting OPCs differentiation and remyelination were assessed using an experimental autoimmune encephalomyelitis (EAE) model in vivo and cultured OPCs in vitro. The results showed that BSYSC reduced clinical function scores and increased neuroprotection. The expression of platelet-derived growth factor receptor α (PDGFR-α) was decreased and the level of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was increased in the brains and spinal cords of mice as well as in OPCs after treatment with BSYSC. We further found that BSYSC elevated the expression of miR-219 or miR-338 in the serum exosomes of mice with EAE, thereby suppressing the expression of Sox6, Lingo1, and Hes5, which negatively regulate OPCs differentiation. Therefore, serum exosomes of BSYSC-treated mice (exos-BSYSC) were extracted and administered to OPCs in which miR-219 or miR-338 expression was knocked down by adenovirus, and the results showed that Sox6, Lingo1, and Hes5 expression was downregulated, MBP expression was upregulated, OPCs differentiation was increased, and the ability of OPCs to wrap around neuronal axons was improved. In conclusion, BSYSC may exert clinically relevant effects by regulating microRNA (miR) levels in exosomes and thus promoting the differentiation and maturation of OPCs.
Collapse
|
35
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
36
|
Wendel EM, Bertolini A, Kousoulos L, Rauchenzauner M, Schanda K, Wegener-Panzer A, Baumann M, Reindl M, Otto M, Rostásy K. Serum neurofilament light-chain levels in children with monophasic myelin oligodendrocyte glycoprotein-associated disease, multiple sclerosis, and other acquired demyelinating syndrome. Mult Scler 2022; 28:1553-1561. [DOI: 10.1177/13524585221081090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: To assess the diagnostic and prognostic potential of serum neurofilament light chain (sNfL) in children with first acquired demyelinating syndrome (ADS). Methods: We selected 129 children with first ADS including 19 children with myelin oligodendrocyte glycoprotein (MOG)-antibody associated disease (MOGAD), 36 MOG/AQP4-seronegative ADS, and 74 with multiple sclerosis (MS) from the BIOMARKER study cohort. All children had a complete set of clinical, radiological, laboratory data and serum for NfL measurement using a highly sensitive digital ELISA (SIMOA). A control group of 35 children with non-inflammatory neurological diseases was included. sNfL levels were compared across patient groups according to clinical, laboratory, neuroradiological features and outcome after 2 years. Results: sNfL levels were significantly increased in MOGAD, seronegative ADS and MS compared to controls ( p-value < 0.001), in particular in children with an acute disseminated encephalomyelitis (ADEM)-like magnetic resonance imaging (MRI) pattern ( p < 0.001) or longitudinally extensive myelitis ( p < 0.01). In pediatric MS, elevated sNfL levels were significantly associated with higher numbers of cerebral ( p < 0.001) and presence of spinal ( p < 0.05) MRI lesions at baseline and predicted a higher number of relapses ( p < 0.05). Conclusion: sNfL levels are significantly elevated in all three studied pediatric ADS subtypes indicating neuroaxonal injury. In pediatric MS high levels of sNfL are associated with risk factors for disease progression.
Collapse
Affiliation(s)
- Eva-Maria Wendel
- Department of Pediatrics, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Annikki Bertolini
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Lampros Kousoulos
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Markus Rauchenzauner
- Department of Pediatrics and Neonatology, Kliniken Ostallgäu-Kaufbeuren, Kaufbeuren, Germany/Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Wegener-Panzer
- Department of Pediatric Radiology, Children`s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Otto
- Department of Neurology, University Hospital of Ulm, Ulm, Germany; Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| |
Collapse
|
37
|
Dittrich A, Ashton NJ, Zetterberg H, Blennow K, Simrén J, Geiger F, Zettergren A, Shams S, Machado A, Westman E, Schöll M, Skoog I, Kern S. Plasma and CSF NfL are differentially associated with biomarker evidence of neurodegeneration in a community-based sample of 70-year-olds. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12295. [PMID: 35280965 PMCID: PMC8897823 DOI: 10.1002/dad2.12295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Neurofilament light protein (NfL) in cerebrospinal fluid (CSF) and plasma (P) are suggested to be interchangeable markers of neurodegeneration. However, evidence is scarce from community-based samples. NfL was examined in a small-scale sample of 287 individuals from the Gothenburg H70 Birth cohort 1944 study, using linear models in relation to CSF and magnetic resonance imaging (MRI) biomarker evidence of neurodegeneration. CSF-NfL and P-NfL present distinct associations with biomarker evidence of Alzheimer's disease (AD) pathology and neurodegeneration. P-NfL was associated with several markers that are characteristic of AD, including smaller hippocampal volumes, amyloid beta (Aβ)42, Aβ42/40, and Aβ42/t-tau (total tau). CSF-NfL demonstrated associations with measures of synaptic and neurodegeneration, including t-tau, phosphorylated tau (p-tau), and neurogranin. Our findings suggest that P-NfL and CSF-NfL may exert different effects on markers of neurodegeneration in a small-scale community-based sample of 70-year-olds.
Collapse
Affiliation(s)
- Anna Dittrich
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalMölndalSweden
| | - Nicholas J. Ashton
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center of Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Henrik Zetterberg
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLUCL Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Joel Simrén
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Fiona Geiger
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anna Zettergren
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sara Shams
- Department of Clinical NeuroscienceKarolinska University HospitalStockholmSweden
- Care Sciences and Society, Karolinska Institutet, and Department of RadiologyKarolinska University HospitalStockholmSweden
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Alejandra Machado
- Division of Clinical GeriatricsDepartment of NeurobiologyKarolinska University HospitalStockholmSweden
| | - Eric Westman
- Division of Clinical GeriatricsDepartment of NeurobiologyKarolinska University HospitalStockholmSweden
| | - Michael Schöll
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center of Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalMölndalSweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
38
|
Friis T, Wikström AK, Acurio J, León J, Zetterberg H, Blennow K, Nelander M, Åkerud H, Kaihola H, Cluver C, Troncoso F, Torres-Vergara P, Escudero C, Bergman L. Cerebral Biomarkers and Blood-Brain Barrier Integrity in Preeclampsia. Cells 2022; 11:cells11050789. [PMID: 35269411 PMCID: PMC8909006 DOI: 10.3390/cells11050789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/25/2023] Open
Abstract
Cerebral complications in preeclampsia contribute substantially to maternal mortality and morbidity. There is a lack of reliable and accessible predictors for preeclampsia-related cerebral complications. In this study, plasma from women with preeclampsia (n = 28), women with normal pregnancies (n = 28) and non-pregnant women (n = 16) was analyzed for concentrations of the cerebral biomarkers neurofilament light (NfL), tau, neuron-specific enolase (NSE) and S100B. Then, an in vitro blood−brain barrier (BBB) model, based on the human cerebral microvascular endothelial cell line (hCMEC/D3), was employed to assess the effect of plasma from the three study groups. Transendothelial electrical resistance (TEER) was used as an estimation of BBB integrity. NfL and tau are proteins expressed in axons, NSE in neurons and S100B in glial cells and are used as biomarkers for neurological injury in other diseases such as dementia, traumatic brain injury and hypoxic brain injury. Plasma concentrations of NfL, tau, NSE and S100B were all higher in women with preeclampsia compared with women with normal pregnancies (8.85 vs. 5.25 ng/L, p < 0.001; 2.90 vs. 2.40 ng/L, p < 0.05; 3.50 vs. 2.37 µg/L, p < 0.001 and 0.08 vs. 0.05 µg/L, p < 0.01, respectively). Plasma concentrations of NfL were also higher in women with preeclampsia compared with non-pregnant women (p < 0.001). Higher plasma concentrations of the cerebral biomarker NfL were associated with decreased TEER (p = 0.002) in an in vitro model of the BBB, a finding which indicates that NfL could be a promising biomarker for BBB alterations in preeclampsia.
Collapse
Affiliation(s)
- Therese Friis
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
- Correspondence: ; Tel.: +46-18-611-6613
| | - Anna-Karin Wikström
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
| | - José León
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Los Ángeles 4441171, Chile
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Maria Nelander
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (H.Å.); (H.K.)
| | - Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (H.Å.); (H.K.)
| | - Catherine Cluver
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town 7500, South Africa;
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
| | - Lina Bergman
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town 7500, South Africa;
- Department of Obstetrics and Gynecology, Gothenburg University, 41650 Gothenburg, Sweden
| |
Collapse
|
39
|
Ladang A, Kovacs S, Lengelé L, Locquet M, Reginster JY, Bruyère O, Cavalier E. Neurofilament light chain concentration in an aging population. Aging Clin Exp Res 2022; 34:331-339. [PMID: 35018623 PMCID: PMC8847291 DOI: 10.1007/s40520-021-02054-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament light chain (NF-L) concentration is recognized to be modified in neurological diseases and traumatic brain injuries, but studies in the normal aging population are lacking. It is, therefore, urgent to identify influencing factors of NF-L concentration in the aging population. METHOD We assessed NF-L concentration in sera of a large cohort of 409 community-dwelling adults aged over 65 years. We studied the association between NF-L and various physiological factors but also with self-reported comorbidities or life-style habits. RESULTS We showed that NF-L concentration in serum was tightly associated with cystatin C concentration (r = 0.501, p < 0.0001) and consequently, to the estimated glomerular filtration rate (eGFR) (r = - 0.492; p < 0.0001). Additionally, NF-L concentration was dependent on age and body mass index (BMI) but not sex. Among the self-reported comorbidities, subjects who reported neurological disorders, cardiovascular diseases or history of fracture had higher NF-L concentration in univariate analysis, whereas it was only the case for subjects who reported neurological disorders in the multivariate analysis. NF-L concentration was also increased when Mini-Mental State Examination (MMSE) was decreased (≤ 25 points) but not when geriatric depression score (GDS) was increased (> 5 points) in both univariate and multivariate analysis. Finally, we are providing reference ranges by age categories for subjects with or without altered renal function. CONCLUSION NF-L concentration in the aging population is not driven by the increasing number of comorbidities or depression. Yet, NF-L blood concentration is dependent on kidney function and NF-L interpretation in patients suffering from renal failure should be taken with caution.
Collapse
Affiliation(s)
- Aurélie Ladang
- Clinical Chemistry Department, CHU de Liège, University of Liège, Avenue de L'Hopital, 1, 4000, Liège, Belgium.
| | - Stéphanie Kovacs
- Clinical Chemistry Department, CHU de Liège, University of Liège, Avenue de L'Hopital, 1, 4000, Liège, Belgium
| | - Laetitia Lengelé
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Médéa Locquet
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Olivier Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Physical, Rehabilitation Medicine and Sports Traumatology, SportS2, CHU de Liège, University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Clinical Chemistry Department, CHU de Liège, University of Liège, Avenue de L'Hopital, 1, 4000, Liège, Belgium
| |
Collapse
|
40
|
Yik JT, Becquart P, Gill J, Petkau J, Traboulsee A, Carruthers R, Kolind SH, Devonshire V, Sayao AL, Schabas A, Tam R, Moore GRW, Li DKB, Stukas S, Wellington C, Quandt JA, Vavasour IM, Laule C. Serum neurofilament light chain correlates with myelin and axonal magnetic resonance imaging markers in multiple sclerosis. Mult Scler Relat Disord 2022; 57:103366. [PMID: 35158472 DOI: 10.1016/j.msard.2021.103366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurofilaments are cytoskeletal proteins that are detectable in the blood after neuroaxonal injury. Multiple sclerosis (MS) disease progression, greater lesion volume, and brain atrophy are associated with higher levels of serum neurofilament light chain (NfL), but few studies have examined the relationship between NfL and advanced magnetic resonance imaging (MRI) measures related to myelin and axons. We assessed the relationship between serum NfL and brain MRI measures in a diverse group of MS participants. METHODS AND MATERIALS 103 participants (20 clinically isolated syndrome, 33 relapsing-remitting, 30 secondary progressive, 20 primary progressive) underwent 3T MRI to obtain myelin water fraction (MWF), geometric mean T2 (GMT2), water content, T1; high angular resolution diffusion imaging (HARDI)-derived axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA); diffusion basis spectrum imaging (DBSI)-derived AD, RD, FA; restricted, hindered, water and fiber fractions; and volume measurements of normalized brain, lesion, thalamic, deep gray matter (GM), and cortical thickness. Multiple linear regressions assessed the strength of association between serum NfL (dependent variable) and each MRI measure in whole brain (WB), normal appearing white matter (NAWM) and T2 lesions (independent variables), while controlling for age, expanded disability status scale, and disease duration. RESULTS Serum NfL levels were significantly associated with metrics of axonal damage (FA: R2WB-HARDI = 0.29, R2NAWM-HARDI = 0.31, R2NAWM-DBSI = 0.30, R2Lesion-DBSI = 0.31; AD: R2WB-HARDI=0.31), myelin damage (MWF: R2WB = 0.29, R2NAWM = 0.30, RD: R2WB-HARDI = 0.32, R2NAWM-HARDI = 0.34, R2Lesion-DBSI = 0.30), edema and inflammation (T1: R2Lesion = 0.32; GMT2: R2WB = 0.31, R2Lesion = 0.31), and cellularity (restricted fraction R2WB = 0.30, R2NAWM = 0.32) across the entire MS cohort. Higher serum NfL levels were associated with significantly higher T2 lesion volume (R2 = 0.35), lower brain structure volumes (thalamus R2 = 0.31; deep GM R2 = 0.33; normalized brain R2 = 0.31), and smaller cortical thickness R2 = 0.31). CONCLUSION The association between NfL and myelin MRI markers suggest that elevated serum NfL is a useful biomarker that reflects not only acute axonal damage, but also damage to myelin and inflammation, likely due to the known synergistic myelin-axon coupling relationship.
Collapse
Affiliation(s)
- Jackie T Yik
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Becquart
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jasmine Gill
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Petkau
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Carruthers
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Virginia Devonshire
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana-Luiza Sayao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alice Schabas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David K B Li
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Zhao Y, Arceneaux L, Culicchia F, Lukiw WJ. Neurofilament Light (NF-L) Chain Protein from a Highly Polymerized Structural Component of the Neuronal Cytoskeleton to a Neurodegenerative Disease Biomarker in the Periphery. HSOA JOURNAL OF ALZHEIMER'S & NEURODEGENERATIVE DISEASES 2021; 7:056. [PMID: 34881359 PMCID: PMC8651065 DOI: 10.24966/and-9608/100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofilaments (NFs) are critical scaffolding components of the axoskeleton of healthy neurons interacting directly with multiple synaptic-phosphoproteins to support and coordinate neuronal cell shape, cytoarchitecture, synaptogenesis and neurotransmission. While neuronal presynaptic proteins such as synapsin-2 (SYN II) degrade rapidly via the ubiquitin-proteasome pathway, a considerably more stable neurofilament light (NF-L) chain protein turns over much more slowly, and in several neurological diseases is accompanied by a pathological shift from an intracellular neuronal cytoplasmic location into various biofluid compartments. NF-L has been found to be significantly elevated in peripheral biofluids in multiple neurodegenerative disorders, however it is not as widely appreciated that NF-L expression within neurons undergoing inflammatory neurodegeneration exhibit a significant down-regulation in these neuron-specific intermediate-filament components. Down-regulated NF-L in neurons correlates well with the observed axonal and neuronal atrophy, neurite deterioration and synaptic disorganization in tissues affected by Alzheimer's disease (AD) and other progressive, age-related neurological diseases. This Review paper: (i) will briefly assess the remarkably high number of neurological disorders that exhibit NF-L depolymerization, liberation from neuron-specific compartments, mobilization and enrichment into pathological biofluids; (ii) will evaluate how NF-L exhibits compartmentalization effects in age-related neurological disorders; (iii) will review how the shift of NF-L compartmentalization from within the neuronal cytoskeleton into peripheral biofluids may be a diagnostic biomarker for neuronal-decline in all cause dementia most useful in distinguishing between closely related neurological disorders; and (iv) will review emerging evidence that deficits in plasma membrane barrier integrity, pathological transport and/or vesicle-mediated trafficking dysfunction of NF-L may contribute to neuronal decline, with specific reference to AD wherever possible.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Cell Biology and Anatomy, LSU Health Science Center, New Orleans LA 70112, USA
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans LA 7011, USA
- Department of Neurology, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| |
Collapse
|
42
|
Villoslada P. Personalized medicine for multiple sclerosis: How to integrate neurofilament light chain levels in the decision? Mult Scler 2021; 27:1967-1969. [PMID: 34612731 DOI: 10.1177/13524585211049552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Pablo Villoslada
- Stanford University, Stanford, CA, USA/Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
43
|
Kouchaki E, Dashti F, Mirazimi SMA, Alirezaei Z, Jafari SH, Hamblin MR, Mirzaei H. Neurofilament light chain as a biomarker for diagnosis of multiple sclerosis. EXCLI JOURNAL 2021; 20:1308-1325. [PMID: 34602928 PMCID: PMC8481790 DOI: 10.17179/excli2021-3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
The treatments for multiple sclerosis (MS) have improved over the past 25 years, but now the main question for physicians is deciding who should receive treatment, for how long, and when to switch to other options. These decisions are typically based on treatment tolerance and a reasonable expectation of long-term efficacy. A significant unmet need is the lack of accurate laboratory measurements for diagnosis, and monitoring of treatment response, including deterioration and disease progression. There are few validated biomarkers for MS, and in practice, physicians employ two biomarkers discovered fifty years ago for MS diagnosis, often in combination with MRI scans. These biomarkers are intrathecal IgG and oligoclonal bands in the CSF (cerebrospinal fluid). Neurofilament light chain (NfL) is a relatively new biomarker for MS diagnosis and follow up. Neurofilaments are neuron-specific cytoskeleton proteins that can be measured in various body compartments. NfL is a new biomarker for MS that can be measured in serum samples, but this still needs further study to specify the laboratory cut-off values in clinical practice. In the present review we discuss the evidence for NfL as a reliable biomarker for the early detection and management of MS. Moreover, we highlight the correlation between MRI and NfL, and ask whether they can be combined.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- MS Fellowship, Department of Neurology, School of Medicine, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
44
|
Selkirk JV, Dines KC, Yan YG, Ching N, Dalvie D, Biswas S, Bortolato A, Schkeryantz JM, Lopez C, Ruiz I, Hargreaves R. Deconstructing the Pharmacological Contribution of Sphingosine-1 Phosphate Receptors to Mouse Models of Multiple Sclerosis Using the Species Selectivity of Ozanimod, a Dual Modulator of Human Sphingosine-1 Phosphate Receptor Subtypes 1 and 5. J Pharmacol Exp Ther 2021; 379:386-399. [PMID: 34535564 DOI: 10.1124/jpet.121.000741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Ozanimod, a sphingosine-1 phosphate (S1P) receptor modulator that binds with high affinity selectively to S1P receptor subtypes 1 (S1P1) and 5 (S1P5), is approved for the treatment of relapsing multiple sclerosis (MS) in multiple countries. Ozanimod profiling revealed a species difference in its potency for S1P5 in mouse, rat, and canine compared with that for human and monkey. Site-directed mutagenesis identified amino acid alanine at position 120 to be responsible for loss of activity for mouse, rat, and canine S1P5 and mutation back to threonine as in human/monkey S1P5 restored activity. Radioligand binding analysis performed with mouse S1P5 confirmed the potency loss is a consequence of a loss of affinity of ozanimod for mouse S1P5 and was restored with mutation of alanine 120 to threonine. Study of ozanimod in preclinical mouse models of MS can now determine the S1P receptor(s) responsible for observed efficacies with receptor engagement as measured using pharmacokinetic exposures of free drug. Hence, in the experimental autoimmune encephalomyelitis model, ozanimod exposures sufficient to engage S1P1, but not S1P5, resulted in reduced circulating lymphocytes, disease scores, and body weight loss; reduced inflammation, demyelination, and apoptotic cell counts in the spinal cord; and reduced circulating levels of the neuronal degeneration marker, neurofilament light. In the demyelinating cuprizone model, ozanimod prevented axonal degradation and myelin loss during toxin challenge but did not facilitate enhanced remyelination post-intoxication. Since free drug levels in this model only engaged S1P1, we concluded that S1P1 activation is neuroprotective but does not appear to affect remyelination. Significance Statement Ozanimod, a selective human S1P1/5 modulator, displays reduced potency for rodent and dog S1P5 compared with human, which results from mutation of threonine to alanine at position 120. Ozanimod can thus be used as a selective S1P1 agonist in mouse models of multiple sclerosis to define efficacies driven by S1P1 but not S1P5 Based on readouts for experimental autoimmune encephalomyelitis and cuprizone intoxication, S1P1 modulation is neuroprotective but S1P5 activity may be required for remyelination.
Collapse
Affiliation(s)
| | | | | | | | - Deepak Dalvie
- Building 2, Crinetics Pharmaceuticals, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Bagnato S, D’Ippolito ME, Boccagni C, De Tanti A, Lucca LF, Nardone A, Salucci P, Fiorilla T, Pingue V, Gennaro S, Ursino M, Colombo V, Barone T, Rubino F, Andriolo M. Sustained Axonal Degeneration in Prolonged Disorders of Consciousness. Brain Sci 2021; 11:1068. [PMID: 34439687 PMCID: PMC8394581 DOI: 10.3390/brainsci11081068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Sustained axonal degeneration may play a critical role in prolonged disorder of consciousness (DOCs) pathophysiology. We evaluated levels of neurofilament light chain (NFL), an axonal injury marker, in patients with unresponsive wakefulness syndrome (UWS) and in the minimally conscious state (MCS) after traumatic brain injury (TBI) and hypoxic-ischemic brain injury (HIBI). (2) Methods: This prospective multicenter blinded study involved 70 patients with prolonged DOC and 70 sex-/age-matched healthy controls. Serum NFL levels were evaluated at 1-3 and 6 months post-injury and compared with those of controls. NFL levels were compared by DOC severity (UWS vs. MCS) and etiology (TBI vs. HIBI). (3) Results: Patients' serum NFL levels were significantly higher than those of controls at 1-3 and 6 months post-injury (medians, 1729 and 426 vs. 90 pg/mL; both p < 0.0001). NFL levels were higher in patients with UWS than in those in MCS at 1-3 months post-injury (p = 0.008) and in patients with HIBI than in those with TBI at 6 months post-injury (p = 0.037). (4) Conclusions: Patients with prolonged DOC present sustained axonal degeneration that is affected differently over time by brain injury severity and etiology.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Maria Enza D’Ippolito
- Molecular Biology Laboratory, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (M.E.D.); (M.A.)
| | - Cristina Boccagni
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Antonio De Tanti
- Cardinal Ferrari Center, 43012 Fontanellato, Italy; (A.D.T.); (S.G.)
| | - Lucia Francesca Lucca
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 88900 Crotone, Italy; (L.F.L.); (M.U.)
| | - Antonio Nardone
- Neurorehabilitation and Spinal Units, ICS Maugeri, Institute of Pavia, 27100 Pavia, Italy; (A.N.); (V.P.)
| | - Pamela Salucci
- Montecatone Rehabilitation Institute, 40026 Imola, Italy; (P.S.); (V.C.)
| | - Teresa Fiorilla
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Valeria Pingue
- Neurorehabilitation and Spinal Units, ICS Maugeri, Institute of Pavia, 27100 Pavia, Italy; (A.N.); (V.P.)
| | - Serena Gennaro
- Cardinal Ferrari Center, 43012 Fontanellato, Italy; (A.D.T.); (S.G.)
| | - Maria Ursino
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 88900 Crotone, Italy; (L.F.L.); (M.U.)
| | - Valentina Colombo
- Montecatone Rehabilitation Institute, 40026 Imola, Italy; (P.S.); (V.C.)
| | - Teresa Barone
- Immunohematology and Transfusion Service, 90015 Cefalù, Italy;
| | - Francesca Rubino
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Maria Andriolo
- Molecular Biology Laboratory, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (M.E.D.); (M.A.)
| |
Collapse
|
46
|
Kim H, Lee EJ, Kim S, Choi LK, Kim HJ, Kim HW, Chung K, Seo D, Moon S, Kim KK, Lim YM. Longitudinal follow-up of serum biomarkers in patients with neuromyelitis optica spectrum disorder. Mult Scler 2021; 28:512-521. [PMID: 34212756 DOI: 10.1177/13524585211024978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recently, several serum biomarkers have been proposed in Neuromyelitis Optica Spectrum Disorders (NMOSD) to monitor disease activity. OBJECTIVE The objective of the study is to evaluate the longitudinal clinical value of serum biomarkers in patients with NMOSD. METHODS We prospectively recruited consecutive NMOSD patients with anti-aquaporin-4 antibody and obtained serum samples at enrollment, after 6-12 months of follow-up (main period), and at attacks. Using single-molecule array assays, we evaluated longitudinal changes of serum neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and GFAP/NfL levels. RESULTS Overall, 64 patients (58 women) were enrolled (age: 51 years, disease duration: 6.7 years) and 133 samples were obtained. Among patients who did not develop new attacks during the main period (n = 62), serum levels of NfL, GFAP, and GFAP/NfL were significantly decreased over time in patients with attacks (<2 months) at enrollment (n = 14 (23%)), whereas serum NfL and GFAP levels gradually increased in the others (n = 48 (77%)). During the study, five (8%) patients developed new attacks; only serum GFAP levels increased consistently upon these events compared with baseline levels. To differentiate attacks from remissions, serum GFAP levels showed the largest area under the receiver operating characteristic curve (0.876, 95% confidence interval: 0.801-0.951). CONCLUSION Among NfL, GFAP, and GFAP/NfL, serum GFAP might be the most appropriate for monitoring NMOSD longitudinally, which warrants future confirming studies.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Seungmi Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Lyn-Kyung Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyun-Ji Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Hye Weon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyuyoon Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seongshin Moon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Jakimovski D, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Disease biomarkers in multiple sclerosis: current serum neurofilament light chain perspectives. Neurodegener Dis Manag 2021; 11:329-340. [PMID: 34196596 DOI: 10.2217/nmt-2020-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The continuous neuroinflammatory and neurodegenerative pathology in multiple sclerosis (MS) results in irreversible accumulation of physical and cognitive disability. Reliable early detection of MS disease processes can aid in the diagnosis, monitoring and treatment management of MS patients. Recent assay technological advancements now allow reliable quantification of serum-based neurofilament light chain (sNfL) levels, which provide temporal information regarding the degree of neuroaxonal damage. The relationship and predictive value of sNfL with clinical and cognitive outcomes, other paraclinical measures and treatment response is reviewed. sNfL measurement is an emerging, noninvasive and disease-responsive MS biomarker that is currently utilized in research and clinical trial settings. Understanding sNfL confounders and further assay standardization will allow clinical implementation of this biomarker.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, 20148, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment & Research Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
48
|
Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144:2954-2963. [PMID: 34180982 PMCID: PMC8634125 DOI: 10.1093/brain/awab241] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis is a highly heterogeneous disease, and the detection of neuroaxonal damage as well as its quantification is a critical step for patients. Blood-based serum neurofilament light chain (sNfL) is currently under close investigation as an easily accessible biomarker of prognosis and treatment response in patients with multiple sclerosis. There is abundant evidence that sNfL levels reflect ongoing inflammatory-driven neuroaxonal damage (e.g. relapses or MRI disease activity) and that sNfL levels predict disease activity over the next few years. In contrast, the association of sNfL with long-term clinical outcomes or its ability to reflect slow, diffuse neurodegenerative damage in multiple sclerosis is less clear. However, early results from real-world cohorts and clinical trials using sNfL as a marker of treatment response in multiple sclerosis are encouraging. Importantly, clinical algorithms should now be developed that incorporate the routine use of sNfL to guide individualized clinical decision-making in people with multiple sclerosis, together with additional fluid biomarkers and clinical and MRI measures. Here, we propose specific clinical scenarios where implementing sNfL measures may be of utility, including, among others: initial diagnosis, first treatment choice, surveillance of subclinical disease activity and guidance of therapy selection.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D'Hebron, Cemcat, Barcelona, Spain
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
49
|
Alagaratnam J, von Widekind S, De Francesco D, Underwood J, Edison P, Winston A, Zetterberg H, Fidler S. Correlation between CSF and blood neurofilament light chain protein: a systematic review and meta-analysis. BMJ Neurol Open 2021; 3:e000143. [PMID: 34223154 PMCID: PMC8211066 DOI: 10.1136/bmjno-2021-000143] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To assess the overall pooled correlation coefficient estimate between cerebrospinal fluid (CSF) and blood neurofilament light (NfL) protein. METHODS We searched Medline, Embase and Web of Science for published articles, from their inception to 9 July 2019, according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Studies reporting the correlation between CSF and blood NfL in humans were included. We conducted a random-effects meta-analysis to calculate the overall pooled correlation coefficient estimate, accounting for correlation technique and assay used. Heterogeneity was assessed using the I2 statistic test. In sensitivity analyses, we calculated the pooled correlation coefficient estimate according to blood NfL assay: single-molecule array digital immunoassay (Simoa), electrochemiluminescence (ECL) assay or ELISA. RESULTS Data were extracted from 36 articles, including 3961 paired CSF and blood NfL samples. Overall, 26/36 studies measured blood NfL using Simoa, 8/36 ECL, 1/36 ELISA and 1 study reported all three assay results. The overall meta-analysis demonstrated that the pooled correlation coefficient estimate for CSF and blood NfL was r=0.72. Heterogeneity was significant: I2=83%, p<0.01. In sensitivity analyses, the pooled correlation coefficient was similar for studies measuring blood NfL using Simoa and ECL (r=0.69 and r=0.68, respectively) but weaker for ELISA (r=0.35). CONCLUSION Moderate correlations are demonstrated between CSF and blood NfL, especially when blood NfL was measured using Simoa and ECL. Given its high analytical sensitivity, Simoa is the preferred assay for measuring NfL, especially at low or physiological concentrations, and this meta-analysis supports its use as the current most advanced surrogate measure of CSF NfL. PROSPERO REGISTRATION NUMBER CRD42019140469.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Genitourinary Medicine & HIV, Imperial College Healthcare NHS Trust, London, UK
| | | | | | - Jonathan Underwood
- Department of Infectious Disease, Imperial College London, London, UK
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alan Winston
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Genitourinary Medicine & HIV, Imperial College Healthcare NHS Trust, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Department of Psychiatry and Neurochemistry, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Genitourinary Medicine & HIV, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
50
|
Thebault S, Booth RA, Rush CA, MacLean H, Freedman MS. Serum Neurofilament Light Chain Measurement in MS: Hurdles to Clinical Translation. Front Neurosci 2021; 15:654942. [PMID: 33841093 PMCID: PMC8027110 DOI: 10.3389/fnins.2021.654942] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Measurement of serum neurofilament light chain concentration (sNfL) promises to become a convenient, cost effective and meaningful adjunct for multiple sclerosis (MS) prognostication as well as monitoring disease activity in response to treatment. Despite the remarkable progress and an ever-increasing literature supporting the potential role of sNfL in MS over the last 5 years, a number of hurdles remain before this test can be integrated into routine clinical practice. In this review we highlight these hurdles, broadly classified by concerns relating to clinical validity and analytical validity. After setting out an aspirational roadmap as to how many of these issues can be overcome, we conclude by sharing our vision of the current and future role of sNfL assays in MS clinical practice.
Collapse
Affiliation(s)
- Simon Thebault
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, The Eastern Ontario Regional Laboratory Association, The Ottawa Hospital, Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Carolina A Rush
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Heather MacLean
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|