1
|
Saheb Sharif-Askari N, Mdkhana B, Hafezi S, Khalil BA, Al-Sheakly BK, Halwani H, Saheb Sharif-Askari F, Halwani R. Calprotectin is regulated by IL-17A and induces steroid hyporesponsiveness in asthma. Inflamm Res 2024; 73:1875-1888. [PMID: 39212675 DOI: 10.1007/s00011-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Calprotectin, a calcium-binding protein, plays a crucial role in inflammation and has been associated with various inflammatory diseases, including asthma. However, its regulation and impact on steroid hyporesponsiveness, especially in severe asthma, remain poorly understood. METHODS This study investigated the regulation of calprotectin proteins (S100A8 and S100A9) by IL-17 and its role in steroid hyporesponsiveness using in vitro and in vivo models. Calprotectin expression was assessed in primary bronchial fibroblasts from healthy controls and severe asthmatic patients, as well as in mouse models of steroid hyporesponsive lung inflammation induced by house dust mite (HDM) allergen and cyclic-di-GMP (cdiGMP) adjuvant. The effects of IL-17A stimulation on calprotectin expression and steroid response markers in bronchial epithelial and fibroblast cells were examined. Additionally, the therapeutic potential of paquinimod, a calprotectin inhibitor, in mitigating airway inflammation and restoring steroid response signatures in the mouse model was evaluated. RESULTS The results demonstrated upregulation of calprotectin expression in asthmatic bronchial fibroblasts compared to healthy controls, as well as in refractory asthma samples compared to non-refractory asthma. IL-17 stimulation induced calprotectin expression and dysregulated glucocorticoid response signatures in lung epithelial and fibroblast cells. Treatment with paquinimod reversed IL-17-induced dysregulation of steroid signatures, indicating the involvement of calprotectin in this process. In the HDM/cdiGMP mouse model, paquinimod significantly attenuated airway inflammation and hyperresponsiveness, and restored steroid response signatures, whereas dexamethasone showed limited efficacy. Mechanistically, paquinimod inhibited MAPK/ERK and NF-κB pathways downstream of calprotectin, leading to reduced lung inflammation. CONCLUSION These findings highlight calprotectin as a potential therapeutic target regulated by IL-17 in steroid hyporesponsive asthma. Targeting calprotectin may offer a promising approach to alleviate airway inflammation and restore steroid responsiveness in severe asthma. Further investigations are warranted to explore its therapeutic potential in clinical settings and elucidate its broader implications in steroid mechanisms of action.
Collapse
Affiliation(s)
- Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bushra Mdkhana
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Baraa Khalid Al-Sheakly
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Halwani
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pediatrics, Faculty of Medicine, Prince Abdullah Ben Khaled Celiac Disease Research Chair, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Perruzza L, Heckmann J, Rezzonico Jost T, Raneri M, Guglielmetti S, Gargari G, Palatella M, Willers M, Fehlhaber B, Werlein C, Vogl T, Roth J, Grassi F, Viemann D. Postnatal supplementation with alarmins S100a8/a9 ameliorates malnutrition-induced neonate enteropathy in mice. Nat Commun 2024; 15:8623. [PMID: 39366940 PMCID: PMC11452687 DOI: 10.1038/s41467-024-52829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Malnutrition is linked to 45% of global childhood mortality, however, the impact of maternal malnutrition on the child's health remains elusive. Previous studies suggested that maternal malnutrition does not affect breast milk composition. Yet, malnourished children often develop a so-called environmental enteropathy, assumed to be triggered by frequent pathogen uptake and unfavorable gut colonization. Here, we show in a murine model that maternal malnutrition induces a persistent inflammatory gut dysfunction in the offspring that establishes during nursing and does not recover after weaning onto standard diet. Early intestinal influx of neutrophils, impaired postnatal development of gut-regulatory functions, and expansion of Enterobacteriaceae were hallmarks of this enteropathy. This gut phenotype resembled those developing under deficient S100a8/a9-supply via breast milk, which is a known key factor for the postnatal development of gut homeostasis. We could confirm that S100a8/a9 is lacking in the breast milk of malnourished mothers and the offspring's intestine. Nutritional supply of S100a8 to neonates of malnourished mothers abrogated the aberrant development of gut mucosal immunity and microbiota colonization and protected them lifelong against severe enteric infections and non-infectious bowel diseases. S100a8 supplementation after birth might be a promising measure to counteract deleterious imprinting of gut immunity by maternal malnutrition.
Collapse
Affiliation(s)
- Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland.
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Matteo Raneri
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Martina Palatella
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Nunes M, Vlok M, Proal A, Kell DB, Pretorius E. Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 2024; 23:254. [PMID: 39014464 PMCID: PMC11253362 DOI: 10.1186/s12933-024-02315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition that is characterized by unresolved fatigue, post-exertion symptom exacerbation (PESE), cognitive dysfunction, orthostatic intolerance, and other symptoms. ME/CFS lacks established clinical biomarkers and requires further elucidation of disease mechanisms. A growing number of studies demonstrate signs of hematological and cardiovascular pathology in ME/CFS cohorts, including hyperactivated platelets, endothelial dysfunction, vascular dysregulation, and anomalous clotting processes. To build on these findings, and to identify potential biomarkers that can be related to pathophysiology, we measured differences in protein expression in platelet-poor plasma (PPP) samples from 15 ME/CFS study participants and 10 controls not previously infected with SARS-CoV-2, using DIA LC-MS/MS. We identified 24 proteins that are significantly increased in the ME/CFS group compared to the controls, and 21 proteins that are significantly downregulated. Proteins related to clotting processes - thrombospondin-1 (important in platelet activation), platelet factor 4, and protein S - were differentially expressed in the ME/CFS group, suggestive of a dysregulated coagulation system and abnormal endothelial function. Complement machinery was also significantly downregulated, including C9 which forms part of the membrane attack complex. Additionally, we identified a significant upregulation of lactotransferrin, protein S100-A9, and an immunoglobulin variant. The findings from this experiment further implicate the coagulation and immune system in ME/CFS, and bring to attention the pathology of or imposed on the endothelium. This study highlights potential systems and proteins that require further research with regards to their contribution to the pathogenesis of ME/CFS, symptom manifestation, and biomarker potential, and also gives insight into the hematological and cardiovascular risk for ME/CFS individuals affected by diabetes mellitus.
Collapse
Affiliation(s)
- Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Mare Vlok
- Central Analytical Facility: Mass Spectrometry, Stellenbosch University, Tygerberg Campus, Room 6054, Clinical Building, Francie Van Zijl Drive Tygerberg, Cape Town, 7505, South Africa
| | - Amy Proal
- PolyBio Research Foundation, 7900 SE 28th ST, Suite 412, Mercer Island, DC, 98040, USA
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800, Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
4
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Bravo SB, Barbosa-Gouveia S, Álvarez JV, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Characterization of the plasma proteomic profile of Fabry disease: Potential sex- and clinical phenotype-specific biomarkers. Transl Res 2024; 269:47-63. [PMID: 38395389 DOI: 10.1016/j.trsl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante 03010, Spain
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, Sevilla 41013, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, Madrid 28034, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, Alcalá de Henares 28871, Spain
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, Salamanca 37007, Spain
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, Ronda, Málaga 29400, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, Vigo 36213, Spain
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| |
Collapse
|
5
|
Reshadmanesh T, Behnoush AH, Farajollahi M, Khalaji A, Ghondaghsaz E, Ahangar H. Circulating Levels of Calprotectin as a Biomarker in Patients With Coronary Artery Disease: A Systematic Review and Meta-Analysis. Clin Cardiol 2024; 47:e24315. [PMID: 38961752 PMCID: PMC11222710 DOI: 10.1002/clc.24315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Calprotectin, also known as MRP8/14, is generated by immune cells and is altered in several inflammatory diseases. Studies have assessed their levels in patients with coronary artery disease (CAD) and its subtypes (stable CAD and acute coronary syndrome [ACS]). Herein, we aimed to systematically investigate these associations through a systematic review and meta-analysis. METHODS A systematic search was conducted in four online databases, including PubMed, Scopus, Embase, and the Web of Science. Relevant studies were retrieved, screened, and extracted. Random-effect meta-analysis was performed for the calculation of standardized mean difference (SMD) and 95% confidence interval (CI). Blood calprotectin levels were compared between CAD patients and controls, as well as CAD subtypes. RESULTS A total of 20 studies were included in the systematic review and meta-analysis, comprising 3300 CAD patients and 1230 controls. Patients with CAD had significantly higher calprotectin levels (SMD 0.81, 95% CI 0.32-1.30, p < 0.01). Similarly, patients with ACS were reported to have higher levels compared to those with stable CAD. However, there was no significant difference in terms of blood calprotectin levels between stable CAD cases and healthy controls. Finally, studies have shown that calprotectin could be used as a diagnostic biomarker of CAD while also predicting major adverse events and mortality in these patients. CONCLUSION Based on our findings, calprotectin, as an inflammatory marker, could be used as a possible biomarker for patients with CAD and ACS. These suggest the possibility of pathophysiological pathways for this involvement and warrant further research on these associations as well as their clinical utility.
Collapse
Affiliation(s)
| | - Amir Hossein Behnoush
- School of MedicineTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | | | - Amirmohammad Khalaji
- School of MedicineTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Elina Ghondaghsaz
- Undergraduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hassan Ahangar
- Department of Cardiology, School of Medicine, Mousavi HospitalZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
6
|
Wang Y, Shi Y, Shao Y, Lu X, Zhang H, Miao C. S100A8/A9 hi neutrophils induce mitochondrial dysfunction and PANoptosis in endothelial cells via mitochondrial complex I deficiency during sepsis. Cell Death Dis 2024; 15:462. [PMID: 38942784 PMCID: PMC11213914 DOI: 10.1038/s41419-024-06849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
S100a8/a9, largely released by polymorphonuclear neutrophils (PMNs), belongs to the S100 family of calcium-binding proteins and plays a role in a variety of inflammatory diseases. Although S100a8/a9 has been reported to trigger endothelial cell apoptosis, the mechanisms of S100a8/a9-induced endothelial dysfunction during sepsis require in-depth research. We demonstrate that high expression levels of S100a8/a9 suppress Ndufa3 expression in mitochondrial complex I via downregulation of Nrf1 expression. Mitochondrial complex I deficiency contributes to NAD+-dependent Sirt1 suppression, which induces mitochondrial disorders, including excessive fission and blocked mitophagy, and mtDNA released from damaged mitochondria ultimately activates ZBP1-mediated PANoptosis in endothelial cells. Moreover, based on comprehensive scRNA-seq and bulk RNA-seq analyses, S100A8/A9hi neutrophils are closely associated with the circulating endothelial cell count (a useful marker of endothelial damage), and S100A8 is an independent risk factor for poor prognosis in sepsis patients.
Collapse
Affiliation(s)
- Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xihua Lu
- Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Zeng W, Gao Y, Wang Q, Chi J, Zhu Z, Diao Q, Li X, Wang Z, Qu M, Shi Y. Preliminary clinical analysis and pathway study of S100A8 as a biomarker for the diagnosis of acute deep vein thrombosis. Sci Rep 2024; 14:13298. [PMID: 38858401 PMCID: PMC11164926 DOI: 10.1038/s41598-024-61728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Herein, we aimed to identify blood biomarkers that compensate for the poor specificity of D-dimer in the diagnosis of deep vein thrombosis (DVT). S100A8 was identified by conducting protein microarray analysis of blood samples from patients with and without DVT. We used ELISA to detect S100A8, VCAM-1, and ICAM-1 expression levels in human blood and evaluated their correlations. Additionally, we employed human recombinant protein S100A8 to induce human umbilical vein endothelial cells and examined the role of the TLR4/MAPK/VCAM-1 and ICAM-1 signaling axes in the pathogenic mechanism of S100A8. Simultaneously, we constructed a rat model of thrombosis induced by inferior vena cava stenosis and detected levels of S100A8, VCAM-1, and ICAM-1 in the blood of DVT rats using ELISA. The associations of thrombus tissue, neutrophils, and CD68-positive cells with S100A8 and p38MAPK, TLR4, and VCAM-1 expression levels in vein walls were explored. The results revealed that blood S100A8 was significantly upregulated during the acute phase of DVT and activated p38MAPK expression by combining with TLR4 to enhance the expression and secretion of VCAM-1 and ICAM-1, thereby affecting the occurrence and development of DVT. Therefore, S100A8 could be a potential biomarker for early diagnosis and screening of DVT.
Collapse
Affiliation(s)
- Wenjie Zeng
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Yangyang Gao
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qitao Wang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Junyu Chi
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ziyan Zhu
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qingfei Diao
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Xin Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhen Wang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ming Qu
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Yongquan Shi
- Department of Clinical Laboratory Center, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Cheng W, Li T, Wang X, Xu T, Zhang Y, Chen J, Wei Z. The neutrophil-to-apolipoprotein A1 ratio is associated with adverse outcomes in patients with acute decompensated heart failure at different glucose metabolic states: a retrospective cohort study. Lipids Health Dis 2024; 23:118. [PMID: 38649986 PMCID: PMC11034163 DOI: 10.1186/s12944-024-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The present study was performed to assess the association between the neutrophil-to-apolipoprotein A1 ratio (NAR) and outcomes in patients with acute decompensated heart failure (ADHF) at different glucose metabolism states. METHODS We recruited 1233 patients with ADHF who were admitted to Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University from December 2014 to October 2019. The endpoints were defined as composites of cardiovascular death, nonfatal myocardial infarction, nonfatal ischemic stroke and exacerbation of chronic heart failure. The restricted cubic spline was used to determine the best cutoff of NAR, and patients were divided into low and high NAR groups. Kaplan-Meier plots and multivariable Cox proportional hazard models were used to investigate the association between NAR and the risk of adverse outcomes. RESULTS During the five-year follow-up period, the composite outcome occurred in 692 participants (56.1%). After adjusting for potential confounding factors, a higher NAR was associated with a higher incidence of composite outcomes in the total cohort (Model 1: HR = 1.42, 95% CI = 1.22-1.65, P<0.001; Model 2: HR = 1.29, 95% CI = 1.10-1.51, P = 0.002; Model 3: HR = 1.20, 95% CI = 1.01-1.42, P = 0.036). At different glucose metabolic states, a high NAR was associated with a high risk of composite outcomes in patients with diabetes mellitus (DM) (Model 1: HR = 1.54, 95% CI = 1.25-1.90, P<0.001; Model 2: HR = 1.40, 95% CI = 1.13-1.74, P = 0.002; Model 3: HR = 1.31, 95% CI = 1.04-1.66, P = 0.022), and the above association was not found in patients with prediabetes mellitus (Pre-DM) or normal glucose regulation (NGR) (both P>0.05). CONCLUSIONS The NAR has predictive value for adverse outcomes of ADHF with DM, which implies that the NAR could be a potential indicator for the management of ADHF.
Collapse
Affiliation(s)
- Weimeng Cheng
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tianyue Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaohan Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tingting Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ying Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
9
|
Xia P, Ji X, Yan L, Lian S, Chen Z, Luo Y. Roles of S100A8, S100A9 and S100A12 in infection, inflammation and immunity. Immunology 2024; 171:365-376. [PMID: 38013255 DOI: 10.1111/imm.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
S100 proteins are small proteins that are only expressed in vertebrates. They are widely expressed in many different cell types and are involved in the regulation of calcium homeostasis, glucose metabolism, cell proliferation, apoptosis, inflammation and tumorigenesis. As members of the S100 protein subfamily of myeloid-related proteins, S100A8, S100A9 and S100A12 play a crucial role in resisting microbial infection and maintaining immune homeostasis. These proteins chelate the necessary metal nutrients of pathogens invading the host by means of 'nutritional immunity' and directly inhibit the growth of pathogens in the host. They interact with receptors on the cell surface to initiate inflammatory signal transduction, induce cytokine expression and participate in the inflammatory response and immune regulation. Furthermore, the increased content of these proteins during the pathological process makes them useful as disease markers for screening and detecting related diseases. This article summarizes the structure and function of the proteins S100A8, S100A9 and S100A12 and lays the foundation for further understanding their roles in infection, immunity and inflammation, as well as their potential applications in the prevention and treatment of infectious diseases.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Xingduo Ji
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Li Yan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Siqi Lian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Ziyue Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Yi Luo
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Bréchot N, Rutault A, Marangon I, Germain S. Blood endothelium transition and phenotypic plasticity: A key regulator of integrity/permeability in response to ischemia. Semin Cell Dev Biol 2024; 155:16-22. [PMID: 37479554 DOI: 10.1016/j.semcdb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
In the human body, the 1013 blood endothelial cells (ECs) which cover a surface of 500-700 m2 (Mai et al., 2013) are key players of tissue homeostasis, remodeling and regeneration. Blood vessel ECs play a major role in the regulation of metabolic and gaz exchanges, cell trafficking, blood coagulation, vascular tone, blood flow and fluid extravasation (also referred to as blood vascular permeability). ECs are heterogeneous in various capillary beds and have the exquisite capacity to cope with environmental changes by regulating their gene expression. Ischemia has major detrimental effects on the endothelium and ischemia-induced regulation of vascular integrity is of paramount importance for human health, as small amounts of fluid accumulation in the interstitium may be responsible for major effects on organ functions and patients outcome. In this review, we will here focus on the stimuli and the molecular mechanisms that control blood endothelium maintenance and phenotypic plasticity/transition involved in controlling blood capillary leakage that might open new avenues for therapeutic applications.
Collapse
Affiliation(s)
- Nicolas Bréchot
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France; Intensive Care Medicine Department, Université de Paris Cité, Hôpital européen Georges-Pompidou, AP-HP, AP-HP.CUP, 75015 Paris, France.
| | - Alexandre Rutault
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France
| | - Iris Marangon
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, Paris, France.
| |
Collapse
|
11
|
Miura S, Iwamoto H, Namba M, Yamaguchi K, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N. High S100A9 level predicts poor survival, and the S100A9 inhibitor paquinimod is a candidate for treating idiopathic pulmonary fibrosis. BMJ Open Respir Res 2024; 11:e001803. [PMID: 38378778 PMCID: PMC10882411 DOI: 10.1136/bmjresp-2023-001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND S100A9 is a damage-associated molecular pattern protein that may play an important role in the inflammatory response and fibrotic processes. Paquinimod is an immunomodulatory compound that prevents S100A9 activity. Its safety and pharmacokinetics have been confirmed in human clinical trials. In this study, we investigated the effects of paquinimod in preventing the development of lung fibrosis in vivo and examined the prognostic values of circulatory and lung S100A9 levels in patients with idiopathic pulmonary fibrosis (IPF). METHODS The expression and localisation of S100A9 and the preventive effect of S100A9 inhibition on fibrosis development were investigated in a mouse model of bleomycin-induced pulmonary fibrosis. In this retrospective cohort study, the S100A9 levels in the serum and bronchoalveolar lavage fluid (BALF) samples from 76 and 55 patients with IPF, respectively, were examined for associations with patient survival. RESULTS S100A9 expression was increased in the mouse lungs, especially in the inflammatory cells and fibrotic interstitium, after bleomycin administration. Treatment with paquinimod ameliorated fibrotic pathological changes and significantly reduced hydroxyproline content in the lung tissues of mice with bleomycin-induced pulmonary fibrosis. Additionally, we found that paquinimod reduced the number of lymphocytes and neutrophils in BALF and suppressed endothelial-mesenchymal transition in vivo. Kaplan-Meier curve analysis and univariate and multivariate Cox hazard proportion analyses revealed that high levels of S100A9 in the serum and BALF were significantly associated with poor prognoses in patients with IPF (Kaplan-Meier curve analysis: p=0.037 (serum) and 0.019 (BALF); multivariate Cox hazard proportion analysis: HR=3.88, 95% CI=1.06 to 14.21, p=0.041 (serum); HR=2.73, 95% CI=1.05 to 7.10, p=0.039 (BALF)). CONCLUSIONS The present results indicate that increased S100A9 expression is associated with IPF progression and that the S100A9 inhibitor paquinimod is a potential treatment for IPF.
Collapse
Affiliation(s)
- Shinichiro Miura
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Namba
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Wang Q, Long G, Luo H, Zhu X, Han Y, Shang Y, Zhang D, Gong R. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury. Biomed Pharmacother 2023; 168:115674. [PMID: 37812889 DOI: 10.1016/j.biopha.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Sepsis, the foremost contributor to mortality in intensive care unit patients, arises from an uncontrolled systemic response to invading infections, resulting in extensive harm across multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ injury, and targeting S100A8/A9 appeared to ameliorate inflammation-induced tissue damage and improve adverse outcomes. S100A8/A9, a calcium-binding heterodimer mainly found in neutrophils and monocytes, serves as a causative molecule with pro-inflammatory and immunosuppressive properties, which are vital in the pathogenesis of sepsis. Therefore, improving our comprehension of how S100A8/A9 acts as a pathological player in the development of sepsis is imperative for advancing research on sepsis. Our review is the first-to the best of our knowledge-to discuss the biology of S100A8/A9 and its release mechanisms, summarize recent advances concerning the vital roles of S100A8/A9 in sepsis and the consequential organ damage, and underscore its potential as a promising diagnostic biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Hong Luo
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Xiqun Zhu
- Hubei Cancer Hospital, Tongji Medical College, HUST, Wuhan 430079, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan 430030, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China; Hubei Clinical Research Center for Infectious Diseases, Wuhan 430023, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China.
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
13
|
Maller J, Morgan T, Morita M, McCarthy F, Jung Y, Svensson KJ, Elias JE, Macaubas C, Mellins E. Extracellular vesicles in systemic juvenile idiopathic arthritis. J Leukoc Biol 2023; 114:387-403. [PMID: 37201912 PMCID: PMC10602196 DOI: 10.1093/jleuko/qiad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Systemic juvenile idiopathic arthritis is a chronic pediatric inflammatory disease of unknown etiology, characterized by fever, rash, hepatosplenomegaly, serositis, and arthritis. We hypothesized that intercellular communication, mediated by extracellular vesicles, contributes to systemic juvenile idiopathic arthritis pathogenesis and that the number and cellular sources of extracellular vesicles would differ between inactive and active states of systemic juvenile idiopathic arthritis and healthy controls. We evaluated plasma from healthy pediatric controls and patients with systemic juvenile idiopathic arthritis with active systemic flare or inactive disease. We isolated extracellular vesicles by size exclusion chromatography and determined total extracellular vesicle abundance and size distribution using microfluidic resistive pulse sensing. Cell-specific extracellular vesicle subpopulations were measured by nanoscale flow cytometry. Isolated extracellular vesicles were validated using a variety of ways, including nanotracking and cryo-electron microscopy. Extracellular vesicle protein content was analyzed in pooled samples using mass spectrometry. Total extracellular vesicle concentration did not significantly differ between controls and patients with systemic juvenile idiopathic arthritis. Extracellular vesicles with diameters <200 nm were the most abundant, including the majority of cell-specific extracellular vesicle subpopulations. Patients with systemic juvenile idiopathic arthritis had significantly higher levels of extracellular vesicles from activated platelets, intermediate monocytes, and chronically activated endothelial cells, with the latter significantly more elevated in active systemic juvenile idiopathic arthritis relative to inactive disease and controls. Protein analysis of isolated extracellular vesicles from active patients showed a proinflammatory profile, uniquely expressing heat shock protein 47, a stress-inducible protein. Our findings indicate that multiple cell types contribute to altered extracellular vesicle profiles in systemic juvenile idiopathic arthritis. The extracellular vesicle differences between systemic juvenile idiopathic arthritis disease states and healthy controls implicate extracellular vesicle-mediated cellular crosstalk as a potential driver of systemic juvenile idiopathic arthritis disease activity.
Collapse
Affiliation(s)
- Justine Maller
- Department of Pediatrics, Stanford University School of Medicine, 269 Campus Drive, CCSR Rm 2105c, Stanford, CA 94305, United States
| | - Terry Morgan
- Departments of Pathology and Biomedical Engineering, Oregon Health & Sciences University, 3181 SW Sam Jackson Portland, OR 97239, United States
| | - Mayu Morita
- Departments of Pathology and Biomedical Engineering, Oregon Health & Sciences University, 3181 SW Sam Jackson Portland, OR 97239, United States
| | - Frank McCarthy
- Chan Zuckerberg Biohub, 265 Campus Drive, Palo Alto, CA 94305, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr, Edwards R238, Stanford, CA 94305, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr, Edwards R238, Stanford, CA 94305, United States
- Stanford Diabetes Research Center, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Joshua E Elias
- Chan Zuckerberg Biohub, 265 Campus Drive, Palo Alto, CA 94305, United States
| | - Claudia Macaubas
- Department of Pediatrics, Stanford University School of Medicine, 269 Campus Drive, CCSR Rm 2105c, Stanford, CA 94305, United States
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, 269 Campus Drive, CCSR Rm 2105c, Stanford, CA 94305, United States
| | - Elizabeth Mellins
- Department of Pediatrics, Stanford University School of Medicine, 269 Campus Drive, CCSR Rm 2105c, Stanford, CA 94305, United States
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, 269 Campus Drive, CCSR Rm 2105c, Stanford, CA 94305, United States
| |
Collapse
|
14
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
15
|
Noack M, Miossec P. Heterogeneous effects of S100 proteins during cell interactions between immune cells and stromal cells from synovium or skin. Clin Exp Immunol 2023; 212:276-284. [PMID: 36866451 PMCID: PMC10243843 DOI: 10.1093/cei/uxad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Cell interactions represent an important mechanism involved in the pathogenesis of chronic inflammation. The key S100 proteins A8 and A9 have been studied in several models of chronic inflammatory diseases with highly heterogeneous conclusions. In this context, the aim of this study was to determine the role of cell interactions on S100 protein production and their effect on cytokine production during cell interactions, between immune and stromal cells from synovium or skin. Peripheral blood mononuclear cells (PBMC) were cultured alone or with synoviocytes or skin fibroblasts, with or without phytohemagglutinin, exogenous A8, A9, A8/A9 proteins or anti-A8/A9 antibody. Production of IL-6, IL-1β, IL-17, TNF, A8, A9, and A8/A9 was measured by ELISA. Cell interactions with synoviocytes had no effect on A8, A9, or A8/A9 secretion, while cell interactions with skin fibroblasts decreased A8 production. This highlights the importance of stromal cell origin. The addition of S100 proteins in co-cultures with synoviocytes did not increase the production of IL-6, IL-17, or IL-1β, except for an increase of IL-6 secretion with A8. The presence of anti-S100A8/A9 antibody did not show obvious effects. Low concentration or absence of serum in the culture medium decreased the production of IL-17, IL-6, and IL-1β but despite these conditions, the addition of S100 proteins did not increase cytokine secretion. In conclusion, the role of A8/A9 in cell interactions during chronic inflammation appears complex and heterogeneous, depending on multiple factors, notably the origin of stromal cells that can affect their secretion.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
16
|
Wu Y, Li Y, Luo Y, Zhou Y, Liang X, Cheng L, Wu T, Wen J, Tan C, Liu Y. Proteomics: Potential techniques for discovering the pathogenesis of connective tissue diseases-interstitial lung disease. Front Immunol 2023; 14:1146904. [PMID: 37063894 PMCID: PMC10090492 DOI: 10.3389/fimmu.2023.1146904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Interstitial lung disease (ILD) is one of the most serious lung complications of connective tissue disease (CTD). The application of proteomics in the past decade has revealed that various proteins are involved in the pathogenesis of each subtype of CTD-ILD through different pathways, providing novel ideas to study pathological mechanisms and clinical biomarkers. On this basis, a multidimensional diagnosis or prediction model is established. This paper reviews the results of proteomic detection of different subtypes of CTD-ILD and discusses the role of some differentially expressed proteins in the development of pulmonary fibrosis and their potential clinical applications.
Collapse
Affiliation(s)
- Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, China
| | - Xiuping Liang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Lu Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Tong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
- *Correspondence: Chunyu Tan, ; Yi Liu,
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
- *Correspondence: Chunyu Tan, ; Yi Liu,
| |
Collapse
|
17
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
18
|
Dufour-Gaume F, Frescaline N, Cardona V, Prat NJ. Danger signals in traumatic hemorrhagic shock and new lines for clinical applications. Front Physiol 2023; 13:999011. [PMID: 36726379 PMCID: PMC9884701 DOI: 10.3389/fphys.2022.999011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Hemorrhage is the leading cause of death in severe trauma injuries. When organs or tissues are subjected to prolonged hypoxia, danger signals-known as damage-associated molecular patterns (DAMPs)-are released into the intercellular environment. The endothelium is both the target and a major provider of damage-associated molecular patterns, which are directly involved in immuno-inflammatory dysregulation and the associated tissue suffering. Although damage-associated molecular patterns release begins very early after trauma, this release and its consequences continue beyond the initial treatment. Here we review a few examples of damage-associated molecular patterns to illustrate their pathophysiological roles, with emphasis on emerging therapeutic interventions in the context of severe trauma. Therapeutic intervention administered at precise points during damage-associated molecular patterns release may have beneficial effects by calming the inflammatory storm triggered by traumatic hemorrhagic shock.
Collapse
Affiliation(s)
- Frédérique Dufour-Gaume
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France,*Correspondence: Frédérique Dufour-Gaume,
| | | | - Venetia Cardona
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| | - Nicolas J. Prat
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| |
Collapse
|
19
|
The Role of Serum Calprotectin in Defining Disease Outcomes in Non-Systemic Juvenile Idiopathic Arthritis: A Pilot Study. Int J Mol Sci 2023; 24:ijms24021671. [PMID: 36675189 PMCID: PMC9866398 DOI: 10.3390/ijms24021671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Serum calprotectin (MRP8/14) is currently being studied as a promising biomarker of disease activity and outcome in patients with juvenile idiopathic arthritis (JIA) but the data in the literature are conflicting. The aim of our study was to investigate the potential role of serum calprotectin as biomarker of disease activity and flare/remission in a group of nsJIA patients during a follow-up period of 18 months. In this prospective longitudinal study, two groups of patients with ns-JIA (55 active patients and 56 patients in remission according to Wallace's criteria) and a control group (50 children) were recruited at baseline from January 2020 to September 2021. JIA patients were followed for up to 18 months at four timepoints: 3 months (T1), 6 months (T2), 12 months (T3) and 18 months (T4). At each timepoint, the following were recorded: JADAS27, blood counts, ESR, CRP, albumin, ferritin and serum calprotectin. To illustrate the performance of calprotectin, Kaplan-Meier curves were constructed from baseline to relapse/remission, dichotomizing patients at baseline in positive/negative on the basis progressive calprotectin cut-offs. Associations between baseline factors and relapse were determined using Cox regression models. Multivariate models were constructed to analyze the effect of covariates. Comparing baseline clinical and laboratory data of the three groups (active vs. inactive JIA vs. controls), only serum calprotectin reached statistical significance (active patients vs. inactive (p = 0.0016) and vs. controls (p = 0.0012)). In the inactive group, during the 18 months of follow up, 31 patients (55.3%) had a relapse. Comparing the baseline data of relapsers vs. non-relapsers, serum calprotectin showed higher levels (p = 0.001) in relapsers. In survival analysis, a log rank test showed significant differences of up to 12 ng/mL (p = 0.045). Multivariate Cox regression confirmed that only baseline calprotectin levels were independently associated with disease recurrence. In the active group, in the 12 months of follow-up, 19 patients (38%) entered remission of the disease. In addition, in this group, the only statistical difference at the baseline was the value of MPR8/14 (p = 0.0001). Log rank test showed significant differences up to 10 ng/mL (p = 0.003). In the multivariate Cox regression, serum calprotectin levels at baseline were independently associated with remission. In conclusion, our study would suggest a dual role for calprotectin in predicting future relapse and treatment response in patients with nsJIA, thus influencing therapeutic decisions and management of these patients during follow up.
Collapse
|
20
|
S100A9 plays a key role in Clostridium perfringens beta2 toxin-induced inflammatory damage in porcine IPEC-J2 intestinal epithelial cells. BMC Genomics 2023; 24:16. [PMID: 36635624 PMCID: PMC9835341 DOI: 10.1186/s12864-023-09118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND As an important regulator of autoimmune responses and inflammation, S100A9 may serve as a therapeutic target in inflammatory diseases. However, the role of S100A9 in Clostridium perfringens type C infectious diarrhea is poorly studied. The aim of our study was to screen downstream target genes regulated by S100A9 in Clostridium perfringens beta2 (CPB2) toxin-induced IPEC-J2 cell injury. We constructed IPEC-J2 cells with S100A9 knockdown and a CPB2-induced cell injury model, screened downstream genes regulated by S100A9 using RNA-Seq technique, and performed functional enrichment analysis. The function of S100A9 was verified using molecular biology techniques. RESULTS We identified 316 differentially expressed genes (DEGs), of which 221 were upregulated and 95 were downregulated. Functional enrichment analysis revealed that the DEGs were significantly enriched in cilium movement, negative regulation of cell differentiation, immune response, protein digestion and absorption, and complement and coagulation cascades. The key genes of immune response were TNF, CCL1, CCR7, CSF2, and CXCL9. When CPB2 toxin-induced IPEC-J2 cells overexpressed S100A9, Bax expression increased, Bcl-2 expression and mitochondrial membrane potential decreased, and SOD activity was inhibited. CONCLUSION In conclusion, S100A9 was involved in CPB2-induced inflammatory response in IPEC-J2 cells by regulating the expression of downstream target genes, namely, TNF, CCL1, CCR7, CSF2, and CXCL9; promoting apoptosis; and aggravating oxidative cell damage. This study laid the foundation for further study on the regulatory mechanism underlying piglet diarrhea.
Collapse
|
21
|
Laulund AS, Schwartz FA, Christophersen L, Kolpen M, Østrup Jensen P, Calum H, Høiby N, Thomsen K, Moser C. Hyperbaric oxygen therapy augments ciprofloxacin effect against Pseudomonas aeruginosa biofilm infected chronic wounds in a mouse model. Biofilm 2022; 5:100100. [PMID: 36660364 PMCID: PMC9843175 DOI: 10.1016/j.bioflm.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction Chronic wounds have a compromised microcirculation which leads to restricted gas exchange. The majority of these hypoxic wounds is infested with microorganisms congregating in biofilms which further hinders the antibiotic function. We speculate whether this process can be counteracted by hyperbaric oxygen therapy (HBOT). Methodology Twenty-eight BALB/c mice with third-degree burns were included in the analyses. Pseudomonas aeruginosa embedded in seaweed alginate beads was injected under the eschar to mimic a biofilm infected wound. Challenged mice were randomized to receive either 4 days with 1 x ciprofloxacin combined with 2 × 90 min HBOT at 2.8 standard atmosphere daily, 1 x ciprofloxacin as monotherapy or saline as placebo. The mice were clinically scored, and wound sizes were estimated by planimetry daily. Euthanasia was performed on day 8. Wounds were surgically removed in toto, homogenized and plated for quantitative bacteriology. Homogenate supernatants were used for cytokine analysis. Results P. aeruginosa was present in all wounds at euthanasia. A significant lower bacterial load was seen in the HBOT group compared to either the monotherapy ciprofloxacin group (p = 0.0008), or the placebo group (p < 0.0001). IL-1β level was significantly lower in the HBOT group compared to the placebo group (p = 0.0007). Both treatment groups had higher osteopontin levels than the placebo group (p = 0.002 and p = 0.004). The same pattern was seen in the S100A9 analysis (p = 0.01 and p = 0.008), whereas no differences were detected between the S100A8, the VEGF or the MMP8 levels in the three groups. Conclusion These findings show that HBOT improves the bactericidal activity of ciprofloxacin against P. aeruginosa wound biofilm in vivo. HBOT in addition to ciprofloxacin also modulates the host response to a less inflammatory phenotype.
Collapse
Affiliation(s)
- Anne Sofie Laulund
- Department of Clinical Microbiology, Copenhagen University, Rigshospitalet, Denmark,Corresponding author.
| | | | | | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University, Rigshospitalet, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet and Department of Immunology and Microbiology (ISIM), University of Copenhagen, Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet and Department of Immunology and Microbiology (ISIM), University of Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Zealand University Hospital, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University, Rigshospitalet, Denmark
| |
Collapse
|
22
|
Inciarte-Mundo J, Frade-Sosa B, Sanmartí R. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Front Immunol 2022; 13:1001025. [PMID: 36405711 PMCID: PMC9672845 DOI: 10.3389/fimmu.2022.1001025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2022] Open
Abstract
S100A9/S100A8 (calprotectin), a member of the S100 protein family, has been shown to play a pivotal role in innate immunity activation. Calprotectin plays a critical role in the pathogenesis of rheumatoid arthritis (RA), as it triggers chemotaxis, phagocyte migration and modulation of neutrophils and macrophages. Higher calprotectin levels have been found in synovial fluid, plasma, and serum from RA patients. Recent studies have demonstrated better correlations between serum or plasma calprotectin and composite inflammatory disease activity indexes than c-reactive protein (CRP) or the erythrocyte sedimentation rate (ESR). Calprotectin serum levels decreased after treatment, independently of the DMARD type or strategy. Calprotectin has shown the strongest correlations with other sensitive techniques to detect inflammation, such as ultrasound. Calprotectin independently predicts radiographic progression. However, its value as a biomarker of treatment response and flare after tapering is unclear. This update reviews the current understanding of calprotectin in RA and discusses possible applications as a biomarker in clinical practice.
Collapse
Affiliation(s)
- José Inciarte-Mundo
- Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Beatriz Frade-Sosa
- Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Raimon Sanmartí
- Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain,Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain,*Correspondence: Raimon Sanmartí,
| |
Collapse
|
23
|
Mihelić K, Vrbanac Z, Bojanić K, Kostanjšak T, Ljubić BB, Gotić J, Vnuk D, Bottegaro NB. Changes in Acute Phase Response Biomarkers in Racing Endurance Horses. Animals (Basel) 2022; 12:2993. [PMID: 36359117 PMCID: PMC9657625 DOI: 10.3390/ani12212993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/28/2023] Open
Abstract
This study aimed to evaluate if exercise-induced acute phase response (APR) occurs in endurance horses in response to the race. The study included 23 horses competing in an endurance competition with a successfully passed clinical examination before the race. Blood samples were collected before the start and within 30 min after the end of the race. Haematological and biochemical tests were performed and correlated to acute phase biomarkers changes. Values of calprotectin and haptoglobin (Hp) decreased after the races compared to values before, while concentrations of ceruloplasmin and albumin recorded a significant increase. Greater changes in calprotectin values were noted in Arabian horses compared to other breeds. Values of Hp showed a significantly greater decrease after longer races. Based on study results, endurance racing induces APR in horses characterised by significant changes in selected acute phase biomarkers. More pronounced changes were noted at races with higher average speeds, suggesting the need for thorough horse monitoring during exhausting races.
Collapse
Affiliation(s)
- Karla Mihelić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostic and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Tara Kostanjšak
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Blanka Beer Ljubić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Jelena Gotić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Dražen Vnuk
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Nika Brkljača Bottegaro
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| |
Collapse
|
24
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
25
|
Cheng IT, Meng H, Li M, Li EK, Wong PC, Lee J, Yan BP, Lee APW, So H, Tam LS. Serum Calprotectin Level Is Independently Associated With Carotid Plaque Presence in Patients With Psoriatic Arthritis. Front Med (Lausanne) 2022; 9:932696. [PMID: 35872782 PMCID: PMC9305068 DOI: 10.3389/fmed.2022.932696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Whether calprotectin could play a role in augmenting cardiovascular (CV) risk in patients with psoriatic arthritis (PsA) remains uncertain. The aim of this study is to elucidate the association between serum calprotectin level and subclinical atherosclerosis in patient with PsA. Method Seventy-eight PsA patients (age: 52 ± 10 years, 41 [52.6%] male) without CV disease were recruited into this cross-sectional study. Carotid intima-media thickness (cIMT) and the presence of plaque were determined by high-resolution ultrasound. Calprotectin levels in serum were quantified by enzyme-linked immunosorbent assay. The variables associated with the presence of carotid plaque (CP) were selected from the least absolute shrinkage and selection operator (LASSO) regression analysis. Results 29/78 (37.2%) of patient had carotid plaque (CP+ group). Serum calprotectin level was significantly higher in the CP+ group (CP− group: 564.6 [329.3–910.5] ng/ml; CP+ group: 721.3 [329.3–910.5] ng/ml, P = 0.005). Serum calprotectin level correlated with PsA disease duration (rho = 0.280, P = 0.013) and mean cIMT (rho = 0.249, P = 0.038). Using LASSO regression analysis, the levels of Ln-calprotectin (OR: 3.38, 95% CI [1.37, 9.47]; P = 0.026) and PsA disease duration (OR: 1.09, 95% CI [1.01, 1.18]; P = 0.013) were screened out from a total of 19 variables. The model in predicting the presence of CP was constructed by Ln-calprotectin and PsA disease duration with an area under the receiver-operating characteristic (ROC) curve of 0.744, (95 CI% [0.59, 0.80], P = 0.037). Conclusion Serum calprotectin level is associated with the presence of CP in PsA. Further studies are required to confirm whether this pathway is associated with CV events in PsA.
Collapse
Affiliation(s)
- Isaac T. Cheng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Huan Meng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Martin Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Edmund K. Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Priscilla C. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jack Lee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex P. W. Lee
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ho So
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Lai-Shan Tam,
| |
Collapse
|
26
|
Starodubtseva NL, Eldarov C, Kirtbaya AR, Balashova EN, Gryzunova AS, Ionov OV, Zubkov VV, Silachev DN. Recent advances in diagnostics of neonatal hypoxic ischemic encephalopathy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prognosis in neonatal hypoxic ischemic encephalopathy (HIE) depends on early differential diagnosis for justified administration of emergency therapeutic hypothermia. The moment of therapy initiation directly affects the long-term neurological outcome: the earlier the commencement, the better the prognosis. This review analyzes recent advances in systems biology that facilitate early differential diagnosis of HIE as a pivotal complement to clinical indicators. We discuss the possibilities of clinical translation for proteomic, metabolomic and extracellular vesicle patterns characteristic of HIE and correlations with severity and prognosis. Identification and use of selective biomarkers of brain damage in neonates during the first hours of life is hindered by systemic effects of hypoxia. Chromatography– mass spectrometry blood tests allow analyzing hundreds and thousands of metabolites in a small biological sample to identify characteristic signatures of brain damage. Clinical use of advanced analytical techniques will facilitate the accurate and timely diagnosis of HIE for enhanced management.
Collapse
Affiliation(s)
- NL Starodubtseva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - ChM Eldarov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AR Kirtbaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - EN Balashova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AS Gryzunova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - OV Ionov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VV Zubkov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - DN Silachev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
27
|
Quantification of MRP8 in immunohistologic sections of peri-implant soft tissue: Development of a novel automated computer analysis method and of its validation procedure. Comput Biol Med 2022; 148:105861. [DOI: 10.1016/j.compbiomed.2022.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
|
28
|
Krocker JD, Lee KH, Henriksen HH, Wang YWW, Schoof EM, Karvelsson ST, Rolfsson Ó, Johansson PI, Pedroza C, Wade CE. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci 2022; 23:6213. [PMID: 35682894 PMCID: PMC9181752 DOI: 10.3390/ijms23116213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D. Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Hanne H. Henriksen
- Center for Endotheliomics CAG, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Yao-Wei Willa Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Sigurdur T. Karvelsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Pär I. Johansson
- Center for Endotheliomics CAG, Department of Clinical Immunology, Rigshospitalet, & Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| |
Collapse
|
29
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin. Cells 2022; 11:cells11071226. [PMID: 35406797 PMCID: PMC8997643 DOI: 10.3390/cells11071226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 possess both anti-inflammatory and anti-bacterial properties. The complex is a ligand of the toll-like receptor 4 (TLR4) and receptor for advanced glycation end (RAGE). At sites of infection and inflammation, CLP is a target for oxidation due to its co-localization with neutrophil-derived oxidants. In the heart, oxidative stress (OS) responses and S100 proteins are closely related and intimately linked through pathophysiological processes. Our review summarizes the roles of S100A8, S100A9 and CLP in the inflammation in relationship with vascular OS, and we examine the importance of CLP for the mechanisms driving in the protection of myocardium. Recent evidence interpreting CLP as a critical modulator during the inflammatory response has identified this alarmin as an interesting drug target.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
- Correspondence:
| | - Geoffrey Dogon
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Eve Rigal
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Marianne Zeller
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Yves Cottin
- Service de Cardiologie, CHU-Dijon, 21000 Dijon, France;
| | - Catherine Vergely
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| |
Collapse
|
30
|
Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:652-666. [PMID: 34148367 PMCID: PMC9057880 DOI: 10.1089/ars.2021.0116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Neutrophil behavior and function are altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs. Critical Issues: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications. Future Directions: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins. Antioxid. Redox Signal. 36, 652-666.
Collapse
Affiliation(s)
- Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sreejit Gopalkrishna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Prabhakara R Nagareddy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
31
|
Rossouw TM, Anderson R, Manga P, Feldman C. Emerging Role of Platelet-Endothelium Interactions in the Pathogenesis of Severe SARS-CoV-2 Infection-Associated Myocardial Injury. Front Immunol 2022; 13:776861. [PMID: 35185878 PMCID: PMC8854752 DOI: 10.3389/fimmu.2022.776861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular dysfunction and disease are common and frequently fatal complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Indeed, from early on during the SARS-CoV-2 virus pandemic it was recognized that cardiac complications may occur, even in patients with no underlying cardiac disorders, as part of the acute infection, and that these were associated with more severe disease and increased morbidity and mortality. The most common cardiac complication is acute cardiac injury, defined by significant elevation of cardiac troponins. The potential mechanisms of cardiovascular complications include direct viral myocardial injury, systemic inflammation induced by the virus, sepsis, arrhythmia, myocardial oxygen supply-demand mismatch, electrolyte abnormalities, and hypercoagulability. This review is focused on the prevalence, risk factors and clinical course of COVID-19-related myocardial injury, as well as on current data with regard to disease pathogenesis, specifically the interaction of platelets with the vascular endothelium. The latter section includes consideration of the role of SARS-CoV-2 proteins in triggering development of a generalized endotheliitis that, in turn, drives intense activation of platelets. Most prominently, SARS-CoV-2–induced endotheliitis involves interaction of the viral spike protein with endothelial angiotensin-converting enzyme 2 (ACE2) together with alternative mechanisms that involve the nucleocapsid and viroporin. In addition, the mechanisms by which activated platelets intensify endothelial activation and dysfunction, seemingly driven by release of the platelet-derived calcium-binding proteins, SA100A8 and SA100A9, are described. These events create a SARS-CoV-2–driven cycle of intravascular inflammation and coagulation, which contributes significantly to a poor clinical outcome in patients with severe disease.
Collapse
Affiliation(s)
- Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Theresa M. Rossouw,
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Pravin Manga
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
33
|
Jin J, Zhang J, Bu S. Tasquinimod efficacy and S100A9 expression in glucose-treated HREC cells. Int Ophthalmol 2021; 42:661-676. [PMID: 34796432 DOI: 10.1007/s10792-021-02038-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Diabetic retinopathy (DR) is one of the leading causes of blindness in working-aged people. Few studies were on the relationship between S100 Calcium Binding Protein A9 (S100A9) protein and DR, and none on endothelial cells induced by tasquinimod in high glucose. Therefore, we assessed the relationship between tasquinimod and S100A9 in DR. METHODS DR pathogenesis was simulated using high-glucose-induced human retinal endothelial cells (HRECs) to study the mRNA expression of s100a9, thrombospondin-1 (tsp-1), hypoxia-inducible factor 1-alpha (hif1-α), intercellular adhesion molecule 1 (icam-1), and vascular endothelial growth factor (vegf) after tasquinimod treatment. The protein expression of S100A9, TSP-1, extracellular signal-regulated kinase (ERK), ICAM-1 and VEGF was also analyzed. RESULT A total of 28 eyes of 26 patients were included in this experiment. A significantly higher expression of S100A9 as well as enhanced proliferation and mobility was observed in the high-glucose-treated HRECs compared with that in low-glucose-treated cells. However, these were significantly inhibited when treated with high glucose with 50 μM tasquinimod. The mRNA expression of tsp-1 was increased, whereas that of hif1-α, icam-1 and vegf was decreased after tasquinimod treatment. Western blot indicated the increased TSP-1 but decreased ERK, ICAM-1 and VEGF expression after treating with tasquinimod. CONCLUSION High glucose promoted the expression of s100a9, S100A9 protein in DR patients and HRECs. Tasquinimod inhibited the proliferation, migration and lumen formation of HRECs under a high glucose environment. Tasquinimod might play a vital role in inhibiting angiogenesis through inducing TSP-1 and inhibiting VEGF, ICAM-1 and ERK.
Collapse
Affiliation(s)
- Ji Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215004, Jiangsu, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215004, Jiangsu, China
| | - Shuyang Bu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
34
|
|
35
|
Hoshino S, Jain S, Shimizu C, Roberts S, He F, Daniels LB, Kahn AM, Tremoulet AH, Gordon JB, Burns JC. Biomarkers of inflammation and fibrosis in young adults with history of Kawasaki disease. IJC HEART & VASCULATURE 2021; 36:100863. [PMID: 34504945 PMCID: PMC8413893 DOI: 10.1016/j.ijcha.2021.100863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023]
Abstract
Background Myocardial histology from autopsies of young adults with giant coronary artery aneurysms following Kawasaki disease (KD) shows bridging fibrosis beyond the territories supplied by the aneurysmal arteries. The etiology of this fibrosis is unknown, but persistent, low-level myocardial inflammation and microcirculatory ischemia are both possible contributing factors. To investigate the possibility of subclinical myocardial inflammation or fibrosis, we measured validated biomarkers in young adults with a remote history of KD. Methods We measured plasma calprotectin, galectin-3 (Gal-3), growth differentiation factor-15 (GDF-15), soluble ST2 (sST2), and serum procollagen type 1C-terminal propeptide (P1CP) in 91 otherwise healthy young adults with a remote history of KD and in 88 age-similar, healthy controls. KD subjects were stratified by coronary artery aneurysm (CAA) status and history of remote myocardial infarction (MI). Results After correction for multiple testing, calprotectin, Gal-3, and GDF-15 levels were significantly higher in subjects with persistent CAA (n = 26) compared with KD subjects with remodeled CAA (n = 20, p = 0.005, 0.001, 0.0036, respectively). In a multivariable regression model with CA status as the main predictor and adjusting for sex, MI history, and interval from KD onset, CA status was a significant predictor (Persistent CAA vs KD Normal CA) of calprotectin, Gal-3, GDF-15 and sST2 levels (p = 0.004, <0.001, 0.007, and 0.049, respectively). Conclusions These results suggest that ongoing inflammation and fibrosis may be occurring in individuals with persistent CAA. Longitudinal follow-up is needed to clarify the clinical significance of these elevated biomarker levels in this patient population that requires life-long monitoring.
Collapse
Affiliation(s)
- Shinsuke Hoshino
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Sonia Jain
- Dept. of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
| | - Chisato Shimizu
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Samantha Roberts
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States
| | - Feng He
- Dept. of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
| | - Lori B Daniels
- Dept. of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Andrew M Kahn
- Dept. of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Adriana H Tremoulet
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States
| | - John B Gordon
- San Diego Cardiac Center, San Diego, CA, United States
| | - Jane C Burns
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States
| |
Collapse
|
36
|
Barrett TJ, Cornwell M, Myndzar K, Rolling CC, Xia Y, Drenkova K, Biebuyck A, Fields AT, Tawil M, Luttrell-Williams E, Yuriditsky E, Smith G, Cotzia P, Neal MD, Kornblith LZ, Pittaluga S, Rapkiewicz AV, Burgess HM, Mohr I, Stapleford KA, Voora D, Ruggles K, Hochman J, Berger JS. Platelets amplify endotheliopathy in COVID-19. SCIENCE ADVANCES 2021; 7:eabh2434. [PMID: 34516880 PMCID: PMC8442885 DOI: 10.1126/sciadv.abh2434] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/19/2021] [Indexed: 05/08/2023]
Abstract
Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19.
Collapse
Affiliation(s)
- Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - MacIntosh Cornwell
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Khrystyna Myndzar
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuhe Xia
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kamelia Drenkova
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Antoine Biebuyck
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander T. Fields
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Tawil
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Eugene Yuriditsky
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Cotzia
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Biospecimen Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Z. Kornblith
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Stefania Pittaluga
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Amy V. Rapkiewicz
- Department of Pathology, NYU Langone Long Island Hospital, New York University Langone Health, Mineola, NY, USA
| | - Hannah M. Burgess
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Ian Mohr
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | | | - Deepak Voora
- Department of Medicine, Duke Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kelly Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Judith Hochman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Langone Health, New York, NY, USA
| |
Collapse
|
37
|
Zeng Y, Li N, Zheng Z, Chen R, Liu W, Cheng J, Zhu J, Zeng M, Peng M, Hong C. Screening of key biomarkers and immune infiltration in Pulmonary Arterial Hypertension via integrated bioinformatics analysis. Bioengineered 2021; 12:2576-2591. [PMID: 34233597 PMCID: PMC8806790 DOI: 10.1080/21655979.2021.1936816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study aimed to screen key biomarkers and investigate immune infiltration in pulmonary arterial hypertension (PAH) based on integrated bioinformatics analysis. The Gene Expression Omnibus (GEO) database was used to download three mRNA expression profiles comprising 91 PAH lung specimens and 49 normal lung specimens. Three mRNA expression datasets were combined, and differentially expressed genes (DEGs) were obtained. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and the protein-protein interaction (PPI) network of DEGs were performed using the STRING and DAVID databases, respectively. The diagnostic value of hub gene expression in PAH was also analyzed. Finally, the infiltration of immune cells in PAH was analyzed using the CIBERSORT algorithm. Total 182 DEGs (117 upregulated and 65 downregulated) were identified, and 15 hub genes were screened. These 15 hub genes were significantly associated with immune system functions such as myeloid leukocyte migration, neutrophil migration, cell chemotaxis, Toll-like receptor signaling pathway, and NF-κB signaling pathway. A 7-gene-based model was constructed and had a better diagnostic value in identifying PAH tissues compared with normal controls. The immune infiltration profiles of the PAH and normal control samples were significantly different. High proportions of resting NK cells, activated mast cells, monocytes, and neutrophils were found in PAH samples, while high proportions of resting T cells CD4 memory and Macrophages M1 cell were found in normal control samples. Functional enrichment of DEGs and immune infiltration analysis between PAH and normal control samples might help to understand the pathogenesis of PAH.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Nanhong Li
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jinru Zhu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingqing Zeng
- First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Min Peng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
39
|
Şumnu Ş, Mehtap Ö, Mersin S, Toptaş T, Görür G, Gedük A, Ünal S, Polat MG, Aygün K, Yenihayat EM, Albayrak H, Uluköylü Mengüç M, Tarkun P, Hacıhanifioğlu A. Serum calprotectin (S100A8/A9) levels as a new potential biomarker of treatment response in Hodgkin lymphoma. Int J Lab Hematol 2021; 43:638-644. [PMID: 33904653 DOI: 10.1111/ijlh.13559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hodgkin lymphoma (HL) is unusual among malignancies, with inflammation playing such a prominent role in its pathogenesis. S100A8/A9 (calprotectin) is a heterodimeric protein, which has a role in the inflammatory response and oncogenesis. In this study in HL patients, the correlation between serum S100A8/A9 levels and treatment responses was investigated along with whether this marker is correlated with other inflammatory markers. MATERIALS AND METHODS Thirty-three HL patients and 20 healthy volunteers were included. Demographic and clinical characteristics were recorded. Calprotectin levels were measured with Human S100A8/A9 Heterodimer Quantikine ELISA kit. Calprotectin levels were measured twice in patients, before and after treatment, and once in the control group. Treatment responses were evaluated with positron emission tomography-computed tomography (PET-CT). RESULTS The mean age of patients was 44.3 ± 18.1 (66.3% male). The median (IQR) values of S100A8/A9 before and after treatment in the patient group were 4.98 (2.6-7.8) and 1.87 (1.1-4.8)µg/mL. Median (IQR) S100A8/A9 concentration in the control group was 1.41 (0.98-2.73)µg/mL. In patients, pretreatment values were significantly higher than in controls (P < .001). However, median values of patients after treatment and controls were similar. Patient median S100A8/A9 levels were significantly lower post-treatment compared with pretreatment values (P = .001). When inflammatory markers were examined within groups, no relationship was found between markers. In ROC analysis, a S100A8/A9 cutoff value of ≥3.31µg/mL accurately discriminated end-of-treatment PET positivity (AUC = 0.78; 95% CI 0.58-0.98; accuracy = 76.2%). CONCLUSION S100A8/A9 may be a potential biomarker for treatment response in HL independent of inflammation. This is the first study to investigate and show this finding. However, further large-scale studies are still required.
Collapse
Affiliation(s)
- Şeyma Şumnu
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Özgür Mehtap
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Sinan Mersin
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Tayfur Toptaş
- Department of Hematology, Marmara University Hospital, Istanbul, Turkey
| | - Gözde Görür
- Department of Nuclear Medicine, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Ayfer Gedük
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Serkan Ünal
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Merve Gökçen Polat
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Kemal Aygün
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Emel Merve Yenihayat
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Hayrunnisa Albayrak
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | - Meral Uluköylü Mengüç
- Department of Hematology, Medical Faculty, Bolu İzzet Baysal University, Bolu, Turkey
| | - Pınar Tarkun
- Department of Hematology, Medical Faculty, University of Kocaeli, Kocaeli, Turkey
| | | |
Collapse
|
40
|
Lee JU, Park JS, Jun JA, Kim MK, Chang HS, Baek DG, Song HJ, Kim MS, Park CS. Inhibitory Effect of Paquinimod on a Murine Model of Neutrophilic Asthma Induced by Ovalbumin with Complete Freund's Adjuvant. Can Respir J 2021; 2021:8896108. [PMID: 33791048 PMCID: PMC7984926 DOI: 10.1155/2021/8896108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/09/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Quinoline-3-carboxamides have been used to treat autoimmune/inflammatory diseases in humans because they inhibit the functions of S100 calcium-binding protein A9 (S100A9), which participates in the development of neutrophilic inflammation in asthmatics and in an animal model of neutrophilic asthma. However, the therapeutic effects of these chemicals have not been evaluated in asthma. The purpose of this study was to evaluate the effect of paquinimod, one of the quinoline-3-carboxamides, on a murine model of neutrophilic asthma. Methods Paquinimod was orally administered to 6-week-old C57BL/6 mice sensitized and challenged with ovalbumin (OVA)/complete Freund's adjuvant (CFA) and OVA. Lung inflammation and remodeling were evaluated using bronchoalveolar lavage (BAL) and histologic findings including goblet cell count. S100A9, caspase-1, IL-1β, MPO, IL-17, IFN-γ, and TNF-α were measured in lung lysates using western blotting. Results Paquinimod restored the enhancement of airway resistance and the increases in numbers of neutrophils and macrophages of BAL fluids and those of goblet cells in OVA/CFA mice toward the levels of sham-treated mice in a dose-dependent manner (0.1, 1, 10, and 25 mg/kg/day, p.o.). Concomitantly, p20 activated caspase-1, IL-1β, IL-17, TNF-α, and IFN-γ levels were markedly attenuated. Conclusion These data indicate that paquinimod effectively inhibits neutrophilic inflammation and remodeling in the murine model of neutrophilic asthma, possibly via downregulation of IL-17, IFN-γ, and IL-1β.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Ji Ae Jun
- PulmoBioPark Co.,Ltd., Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Min Kyung Kim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Dong Gyu Baek
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Hyun Ji Song
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Myung-Sin Kim
- Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Gumi, Gyeongsangbuk-do 39371, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
- PulmoBioPark Co.,Ltd., Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
41
|
Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules 2021; 26:molecules26051323. [PMID: 33801279 PMCID: PMC7958135 DOI: 10.3390/molecules26051323] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulations of the expression of the S100A8 and S100A9 genes and/or proteins, as well as changes in their plasma levels or their levels of secretion in the bone marrow microenvironment, are frequently observed in acute myeloblastic leukemias (AML) and acute lymphoblastic leukemias (ALL). These deregulations impact the prognosis of patients through various mechanisms of cellular or extracellular regulation of the viability of leukemic cells. In particular, S100A8 and S100A9 in monomeric, homodimeric, or heterodimeric forms are able to modulate the survival and the sensitivity to chemotherapy of leukemic clones through their action on the regulation of intracellular calcium, on oxidative stress, on the activation of apoptosis, and thanks to their implications, on cell death regulation by autophagy and pyroptosis. Moreover, biologic effects of S100A8/9 via both TLR4 and RAGE on hematopoietic stem cells contribute to the selection and expansion of leukemic clones by excretion of proinflammatory cytokines and/or immune regulation. Hence, the therapeutic targeting of S100A8 and S100A9 appears to be a promising way to improve treatment efficiency in acute leukemias.
Collapse
|
42
|
Grzelecki D, Walczak P, Szostek M, Grajek A, Rak S, Kowalczewski J. Blood and synovial fluid calprotectin as biomarkers to diagnose chronic hip and knee periprosthetic joint infections. Bone Joint J 2021; 103-B:46-55. [PMID: 33380202 DOI: 10.1302/0301-620x.103b1.bjj-2020-0953.r1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Calprotectin (CLP) is produced in neutrophils and monocytes and released into body fluids as a result of inflammation or infection. The aim of this study was to evaluate the utility of blood and synovial CLP in the diagnosis of chronic periprosthetic joint infection (PJI). METHODS Blood and synovial fluid samples were collected prospectively from 195 patients undergoing primary or revision hip and knee arthroplasty. Patients were divided into five groups: 1) primary total hip and knee arthroplasty performed due to idiopathic osteoarthritis (OA; n = 60); 2) revision hip and knee arthroplasty performed due to aseptic failure of the implant (AR-TJR; n = 40); 3) patients with a confirmed diagnosis of chronic PJI awaiting surgery (n = 45); 4) patients who have finished the first stage of the PJI treatment with the use of cemented spacer and were qualified for replantation procedure (SR-TJR; n = 25), and 5) patients with rheumatoid arthritis undergoing primary total hip and knee arthroplasty (RA; n = 25). CLP concentrations were measured quantitatively in the blood and synovial fluid using an immunoturbidimetric assay. Additionally, blood and synovial CRP, blood interleukin-6 (IL-6), and ESR were measured, and a leucocyte esterase (LE) strip test was performed. RESULTS Patients with PJI had higher CLP concentrations than those undergoing aseptic revision in blood (median PJI 2.14 mg/l (interquartile range (IQR) 1.37 to 3.56) vs AR-TJR 0.66 mg/l (IQR 0.3 to 0.83); p < 0.001) and synovial fluid samples (median PJI 20.46 mg/l (IQR 14.3 to 22.36) vs AR-TJR 0.7 mg/l (IQR 0.41 to 0.95); p < 0.001). With a cut-off value of 1.0 mg/l, blood CLP showed a sensitivity, specificity, positive predictive value, and negative predictive value of 93.3%, 87.5%, 89.4%, and 92.1%, respectively. For synovial fluid with a cut-off value of 1.5 mg/l, these were 95.6%, 95%, 95.5%, and 95%, respectively. CONCLUSION This small study suggests that synovial and blood CLP are useful markers in chronic PJI diagnosis with similar or higher sensitivity and specificity than routinely used markers such as CRP, ESR, IL-6, and LE. CLP was not useful to differentiate patients with PJI from those with rheumatoid arthritis. Cite this article: Bone Joint J 2021;103-B(1):46-55.
Collapse
Affiliation(s)
- Dariusz Grzelecki
- Department of Orthopedics and Rheumoorthopedics, Centre of Postgraduate Medical Education, Otwock, Poland
| | - Piotr Walczak
- Department of Orthopedics, Centre of Postgraduate Medical Education, Otwock, Poland
| | - Marta Szostek
- Central Laboratory, Professor Adam Gruca Hospital, Otwock, Poland
| | | | - Stanisław Rak
- Department of Orthopedics, Centre of Postgraduate Medical Education, Otwock, Poland
| | - Jacek Kowalczewski
- Department of Orthopedics and Rheumoorthopedics, Centre of Postgraduate Medical Education, Otwock, Poland
| |
Collapse
|
43
|
Willers M, Ulas T, Völlger L, Vogl T, Heinemann AS, Pirr S, Pagel J, Fehlhaber B, Halle O, Schöning J, Schreek S, Löber U, Essex M, Hombach P, Graspeuntner S, Basic M, Bleich A, Cloppenborg-Schmidt K, Künzel S, Jonigk D, Rupp J, Hansen G, Förster R, Baines JF, Härtel C, Schultze JL, Forslund SK, Roth J, Viemann D. S100A8 and S100A9 Are Important for Postnatal Development of Gut Microbiota and Immune System in Mice and Infants. Gastroenterology 2020; 159:2130-2145.e5. [PMID: 32805279 DOI: 10.1053/j.gastro.2020.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/14/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.
Collapse
Affiliation(s)
- Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany; PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Lena Völlger
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Anna S Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Pagel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Olga Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Jennifer Schöning
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Schreek
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Morgan Essex
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Hombach
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | | | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - John F Baines
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany; Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Christoph Härtel
- PRIMAL Consortium, Hannover Medical School, Hannover, Germany; Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany; PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; PRIMAL Consortium, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
44
|
Araos P, Figueroa S, Amador CA. The Role of Neutrophils in Hypertension. Int J Mol Sci 2020; 21:ijms21228536. [PMID: 33198361 PMCID: PMC7697449 DOI: 10.3390/ijms21228536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.
Collapse
|
45
|
Grégory Franck. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 2020; 318:60-69. [PMID: 33190807 DOI: 10.1016/j.atherosclerosis.2020.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Mechanical stress is a well-recognized driver of plaque rupture. Likewise, investigating the role of mechanical forces in plaque erosion has recently begun to provide some important insights, yet the knowledge is by far less advanced. The most significant example is that of shear stress, which has early been proposed as a possible driver for focal endothelial death and denudation. Recent findings using optical coherence tomography, computational sciences and mechanical models show that plaque erosion occurs most likely around atheromatous plaque throats with specific stress pattern. In parallel, we have recently shown that neutrophil-dependent inflammation promotes plaque erosion, possibly through a noxious action on ECs. Most importantly, spontaneous thrombosis - associated or not with EC denudation - can be impacted by hemodynamics, and it is now established that neutrophils promote thrombosis and platelet activation, highlighting a potential relationship between, mechanical stress, inflammation, and EC loss in the setting of coronary plaque erosion. Here, we review our current knowledge regarding the implication of both mechanical stress and neutrophils, and we discuss their implication in the promotion of plaque erosion via EC loss and thrombosis.
Collapse
Affiliation(s)
- Grégory Franck
- Inserm LVTS U1148. CHU Bichat, 46 Rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
46
|
Ebrahimi B, Nazarinia M, Molayem M. Calprotectin, an available prognostic biomarker in systemic sclerosis: a systematic review. Clin Rheumatol 2020; 40:1709-1715. [PMID: 33044726 DOI: 10.1007/s10067-020-05446-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Finding easier and less invasive biologic biomarker in the clinical specimen of systemic sclerosis (SSc) patients can be effective in diagnosing and treating SSc-associated multisystem diseases. The complex of S100A8 and S100A9 (Calprotectin) is an easily available prognostic biomarker that secretes from immune cells and is necessary for initiating the immune response to noninfectious inflammation processes. The present study aims to evaluate the effectiveness of Calprotectin in specimen of SSc patients. We reviewed the evidence for Calprotectin in diagnostic and prognostic of SSc patients. METHODS This systematic review was done to identify studies on "Calprotectin" within "SSc" patients. PubMed, Web of knowledge, and Scopus were searched for this purpose. A standardized form was used to extract diseases, sample size, biomarkers identified, source of biomarker, and its effects. RESULTS Overall, the 16 articles selected show that the main sources of Calprotectin were plasma, bronchoalveolar lavage fluid, and especially stool. CONCLUSION The best source of Calprotectin was fecal Calprotectin that could show the inflammation and small intestinal bacterial overgrowth (SIBO) on SSc patients. Also, the most arguable source is plasma because of its low sample size. Comparing the Calprotectin level in different rheumatic diseases showed the specificity of fecal Calprotectin for SSc disease. Nevertheless, it has to be noted that Calprotectin correlates with some other factors such as age, PIP drug, and nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Bahareh Ebrahimi
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-35899, Iran
| | - MohamadAli Nazarinia
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-35899, Iran.
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mina Molayem
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-35899, Iran
| |
Collapse
|
47
|
Deviant proteome profile of equine granulocytes associates to latent activation status in organ specific autoimmune disease. J Proteomics 2020; 230:103989. [PMID: 32977044 DOI: 10.1016/j.jprot.2020.103989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Equine recurrent uveitis (ERU) is a spontaneous, remitting-relapsing autoimmune disease driven by the adaptive immune system. Although T cells are described as the main effector cells in pathogenesis, granulocytes have also emerged as possible disease mediators. To explore the role of these innate immune cells, we investigated the whole cell proteome of granulocytes from equine recurrent uveitis cases and healthy controls. Among the 2362 proteins identified by mass spectrometry, we found 96 proteins with significantly changed abundance between groups (p < 0.05, fold change >1.2), representing 4.1% of total granulocyte proteome. Within these differential identifications, calgranulin B, a protein associated with pathogenesis in other autoimmune diseases, showed highest abundance in equine recurrent uveitis (18 fold). For a better interpretation of the results from our hypothesis-generating approach, we added a threshold for biological significance (ratio ERU/controls >2: 36 proteins) to the proteins with increased abundance in equine recurrent uveitis and analyzed their allocation to the subsets within the Immune System superpathway. The 36 differentially abundant proteins predominantly associated to RAF/MAP kinase cascade, MHC-I-mediated antigen presentation and neutrophil degranulation, suggesting a latently activated phenotype of these innate immune cells in disease. Raw data are available via ProteomeXchange with identifier PXD013648. SIGNIFICANCE: Our study provides new insights into the protein repertoire of primary equine granulocytes and identifies protein abundance changes associated to equine recurrent uveitis (ERU), an organ specific, spontaneously occurring autoimmune disease. We show that granulocyte proteins with increased abundance in ERU strongly associate to RAF/MAP kinase signaling, MHC-I antigen presentation and neutrophil degranulation, pointing to a more activated state of these cells in ERU cases. Since cells were obtained in quiescent stage of disease, latent activation of granulocytes underlines the role of these innate immune cells in ERU. These findings are highly relevant for veterinary medicine, further establishing the importance of granulocytes in this T cell-driven autoimmune disease. Moreover, they have translational quality for autoimmune uveitis in man, due to strong similarity in disease occurrence, progression and pathogenesis.
Collapse
|
48
|
Zhang W, Kong Y, Wang L, Song L, Tan L, Xue X. Prognostic value of serum calprotectin level in elderly diabetic patients with acute coronary syndrome undergoing percutaneous coronary intervention: A Cohort study. Medicine (Baltimore) 2020; 99:e20805. [PMID: 32871971 PMCID: PMC7437750 DOI: 10.1097/md.0000000000020805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients with acute coronary syndrome (ACS) have an increased serum level of calprotectin. The purpose of present study was to analyze the prognostic significance of serum calprotectin levels in elderly diabetic patients underwent percutaneous coronary intervention (PCI) due to ACS.A total of 273 consecutive elderly diabetic patients underwent PCI for primary ACS were enrolled. Serum calprotectin levels were measured before PCI, and baseline clinical characteristics of all patients were collected. All patients were followed up at regular interval for major adverse cardiovascular events (MACEs) during 1 year after PCI. MACEs include cardiovascular death, nonfatal myocardial infarction, and target vessel revascularization (TVR). The predicting value of serum calprotectin for MACEs was analyzed by using univariate and multivariate analysis and receiver-operating characteristic curve (ROC).At the endpoint of this study, 47 patients of all 273 patients had MACEs. According to optimal cutoff value of calprotectin for predicting MACEs by ROC analysis, all patients were stratified into a high calprotectin group and a low calprotectin group. The incidence rate of MACEs and TVR in high calprotectin group was prominently higher than that in low calprotectin group (21.9% vs 11.5%, P = .02). In multivariable COX regression analysis adjusting for potential confounders, serum calprotectin level remains as an independent risk predictor of MACE (hazard ratio, 1.56; 95% confidence interval [CI]: 1.08-4.62; P = .01).In diabetic patients with a comorbidity of ACS, a high serum level of calprotectin is associated to a higher MACE rate after PCI.
Collapse
|
49
|
Berg DD, Yeh RW, Mauri L, Morrow DA, Kereiakes DJ, Cutlip DE, Gao Q, Jarolim P, Michelson AD, Frelinger AL, Cange AL, Sabatine MS, O'Donoghue ML. Biomarkers of platelet activation and cardiovascular risk in the DAPT trial. J Thromb Thrombolysis 2020; 51:675-681. [PMID: 32683645 DOI: 10.1007/s11239-020-02221-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prolonged use of dual antiplatelet therapy (DAPT) post-percutaneous coronary intervention (PCI) has been shown to reduce the risk of major adverse cardiovascular events (MACE), but with increased bleeding. It remains unknown whether biomarkers of platelet activation may be useful for identifying patients at increased risk of MACE. The DAPT study was a randomized trial of 12 versus 30 months of DAPT in patients who underwent PCI. Serum biomarkers [myeloid-related protein (MRP)-8/14, P-selectin, soluble CD-40 ligand (sCD40L)] were assessed in 1399 patients early post-PCI. On-treatment platelet reactivity index (PRI) using VASP phosphorylation was assessed in 443 patients randomized to continued DAPT at 1 year. MACE was defined as CV death, MI, or ischemic stroke. Multivariable models were adjusted for baseline characteristics, index event, and stent type. A stepwise increase in the risk of MACE was observed with increasing tertiles of both MRP-8/14 and P-selectin (p-trend = 0.04 for both). After multivariable adjustment, the adjusted HR (95% CI) for MACE in patients in the top tertile was 1.94 (1.14-3.30) for MRP-8/14 and 1.62 (0.99-2.64) for P-selectin. In contrast, baseline sCD40L was not associated with CV risk. Among patients randomized to continued DAPT, higher on-treatment platelet reactivity was not significantly associated with risk of MACE (p-trend = 0.32; adj-HR T3 vs. T1 1.54, 95% CI 0.20-12.18) or bleeding (P-trend = 0.17; adj-HR 0.25, 95% CI 0.05-1.21). MRP-8/14 and soluble P-selectin may be useful for identifying patients at increased risk of MACE after PCI. The utility of on-treatment platelet function testing requires further study.Clinical Trial Registration https://www.clinicaltrials.gov . Unique identifier NCT00977938.
Collapse
Affiliation(s)
- David D Berg
- TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Robert W Yeh
- Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - David A Morrow
- TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean J Kereiakes
- The Christ Hospital Heart and Vascular Center, The Lindner Research Center, Cincinnati, OH, USA
| | - Donald E Cutlip
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qi Gao
- Baim Clinical Research Institute, Boston, MA, USA
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Abby L Cange
- TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc S Sabatine
- TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle L O'Donoghue
- TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Leite Dantas R, Bettenworth D, Varga G, Weinhage T, Wami HT, Dobrindt U, Roth J, Vogl T, Ludwig S, Wixler V. Spontaneous onset of TNFα-triggered colonic inflammation depends on functional T lymphocytes, S100A8/A9 alarmins, and MHC H-2 haplotype. J Pathol 2020; 251:388-399. [PMID: 32449525 DOI: 10.1002/path.5473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Recently, we established a doxycycline-inducible human tumor necrosis factor alpha (TNFα)-transgenic mouse line, ihTNFtg. Non-induced young and elderly mice showed low but constitutive expression of hTNFα due to promoter leakiness. The persistently present hTNFα stimulated endogenous pro-inflammatory mouse mS100A8/A9 alarmins. Secreted mS100A8/A9 in turn induced the expression and release of mouse mTNFα. The continuous upregulation of pro-inflammatory mTNFα and mS100A8/A9 proteins, due to their mutual expression dependency, gradually led to increased levels in colon tissue and blood. This finally exceeded the threshold levels tolerated by the healthy organism, leading to the onset of intestinal inflammation. Here, recombinant hTNFα functioned as an initial trigger for the development of chronic inflammation. Crossing ihTNFtg mice with S100A9KO mice lacking active S100A8/A9 alarmins or with Rag1KO mice lacking T and B lymphocytes completely abrogated the development of colonic inflammation, despite the still leaky hTNFα promoter. Furthermore, both the intensity of the immune response and the strength of immunosuppressive Treg induction was found to depend on the major histocompatibility complex (MHC) genetic composition. In summary, the onset of intestinal inflammation in elderly mice depends on at least four factors that have to be present simultaneously: TNFα upregulation, S100A8/A9 protein expression, functional T lymphocytes and genetic composition, with the MHC haplotype being of central importance. Only joint action of these factors leads to chronic intestinal inflammation, while absence of any of these determinants abrogates the development of the autoimmune disorder. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Institute of Molecular Virology, Westfaelische Wilhelms University, Muenster, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Muenster, Muenster, Germany
| | - Georg Varga
- Pediatric Rheumatology and Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | - Toni Weinhage
- Pediatric Rheumatology and Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | | | - Ulrich Dobrindt
- Institute of Hygiene, Westfaelische Wilhelms University, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | - Thomas Vogl
- Institute of Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology, Westfaelische Wilhelms University, Muenster, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Westfaelische Wilhelms University, Muenster, Germany
| |
Collapse
|