1
|
Zhang T, Yang M, Li S, Yan R, Dai K. Activation of AMPK in platelets promotes the production of offspring. Platelets 2024; 35:2334701. [PMID: 38630016 DOI: 10.1080/09537104.2024.2334701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Platelets are terminally differentiated anucleated cells, but they still have cell-like functions and can even produce progeny platelets. However, the mechanism of platelet sprouting has not been elucidated so far. Here, we show that when platelet-rich plasma(PRP) was cultured at 37°C, platelets showed a spore phenomenon. The number of platelets increased when given a specific shear force. It is found that AMP-related signaling pathways, such as PKA and AMPK are activated in platelets in the spore state. Meanwhile, the mRNA expression levels of genes, such as CNN3, CAPZB, DBNL, KRT19, and ESPN related to PLS1 skeleton proteins also changed. Moreover, when we use the AMPK activator AICAR(AI) to treat washed platelets, cultured platelets can still appear spore phenomenon. We further demonstrate that washed platelets treated with Forskolin, an activator of PKA, not only platelet sprouting after culture but also the AMPK is activated. Taken together, these data demonstrate that AMPK plays a key role in the process of platelet budding and proliferation, suggesting a novel strategy to solve the problem of clinical platelet shortage.
Collapse
Affiliation(s)
- Tong Zhang
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Mengnan Yang
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Shujun Li
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Rong Yan
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Kesheng Dai
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Bonifay A, Cointe S, Plantureux L, Lacroix R, Dignat-George F. Update on Tissue Factor Detection in Blood in 2024: A Narrative Review. Hamostaseologie 2024; 44:368-376. [PMID: 39442509 DOI: 10.1055/a-2381-6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Tissue factor (TF) is a transmembrane protein essential for hemostasis. Different forms of active TF circulate in the blood, either as a component of blood cells and extracellular vesicles (EVs) or as a soluble plasma protein. Accumulating experimental and clinical evidence suggests that TF plays an important role in thrombosis. Many in-house and commercially available assays have been developed to measure TF-dependent procoagulant activity or antigen in blood and have shown promising results for the prediction of disease outcomes or the occurrence of thrombosis events in diseases such as cancer or infectious coagulopathies. This review addresses the different assays that have been published for measuring circulating TF antigen and/or activity in whole blood, cell-free plasma, and EVs and discusses the main preanalytical and analytical parameters that impact results and their interpretation, highlighting their strengths and limitations. In the recent decade, EVTF assays have been significantly developed. Among them, functional assays that use a blocking anti-TF antibody or immunocapture to measure EVTF activity have higher specificity and sensitivity than antigen assays. However, there is still a high variability between assays. Standardization and automatization are prerequisites for the measurement of EVTF in clinical laboratories.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Sylvie Cointe
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Léa Plantureux
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| |
Collapse
|
3
|
Kappelmayer J, Debreceni IB, Fejes Z, Nagy B. Inflammation, Sepsis, and the Coagulation System. Hamostaseologie 2024; 44:268-276. [PMID: 38354835 DOI: 10.1055/a-2202-8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Sepsis has been a major health problem for centuries and it is still the leading cause of hospital deaths. Several studies in the past decades have identified numerous biochemical abnormalities in severe cases, and many of these studies provide evidence of the perturbation of the hemostatic system. This can result in complications, such as disseminated intravascular coagulation that can lead to multiorgan failure. Nevertheless, large clinical studies have demonstrated that the simple approach of inhibiting the coagulation processes by any means fails to provide significant improvement in the survival of septic patients. A cause of this failure could be the fact that in sepsis the major clinical problems result not primarily from the presence of the infective agent or enhanced coagulation but from the complex dysregulated systemic host response to pathogens. If this overt reaction is not fully deciphered, appropriate interference is highly unlikely and any improvement by conventional therapeutic interventions would be limited. Cellular activation in sepsis can be targeted by novel approaches like inhibition of the heterotypic cellular interactions of blood cells by targeting surface receptors or posttranscriptional control of the hemostatic system by noncoding ribonucleic acid (RNA) molecules. Stable RNA molecules can affect the expression of several proteins. Thus, it can be anticipated that modulation of microRNA production would result in a multitude of effects that may be beneficial in septic cases. Here, we highlight some of the recent diagnostic possibilities and potential novel routes of the dysregulated host response.
Collapse
Affiliation(s)
- János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Haemostatic Gene Expression in Cancer-Related Immunothrombosis: Contribution for Venous Thromboembolism and Ovarian Tumour Behaviour. Cancers (Basel) 2024; 16:2356. [PMID: 39001418 PMCID: PMC11240748 DOI: 10.3390/cancers16132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynaecological malignancy. Identifying new prognostic biomarkers is an important research field. Haemostatic components together with leukocytes can drive cancer progression while increasing the susceptibility to venous thromboembolism (VTE) through immunothrombosis. Unravelling the underlying complex interactions offers the prospect of uncovering relevant OC prognostic biomarkers, predictors of cancer-associated thrombosis (CAT), and even potential targets for cancer therapy. Thus, this study evaluated the expression of F3, F5, F8, F13A1, TFPI1, and THBD in peripheral blood cells (PBCs) of 52 OC patients. Those with VTE after tumour diagnosis had a worse overall survival (OS) compared to their counterparts (mean OS of 13.8 ± 4.1 months and 47.9 ± 5.7 months, respectively; log-rank test, p = 0.001). Low pre-chemotherapy F3 and F8 expression levels were associated with a higher susceptibility for OC-related VTE after tumour diagnosis (χ2, p < 0.05). Regardless of thrombogenesis, patients with low baseline F8 expression had a shorter progression-free survival (PFS) than their counterparts (adjusted hazard ratio (aHR) = 2.54; p = 0.021). Among those who were not under platelet anti-aggregation therapy, low F8 levels were also associated with a shorter OS (aHR = 6.16; p = 0.006). Moving forward, efforts should focus on external validation in larger cohorts.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
5
|
Williams B, Zou L, Pittet JF, Chao W. Sepsis-Induced Coagulopathy: A Comprehensive Narrative Review of Pathophysiology, Clinical Presentation, Diagnosis, and Management Strategies. Anesth Analg 2024; 138:696-711. [PMID: 38324297 PMCID: PMC10916756 DOI: 10.1213/ane.0000000000006888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Physiological hemostasis is a balance between pro- and anticoagulant pathways, and in sepsis, this equilibrium is disturbed, resulting in systemic thrombin generation, impaired anticoagulant activity, and suppression of fibrinolysis, a condition termed sepsis-induced coagulopathy (SIC). SIC is a common complication, being present in 24% of patients with sepsis and 66% of patients with septic shock, and is often associated with poor clinical outcomes and high mortality. 1 , 2 Recent preclinical and clinical studies have generated new insights into the molecular pathogenesis of SIC. In this article, we analyze the complex pathophysiology of SIC with a focus on the role of procoagulant innate immune signaling in hemostatic activation--tissue factor production, thrombin generation, endotheliopathy, and impaired antithrombotic functions. We also review clinical presentations of SIC, the diagnostic scoring system and laboratory tests, the current standard of care, and clinical trials evaluating the efficacies of anticoagulant therapies.
Collapse
Affiliation(s)
- Brittney Williams
- From the Division of Cardiothoracic Anesthesia, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
- Translational Research Program, Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| | - Jean-Francois Pittet
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Sun S, Campello E, Zou J, Konings J, Huskens D, Wan J, Fernández DI, Reutelingsperger CPM, ten Cate H, Toffanin S, Bulato C, de Groot PG, de Laat B, Simioni P, Heemskerk JWM, Roest M. Crucial roles of red blood cells and platelets in whole blood thrombin generation. Blood Adv 2023; 7:6717-6731. [PMID: 37648671 PMCID: PMC10651426 DOI: 10.1182/bloodadvances.2023010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Red blood cells (RBCs) and platelets contribute to the coagulation capacity in bleeding and thrombotic disorders. The thrombin generation (TG) process is considered to reflect the interactions between plasma coagulation and the various blood cells. Using a new high-throughput method capturing the complete TG curve, we were able to compare TG in whole blood and autologous platelet-rich and platelet-poor plasma to redefine the blood cell contributions to the clotting process. We report a faster and initially higher generation of thrombin and shorter coagulation time in whole blood than in platelet-rich plasma upon low concentrations of coagulant triggers, including tissue factor, Russell viper venom factor X, factor Xa, factor XIa, and thrombin. The TG was accelerated with increased hematocrit and delayed after prior treatment of RBC with phosphatidylserine-blocking annexin A5. RBC treatment with ionomycin increased phosphatidylserine exposure, confirmed by flow cytometry, and increased the TG process. In reconstituted blood samples, the prior selective blockage of phosphatidylserine on RBC with annexin A5 enhanced glycoprotein VI-induced platelet procoagulant activity. For patients with anemia or erythrocytosis, cluster analysis revealed high or low whole-blood TG profiles in specific cases of anemia. The TG profiles lowered upon annexin A5 addition in the presence of RBCs and thus were determined by the extent of phosphatidylserine exposure of blood cells. Profiles for patients with polycythemia vera undergoing treatment were similar to that of control subjects. We concluded that RBC and platelets, in a phosphatidylserine-dependent way, contribute to the TG process. Determination of the whole-blood hypo- or hyper-coagulant activity may help to characterize a bleeding or thrombosis risk.
Collapse
Affiliation(s)
- Siyu Sun
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Elena Campello
- Department of Medicine, University of Padua, Padova, Italy
| | - Jinmi Zou
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands
| | - Dana Huskens
- Synapse Research Institute, Maastricht, The Netherlands
| | - Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands
| | - Delia I. Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Chris P. M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | | | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, University of Padua, Padova, Italy
| | - Johan W. M. Heemskerk
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
8
|
Li Y, Wang H, Zhao Z, Yang Y, Meng Z, Qin L. Effects of the interactions between platelets with other cells in tumor growth and progression. Front Immunol 2023; 14:1165989. [PMID: 37153586 PMCID: PMC10158495 DOI: 10.3389/fimmu.2023.1165989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.
Collapse
|
9
|
Moin ASM, Sathyapalan T, Atkin SL, Butler AE. The severity and duration of Hypoglycemia affect platelet-derived protein responses in Caucasians. Cardiovasc Diabetol 2022; 21:202. [PMID: 36203210 PMCID: PMC9541052 DOI: 10.1186/s12933-022-01639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Severe hypoglycemia is associated with increased cardiovascular death risk, and platelet responses to hypoglycemia (hypo) have been described. However, the impact of deep transient hypo (deep-hypo) versus prolonged milder hypo (mild-hypo) on platelet response is unclear. Research Design and methods Two hypo studies were compared; firstly, mild-hypo in 18-subjects (10 type-2-diabetes (T2D), 8 controls), blood glucose to 2.8mmoL/L (50 mg/dL) for 1-hour; secondly deep-hypo in 46-subjects (23 T2D, 23 controls), blood glucose to < 2.2mmoL/L (< 40 mg/dL) transiently. Platelet-related protein (PRP) responses from baseline to after 1-hour of hypo (mild-hypo) or at deep-hypo were compared, and at 24-hours post-hypo. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was used to determine PRP changes for 13 PRPs. Results In controls, from baseline to hypo, differences were seen for four PRPs, three showing increased %change in deep-hypo (Plasminogen activator inhibitor-1(PAI-1), CD40 ligand (CD40LG) and Protein-S), one showing increased %change in mild-hypo (von Willebrand factor (vWF)); at 24-hours in controls, %change for Protein-S remained increased in deep-hypo, whilst % change for vWF and plasminogen were increased in mild-hypo. In T2D, from baseline to hypo, differences were seen for 4 PRPs, three showing increased %change in deep-hypo (PAI-1, platelet glycoprotein VI and Tissue factor), one showing increased %change in mild-hypo (CD40LG); at 24-hours in T2D, %change for CD40LG remained increased, together with vWF, in deep-hypo. Conclusion Both mild-hypo and deep-hypo showed marked PRP changes that continued up to 24-hours, showing that both the severity and duration of hypoglycemia are likely important and that any degree of hypoglycemia may be detrimental for increased cardiovascular risk events through PRP changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01639-w.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain.
| |
Collapse
|
10
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022; 10:914891. [PMID: 35874830 PMCID: PMC9299085 DOI: 10.3389/fcell.2022.914891] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
11
|
Rittig SM, Lutz MS, Clar KL, Zhou Y, Kropp KN, Koch A, Hartkopf AD, Hinterleitner M, Zender L, Salih HR, Maurer S, Hinterleitner C. Controversial Role of the Immune Checkpoint OX40L Expression on Platelets in Breast Cancer Progression. Front Oncol 2022; 12:917834. [PMID: 35875148 PMCID: PMC9304936 DOI: 10.3389/fonc.2022.917834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
In conventional T cells, OX40 has been identified as a major costimulating receptor augmenting survival and clonal expansion of effector and memory T cell populations. In regulatory T cells, (Treg) OX40 signaling suppresses cellular activity and differentiation. However, clinical trials investigating OX40 agonists to enhance anti-tumor immunity, showed only limited success so far. Here we show that platelets from breast cancer patients express relevant levels of OX40L and platelet OX40L (pOX40L) inversely correlates with platelet-expressed immune checkpoint molecules GITRL (pGITRL) and TACI (pTACI). While high expression of pOX40L correlates with T and NK cell activation, elevated pOX40L levels identify patients with higher tumor grades, the occurrence of metastases, and shorter recurrence-free survival (RFS). Of note, OX40 mRNA levels in breast cancer correlate with enhanced expression of anti-apoptotic, immune-suppressive, and tumor-promoting mRNA gene signatures. Our data suggest that OX40L on platelets might play counteracting roles in cancer and anti-tumor immunity. Since pOX40L reflects disease relapse better than the routinely used predictive markers CA15-3, CEA, and LDH, it could serve as a novel biomarker for refractory disease in breast cancer.
Collapse
Affiliation(s)
- Susanne M. Rittig
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitaetsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
| | - Kim L. Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
| | - Yanjun Zhou
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
| | - Korbinian N. Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Gynecology and Obstetrics, University Hospital of Ulm, Ulm, Germany
| | - Martina Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
- Precision Immunology Institute, Department of Oncological Sciences, and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Stefanie Maurer,
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” , University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
12
|
Østerud B, Latysheva N, Schoergenhofer C, Jilma B, Hansen JB, Snir O. A rapid, sensitive, and specific assay to measure TF activity based on chromogenic determination of thrombin generation. J Thromb Haemost 2022; 20:866-876. [PMID: 34822223 DOI: 10.1111/jth.15606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Most tissue factor (TF) activity assays are based on measurement of factor X (FX) activation by TF in the presence of factor VII (FVII)/FVIIa. This requires long incubation, which may result in TF-independent activity of FX and inaccurate measurement of TF activity. AIM To develop a sensitive and specific TF activity assay, which does not register a non-specific TF activity, using commercial coagulation factors. METHODS Tissue factor activity was measured based on the ability of TF to accelerate the activation of FX by FVIIa in the presence of factor V (FV)/Va, prothrombin, and phospholipids. Following 4 min incubation at 37°C, TF activity was quantified in test samples of different nature by thrombin generation using a chromogenic substrate. RESULTS The TF activity assay proved high sensitivity (low fM range) and specificity, assessed by neutralization of TF activity by anti-TF antibody and the use of FVIIai. TF activity was detected in extracellular vesicles (EVs) derived from HAP1-TF+cells, while no activity was measured in EVs from HAP1-TF/KO cells. The assay was applicable for measurement of TF activity on the surface of live endothelial cells and monocytes activated in vitro, and cell lysates. Infusion of low dose lipopolysaccharide (2 ng/kg bodyweight endotoxin) caused a transient 8-fold increase (peaked at 4 h) in TF activity in EVs isolated from plasma of healthy volunteers. CONCLUSION Our assay provides a fast, sensitive, and specific measurement of TF activity. It reliably quantifies TF activity on cell surface, cell lysate, and isolated EVs. The assay can be used for laboratory and clinical research.
Collapse
Affiliation(s)
- Bjarne Østerud
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139:1973-1986. [PMID: 34428280 PMCID: PMC8972096 DOI: 10.1182/blood.2020007208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and noninfectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of the contact pathway in response to pathogen-associated or host-derived, damage-associated molecular patterns. The process is further amplified through inflammatory and immunothrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients is associated with worsening morbidities and increased mortality, regardless of the underlying pathology; therefore, timely recognition of DIC is critical for reducing the pathologic burden. Due to the diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia, and fibrinogen conversion. Because current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of nonovert DIC and/or pre-DIC states. Therapeutic strategies for patients with DIC involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in patients with DIC remains high, and new strategies, tailored to the underlying pathologic mechanisms, are needed.
Collapse
Affiliation(s)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Cell Biology
- Department of Pathology, and
- Department of Internal Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
14
|
Johnson BZ, Stevenson AW, Barrett LW, Fear MW, Wood FM, Linden MD. Platelets after burn injury - hemostasis and beyond. Platelets 2022; 33:655-665. [PMID: 34986759 DOI: 10.1080/09537104.2021.1981849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Burn injuries are common and often life-threatening trauma. With this trauma comes an interruption of normal hemostasis, with distinct impacts on platelets. Our interest in the relationships between burn injury and platelet function stems from two key perspectives: platelet function is a vital component of acute responses to injury, and furthermore the incidence of cardiovascular disease (CVD) is higher in burn survivors compared to the general population. This review explores the impact of burn injury on coagulation, platelet function, and the participation of platelets in immunopathology. Potential avenues of further research are explored, and consideration is given to what therapies may be appropriate for mediating post-burn thrombopathology.
Collapse
Affiliation(s)
- B Z Johnson
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - A W Stevenson
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - L W Barrett
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - M W Fear
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - F M Wood
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,Burns Service of Western Australia, Wa Department of Health, Nedlands, Australia
| | - M D Linden
- School of Biomedical Science, University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
Capozzi A, Riitano G, Recalchi S, Manganelli V, Pulcinelli F, Garofalo T, Misasi R, Longo A, Sorice M. Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by anti-β2-GPI antibodies: Reply to comment from Mackman et al. J Thromb Haemost 2022; 20:261-262. [PMID: 34954878 DOI: 10.1111/jth.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Fabio Pulcinelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
16
|
Joshi A, Schmidt LE, Burnap SA, Lu R, Chan MV, Armstrong PC, Baig F, Gutmann C, Willeit P, Santer P, Barwari T, Theofilatos K, Kiechl S, Willeit J, Warner TD, Mathur A, Mayr M. Neutrophil-Derived Protein S100A8/A9 Alters the Platelet Proteome in Acute Myocardial Infarction and Is Associated With Changes in Platelet Reactivity. Arterioscler Thromb Vasc Biol 2021; 42:49-62. [PMID: 34809447 PMCID: PMC8691374 DOI: 10.1161/atvbaha.121.317113] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Platelets are central to acute myocardial infarction (MI). How the platelet proteome is altered during MI is unknown. We sought to describe changes in the platelet proteome during MI and identify corresponding functional consequences. Approach and Results: Platelets from patients experiencing ST-segment–elevation MI (STEMI) before and 3 days after treatment (n=30) and matched patients with severe stable coronary artery disease before and 3 days after coronary artery bypass grafting (n=25) underwent quantitative proteomic analysis. Elevations in the proteins S100A8 and S100A9 were detected at the time of STEMI compared with stable coronary artery disease (S100A8: FC, 2.00; false discovery rate, 0.05; S100A9: FC, 2.28; false discovery rate, 0.005). During STEMI, only S100A8 mRNA and protein levels were correlated in platelets (R=0.46, P=0.012). To determine whether de novo protein synthesis occurs, activated platelets were incubated with 13C-labeled amino acids for 24 hours and analyzed by mass spectrometry. No incorporation was confidently detected. Platelet S100A8 and S100A9 was strongly correlated with neutrophil abundance at the time of STEMI. When isolated platelets and neutrophils were coincubated under quiescent and activated conditions, release of S100A8 from neutrophils resulted in uptake of S100A8 by platelets. Neutrophils released S100A8/A9 as free heterodimer, rather than in vesicles or extracellular traps. In the community-based Bruneck study (n=338), plasma S100A8/A9 was inversely associated with platelet reactivity—an effect abrogated by aspirin. Conclusions: Leukocyte-to-platelet protein transfer may occur in a thromboinflammatory environment such as STEMI. Plasma S100A8/A9 was negatively associated with platelet reactivity. These findings highlight neutrophils as potential modifiers for thrombotic therapies in coronary artery disease.
Collapse
Affiliation(s)
- Abhishek Joshi
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.).,Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (A.J., A.M.)
| | - Lukas E Schmidt
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Ruifang Lu
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Melissa V Chan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.V.C., P.C.A., T.D.W.)
| | - Paul C Armstrong
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.V.C., P.C.A., T.D.W.)
| | - Ferheen Baig
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Peter Willeit
- Department of Neurology, Medical University of Innsbruck, Austria (P.W., S.K., J.W.)
| | - Peter Santer
- Department of Laboratory Medicine, Bruneck Hospital, Italy (P.S.)
| | - Temo Barwari
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.)
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Austria (P.W., S.K., J.W.).,Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria (S.K., J.W.)
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, Austria (P.W., S.K., J.W.).,Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria (S.K., J.W.)
| | - Timothy D Warner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.V.C., P.C.A., T.D.W.)
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (A.J., A.M.)
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, United Kingdom (A.J., L.E.S., S.A.B., R.L., F.B., C.G., T.B., K.T., M.M.).,Centre for Cardiovascular Medicine and Devices, Queen Mary's University, London, United Kingdom (A.M.)
| |
Collapse
|
17
|
Proteomics and enriched biological processes in Antiphospholipid syndrome: A systematic review. Autoimmun Rev 2021; 20:102982. [PMID: 34718168 DOI: 10.1016/j.autrev.2021.102982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022]
Abstract
Identification of differentially expressed proteins in antiphospholipid syndrome (APS) is a developing area of research for unique profiles of this pathology. Advances in technologies of mass spectrometry brings improvements in proteomics and results in assessment of soluble or cellular proteins which could be candidates for clinical biomarkers of primary APS. The use of blood as a source of proteins ease the acquisition of samples for proteomics analyses and later for disease diagnosis. We performed a systematic review to explore the proteomics studies carried out in circulating released proteins (serum, plasma) or cellular proteins (monocytes and platelets) of APS patients. The study groups differentiate among clinical APS cases with the aim to translate molecular findings to disease stratification and to improve APS diagnosis and prognosis. These studies also include the unravelling of new autoantibodies in non-criteria APS or how post-translational protein modifications provides clues about the pathological mechanisms of antigen-autoantibody recognition. Herein, we identified 82 proteins that were dysregulated in APS across eleven studies. Enrichment analysis revealed its connection to cellular activation and degranulation that eventually leads to thrombosis as the main biological process highlighted by these studies. Validation of APS-relevant proteins by functional and mechanistic studies will be essential for patient stratification and the development of targeted therapies for every clinical subtype of APS.
Collapse
|
18
|
Capozzi A, Riitano G, Recalchi S, Manganelli V, Costi R, Saccoliti F, Pulcinelli F, Garofalo T, Misasi R, Longo A, Di Santo R, Sorice M. Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by anti-β2-GPI antibodies. J Thromb Haemost 2021; 19:2302-2313. [PMID: 34107171 PMCID: PMC8456873 DOI: 10.1111/jth.15417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Anti-phospholipid syndrome (APS) is characterized by arterial and/or venous thrombosis and pregnancy morbidity associated with the presence of "anti-phospholipid antibodies." Thrombosis may be the result of a hypercoagulable state related to activation of endothelial cells and platelets by anti-β2-glycoprotein I (β2-GPI) antibodies. Anti-β2-GPI antibodies induce a proinflammatory and procoagulant phenotype in these cells that, after activation, express tissue factor (TF), the major initiator of the clotting cascade, playing a role in thrombotic manifestations. Moreover, TF expression may also be induced by heparanase, an endo-β-D-glucuronidase, that generates heparan sulfate fragments, regulating inflammatory responses. OBJECTIVES In this study we analyzed, in human platelets and endothelial cells, the effect of a new symmetrical 2-aminophenyl-benzazolyl-5-acetate derivative (RDS3337), able to inhibit heparanase activity, on signal transduction pathways leading to TF expression triggered by anti-β2-GPI. METHODS Platelets and endothelial cells were incubated with affinity purified anti-β2-GPI after pretreatment with RDS3337. Cell lysates were analyzed for phospho-interleukin-1 receptor-associated kinase 1 (IRAK1), phospho-p65 nuclear factor kappa B (NF-κB) and TF by western blot. In addition, platelet activation and secretion by ATP release dosage were evaluated. RESULTS IRAK phosphorylation and consequent NF-κB activation, as well as TF expression triggered by anti-β2-GPI treatment were significantly prevented by previous pretreatment with RDS3337. In the same vein, pretreatment with RDS3337 prevented platelet aggregation and ATP release triggered by anti-β2-GPI antibodies. CONCLUSION These findings support the view of heparanase involvement in a prothrombotic state related to APS syndrome, suggesting a novel target to regulate overexpression of procoagulant protein(s).
Collapse
Affiliation(s)
- Antonella Capozzi
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Gloria Riitano
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Serena Recalchi
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Valeria Manganelli
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del FarmacoIstituto Pasteur‐Fondazione Cenci Bolognetti“Sapienza” University of RomeRomeItaly
| | - Francesco Saccoliti
- Dipartimento di Chimica e Tecnologie del FarmacoIstituto Pasteur‐Fondazione Cenci Bolognetti“Sapienza” University of RomeRomeItaly
| | - Fabio Pulcinelli
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Tina Garofalo
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Roberta Misasi
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Agostina Longo
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del FarmacoIstituto Pasteur‐Fondazione Cenci Bolognetti“Sapienza” University of RomeRomeItaly
| | - Maurizio Sorice
- Department of Experimental Medicine“Sapienza” University of RomeRomeItaly
| |
Collapse
|
19
|
Wan J, Konings J, de Laat B, Hackeng TM, Roest M. Added Value of Blood Cells in Thrombin Generation Testing. Thromb Haemost 2021; 121:1574-1587. [PMID: 33742437 DOI: 10.1055/a-1450-8300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The capacity of blood to form thrombin is a critical determinant of coagulability. Plasma thrombin generation (TG), a test that probes the capacity of plasma to form thrombin, has improved our knowledge of the coagulation system and shows promising utility in coagulation management. Although plasma TG gives comprehensive insights into the function of pro- and anticoagulation drivers, it does not measure the role of blood cells in TG. In this literature review, we discuss currently available continuous TG tests that can reflect the involvement of blood cells in coagulation, in particular the fluorogenic assays that allow continuous measurement in platelet-rich plasma and whole blood. We also provide an overview about the influence of blood cells on blood coagulation, with emphasis on the direct influence of blood cells on TG. Platelets accelerate the initiation and velocity of TG by phosphatidylserine exposure, granule content release and surface receptor interaction with coagulation proteins. Erythrocytes are also major providers of phosphatidylserine, and erythrocyte membranes trigger contact activation. Furthermore, leukocytes and cancer cells may be important players in cell-mediated coagulation because, under certain conditions, they express tissue factor, release procoagulant components and can induce platelet activation. We argue that testing TG in the presence of blood cells may be useful to distinguish blood cell-related coagulation disorders. However, it should also be noted that these blood cell-dependent TG assays are not clinically validated. Further standardization and validation studies are needed to explore their clinical usefulness.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Zhou Y, Heitmann JS, Clar KL, Kropp KN, Hinterleitner M, Engler T, Koch A, Hartkopf AD, Zender L, Salih HR, Maurer S, Hinterleitner C. Platelet-expressed immune checkpoint regulator GITRL in breast cancer. Cancer Immunol Immunother 2021; 70:2483-2496. [PMID: 33538861 PMCID: PMC8360840 DOI: 10.1007/s00262-021-02866-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Owing to their key role in several diseases including cancer, activating and inhibitory immune checkpoint molecules are increasingly exploited as targets for immunotherapy. Recently, we demonstrated that platelets, which largely influence tumor progression and immune evasion, functionally express the ligand of the checkpoint molecule GITR. This immunoreceptor modulates effector functions of T cells and NK cells with its function varying dependent on cellular context and activation state. Here, we provide a comparative analysis of platelet-derived GITRL (pGITRL) in breast cancer patients and healthy volunteers. The levels of pGITRL were found to be higher on platelets derived from cancer patients and appeared to be specifically regulated during tumor progression as exemplified by several clinical parameters including tumor stage/grade, the occurrence of metastases and tumor proliferation (Ki67) index. In addition, we report that pGITRL is upregulated during platelet maturation and particularly induced upon exposure to tumor-derived soluble factors. Our data indicate that platelets modulate the GITR/GITRL immune checkpoint in the context of malignant disease and provide a rationale to further study the GITR/GITRL axis for exploitation for immunotherapeutic intervention in cancer patients.
Collapse
Affiliation(s)
- Yanjun Zhou
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Korbinian N Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| | - Martina Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Tobias Engler
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Heidelberg, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
van Dijk WEM, Brandwijk ON, Heitink-Polle KMJ, Schutgens REG, van Galen KPM, Urbanus RT. Hemostatic changes by thrombopoietin-receptor agonists in immune thrombocytopenia patients. Blood Rev 2020; 47:100774. [PMID: 33213987 DOI: 10.1016/j.blre.2020.100774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023]
Abstract
Thrombopoietin receptor agonist (TPO-RA) treatment increases the thrombosis rate in immune thrombocytopenia (ITP). We hypothesize that TPO-RAs influence platelet function, global and secondary hemostasis and/or fibrinolysis. A systematic review was performed. If possible, data were compared between responders (relevant increase in platelet count), and non-responders. Twelve observational studies with 305 patients were included (responders (127/150 (85%))). There were indications that TPO-RA treatment enhanced platelet function, with respect to platelet-monocyte aggregates, soluble P-selectin, GPVI expression, and adhesion under flow. Studies addressing global and secondary hemostasis and fibrinolysis were scarce. Overall, no changes were found during TPO-RA treatment, apart from an accelerated clot formation and conflicting data on levels of plasminogen activator inhibitor (PAI)-1. The parameters that increased have previously been associated with thrombosis in other patient groups, and might contribute to the increased rate of thrombosis observed in TPO-RA-treated ITP patients.
Collapse
Affiliation(s)
- Wobke E M van Dijk
- Department of Hematology, Van Creveldkliniek, University Medical Centre Utrecht, Postbox 85500, 3508 GA Utrecht, The Netherlands.
| | - Odila N Brandwijk
- Education Centre, University Medical Centre Utrecht, Utrecht University, Universiteitsweg 98, 3584 CG Utrecht, The Netherlands
| | - Katja M J Heitink-Polle
- Department of Hematology, Van Creveldkliniek, University Medical Centre Utrecht, Postbox 85500, 3508 GA Utrecht, The Netherlands
| | - Roger E G Schutgens
- Department of Hematology, Van Creveldkliniek, University Medical Centre Utrecht, Postbox 85500, 3508 GA Utrecht, The Netherlands.
| | - Karin P M van Galen
- Department of Hematology, Van Creveldkliniek, University Medical Centre Utrecht, Postbox 85500, 3508 GA Utrecht, The Netherlands.
| | - Rolf T Urbanus
- Department of Hematology, Van Creveldkliniek, University Medical Centre Utrecht, Postbox 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
22
|
Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
|
23
|
Andrade SS, Faria AVDS, Girão MJBC, Fuhler GM, Peppelenbosch MP, Ferreira-Halder CV. Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0. Int J Mol Sci 2020; 21:E6061. [PMID: 32842455 PMCID: PMC7503652 DOI: 10.3390/ijms21176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/21/2022] Open
Abstract
The increasing discoveries regarding the biology and functions of platelets in the last decade undoubtedly show that these cells are one of the most biotechnological human cells. This review summarizes new advances in platelet biology, functions, and new concepts of biotech-educated platelets that connect advanced biomimetic science to platelet-based additive manufacturing for tissue regeneration. As highly responsive and secretory cells, platelets could be explored to develop solutions that alter injured microenvironments through platelet-based synthetic biomaterials with instructive extracellular cues for morphogenesis in tissue engineering beyond tissue regeneration 2.0.
Collapse
Affiliation(s)
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil; (A.V.d.S.F.); (C.V.F.-H.)
- Department of Gastroenterology and Hepatology Medical Center Rotterdam, NL-3000 CA Rotterdam, The Netherlands; (G.M.F.); (M.P.P.)
| | | | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology Medical Center Rotterdam, NL-3000 CA Rotterdam, The Netherlands; (G.M.F.); (M.P.P.)
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology Medical Center Rotterdam, NL-3000 CA Rotterdam, The Netherlands; (G.M.F.); (M.P.P.)
| | - Carmen V. Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil; (A.V.d.S.F.); (C.V.F.-H.)
| |
Collapse
|
24
|
Gutmann C, Joshi A, Mayr M. Platelet "-omics" in health and cardiovascular disease. Atherosclerosis 2020; 307:87-96. [PMID: 32646580 DOI: 10.1016/j.atherosclerosis.2020.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
The importance of platelets for cardiovascular disease was established as early as the 19th century. Their therapeutic inhibition stands alongside the biggest achievements in medicine. Still, certain aspects of platelet pathophysiology remain unclear. This includes platelet resistance to antiplatelet therapy and the contribution of platelets to vascular remodelling and extends beyond cardiovascular disease to haematological disorders and cancer. To address these gaps in our knowledge, a better understanding of the underlying molecular processes is needed. This will be enabled by technologies that capture dysregulated molecular processes and can integrate them into a broader network of biological systems. The advent of -omics technologies, such as mass spectrometry proteomics, metabolomics and lipidomics; highly multiplexed affinity-based proteomics; microarray- or RNA-sequencing-(RNA-seq)-based transcriptomics, and most recently ribosome footprint-based translatomics, has enabled a more holistic understanding of platelet biology. Most of these methods have already been applied to platelets, and this review will summarise this information and discuss future developments in this area of research.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom.
| |
Collapse
|
25
|
Andrade SS, de Sousa Faria AV, de Paulo Queluz D, Ferreira-Halder CV. Platelets as a 'natural factory' for growth factor production that sustains normal (and pathological) cell biology. Biol Chem 2020; 401:471-476. [PMID: 31665104 DOI: 10.1515/hsz-2019-0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/24/2019] [Indexed: 11/15/2022]
Abstract
Platelets have attracted substantial attention in the current decade owing to their unexpected pleiotropic properties and conflicted functions. In fact, platelets participate in both health (hemostasis) and disease (thrombotic diseases). Much of the plasticity of platelets comes from the fact that platelets are the reservoir and the 'natural factory' of growth factors (GFs), with pivotal functions in wound repair and tissue regeneration. By combining the platelets' plasticity and biotechnological processes, PlateInnove Biotechnology optimized the production of GFs in nanoparticle biointerfacing by platelet content, which opens an avenue of possibilities.
Collapse
Affiliation(s)
| | | | - Dagmar de Paulo Queluz
- Piracicaba Dental School, University of Campinas, Avenida Limeira 901, 13414-903 Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
26
|
Nair AB, Parker RI. Hemostatic Testing in Critically Ill Infants and Children. Front Pediatr 2020; 8:606643. [PMID: 33490001 PMCID: PMC7820389 DOI: 10.3389/fped.2020.606643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Children with critical illness frequently manifest imbalances in hemostasis with risk of consequent bleeding or pathologic thrombosis. Traditionally, plasma-based tests measuring clot formation by time to fibrin clot generation have been the "gold standard" in hemostasis testing. However, these tests are not sensitive to abnormalities in fibrinolysis or in conditions of enhanced clot formation that may lead to thrombosis. Additionally, they do not measure the critical roles played by platelets and endothelial cells. An added factor in the evaluation of these plasma-based tests is that in infants and young children plasma levels of many procoagulant and anticoagulant proteins are lower than in older children and adults resulting in prolonged clot generation times in spite of maintaining a normal hemostatic "balance." Consequently, newer assays directly measuring thrombin generation in plasma and others assessing the stages hemostasis including clot initiation, propagation, and fibrinolysis in whole blood by viscoelastic methods are now available and may allow for a global measurement of the hemostatic system. In this manuscript, we will review the processes by which clots are formed and by which hemostasis is regulated, and the rationale and limitations for the more commonly utilized tests. We will also discuss selected newer tests available for the assessment of hemostasis, their "pros" and "cons," and how they compare to the traditional tests of coagulation in the assessment and management of critically ill children.
Collapse
Affiliation(s)
- Alison B Nair
- Pediatric Critical Care Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Robert I Parker
- Pediatric Hematology/Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
27
|
Østerud B, Bouchard BA. Detection of tissue factor in platelets: why is it so troublesome? Platelets 2019; 30:957-961. [DOI: 10.1080/09537104.2019.1624708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bjarne Østerud
- K.G. Jebsen Thrombosis Research Center (TREC), Deparment of Medical Biology, UiT The Artic University of Norway, Tromsø, Norway
| | - Beth A. Bouchard
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| |
Collapse
|
28
|
Chaurasia SN, Kushwaha G, Kulkarni PP, Mallick RL, Latheef NA, Mishra JK, Dash D. Platelet HIF-2α promotes thrombogenicity through PAI-1 synthesis and extracellular vesicle release. Haematologica 2019; 104:2482-2492. [PMID: 31004026 PMCID: PMC6959171 DOI: 10.3324/haematol.2019.217463] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Oxygen-compromised environments, such as high altitude, are associated with platelet hyperactivity. Platelets confined within the relatively impervious core of an aggregate/thrombus have restricted access to oxygen, yet they continue to perform energy-intensive procoagulant activities that sustain the thrombus. Studying platelet signaling under hypoxia is, therefore, critical to our understanding of the mechanistic basis of thrombus stability. We report here that hypoxia-inducible factor (HIF)-2α is translated from pre-existing mRNA and stabilized against proteolytic degradation in enucleate platelets exposed to hypoxia. Hypoxic stress, too, stimulates platelets to synthesize plasminogen-activator inhibitor-1 (PAI-1) and shed extracellular vesicles, both of which potentially contribute to the prothrombotic phenotype associated with hypoxia. Stabilization of HIF-α by administering hypoxia-mimetics to mice accelerates thrombus formation in mesenteric arterioles. In agreement, platelets from patients with chronic obstructive pulmonary disease and high altitude residents exhibiting thrombogenic attributes have abundant expression of HIF-2α and PAI- 1. Thus, targeting platelet hypoxia signaling could be an effective anti-thrombotic strategy.
Collapse
Affiliation(s)
- Susheel N Chaurasia
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Geeta Kushwaha
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Paresh P Kulkarni
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ram L Mallick
- Department of Biochemistry, Birat Medical College & Teaching Hospital, Biratnagar, Nepal
| | - Nazmy A Latheef
- Department of Tuberculosis & Respiratory Diseases, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jai K Mishra
- Department of Tuberculosis & Respiratory Diseases, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
|
30
|
Trainor PJ, Yampolskiy RV, DeFilippis AP. Wisdom of artificial crowds feature selection in untargeted metabolomics: An application to the development of a blood-based diagnostic test for thrombotic myocardial infarction. J Biomed Inform 2018; 81:53-60. [PMID: 29578100 DOI: 10.1016/j.jbi.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Heart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI, non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the NP-hard problem of feature selection for constructing an optimal statistical classifier. OBJECTIVE We employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature selection techniques including the Lasso and selection using Random Forest variable importance criteria. MATERIALS AND METHODS Artificial Crowd Wisdom was generated via aggregation of the best solutions from independent and diverse genetic algorithm populations that were initialized with bootstrapping and a random subspaces constraint. RESULTS/CONCLUSIONS Strong evidence was observed that a statistical classifier utilizing WoAC feature selection can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed. However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.
Collapse
Affiliation(s)
- Patrick J Trainor
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States.
| | - Roman V Yampolskiy
- Department of Computer Science and Engineering, University of Louisville, United States
| | - Andrew P DeFilippis
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States
| |
Collapse
|
31
|
Grover SP, Mackman N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:709-725. [PMID: 29437578 DOI: 10.1161/atvbaha.117.309846] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
Tissue factor (TF) is the high-affinity receptor and cofactor for factor (F)VII/VIIa. The TF-FVIIa complex is the primary initiator of blood coagulation and plays an essential role in hemostasis. TF is expressed on perivascular cells and epithelial cells at organ and body surfaces where it forms a hemostatic barrier. TF also provides additional hemostatic protection to vital organs, such as the brain, lung, and heart. Under pathological conditions, TF can trigger both arterial and venous thrombosis. For instance, atherosclerotic plaques contain high levels of TF on macrophage foam cells and microvesicles that drives thrombus formation after plaque rupture. In sepsis, inducible TF expression on monocytes leads to disseminated intravascular coagulation. In cancer patients, tumors release TF-positive microvesicles into the circulation that may contribute to venous thrombosis. TF also has nonhemostatic roles. For instance, TF-dependent activation of the coagulation cascade generates coagulation proteases, such as FVIIa, FXa, and thrombin, which induce signaling in a variety of cells by cleavage of protease-activated receptors. This review will focus on the roles of TF in protective hemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Steven P Grover
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill.
| |
Collapse
|
32
|
Hennink I, van Leeuwen MW, Penning LC, Piek CJ. Increased number of tissue factor protein expressing thrombocytes in canine idiopathic immune mediated hemolytic anemia. Vet Immunol Immunopathol 2017; 196:22-29. [PMID: 29695321 DOI: 10.1016/j.vetimm.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/28/2017] [Accepted: 12/09/2017] [Indexed: 11/27/2022]
Abstract
Dogs suffering from canine idiopathic immune mediated hemolytic anemia (cIIMHA) are at great risk of dying particularly in the first two weeks after the diagnosis is made. This high mortality risk may be associated with the development of thromboembolism (TE) and/or disseminated intravascular coagulation (DIC) resulting in organ failure. The exact mechanism of the development of TE and/or DIC in cIIMHA is still undetermined. Therefore, this study investigates the presence of tissue factor (TF) in thrombocytes of dogs suffering from cIIMHA, using OptiPrep™ for the isolation of blood cells and immunocytochemistry (ICC) to visualize TF on thrombocytes. The normalised TF quantity, acquired with 'colour deconvolution' (ImageJ plug in), revealed that in cIIMHA dogs the fraction TF positive thrombocytes was statistically significant higher (P < 0.001; mean 0.79; n = 7) compared to the fraction TF positive thrombocytes of the healthy dogs (mean 0.43; n = 9). We further have indications that the fraction of TF positive thrombocytes decreases with time and therapy, but that the progression rate differs individually. Since cIIMHA dogs have more thrombocytes that are TF-positive compared to healthy dogs, this may explain the increased risk to develop TE and DIC. Furthermore, it seems that the number of TF-positive thrombocytes in cIIMHA dogs remains high during the first two weeks of the disease, the time when the animals are at greatest health risk.
Collapse
Affiliation(s)
- Imke Hennink
- Department of Clinical Sciences of Companion Animals, Utrecht University, PO Box 80154, 3508 TD, Utrecht, the Netherlands.
| | - Martin W van Leeuwen
- Department of Clinical Sciences of Companion Animals, Utrecht University, PO Box 80154, 3508 TD, Utrecht, the Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Utrecht University, PO Box 80154, 3508 TD, Utrecht, the Netherlands
| | - Christine J Piek
- Department of Clinical Sciences of Companion Animals, Utrecht University, PO Box 80154, 3508 TD, Utrecht, the Netherlands
| |
Collapse
|
33
|
Müller K, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2017. [DOI: 10.1160/th14-11-0947] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryPlatelets play a pivotal role in chronic inflammation leading to progression of atherosclerosis and acute coronary events. Recent discoveries on novel mechanisms and platelet-dependent inflammatory targets underpin the role of platelets to maintain a chronic inflammatory condition in cardiovascular disease. There is strong and clinically relevant crosslink between chronic inflammation and platelet activation. Antiplatelet therapy is a cornerstone in the prevention and treatment of acute cardiovascular events. The benefit of antiplatelet agents has mainly been attributed to their direct anti-aggregatory impact. Some anti-inflammatory off-target effects have also been described. However, it is unclear whether these effects are secondary due to inhibition of platelet activation or are caused by direct distinct mechanisms interfering with inflammatory pathways. This article will highlight novel platelet associated targets that contribute to inflammation in cardiovascular disease and elucidate mechanisms by which currently available antiplatelet agents evolve anti-inflammatory capacities, in particular by carving out the differential mechanisms directly or indirectly affecting platelet mediated inflammation. It will further illustrate the prognostic impact of antiplatelet therapies by reducing inflammatory marker release in recent cardiovascular trials.
Collapse
|
34
|
Canzano P, Rossetti L, Ferri N, Balduini A, Abbonante V, Boselli D, De Marco L, Di Minno M, Toschi V, Corsini A, Tremoli E, Brambilla M, Facchinetti L, Camera M. Human megakaryocytes confer tissue factor to a subset of shed platelets to stimulate thrombin generation. Thromb Haemost 2017; 114:579-92. [DOI: 10.1160/th14-10-0830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/11/2015] [Indexed: 11/05/2022]
Abstract
SummaryTissue factor (TF), the main activator of the blood coagulation cascade, has been shown to be expressed by platelets. Despite the evidence that both megakaryocytes and platelets express TF mRNA, and that platelets can make de novo protein synthesis, the main mechanism thought to be responsible for the presence of TF within platelets is through the uptake of TF positive microparticles. In this study we assessed 1) whether human megakaryocytes synthesise TF and transfer it to platelets and 2) the contribution of platelet-TF to the platelet hemostatic capacity. In order to avoid the cross-talk with circulating microparticles, we took advantage from an in vitro cultured megakaryoblastic cell line (Meg-01) able to differentiate into megakaryocytes releasing platelet-like particles. We show that functionally active TF is expressed in human megakaryoblasts, increased in megakaryocytes, and is transferred to a subset of shed platelets where it contributes to clot formation. These data were all confirmed in human CD34pos- derived megakaryocytes and in their released platelets. The effect of TF silencing in Meg-megakaryoblasts resulted in a significant reduction of TF expression in these cells and also in Meg-megakaryocytes and Meg-platelets. Moreover, the contribution of platelet-TF to the platelet hemostatic capacity was highlighted by the significant delay in the kinetic of thrombin formation observed in platelets released by TF-silenced megakaryocytes. These findings provide evidences that TF is an endogenously synthesised protein that characterises megakaryocyte maturation and that it is transferred to a subset of newly-released platelets where it is functionally active and able to trigger thrombin generation.
Collapse
|
35
|
Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2017; 371:567-576. [PMID: 29178039 PMCID: PMC5820397 DOI: 10.1007/s00441-017-2727-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are well known for their role in infection and inflammatory disease and are first responders at sites of infection or injury. Platelets have an established role in hemostasis and thrombosis and are first responders at sites of vascular damage. However, neutrophils are increasingly recognized for their role in thrombosis, while the immunemodulatory properties of platelets are being increasingly studied. Platelets and neutrophils interact during infection, inflammation and thrombosis and modulate each other’s functions. This review will discuss the consequences of platelet–neutrophil interactions in infection, thrombosis, atherosclerosis and tissue injury and repair.
Collapse
|
36
|
Shupp JW, Prior SM, Jo DY, Moffatt LT, Mann KG, Butenas S. Analysis of factor XIa, factor IXa and tissue factor activity in burn patients. Burns 2017; 44:436-444. [PMID: 29032977 DOI: 10.1016/j.burns.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/15/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION An elevated procoagulant activity observed in trauma patients is, in part, related to tissue factor (TF) located on blood cells and microparticles. However, analysis of trauma patient plasma indicates that there are other contributor(s) to the procoagulant activity. We hypothesize that factor (F)XIa and FIXa are responsible for an additional procoagulant activity in burn patients. METHODS Multiple time-point plasma samples from 56 burn patients (total number of samples was 471; up to 20 time-points/patient collected in 3 weeks following admission) were evaluated in a thrombin generation assay using inhibitory antibodies to TF, FIXa and FXIa. RESULTS Due to the limited volume of some samples, not all were analyzed for all three proteins. At admission, 10 of 53 patients (19%) had active TF, 53 of 55 (96%) had FXIa and 48 of 55 (87%) had FIXa in their plasma. 34 patients of 56 enrolled (61%) showed TF activity at one or more time-points. All patients had FXIa and 96% had FIXa at one or more time-points. Overall, TF was observed in 99 of 455 samples analyzed (22%), FXIa in 424 of 471 (90%) and FIXa in 244 of 471 (52%). The concentration of TF was relatively low and varied between 0 and 2.1pM, whereas that of FXIa was higher, exceeding 100pM in some samples. The majority of samples with FIXa had it at sub-nanomolar concentrations. No TF, FXIa and FIXa activity was detected in plasma from healthy individuals. CONCLUSIONS For the first time reported, the majority of plasma samples from burn patients have active FXIa and FIXa, with a significant fraction of them having active TF. The concentration of all three proteins varies in a wide range.
Collapse
Affiliation(s)
- Jeffrey W Shupp
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States.
| | - Shannon M Prior
- University of Vermont, Department of Biochemistry, Burlington, VT, United States.
| | - Daniel Y Jo
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States.
| | - Lauren T Moffatt
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States.
| | - Kenneth G Mann
- Haematologic Technologies, Inc., Essex Junction, VT, United States.
| | - Saulius Butenas
- University of Vermont, Department of Biochemistry, Burlington, VT, United States.
| |
Collapse
|
37
|
Matus V, Valenzuela JG, Hidalgo P, Pozo LM, Panes O, Wozniak A, Mezzano D, Pereira J, Sáez CG. Human platelet interaction with E. coli O111 promotes tissue-factor-dependent procoagulant activity, involving Toll like receptor 4. PLoS One 2017; 12:e0185431. [PMID: 28957360 PMCID: PMC5619753 DOI: 10.1371/journal.pone.0185431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
Platelets have a major role in clotting activation and contribute to the innate immune response during systemic infections. Human platelets contain tissue factor (TF) and express functional Toll-like receptor 4 (TLR4). However, the role of TLR4 in triggering the procoagulant properties of platelets, upon challenge with bacteria, is yet unknown. Our hypothesis is that E. coli O111-TLR4 interaction activates platelets and elicits their procoagulant activity. We demonstrated that the strain, but not ultrapure LPS, increased surface P-selectin expression, platelet dependent TF procoagulant activity (TF-PCA) and prompted a faster thrombin generation (TG). Blockade of TLR4 resulted in decreased platelet activation, TF-PCA and TG, revealing the participation of this immune receptor on the procoagulant response of platelets. Our results provide a novel mechanism by which individuals with bacterial infections would have an increased incidence of blood clots. Furthermore, the identification of platelet TF and TLR4 as regulators of the effect of E. coli O111 might represent a novel therapeutic target to reduce the devastating consequences of the hemostatic disorder during sepsis.
Collapse
Affiliation(s)
- Valeria Matus
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Guillermo Valenzuela
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Hidalgo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L. María Pozo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Olga Panes
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aniela Wozniak
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G. Sáez
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
38
|
Cosan F, Oku B, Gedar Totuk OM, Abaci N, Ustek D, Diz Kucukkaya R, Gul A. The association between P selectin glycoprotein ligand 1 gene variable number of tandem repeats polymorphism and risk of thrombosis in Behçet's disease. Int J Rheum Dis 2017; 21:2175-2179. [PMID: 28809090 DOI: 10.1111/1756-185x.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Behçet's disease (BD) has been recognized as an unclassified type of vasculitis with an accompanying tendency to thrombosis. No disease-specific pathology has been demonstrated so far to explain the prothrombotic state, and this predisposition is considered to be associated with endothelial activation/dysfunction. P-selectin glycoprotein ligand-1 (PSGL-1) variable number of tandem repeat (VNTR) polymorphism has an impact on the protein length, and heterozygosity affect of the PSGL-1 to P-selectin interaction, which has been found to be associated with an increased risk of thrombosis in patients with antiphospholipid syndrome. We aimed to analyze the association of PSGL-1 gene polymorphism, in a group of BD patients with and without thrombosis. METHODS The study group consisted of 136 BD patients (112 male, 24 female) with thrombosis, 120 BD patients without thrombosis (54 male, 66 female) during at least 5 years disease course, and 190 healthy controls (103 male, 87 female) All patients fulfilled the International Study Group criteria for classification of BD. Genotyping for the PSGL-1 gene exon 2 VNTR polymorphism was carried out with the amplification of genomic DNA and running of the polymerase chain reaction product on agarose gel electrophoresis. RESULTS The frequency of heterozygous genotypes (AB+AC+BC) was greater in BD patients with thrombosis compared to BD patients without thrombosis (33.1% vs. 20.8%, P = 0.028, odds ratio = 1.85). However, the increased frequency of heterozygous genotypes in BD patients with thrombosis did not reach a statistically significant level compared to healthy controls (33.1% vs. 32.6%). CONCLUSIONS PSGL-1 VNTR polymorphism may have limited contribution to the thrombotic tendency in patients with BD.
Collapse
Affiliation(s)
- Fulya Cosan
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey.,Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Oku
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozgun M Gedar Totuk
- Department of Ophthalmology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Neslihan Abaci
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Duran Ustek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Reyhan Diz Kucukkaya
- Division of Hematology, Department of Internal Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Ahmet Gul
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
39
|
Correlation between factor (F)XIa, FIXa and tissue factor and trauma severity. J Trauma Acute Care Surg 2017; 82:1073-1079. [PMID: 28328676 DOI: 10.1097/ta.0000000000001449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND It has been observed that trauma patients often display elevated procoagulant activity that could be caused, in part, by tissue factor (TF). We previously observed that trauma patients with thermal, blunt, and penetrating injuries have active FIXa and FXIa in their plasma. In the current study, we evaluated the effect of injury severity, with or without accompanying shock, on the frequency and concentration of TF, FIXa, and FXIa in plasma from trauma patients. METHODS Eighty trauma patients were enrolled and divided equally into four groups based on their Injury Severity Score and base deficit:Blood was collected at a 0 time-point (first blood draw upon arrival at hospital) and citrate plasma was prepared, frozen, and stored at -80 °C. FXIa, FIXa, and TF activity assays were based on a response of thrombin generation to corresponding monoclonal inhibitory antibodies. RESULTS The frequency and median concentrations of TF were relatively low in non-severe injury groups (17.5% and 0 pM, respectively) but were higher in those with severe injury (65% and 0.5 pM, respectively). Although FXIa was observed in 91% of samples and was high across all four groups, median concentrations were highest (by approximately fourfold) in groups with shock. FIXa was observed in 80% of plasma samples and concentrations varied in a relatively narrow range between all four groups. No endogenous activity was observed in plasma from healthy individuals. CONCLUSIONS (1) Frequency and concentration of TF is higher in patients with a higher trauma severity. (2) Concentration of FXIa is higher in patients with shock. (3) For the first time reported, the vast majority of plasma samples from trauma patients contain active FIXa and FXIa. LEVEL OF EVIDENCE Prognostic/epidemiological study, level II.
Collapse
|
40
|
Tripisciano C, Weiss R, Eichhorn T, Spittler A, Heuser T, Fischer MB, Weber V. Different Potential of Extracellular Vesicles to Support Thrombin Generation: Contributions of Phosphatidylserine, Tissue Factor, and Cellular Origin. Sci Rep 2017; 7:6522. [PMID: 28747771 PMCID: PMC5529579 DOI: 10.1038/s41598-017-03262-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/25/2017] [Indexed: 01/05/2023] Open
Abstract
Cells release diverse types of vesicles constitutively or in response to proliferation, injury, inflammation, or stress. Extracellular vesicles (EVs) are crucial in intercellular communication, and there is emerging evidence for their roles in inflammation, cancer, and thrombosis. We investigated the thrombogenicity of platelet-derived EVs, which constitute the majority of circulating EVs in human blood, and assessed the contributions of phosphatidylserine and tissue factor exposure on thrombin generation. Addition of platelet EVs to vesicle-free human plasma induced thrombin generation in a dose-dependent manner, which was efficiently inhibited by annexin V, but not by anti-tissue factor antibodies, indicating that it was primarily due to the exposure of phosphatidylserine on platelet EVs. Platelet EVs exhibited higher thrombogenicity than EVs from unstimulated monocytic THP-1 cells, but blockade of contact activation significantly reduced thrombin generation by platelet EVs. Stimulation of monocytic cells with lipopolysaccharide enhanced their thrombogenicity both in the presence and in the absence of contact activation, and thrombin generation was efficiently blocked by anti-tissue factor antibodies. Our study provides evidence that irrespective of their cellular origin, EVs support the propagation of coagulation via the exposure of phosphatidylserine, while the expression of functional tissue factor on EVs appears to be limited to pathological conditions.
Collapse
Affiliation(s)
- Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria
| | - Tanja Eichhorn
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Thomas Heuser
- Electron Microscopy Facility, Vienna Biocenter Core Facilities, Dr.-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael Bernhard Fischer
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria.,Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria. .,Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500, Krems, Austria.
| |
Collapse
|
41
|
Brambilla M, Rossetti L, Zara C, Canzano P, Giesen PL, Tremoli E, Camera M. Do methodological differences account for the current controversy on tissue factor expression in platelets? Platelets 2017. [DOI: 10.1080/09537104.2017.1327653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Chiara Zara
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost 2017; 117:1296-1316. [PMID: 28569921 DOI: 10.1160/th16-12-0943] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research.
Collapse
Affiliation(s)
| | - Chantal M Boulanger
- Victoria Ridger, PhD, Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK, E-mail: , or, Chantal M. Boulanger, PhD, INSERM UMR-S 970, Paris Cardiovascular Research Center - PARCC, 56 rue Leblanc, 75015 Paris, France, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Trainor PJ, Hill BG, Carlisle SM, Rouchka EC, Rai SN, Bhatnagar A, DeFilippis AP. Systems characterization of differential plasma metabolome perturbations following thrombotic and non-thrombotic myocardial infarction. J Proteomics 2017; 160:38-46. [PMID: 28341595 DOI: 10.1016/j.jprot.2017.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 01/17/2023]
Abstract
Myocardial infarction (MI) is an acute event characterized by myocardial necrosis. Thrombotic MI is caused by spontaneous atherosclerotic plaque disruption that results in a coronary thrombus; non-thrombotic MI occurs secondary to oxygen supply-demand mismatch. We sought to characterize the differential metabolic perturbations associated with these subtypes utilizing a systems approach. Subjects presenting with thrombotic MI, non-thrombotic MI and stable coronary artery disease (CAD) were included. Whole blood was collected at two acute time-points and at a time-point representing the quiescent stable disease state. Plasma metabolites were analyzed by untargeted UPLC-MS/MS and GC-MS. A weighted network was constructed, and modules were determined from the resulting topology. To determine perturbed modules, an enrichment analysis for metabolites that demonstrated between-group differences in temporal change across the disease state transition was then conducted. BIOLOGICAL SIGNIFICANCE We report evidence of metabolic perturbations of acute MI and determine perturbations specific to thrombotic MI. Specifically, a module characterized by elevated glucocorticoid steroid metabolites following acute MI showed greatest perturbation following thrombotic MI. Modules characterized by elevated pregnenolone metabolites, monoacylglycerols, and acylcarnitines were perturbed following acute MI. A module characterized by a decrease in plasma amino acids following thrombotic MI was differentially perturbed between MI subtypes.
Collapse
Affiliation(s)
- Patrick J Trainor
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States; Diabetes and Obesity Center, University of Louisville, United States
| | - Bradford G Hill
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States; Diabetes and Obesity Center, University of Louisville, United States
| | - Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville, United States
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, United States
| | - Shesh N Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, United States
| | - Aruni Bhatnagar
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States; Diabetes and Obesity Center, University of Louisville, United States
| | - Andrew P DeFilippis
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States; Diabetes and Obesity Center, University of Louisville, United States; KentuckyOne/Jewish Hospital, United States; Johns Hopkins University, United States.
| |
Collapse
|
44
|
Gresele P, Falcinelli E, Sebastiano M, Momi S. Matrix Metalloproteinases and Platelet Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:133-165. [PMID: 28413027 DOI: 10.1016/bs.pmbts.2017.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets contain and release several matrix metalloproteinases (MMPs) and their tissue inhibitors of matrix metalloproteinases (TIMPs), including MMP-1, -2, -3, -9, and -14 and TIMP-1, -2, and -4. Although devoid of a nucleus, platelets also synthesize TIMP-2 upon activation. Platelet-released MMPs/TIMPs, as well as MMPs generated by other cells within the cardiovascular system, modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathologic thrombus formation by the release from platelets and/or by the local generation of some MMPs. Moreover, platelets may localize the production of leukocyte-derived MMPs to sites of vascular damage, contributing to atherosclerosis development and complications and to arterial aneurysm formation. Finally, the interaction between platelets and tumor cells is strongly influenced by MMPs/TIMPs. All these mechanisms are emerging as important in atherothrombosis, inflammatory disease, and cancer growth and dissemination. Increasing knowledge of these mechanisms may open the way to novel therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Gresele
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | - Emanuela Falcinelli
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Manuela Sebastiano
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Stefania Momi
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
45
|
Panes O, González C, Hidalgo P, Valderas JP, Acevedo M, Contreras S, Sánchez X, Pereira J, Rigotti A, Mezzano D. Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis 2016; 257:164-171. [PMID: 28142075 DOI: 10.1016/j.atherosclerosis.2016.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/04/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS High plasma LDL-cholesterol (LDL-C) and platelet responses have major pathogenic roles in atherothrombosis. Thus, statins and anti-platelet drugs constitute mainstays in cardiovascular prevention/treatment. However, the role of platelet tissue factor-dependent procoagulant activity (TF-PCA) has remained unexplored in hypercholesterolemia. We aimed to study platelet TF-PCA and its relationship with membrane cholesterol in vitro and in 45 hypercholesterolemic patients (HC-patients) (LDL-C >3.37 mmol/L, 130 mg/dL) and 37 control subjects (LDL-C <3.37 mmol/L). The effect of 1-month administration of 80 mg/day atorvastatin (n = 21) and 20 mg/day rosuvastatin (n = 24) was compared. METHODS Platelet TF-PCA was induced by GPIbα activation with VWF-ristocetin. RESULTS Cholesterol-enriched platelets in vitro had augmented aggregation/secretion and platelet FXa generation (1.65-fold increase, p = 0.01). HC-patients had 1.5-, 2.3- and 2.5-fold increases in platelet cholesterol, TF protein and activity, respectively; their platelets had neither hyper-aggregation nor endogenous thrombin generation (ETP). Rosuvastatin, but not atorvastatin, normalized platelet cholesterol, TF protein and FXa generation. It also increased slightly the plasma HDL-C levels, which correlated negatively with TF-PCA. CONCLUSIONS Platelets from HC-patients were not hyper-responsive to low concentrations of classical agonists and had normal PRP-ETP, before and after statin administration. However, washed platelets from HC-patients had increased membrane cholesterol, TF protein and TF-PCA. The platelet TF-dependent PCA was specifically expressed after VWF-induced GPIbα activation. Rosuvastatin, but not atorvastatin treatment, normalized the membrane cholesterol, TF protein and TF-PCA in HC-patients, possibly unveiling a new pleiotropic effect of rosuvastatin. Modulation of platelet TF-PCA may become a novel target to prevent/treat atherothrombosis without increasing bleeding risks.
Collapse
Affiliation(s)
- Olga Panes
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César González
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Hidalgo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Valderas
- Faculty of Medicine and Odontology, University of Antofagasta, Chile
| | - Mónica Acevedo
- Department of Cardiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susana Contreras
- Department of Nutrition and Metabolic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Sánchez
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Attilio Rigotti
- Department of Nutrition and Metabolic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
46
|
Lee H, Chae S, Park J, Bae J, Go EB, Kim SJ, Kim H, Hwang D, Lee SW, Lee SY. Comprehensive Proteome Profiling of Platelet Identified a Protein Profile Predictive of Responses to An Antiplatelet Agent Sarpogrelate. Mol Cell Proteomics 2016; 15:3461-3472. [PMID: 27601597 DOI: 10.1074/mcp.m116.059154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 01/25/2023] Open
Abstract
Sarpogrelate is an antiplatelet agent widely used to treat arterial occlusive diseases. Evaluation of platelet aggregation is essential to monitor therapeutic effects of sarpogrelate. Currently, no molecular signatures are available to evaluate platelet aggregation. Here, we performed comprehensive proteome profiling of platelets collected from 18 subjects before and after sarpogrelate administration using LC-MS/MS analysis coupled with extensive fractionation. Of 5423 proteins detected, we identified 499 proteins affected by sarpogrelate and found that they strongly represented cellular processes related to platelet activation and aggregation, including cell activation, coagulation, and vesicle-mediated transports. Based on the network model of the proteins involved in these processes, we selected three proteins (cut-like homeobox 1; coagulation factor XIII, B polypeptide; and peptidylprolyl isomerase D) that reflect the platelet aggregation-related processes after confirming their alterations by sarpogrelate in independent samples using Western blotting. Our proteomic approach provided a protein profile predictive of therapeutic effects of sarpogrelate.
Collapse
Affiliation(s)
- Hangyeore Lee
- From the ‡Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sehyun Chae
- §Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Jisook Park
- ¶Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.,‖Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Jingi Bae
- From the ‡Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Bi Go
- ‖Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Su-Jin Kim
- From the ‡Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hokeun Kim
- From the ‡Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Daehee Hwang
- §Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea;
| | - Sang-Won Lee
- From the ‡Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea;
| | - Soo-Youn Lee
- ¶Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea;
| |
Collapse
|
47
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
48
|
Characterizing the Mechanistic Pathways of the Instant Blood-Mediated Inflammatory Reaction in Xenogeneic Neonatal Islet Cell Transplantation. Transplant Direct 2016; 2:e77. [PMID: 27500267 PMCID: PMC4946518 DOI: 10.1097/txd.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
Supplemental digital content is available in the text. Introduction The instant blood-mediated inflammatory reaction (IBMIR) causes major loss of islets after transplantation and consequently represents the initial barrier to survival of porcine neonatal islet cell clusters (NICC) after xenotransplantation. Methods This study used novel assays designed to characterize the various immunologic components responsible for xenogeneic IBMIR to identify initiators and investigate processes of IBMIR-associated coagulation, complement activation and neutrophil infiltration. The IBMIR was induced in vitro by exposing NICC to platelet-poor or platelet-rich human plasma or isolated neutrophils. Results We found that xenogeneic IBMIR was characterized by rapid, platelet-independent thrombin generation, with addition of platelets both accelerating and exacerbating this response. Platelet-independent complement activation was observed as early as 30 minutes after NICC exposure to plasma. However, membrane attack complex formation was not observed in NICC histopathology sections until after 60 minutes. We demonstrated for the first time that NICC-mediated complement activation was necessary for neutrophil activation in the xenogeneic IBMIR setting. Finally, using the Seahorse extracellular flux analyzer, we identified substantial loss of islet function (up to 40%) after IBMIR with surviving NICC showing evidence of mitochondrial damage. Conclusions This study used novel assays to describe multiple key pathways by which xenogeneic IBMIR causes islet destruction, allowing further refinement of future interventions aimed at resolving the issue of IBMIR in xenotransplantation.
Collapse
|
49
|
Abstract
Blood from patients with sickle cell disease contains microparticles (MP) derived from multiple cell sources, including red cells, platelets, monocytes and endothelial cells. MPs are of great interest because of their disease associations, their status as promising biomarkers, and the intercellular communications they mediate. To illustrate the likelihood of their relevance in sickle cell disease, we discuss the nature of MP, their profiling in sickle disease, some caveats relevant to their detection, their roles in supporting coagulation and the disparate influences they may exert upon the pathobiology of sickle cell disease.
Collapse
Affiliation(s)
- Robert P Hebbel
- Division of Haematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nigel S Key
- Division of Haematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
El Haouari M, Rosado JA. Medicinal Plants with Antiplatelet Activity. Phytother Res 2016; 30:1059-71. [PMID: 27062716 DOI: 10.1002/ptr.5619] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/29/2016] [Accepted: 03/12/2016] [Indexed: 12/25/2022]
Abstract
Blood platelets play an essential role in the hemostasis and wound-healing processes. However, platelet hyperactivity is associated to the development and the complications of several cardiovascular diseases. In this sense, the search for potent and safer antiplatelet agents is of great interest. This article provides an overview of experimental studies performed on medicinal plants with antiplatelet activity available through literature with particular emphasis on the bioactive constituents, the parts used, and the various platelet signaling pathways modulated by medicinal plants. From this review, it was suggested that medicinal plants with antiplatelet activity mainly belong to the family of Asteraceae, Rutaceae, Fabaceae, Lamiaceae, Zygophyllaceae, Rhamnaceae, Liliaceae, and Zingiberaceae. The antiplatelet effect is attributed to the presence of bioactive compounds such as polyphenols, flavonoids, coumarins, terpenoids, and other substances which correct platelet abnormalities by interfering with different platelet signalization pathways including inhibition of the ADP pathway, suppression of TXA2 formation, reduction of intracellular Ca(2+) mobilization, and phosphoinositide breakdown, among others. The identification and/or structure modification of the plant constituents and the understanding of their action mechanisms will be helpful in the development of new antiplatelet agents based on medicinal plants which could contribute to the prevention of thromboembolic-related disorders by inhibiting platelet aggregation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Régional des Métiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P. 1178, Taza Gare, Morocco.,Faculté Polydisciplinaire de Taza, Laboratoire des Matériaux, Substances Naturelles, Environnement et Modélisation (LMSNEM), Université Sidi Mohamed Ben Abdellah, B.P. 1223, Taza Gare, Morocco
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|