1
|
Liang C, Malik S, He M, Groom L, Ture SK, O'Connor TN, Morrell CN, Dirksen RT. Compound heterozygous RYR1-RM mouse model reveals disease pathomechanisms and muscle adaptations to promote postnatal survival. FASEB J 2024; 38:e70120. [PMID: 39466056 DOI: 10.1096/fj.202401189r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in the type I ryanodine receptor (RYR1) result in a wide range of muscle disorders referred to as RYR1-related myopathies (RYR1-RM). We developed the first RYR1-RM mouse model resulting from co-inheritance of two different RYR1 missense alleles (Ryr1TM/SC-ΔL mice). Ryr1TM/SC-ΔL mice exhibit a severe, early onset myopathy characterized by decreased body/muscle mass, muscle weakness, hypotrophy, reduced RYR1 expression, and unexpectedly, incomplete postnatal lethality with a plateau survival of ~50% at 12 weeks of age. Ryr1TM/SC-ΔL mice display reduced respiratory function, locomotor activity, and in vivo muscle strength. Extensor digitorum longus muscles from Ryr1TM/SC-ΔL mice exhibit decreased cross-sectional area of type IIb and type IIx fibers, as well as a reduction in number of type IIb fibers. Ex vivo functional analyses revealed reduced Ca2+ release and specific force production during electrically-evoked twitch stimulation. In spite of a ~threefold reduction in RYR1 expression in single muscle fibers from Ryr1TM/SC-ΔL mice at 4 weeks and 12 weeks of age, RYR1 Ca2+ leak was not different from that of fibers from control mice at either age. Proteomic analyses revealed alterations in protein synthesis, folding, and degradation pathways in the muscle of 4- and 12-week-old Ryr1TM/SC-ΔL mice, while proteins involved in the extracellular matrix, dystrophin-associated glycoprotein complex, and fatty acid metabolism were upregulated in Ryr1TM/SC-ΔL mice that survive to 12 weeks of age. These findings suggest that adaptations that optimize RYR1 expression/Ca2+ leak balance, sarcolemmal stability, and fatty acid biosynthesis provide Ryr1TM/SC-ΔL mice with an increased survival advantage during postnatal development.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara K Ture
- Department of Medicine, Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N Morrell
- Department of Medicine, Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Clayton JS, Vo C, Crane J, Scriba CK, Saker S, Larmonier T, Malfatti E, Romero NB, Ravenscroft G, Laing NG, Taylor RL. Generation of two iPSC lines from patients with inherited central core disease and concurrent malignant hyperthermia caused by dominant missense variants in the RYR1 gene. Stem Cell Res 2024; 77:103410. [PMID: 38583293 DOI: 10.1016/j.scr.2024.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024] Open
Abstract
RYR1 variants are the most common genetic cause of congenital myopathies, and typically cause central core disease (CCD) and/or malignant hyperthermia (MH). Here, we generated iPSC lines from two patients with CCD and MH caused by dominant RYR1 variants within the central region of the protein (p.Val2168Met and p.Arg2508Cys). Both lines displayed typical iPSC morphology, uniform expression of pluripotency markers, trilineage differentiation potential, and had normal karyotypes. These are the first RYR1 iPSC lines from patients with both CCD and MH. As these are common CCD/MH variants, these lines should be useful to study these conditions and test therapeutics.
Collapse
Affiliation(s)
- Joshua S Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia.
| | - Christina Vo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Jordan Crane
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Carolin K Scriba
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia; Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, WA, Australia
| | - Safaa Saker
- Genethon, DNA and Cell Bank, 91000 Evry, France
| | | | - Edoardo Malfatti
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, France; Université Paris Est, U955, INSERM, IMRB, F-94010 Créteil, France
| | - Norma B Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France; Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Rhonda L Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
3
|
Su J, Huang M. Recurrent malignant hyperthermia after scoliosis correction surgery. World J Emerg Med 2024; 15:70-72. [PMID: 38188551 PMCID: PMC10765081 DOI: 10.5847/wjem.j.1920-8642.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Junfeng Su
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
- Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, Ministry of Education of the People’s Republic of China, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
- Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, Ministry of Education of the People’s Republic of China, Hangzhou 310052, China
| |
Collapse
|
4
|
Keen JA, Beaulieu RA, Black EH. Central Core Myopathy: A Case Report of a Rare Etiology of Myogenic Blepharoptosis. J Neuroophthalmol 2023; 43:e300-e301. [PMID: 34924535 DOI: 10.1097/wno.0000000000001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jamie A Keen
- Department of Ophthalmology (JAK, RAB, EHB), Kresge Eye Institute, Detroit, Michigan; and Consultants in Ophthalmic and Facial Plastic Surgery (RAB, EHB), Southfield, Michigan
| | | | | |
Collapse
|
5
|
Frassanito L, Sbaraglia F, Piersanti A, Vassalli F, Lucente M, Filetici N, Zanfini BA, Catarci S, Draisci G. Real Evidence and Misconceptions about Malignant Hyperthermia in Children: A Narrative Review. J Clin Med 2023; 12:3869. [PMID: 37373564 PMCID: PMC10299046 DOI: 10.3390/jcm12123869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Malignant hyperthermia is a rare but life-threatening pharmacogenetic disorder triggered by exposure to specific anesthetic agents. Although this occurrence could affect virtually any patient during the perioperative time, the pediatric population is particularly vulnerable, and it has a five-fold higher incidence in children compared to adults. In the last few decades, synergistic efforts among leading anesthesiology, pediatrics, and neurology associations have produced new evidence concerning the diagnostic pathway, avoiding unnecessary testing and limiting false diagnoses. However, a personalized approach and an effective prevention policy focused on clearly recognizing the high-risk population, defining perioperative trigger-free hospitalization, and rapid activation of supportive therapy should be improved. Based on epidemiological data, many national scientific societies have produced consistent guidelines, but many misconceptions are common among physicians and healthcare workers. This review shall consider all these aspects and summarize the most recent updates.
Collapse
Affiliation(s)
- Luciano Frassanito
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Fabio Sbaraglia
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Alessandra Piersanti
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Francesco Vassalli
- Department of Critical Care and Perinatal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Monica Lucente
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Nicoletta Filetici
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Bruno Antonio Zanfini
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Stefano Catarci
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Gaetano Draisci
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| |
Collapse
|
6
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
7
|
Iyer KA, Barnakov V, Samsó M. Three-dimensional perspective on ryanodine receptor mutations causing skeletal and cardiac muscle-related diseases. Curr Opin Pharmacol 2023; 68:102327. [PMID: 36516687 PMCID: PMC9908851 DOI: 10.1016/j.coph.2022.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Mutations in RyR alter the cell's Ca2+ homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca2+ release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.
Collapse
Affiliation(s)
- Kavita A Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Vadim Barnakov
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Campiglio M, Dyrda A, Tuinte WE, Török E. Ca V1.1 Calcium Channel Signaling Complexes in Excitation-Contraction Coupling: Insights from Channelopathies. Handb Exp Pharmacol 2023; 279:3-39. [PMID: 36592225 DOI: 10.1007/164_2022_627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVβ1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.
Collapse
Affiliation(s)
- Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| | - Agnieszka Dyrda
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Wietske E Tuinte
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Enikő Török
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
10
|
Molecular mechanism of the severe MH/CCD mutation Y522S in skeletal ryanodine receptor (RyR1) by cryo-EM. Proc Natl Acad Sci U S A 2022; 119:e2122140119. [PMID: 35867837 PMCID: PMC9335238 DOI: 10.1073/pnas.2122140119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ryanodine receptors (RyRs) are main regulators of intracellular Ca2+ release and muscle contraction. The Y522S mutation of RyR1 causes central core disease, a weakening myopathy, and malignant hyperthermia, a sudden and potentially fatal response to anesthetics or heat. Y522 is in the core of the N-terminal subdomain C of RyR1 and the mechanism of how this mutation orchestrates malfunction is unpredictable for this 2-MDa ion channel, which has four identical subunits composed of 15 distinct cytoplasmic domains each. We expressed and purified the RyR1 rabbit homolog, Y523S, from HEK293 cells and reconstituted it in nanodiscs under closed and open states. The high-resolution cryogenic electron microscopic (cryo-EM) three-dimensional (3D) structures show that the phenyl ring of Tyr functions in a manner analogous to a "spacer" within an α-helical bundle. Mutation to the much smaller Ser alters the hydrophobic network within the bundle, triggering rearrangement of its α-helices with repercussions in the orientation of most cytoplasmic domains. Examining the mutation-induced readjustments exposed a series of connected α-helices acting as an ∼100 Å-long lever: One end protrudes toward the dihydropyridine receptor, its molecular activator (akin to an antenna), while the other end reaches the Ca2+ activation site. The Y523S mutation elicits channel preactivation in the absence of any activator and full opening at 1.5 µM free Ca2+, increasing by ∼20-fold the potency of Ca2+ to activate the channel compared with RyR1 wild type (WT). This study identified a preactivated pathological state of RyR1 and a long-range lever that may work as a molecular switch to open the channel.
Collapse
|
11
|
Lee GS, Kwak G, Bae JH, Han JP, Nam SH, Lee JH, Song S, Kim GD, Park TS, Choi YK, Choi BO, Yeom SC. Morc2a p.S87L mutant mice develop peripheral and central neuropathies associated with neuronal DNA damage and apoptosis. Dis Model Mech 2021; 14:dmm049123. [PMID: 34695197 PMCID: PMC8560500 DOI: 10.1242/dmm.049123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
The microrchidia (MORC)-family CW-type zinc finger 2 (MORC2) gene is related to DNA repair, adipogenesis and epigenetic silencing via the human silencing hub (HUSH) complex. MORC2 missense mutation is known to cause peripheral neuropathy of Charcot-Marie-Tooth disease type 2 Z (CMT2Z). However, there have been reports of peripheral and central neuropathy in patients, and the disease has been co-categorized with developmental delay, impaired growth, dysmorphic facies and axonal neuropathy (DIGFAN). The etiology of MORC2 mutation-mediated neuropathy remains uncertain. Here, we established and analyzed Morc2a p.S87L mutant mice. Morc2a p.S87L mice displayed the clinical symptoms expected in human CMT2Z patients, such as axonal neuropathy and skeletal muscle weakness. Notably, we observed severe central neuropathy with cerebella ataxia, cognition disorder and motor neuron degeneration in the spinal cord, and this seemed to be evidence of DIGFAN. Morc2a p.S87L mice exhibited an accumulation of DNA damage in neuronal cells, followed by p53/cytochrome c/caspase 9/caspase 3-mediated apoptosis. This study presents a new mouse model of CMT2Z and DIGFAN with a Morc2a p.S87L mutation. We suggest that neuronal apoptosis is a possible target for therapeutic approach in MORC2 missense mutation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Geon Kwak
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
| | - Ji Hyun Bae
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Soo Hyun Nam
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
| | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Sumin Song
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Yang Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Nueungdong-ro, Gwangjin, Seoul 05029, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
- Stem Cell and Regenerative Medicine Institute, Samgsung Medical Center, Seoul 06351, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanank, Seoul 08826, South Korea
| |
Collapse
|
12
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|
13
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
14
|
Cotta A, Carvalho E, da-Cunha-Junior A, Navarro MM, Paim JF, Valicek J, Baptista-Junior S, da Silveira EB, Lima MI, Carellos EVM, de-La-Rocque-Ferreira A, Takata RI, Horvath R. Muscle fat replacement and modified ragged red fibers in two patients with reversible infantile respiratory chain deficiency. Neuromuscul Disord 2021; 31:551-557. [PMID: 33832841 DOI: 10.1016/j.nmd.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022]
Abstract
Reversible infantile respiratory chain deficiency is a severe neonatal mitochondrial myopathy that resolves spontaneously. It is caused by the homoplasmic m.14674T>C mtDNA mutation and additional nuclear variants in genes interacting with mt-tRNAGlu have been detected in some patients. We present detailed clinical, imaging, and muscle biopsy findings in a boy and a girl with neonatal hypotonia, feeding difficulties, lactic acidosis, and ragged red fibers. Both patients show fat replacement on muscle imaging, which was mild in the boy, but severe in the girl, affecting mostly the posterior leg muscles. In addition to the homoplasmic m.14674T>C, both patients carried heterozygous variants in QRSL1 (c. 686T>G; p.Val299Gly) and EARS2 (c.358C>T; p.Arg120Trp), respectively. It is very important to recognize the clinical and morphological signs of reversible infantile respiratory chain deficiency as patients should receive intensive supportive care in the first 6 months of life. Understanding the mechanism of the spontaneous recovery may lead to novel therapeutic perspectives in other mitochondrial diseases.
Collapse
Affiliation(s)
- Ana Cotta
- Pathology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil.
| | - Elmano Carvalho
- Neurophysiology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | - Mônica Machado Navarro
- Pediatrics and Genetics Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Julia Filardi Paim
- Pathology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Jaquelin Valicek
- Neurophysiology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Sidney Baptista-Junior
- Pathology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Eni Braga da Silveira
- Electron Microscopy Department, The SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Maria Isabel Lima
- Electron Microscopy Department, The SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Ericka Viana Machado Carellos
- Department of Pediatrics, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Joao Paulo II Children Hospital, Minas Gerais Hospitalar Foundation, Belo Horizonte, Brazil
| | | | - Reinaldo Issao Takata
- Molecular Biology Department, The SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Galleni Leão L, Santos Souza L, Nogueira L, Pavanello RDCM, Gurgel-Giannetti J, Reed UC, Oliveira ASB, Cuperman T, Cotta A, FPaim J, Zatz M, Vainzof M. Dominant or recessive mutations in the RYR1 gene causing central core myopathy in Brazilian patients. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:274-282. [PMID: 33458582 PMCID: PMC7783440 DOI: 10.36185/2532-1900-030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/06/2022]
Abstract
Central Core Disease (CCD) is an inherited neuromuscular disorder characterized by the presence of cores in muscle biopsy. CCD is caused by mutations in the RYR1 gene. This gene encodes the ryanodine receptor 1, which is an intracellular calcium release channel from the sarcoplasmic reticulum to the cytosol in response to depolarization of the plasma membrane. Mutations in this gene are also associated with susceptibility to Malignant Hyperthermia (MHS). In this study, we evaluated 20 families with clinical and histological characteristics of CCD to identify primary mutations in patients, for diagnosis and genetic counseling of the families. We identified variants in the RYR1 gene in 19/20 families. The molecular pathogenicity was confirmed in 16 of them. Most of these variants (22/23) are missense and unique in the families. Two variants were recurrent in two different families. We identified six families with biallelic mutations, five compound heterozygotes with no consanguinity, and one homozygous, with consanguineous parents, resulting in 30% of cases with possible autosomal recessive inheritance. We identified seven novel variants, four of them classified as pathogenic. In one family, we identified two mutations in exon 102, segregating in cis, suggesting an additive effect of two mutations in the same allele. This work highlights the importance of using Next-Generation Sequencing technology for the molecular diagnosis of genetic diseases when a very large gene is involved, associated to a broad distribution of the mutations along it. These data also influence the prevention through adequate genetic counseling for the families and cautions against malignant hyperthermia susceptibility.
Collapse
Affiliation(s)
- Leonardo Galleni Leão
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Lucas Santos Souza
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Letícia Nogueira
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Gurgel-Giannetti
- Depart of Pediatrics, Medical School of Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Umbertina C Reed
- Department of Neurology, Medical School of the University of Sao Paulo, São Paulo, Brazil
| | - Acary S B Oliveira
- Department of Neurology and Neurosurgery, Division of Neuromuscular Disorders, Federal University of São Paulo (Unifesp), São Paulo SP, Brazil
| | - Thais Cuperman
- Department of Neurology and Neurosurgery, Division of Neuromuscular Disorders, Federal University of São Paulo (Unifesp), São Paulo SP, Brazil
| | - Ana Cotta
- Department of Pathology SARAH Network of Rehabilitation Hospitals, Belo Horizonte, MG, Brazil
| | - Julia FPaim
- Department of Pathology SARAH Network of Rehabilitation Hospitals, Belo Horizonte, MG, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Nix JS, Moore SA. What Every Neuropathologist Needs to Know: The Muscle Biopsy. J Neuropathol Exp Neurol 2020; 79:719-733. [PMID: 32529201 PMCID: PMC7304986 DOI: 10.1093/jnen/nlaa046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Competence in muscle biopsy evaluation is a core component of neuropathology practice. The practicing neuropathologist should be able to prepare frozen sections of muscle biopsies with minimal artifacts and identify key histopathologic features of neuromuscular disease in hematoxylin and eosin-stained sections as well as implement and interpret a basic panel of additional histochemical, enzyme histochemical, and immunohistochemical stains. Important to everyday practice is a working knowledge of normal muscle histology at different ages, muscle motor units, pitfalls of myotendinous junctions, nonpathologic variations encountered at traditional and nontraditional muscle sites, the pathophysiology of myonecrosis and regeneration, and approaches to distinguish muscular dystrophies from inflammatory myopathies and other necrotizing myopathies. Here, we provide a brief overview of what every neuropathologist needs to know concerning the muscle biopsy.
Collapse
Affiliation(s)
- James S Nix
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
17
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
18
|
Lawal TA, Todd JJ, Witherspoon JW, Bönnemann CG, Dowling JJ, Hamilton SL, Meilleur KG, Dirksen RT. Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skelet Muscle 2020; 10:32. [PMID: 33190635 PMCID: PMC7667763 DOI: 10.1186/s13395-020-00243-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The RYR1 gene, which encodes the sarcoplasmic reticulum calcium release channel or type 1 ryanodine receptor (RyR1) of skeletal muscle, was sequenced in 1988 and RYR1 variations that impair calcium homeostasis and increase susceptibility to malignant hyperthermia were first identified in 1991. Since then, RYR1-related myopathies (RYR1-RM) have been described as rare, histopathologically and clinically heterogeneous, and slowly progressive neuromuscular disorders. RYR1 variants can lead to dysfunctional RyR1-mediated calcium release, malignant hyperthermia susceptibility, elevated oxidative stress, deleterious post-translational modifications, and decreased RyR1 expression. RYR1-RM-affected individuals can present with delayed motor milestones, contractures, scoliosis, ophthalmoplegia, and respiratory insufficiency. Historically, RYR1-RM-affected individuals were diagnosed based on morphologic features observed in muscle biopsies including central cores, cores and rods, central nuclei, fiber type disproportion, and multi-minicores. However, these histopathologic features are not always specific to RYR1-RM and often change over time. As additional phenotypes were associated with RYR1 variations (including King-Denborough syndrome, exercise-induced rhabdomyolysis, lethal multiple pterygium syndrome, adult-onset distal myopathy, atypical periodic paralysis with or without myalgia, mild calf-predominant myopathy, and dusty core disease) the overlap among diagnostic categories is ever increasing. With the continuing emergence of new clinical subtypes along the RYR1 disease spectrum and reports of adult-onset phenotypes, nuanced nomenclatures have been reported (RYR1- [related, related congenital, congenital] myopathies). In this narrative review, we provide historical highlights of RYR1 research, accounts of the main diagnostic disease subtypes and propose RYR1-related disorders (RYR1-RD) as a unified nomenclature to describe this complex and evolving disease spectrum.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Joshua J Todd
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Departments of Paediatrics and Molecular Genetics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Susan L Hamilton
- Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Katherine G Meilleur
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
|
20
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
21
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
22
|
Carraro U. Thirty years of translational research in Mobility Medicine: Collection of abstracts of the 2020 Padua Muscle Days. Eur J Transl Myol 2020; 30:8826. [PMID: 32499887 PMCID: PMC7254447 DOI: 10.4081/ejtm.2019.8826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
23
|
Zecevic N, Arsenijevic V, Manolakos E, Papoulidis I, Theocharis G, Sartsidis A, Tsagas T, Tziotis I, Dagklis T, Kalogeros G, Tsakiridis I, Filipovic Stankovic M, Eleftheriades M. New Compound Heterozygous Splice Site Mutations of the Skeletal Muscle Ryanodine Receptor ( RYR1) Gene Manifest Fetal Akinesia: A Linkage with Congenital Myopathies. Mol Syndromol 2020; 11:104-109. [PMID: 32655342 DOI: 10.1159/000507034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been linked to malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia. RYR1 is an intracellular calcium release channel and plays a crucial role in the sarcoplasmic reticulum and transverse tubule connection. Here, we report 2 fetuses from the same parents with compound heterozygous mutations in the RYR1 gene (c.10347+1G>A and c.10456-2Α>G) who presented with fetal akinesia and polyhydramnios at 27 and 19 weeks of gestation with intrauterine growth restriction in the third pregnancy. The prospective parents of the fetuses were heterozygous carriers for c.10456-2Α>G (mother) and c.10347+1G>A (father). Both mutations affect splice sites resulting in dysfunctional protein forms probably missing crucial domains of the C-terminus. Our findings reveal a new RYR1 splice site mutation (c.10456-2Α>G) that may be associated with the clinical features of myopathies, expanding the RYR1 spectrum related to these pathologies.
Collapse
Affiliation(s)
- Nebojsa Zecevic
- Obstetric and Gynecological Clinic Narodni Front, Belgrade, Serbia
| | | | | | | | | | | | - Tryfon Tsagas
- Department of Obstetrics and Gynecology, IASO Maternity Hospital, Athens, Greece
| | - Ioannis Tziotis
- Department of Obstetrics and Gynecology, IASO Maternity Hospital, Athens, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kalogeros
- Department of Obstetrics and Gynecology, IASO Thessaly Maternity Hospital, Larissa, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Makarios Eleftheriades
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Volpatti JR, Endo Y, Knox J, Groom L, Brennan S, Noche R, Zuercher WJ, Roy P, Dirksen RT, Dowling JJ. Identification of drug modifiers for RYR1-related myopathy using a multi-species discovery pipeline. eLife 2020; 9:52946. [PMID: 32223895 PMCID: PMC7202896 DOI: 10.7554/elife.52946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ryanodine receptor type I-related myopathies (RYR1-RMs) are a common group of childhood muscle diseases associated with severe disabilities and early mortality for which there are no available treatments. The goal of this study is to identify new therapeutic targets for RYR1-RMs. To accomplish this, we developed a discovery pipeline using nematode, zebrafish, and mammalian cell models. We first performed large-scale drug screens in C. elegans which uncovered 74 hits. Targeted testing in zebrafish yielded positive results for two p38 inhibitors. Using mouse myotubes, we found that either pharmacological inhibition or siRNA silencing of p38 impaired caffeine-induced Ca2+ release from wild type cells while promoting intracellular Ca2+ release in Ryr1 knockout cells. Lastly, we demonstrated that p38 inhibition blunts the aberrant temperature-dependent increase in resting Ca2+ in myotubes from an RYR1-RM mouse model. This unique platform for RYR1-RM therapy development is potentially applicable to a broad range of neuromuscular disorders. Muscle cells have storage compartments stuffed full of calcium, which they release to trigger a contraction. This process depends on a channel-shaped protein called the ryanodine receptor, or RYR1 for short. When RYR1 is activated, it releases calcium from storage, which floods the muscle cell. Mutations in the gene that codes for RYR1 in humans cause a group of rare diseases called RYR1-related myopathies. The mutations change calcium release in muscle cells, which can make movement difficult, and make it hard for people to breathe. At the moment, RYR1 myopathies have no treatment. It is possible that repurposing existing drugs could benefit people with RYR1-related myopathies, but trialing treatments takes time. The fastest and cheapest way to test whether compounds might be effective is to try them on very simple animals, like nematode worms. But even though worms and humans share certain genes, treatments that work for worms do not always work for humans. Luckily, it is sometimes possible to test whether compounds might be effective by trying them out on complex mammals, like mice. Unfortunately, these experiments are slow and expensive. A compromise involves testing on animals such as zebrafish. So far, none of these methods has been successful in discovering treatments for RYR1-related myopathies. To maximize the strengths of each animal model, Volpatti et al. combined them, developing a fast and powerful way to test new drugs. The first step is an automated screening process that trials thousands of chemicals on nematode worms. This takes just two weeks. The second step is to group the best treatments according to their chemical similarities and test them again in zebrafish. This takes a month. The third and final stage is to test promising chemicals from the zebrafish in mouse muscle cells. Of the thousands of compounds tested here, one group of chemicals stood out – treatments that block the activity of a protein called p38. Volpatti et al. found that blocking the p38 protein, either with drugs or by inactivating the gene that codes for it, changed muscle calcium release. This suggests p38 blockers may have potential as a treatment for RYR1-related myopathies in mammals. Using three types of animal to test new drugs maximizes the benefits of each model. This type of pipeline could identify new treatments, not just for RYR1-related myopathies, but for other diseases that involve genes or proteins that are similar across species. For RYR1-related myopathies specifically, the next step is to test p38 blocking treatments in mice. This could reveal whether the treatments have the potential to improve symptoms.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yukari Endo
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Linda Groom
- Department of Pharmacology, University of Rochester, Rochester, United States
| | - Stephanie Brennan
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ramil Noche
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - William J Zuercher
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina, Chapel Hill, United States
| | - Peter Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Robert T Dirksen
- Department of Pharmacology, University of Rochester, Rochester, United States
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Camptocormia as a Novel Phenotype in a Heterozygous POLG2 Mutation. Diagnostics (Basel) 2020; 10:diagnostics10020068. [PMID: 31991853 PMCID: PMC7168901 DOI: 10.3390/diagnostics10020068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/04/2022] Open
Abstract
Mitochondrial dysfunction is known to play a key role in the pathophysiological pathway of neurodegenerative disorders. Nuclear-encoded proteins are involved in mtDNA replication, including DNA polymerase gamma, which is the only known replicative mtDNA polymerase, encoded by nuclear genes Polymerase gamma 1 (POLG) and Polymerase gamma 2 (POLG2). POLG mutations are well-known as a frequent cause of mitochondrial myopathies of nuclear origin. However, only rare descriptions of POLG2 mutations leading to mitochondriopathies exist. Here we describe a 68-year-old woman presenting with a 20-year history of camptocormia, mild proximal weakness, and moderate CK increase. Muscle histology showed COX-negative fibres. Genetic analysis by next generation sequencing revealed an already reported heterozygous c.1192-8_1207dup24 mutation in the POLG2 gene. This is the first report on a POLG2 mutation leading to camptocormia as the main clinical phenotype, extending the phenotypic spectrum of POLG2 associated diseases. This underlines the broad phenotypic spectrum found in mitochondrial diseases, especially in mitochondrial disorders of nuclear origin.
Collapse
|
26
|
Schiemann AH, Roesl C, Pollock N, Langton E, Bulger T, Stowell KM. Identification and Functional Analysis of RYR1 Variants in a Family with a Suspected Myopathy and Associated Malignant Hyperthermia. J Neuromuscul Dis 2020; 7:51-60. [PMID: 31903994 DOI: 10.3233/jnd-190430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The ryanodine receptor 1 (RyR1) is a major skeletal muscle calcium release channel located in the sarcoplasmic reticulum and involved in excitation-contraction coupling. Variants in the gene encoding RyR1 have been linked to a range of neuromuscular disorders including myopathies and malignant hyperthermia (MH). OBJECTIVE We have identified three RYR1 variants (c.1983 G>A, p.Trp661*; c.7025A>G, p.Asn2342Ser and c.2447 C>T, p.Pro816Leu) in a family with a suspected myopathy and associated malignant hyperthermia susceptibility. We used calcium release assays to functionally characterise these variants in a recombinant system. METHODS Site-directed mutagenesis was used to introduce each variant separately into the human RYR1 cDNA. HEK293-T cells were transfected with the recombinant constructs and calcium release assays were carried out using 4-chloro-m-cresol (4-CmC) as the RyR1 agonist to investigate the functional consequences of each variant. RESULTS RYR1 c.1983 G>A, p.Trp661* resulted in a non-functional channel, c.7025A>G, p.Asn2342Ser in a hypersensitive channel and c.2447 C>T, p.Pro816Leu in a hypersensitive channel at higher concentrations of 4-CmC. CONCLUSIONS The p.Trp661* RYR1 variant should be considered as a risk factor for myopathies. The p.Asn2342Ser RYR1 variant, when expressed as a compound heterozygote with a nonsense mutation on the second allele, is likely to result in MH-susceptibility. The role of the p.Pro816Leu variant in MH remains unclear.
Collapse
Affiliation(s)
- Anja H Schiemann
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand
| | - Cornelia Roesl
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand.,Present address: LifeArc, Nine, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Manawatu, New Zealand.,Now retired
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Manawatu, New Zealand
| | - Kathryn M Stowell
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand
| |
Collapse
|
27
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
28
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
29
|
Avnon T, Svirsky R, Orr-Urtreger A, Sagie L, Fattal-Valevski A, Fellig Y, Ben-Shachar S. Clinical Observation: Effect of a Second Transpositioned Variant in a Family with Autosomal Dominant Ryanodine Receptor-1-Related Disease. J Pediatr Genet 2019; 9:121-124. [PMID: 32341817 DOI: 10.1055/s-0039-1698445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the ryanodine receptor-1 ( RYR1 ) may cause disorders inherited in an autosomal dominant/recessive fashion. Sequencing of RYR1 in an infant of Ashkenazi Jewish descent with severe hypotonia, dislocation of hip, torticollis and scoliosis, and paternal family history of autosomal dominant mild disease. The child was compound heterozygote for a missense variant c.7042G > A inherited from her father associated with autosomal dominant disease, and a missense variant of unknown significance c.5309C > T inherited from an asymptomatic mother. This case raises the possibility of a dominant disease complicated by a second variant in the other allele serving as a modifier.
Collapse
Affiliation(s)
- Tomer Avnon
- Department of Obstetrics and Gynecology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Svirsky
- Genetics Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Genetics Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liora Sagie
- Pediatric Neurology Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Shay Ben-Shachar
- Genetics Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Parker R, Schiemann AH, Langton E, Bulger T, Pollock N, Bjorksten A, Gillies R, Hutchinson D, Roxburgh R, Stowell KM. Functional Characterization of C-terminal Ryanodine Receptor 1 Variants Associated with Central Core Disease or Malignant Hyperthermia. J Neuromuscul Dis 2019; 4:147-158. [PMID: 28527222 PMCID: PMC5467713 DOI: 10.3233/jnd-170210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. Objective: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. Methods: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. Results: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. Conclusions: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.
Collapse
Affiliation(s)
- Remai Parker
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Andrew Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - Robyn Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - David Hutchinson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
31
|
RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7638946. [PMID: 31165076 PMCID: PMC6500691 DOI: 10.1155/2019/7638946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.
Collapse
|
32
|
Misaka T, Yoshihisa A, Takeishi Y. Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clin Chim Acta 2019; 495:123-128. [PMID: 30959043 DOI: 10.1016/j.cca.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023]
Abstract
Titin, encoded by the gene TTN, is the largest human protein, and plays central roles in sarcomeric structures and functions in skeletal and cardiac muscles. Mutations of TTN are causally related to specific types of muscular dystrophies and cardiomyopathies. A developed methodology of next generation sequencing has recently led to the identification of novel TTN mutations in such diseases. The clinical significance of titin is now emerging as a target for genetic strategies. Titin-related muscular dystrophies include tibial muscular dystrophy, limb-girdle muscular dystrophy, Emery-Dreifuss muscular dystrophy, hereditary myopathy with early respiratory failure, central core myopathy, centronuclear myopathies, and Salih myopathy. Truncation mutations of TTN have been identified as the most frequent genetic cause of dilated cardiomyopathy. In this review article, we highlight the role of titin and impact of TTN mutations in the pathogenesis of muscular dystrophies and cardiomyopathies. Recently, a novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of the urinary titin N-terminal fragments (U-TN) has been established. We discuss the clinical significance of U-TN in the diagnosis of muscular dystrophies and differential diagnosis of cardiomyopathies, as well as risk stratification in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan..
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
33
|
Kuo A, Todd JJ, Witherspoon JW, Lawal TA, Elliott J, Chrismer IC, Shelton MO, Razaqyar MS, Jain MS, Vasavada R, Waite M, Drinkard B, Michael D, Richarte A, Bönnemann CG, Meilleur KG. Reliability and Validity of Self-Report Questionnaires as Indicators of Fatigue in RYR1-Related Disorders. J Neuromuscul Dis 2019; 6:133-141. [PMID: 30714968 DOI: 10.3233/jnd-180335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND RYR1-related disorders (RYR1-RD), are a spectrum of genetic neuromuscular disorders. Affected individuals frequently experience fatigue yet appropriate tools to assess RYR1-RD-associated fatigue remain underdeveloped. OBJECTIVE This study assessed the reliability and validity of two self-report questionnaires, the multidimensional fatigue inventory (MFI-20) and adult/pediatric functional assessment of chronic illness-fatigue (FACIT-F/Peds-FACIT-F) as potential fatigue measures in RYR1-RD affected individuals. METHODS Participants (n = 37) were enrolled in an RYR1-RD combined natural history study and clinical trial. At baseline, participants completed fatigue questionnaires, six-minute walk test (6MWT), cardiopulmonary exercise test (CPET) and saliva collection for fatigue biomarker index (FBI) quantification. RESULTS All questionnaires exhibited good test-retest reliability (n = 18, ICC > 0.80). MFI-20 (n = 37), and FACIT-F (n = 28) also showed good internal consistency (Cronbach's α> 0.80). All MFI-20 subscales, except mental fatigue, and FACIT-F demonstrated evidence of criterion validity when correlated against percent predicted 6MWT distance (MFI-20 n = 37; r = -0.34 to -0.47, all p < 0.05, mental fatigue, r = -0.16, p = 0.35; FACIT-F n = 28, r = 0.41, p = 0.03). This was not the case for percent predicted VO2 peak (all p > 0.05). FBI correlated with MFI-20 general fatigue dimension only (r = -0.35, p = 0.03). Comparison of standardized questionnaire scores revealed that RYR1-RD affected individuals experience significantly greater fatigue than the general population. CONCLUSIONS MFI-20 and FACIT-F are valid and reliable tools for assessing RYR1-RD-associated fatigue, a symptom centrally implicated in this rare disorder.
Collapse
Affiliation(s)
- Anna Kuo
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Joshua J Todd
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Jeffery Elliott
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Monique O Shelton
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Minal S Jain
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Ruhi Vasavada
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Melissa Waite
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Bart Drinkard
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Darren Michael
- Hyperion Biotechnology Inc., San Antonio TX, United States
| | | | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke - NINDS (NIH), United States
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| |
Collapse
|
34
|
Mercuri E, Pera MC, Brogna C. Neonatal hypotonia and neuromuscular conditions. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:435-448. [PMID: 31324324 DOI: 10.1016/b978-0-444-64029-1.00021-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The differential diagnosis of neonatal hypotonia is a complex task, as in newborns hypotonia can be the presenting sign of different underlying causes, including peripheral and central nervous system involvement and genetic and metabolic diseases. This chapter describes how a combined approach, based on the combination of clinical signs and new genetic techniques, can help not only to establish when the hypotonia is related to peripheral involvement but also to achieve an accurate and early diagnosis of the specific neuromuscular diseases with neonatal onset. The early identification of such disorders is important, as this allows early intervention with disease-specific standards of care and, more importantly, because of the possibility to treat some of them, such as spinal muscular atrophy, with therapeutic approaches that have recently become available.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy.
| | | | - Claudia Brogna
- Department of Pediatric Neurology, Catholic University, Rome, Italy
| |
Collapse
|
35
|
Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 2018; 265:2506-2524. [PMID: 30155738 PMCID: PMC6182665 DOI: 10.1007/s00415-018-9033-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/01/2023]
Abstract
Variants in the skeletal muscle ryanodine receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA.
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Xuemin Zhang
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Ruhi Vasavada
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| |
Collapse
|
36
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
37
|
Abstract
Ryanodine receptor type 1-related myopathies (RYR1-RM) are the most common class of congenital myopathies. Historically, RYR1-RM classification and diagnosis have been guided by histopathologic findings on muscle biopsy. Main histological subtypes of RYR1-RM include central core disease, multiminicore disease, core-rod myopathy, centronuclear myopathy, and congenital fiber-type disproportion. A range of RYR1-RM clinical phenotypes has also emerged more recently and includes King Denborough syndrome, RYR1 rhabdomyolysis-myalgia syndrome, atypical periodic paralysis, congenital neuromuscular disease with uniform type 1 fibers, and late-onset axial myopathy. This expansion of the RYR1-RM disease spectrum is due, in part, to implementation of next-generation sequencing methods, which include the entire RYR1 coding sequence rather than being restricted to hotspot regions. These methods enhance diagnostic capabilities, especially given historic limitations of histopathologic and clinical overlap across RYR1-RM. Both dominant and recessive modes of inheritance have been documented, with the latter typically associated with a more severe clinical phenotype. As with all congenital myopathies, no FDA-approved treatments exist to date. Here, we review histopathologic, clinical, imaging, and genetic diagnostic features of the main RYR1-RM subtypes. We also discuss the current state of treatments and focus on disease-modulating (nongenetic) therapeutic strategies under development for RYR1-RM. Finally, perspectives for future approaches to treatment development are broached.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Joshua J Todd
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This article reviews adult presentations of the major congenital myopathies - central core disease, multiminicore disease, centronuclear myopathy and nemaline myopathy - with an emphasis on common genetic backgrounds, typical clinicopathological features and differential diagnosis. RECENT FINDINGS The congenital myopathies are a genetically heterogeneous group of conditions with characteristic histopathological features. Although essentially considered paediatric conditions, some forms - in particular those due to dominant mutations in the skeletal muscle ryanodine receptor (RYR1), the dynamin 2 (DNM2), the amphiphysin 2 (BIN1) and the Kelch repeat-and BTB/POZ domain-containing protein 13 (KBTBD13) gene - may present late into adulthood. Moreover, dominant RYR1 mutations associated with the malignant hyperthermia susceptibility trait have been recently identified as a common cause of (exertional) rhabdomyolysis presenting throughout life. In addition, improved standards of care and development of new therapies will result in an increasing number of patients with early-onset presentations transitioning to the adult neuromuscular clinic. Lastly, if nemaline rods are the predominant histopathological feature, acquired treatable conditions have to be considered in the differential diagnosis. SUMMARY Recently identified genotypes and phenotypes indicate a spectrum of the congenital myopathies extending into late adulthood, with important implications for clinical practice.
Collapse
|
39
|
Disturbed Ca 2+ Homeostasis in Muscle-Wasting Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:307-326. [PMID: 30390258 DOI: 10.1007/978-981-13-1435-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ is essential for proper structure and function of skeletal muscle. It not only activates contraction and force development but also participates in multiple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, transforming growth factors (TGFs) which are well known for controlling muscle growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) coupling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). Accordingly, alterations in these systems can lead to weakness and atrophy in many hereditary diseases, such as Brody disease, central core disease (CCD), tubular aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the interrelationship between all these molecules and processes is reviewed.
Collapse
|
40
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
41
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
42
|
Antioxidant Treatment Reduces Formation of Structural Cores and Improves Muscle Function in RYR1 Y522S/WT Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6792694. [PMID: 29062463 PMCID: PMC5610828 DOI: 10.1155/2017/6792694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/13/2017] [Indexed: 12/27/2022]
Abstract
Central core disease (CCD) is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1), the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH) with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC), an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i) reduce formation of unstructured and contracture cores, (ii) improve muscle function, and (iii) decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.
Collapse
|
43
|
Muscle MRI in pediatrics: clinical, pathological and genetic correlation. Pediatr Radiol 2017; 47:724-735. [PMID: 28102454 DOI: 10.1007/s00247-016-3777-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/31/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Pediatric myopathies comprise a very heterogeneous group of disorders that may develop at different ages and affect different muscle groups. Its diagnosis is sometimes difficult and must be confirmed by muscle biopsy and/or genetic analysis. In recent years, muscle involvement patterns observed on MRI have become a valuable tool, aiding clinical diagnosis and enriching pathological and genetic assessments. We selected eight myopathy cases from our institutional database in which the pattern of muscle involvement observed on MRI was almost pathognomonic and could therefore contribute to establishing diagnosis. Muscle biopsy, genetic diagnosis or both confirmed all cases.
Collapse
|
44
|
Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38:37-45. [PMID: 28653141 PMCID: PMC5813681 DOI: 10.1007/s10974-017-9470-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-contraction (E-C) coupling. This article explores the role of RyR1 in skeletal muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Daniel R Lewis
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Andrew R Marks
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
White SH, McDermott MM, Sufit RL, Kosmac K, Bugg AW, Gonzalez-Freire M, Ferrucci L, Tian L, Zhao L, Gao Y, Kibbe MR, Criqui MH, Leeuwenburgh C, Peterson CA. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med 2016; 14:284. [PMID: 27687713 PMCID: PMC5043620 DOI: 10.1186/s12967-016-1030-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with lower extremity peripheral artery disease (PAD) have decreased mobility, which is not fully explained by impaired blood supply to the lower limb. Additionally, reports are conflicted regarding fiber type distribution patterns in PAD, but agree that skeletal muscle mitochondrial respiration is impaired. METHODS To test the hypothesis that reduced muscle fiber oxidative activity and type I distribution are negatively associated with walking performance in PAD, calf muscle biopsies from non-PAD (n = 7) and PAD participants (n = 26) were analyzed immunohistochemically for fiber type and size, oxidative activity, markers of autophagy, and capillary density. Data were analyzed using analysis of covariance. RESULTS There was a wide range in fiber type distribution among subjects with PAD (9-81 % type I fibers) that did not correlate with walking performance. However, mean type I fiber size correlated with 4-min normal- and fastest-paced walk velocity (r = 0.4940, P = 0.010 and r = 0.4944, P = 0.010, respectively). Although intensity of succinate dehydrogenase activity staining was consistent with fiber type, up to 17 % of oxidative fibers were devoid of mitochondria in their cores, and the core showed accumulation of the autophagic marker, LC3, which did not completely co-localize with LAMP2, a lysosome marker. CONCLUSIONS Calf muscle type I fiber size positively correlates with walking performance in PAD. Accumulation of LC3 and a lack of co-localization of LC3 with LAMP2 in the area depleted of mitochondria in PAD fibers suggests impaired clearance of damaged mitochondria, which may contribute to reduced muscle oxidative capacity. Further study is needed to determine whether defective mitophagy is associated with decline in function over time, and whether interventions aimed at preserving mitochondrial function and improving autophagy can improve walking performance in PAD.
Collapse
Affiliation(s)
- Sarah H White
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, 900 S Limestone CTW105, Lexington, KY, 40536, USA
| | - Mary M McDermott
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, 750 North Lake Shore Drive, 10th Floor, Chicago, 60611, USA. .,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robert L Sufit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kate Kosmac
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, 900 S Limestone CTW105, Lexington, KY, 40536, USA
| | - Alex W Bugg
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, 900 S Limestone CTW105, Lexington, KY, 40536, USA
| | | | | | - Lu Tian
- Department of Health Research & Policy, Stanford University, Stanford, CA, USA
| | - Lihui Zhao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ying Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Melina R Kibbe
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Michael H Criqui
- Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, CA, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida Institute on Aging, Gainesville, FL, USA
| | - Charlotte A Peterson
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, 900 S Limestone CTW105, Lexington, KY, 40536, USA.
| |
Collapse
|
46
|
Jungbluth H, Ochala J, Treves S, Gautel M. Current and future therapeutic approaches to the congenital myopathies. Semin Cell Dev Biol 2016; 64:191-200. [PMID: 27515125 DOI: 10.1016/j.semcdb.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
The congenital myopathies - including Central Core Disease (CCD), Multi-minicore Disease (MmD), Centronuclear Myopathy (CNM), Nemaline Myopathy (NM) and Congenital Fibre Type Disproportion (CFTD) - are a genetically heterogeneous group of early-onset neuromuscular conditions characterized by distinct histopathological features, and associated with a substantial individual and societal disease burden. Appropriate supportive management has substantially improved patient morbidity and mortality but there is currently no cure. Recent years have seen an exponential increase in the genetic and molecular understanding of these conditions, leading to the identification of underlying defects in proteins involved in calcium homeostasis and excitation-contraction coupling, thick/thin filament assembly and function, redox regulation, membrane trafficking and/or autophagic pathways. Based on these findings, specific therapies are currently being developed, or are already approaching the clinical trial stage. Despite undeniable progress, therapy development faces considerable challenges, considering the rarity and diversity of specific conditions, and the size and complexity of some of the genes and proteins involved. The present review will summarize the key genetic, histopathological and clinical features of specific congenital myopathies, and outline therapies already available or currently being developed in the context of known pathogenic mechanisms. The relevance of newly discovered molecular mechanisms and novel gene editing strategies for future therapy development will be discussed.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section Biophysics and Cardiovascular Division, King's College BHF Centre of Research Excellence, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom.
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, United Kingdom
| | - Susan Treves
- Departments of Biomedicine and Anaesthesia, Basel University Hospital, 4031 Basel, Switzerland
| | - Mathias Gautel
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section Biophysics and Cardiovascular Division, King's College BHF Centre of Research Excellence, United Kingdom
| |
Collapse
|
47
|
De Souza LH, Frank AO. Rare diseases: matching wheelchair users with rare metabolic, neuromuscular or neurological disorders to electric powered indoor/outdoor wheelchairs (EPIOCs). Disabil Rehabil 2016; 38:1547-56. [PMID: 26714619 PMCID: PMC4926775 DOI: 10.3109/09638288.2015.1106599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/22/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE To describe the clinical features of electric powered indoor/outdoor wheelchair (EPIOC) users with rare diseases (RD) impacting on EPIOC provision and seating. METHOD Retrospective review by a consultant in rehabilitation medicine of electronic and case note records of EPIOC recipients with RDs attending a specialist wheelchair service between June 2007 and September 2008. Data were systematically extracted, entered into a database and analysed under three themes; demographic, diagnostic/clinical (including comorbidity and associated clinical features (ACFs) of the illness/disability) and wheelchair factors. RESULTS Fifty-four (27 male) EPIOC users, mean age 37.3 (SD 18.6, range 11-70) with RDs were identified and reviewed a mean of 64 (range 0-131) months after receiving their wheelchair. Diagnoses included 27 types of RDs including Friedreich's ataxia, motor neurone disease, osteogenesis imperfecta, arthrogryposis, cerebellar syndromes and others. Nineteen users had between them 36 comorbidities and 30 users had 44 ACFs likely to influence the prescription. Tilt-in-space was provided to 34 (63%) users and specialised seating to 17 (31%). Four users had between them complex control or interfacing issues. CONCLUSIONS The complex and diverse clinical problems of those with RDs present unique challenges to the multiprofessional wheelchair team to maintain successful independent mobility and community living. Implications for Rehabilitation Powered mobility is a major therapeutic tool for those with rare diseases enhancing independence, participation, reducing pain and other clinical features. The challenge for rehabilitation professionals is reconciling the physical disabilities with the individual's need for function and participation whilst allowing for disease progression and/or growth. Powered wheelchair users with rare diseases with a (kypho) scoliosis require a wheelchair system that balances spine stability and movement to maximise residual upper limb and trunk function. The role of specialised seating needs careful consideration in supporting joint derangements and preventing complications such as pressure sores.
Collapse
Affiliation(s)
- Lorraine H. De Souza
- Centre for Research in Rehabilitation, College of Health and Life Sciences, Mary Seacole Building, Brunel University London, Uxbridge,
Middlesex,
UK
| | - Andrew O. Frank
- Centre for Research in Rehabilitation, College of Health and Life Sciences, Mary Seacole Building, Brunel University London, Uxbridge,
Middlesex,
UK
- Stanmore Specialist Wheelchair Service, Royal National Orthopaedic Hospital,
Brockley Hill,
Stanmore,
UK (Frank)
| |
Collapse
|
48
|
Shapiro F, Athiraman U, Clendenin DJ, Hoagland M, Sethna NF. Anesthetic management of 877 pediatric patients undergoing muscle biopsy for neuromuscular disorders: a 20-year review. Paediatr Anaesth 2016; 26:710-21. [PMID: 27111691 DOI: 10.1111/pan.12909] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND The objectives are to review the anesthetic management and anesthetic-related adverse events in patients undergoing muscle biopsy for a broad spectrum of neuromuscular disorders (NMD). AIM The study aims to assess the hypothesis that perceived awareness of potential anesthesia-induced hyperkalemia and MH in patients with NMD reduces the frequency of such events. METHODS A 20-year retrospective review of 877 consecutive patients undergoing muscle biopsy to establish diagnoses of NMD has been performed. Patients were categorized prebiopsy into six groups: M (myopathy and muscular dystrophy), MM (mitochondrial or metabolic myopathy), N (neurodegenerative, peripheral neuropathy or spinal muscular atrophy disorder), D (dermatomyositis), C (cardiomyopathy), or S (seizure disorder). Data were collected for demographics, anesthetic management, pre- and postoperative anesthesia-induced muscle injury, postbiopsy histopathologic diagnosis, and concordance comparisons between pre- and postbiopsy diagnoses. RESULTS There were 513 males (58.5%) and 364 females (41.5%) (1.4:1) with 137 individuals (15.6%) operated on under 1 year of age and two-thirds by 6 years of age. NMD diagnosis was reached in 409 (46.6%) while 468 (53.4%) had no specific pathology. No patients exhibited signs of anesthesia-induced muscle injury (malignant hyperthermia, rhabdomyolysis, cardiac arrest, or postoperative deterioration of weakness). MM was the largest group pre biopsy (367, 41.8%). Anesthetic agents were: nitrous oxide in 657 (74.9%); volatile agents in 139 (15.8%); intravenous agents in 836 (95.3%) (primarily propofol, midazolam, and fentanyl); nondepolarizing muscle relaxants in 404 (46.1%); and regional anesthesia in 112 (12.8%) [most commonly spinal anesthesia in 80 (71.4%)]. Comparing preoperative diagnostic category with postoperative diagnosis, there was a concordance of 78% (319/409) between the two for cases with a definitive diagnosis and 89.7% (787/877) for all cases. CONCLUSIONS In this retrospective study, no patient exhibited signs or symptoms of hyperkalemia or MH probably because the incidence is very low and becomes even less likely due to the selection of the various anesthetic agents and strategies administered.
Collapse
Affiliation(s)
- Frederic Shapiro
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Umeshkumar Athiraman
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesiology Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - David J Clendenin
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesiology Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Monica Hoagland
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesiology Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Navil F Sethna
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesiology Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
49
|
Schulz-Schaeffer WJ. Camptocormia in Parkinson's Disease: A Muscle Disease Due to Dysregulated Proprioceptive Polysynaptic Reflex Arch. Front Aging Neurosci 2016; 8:128. [PMID: 27445789 PMCID: PMC4914504 DOI: 10.3389/fnagi.2016.00128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/17/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Walter J Schulz-Schaeffer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
50
|
Editors T. Muscle Decline in Aging and Neuromuscular Disorders - Mechanisms and Countermeasures: Terme Euganee, Padova (Italy), April 13-16, 2016. Eur J Transl Myol 2016; 26:5904. [PMID: 27054021 PMCID: PMC4821223 DOI: 10.4081/ejtm.2016.5904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Not available.
Collapse
|