1
|
Nissanka MC, Dilhari A, Wijesinghe GK, Weerasekera MM. Advances in experimental bladder models: bridging the gap between in vitro and in vivo approaches for investigating urinary tract infections. BMC Urol 2024; 24:206. [PMID: 39313789 PMCID: PMC11418205 DOI: 10.1186/s12894-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Urinary tract infections (UTIs) pose a substantial burden on global healthcare systems. When unraveling the complex pathophysiology of UTIs, bladder models are used to understand complex and multifaceted interactions between different components within the system. This review aimed to bridge the gap between in vitro and in vivo experimental bladder models towards UTI research. We reviewed clinical, animal, and analytical studies and patents from 1959 to the end of 2023. Both in vivo and in vitro models offer unique benefits and drawbacks in understanding UTIs. In vitro models provide controlled environments for studying specific aspects of UTI biology and testing potential treatments, while in vivo models offer insights into how UTIs manifest and progress within living organisms. Thus, both types of models are leading to the development of more effective diagnostic tools and therapeutic interventions against UTIs. Moreover, advanced methodologies involving three-dimensional bladder organoids have also been used to study bladder biology, model bladder-related disorders, and explore new treatments for bladder cancers, UTIs, and urinary incontinence. Narrowing the distance between fundamental scientific research and practical medical applications, these pioneering models hold the key to unlocking new avenues for the development of personalized diagnostics, precision medicine, and ultimately, the alleviation of UTI-related morbidity worldwide.
Collapse
Affiliation(s)
| | - Ayomi Dilhari
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | | | - Manjula Manoji Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
2
|
Gnörich J, Koehler M, Wind-Mark K, Klaus C, Zatcepin A, Palumbo G, Lalia M, Monasor LS, Beyer L, Eckenweber F, Scheifele M, Gildehaus FJ, von Ungern-Sternberg B, Barthel H, Sabri O, Bartenstein P, Herms J, Tahirovic S, Franzmeier N, Ziegler S, Brendel M. Towards multicenter β-amyloid PET imaging in mouse models: A triple scanner head-to-head comparison. Neuroimage 2024; 297:120748. [PMID: 39069223 DOI: 10.1016/j.neuroimage.2024.120748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
AIM β-amyloid (Aβ) small animal PET facilitates quantification of fibrillar amyloidosis in Alzheimer's disease (AD) mouse models. Thus, the methodology is receiving growing interest as a monitoring tool in preclinical drug trials. In this regard, harmonization of data from different scanners at multiple sites would allow the establishment large collaborative cohorts and may facilitate efficacy comparison of different treatments. Therefore, we objected to determine the level of agreement of Aβ-PET quantification by a head-to-head comparison of three different state-of-the-art small animal PET scanners, which could help pave the way for future multicenter studies. METHODS Within a timeframe of 5 ± 2 weeks, transgenic APPPS1 (n = 9) and wild-type (WT) (n = 8) mice (age range: 13-16 months) were examined three times by Aβ-PET ([18F]florbetaben) using a Siemens Inveon DPET, a MedisonanoScan PET/MR, and a MedisonanoScan PET/CT with harmonized reconstruction protocols. Cortex-to-white-matter 30-60 min p.i. standardized uptake value ratios (SUVRCTX/WM) were calculated to compare binding differences, effect sizes (Cohen's d) and z-score values of APPPS1 relative to WT mice. Correlation coefficients (Pearson's r) were calculated for the agreement of individual SUVR between different scanners. Voxel-wise analysis was used to determine the agreement of spatial pathology patterns. For validation of PET imaging against the histological gold standard, individual SUVR values were subject to a correlation analysis with area occupancy of methoxy‑X04 staining. RESULTS All three small animal PET scanners yielded comparable group differences between APPPS1 and WT mice (∆PET=20.4 % ± 2.9 %, ∆PET/MR=18.4 % ± 4.5 %, ∆PET/CT=18.1 % ± 3.3 %). Voxel-wise analysis confirmed a high degree of congruency of the spatial pattern (Dice coefficient (DC)PETvs.PET/MR=83.0 %, DCPETvs.PET/CT=69.3 %, DCPET/MRvs.PET/CT=81.9 %). Differences in the group level variance of the three scanners resulted in divergent z-scores (zPET=11.5 ± 1.6; zPET/MR=5.3 ± 1.3; zPET/CT=3.4 ± 0.6) and effect sizes (dPET=8.5, dPET/MR=4.5, dPET/CT=4.1). However, correlations at the individual mouse level were still strong between scanners (rPETvs.PET/MR=0.96, rPETvs.PET/CT=0.91, rPET/MRvs.PET/CT=0.87; all p ≤ 0.0001). Methoxy-X04 staining exhibited a significant correlation across all three PET machines combined (r = 0.76, p < 0.0001) but also at individual level (PET: r = 0.81, p = 0.026; PET/MR: r = 0.89, p = 0.0074; PET/CT: r = 0.93, p = 0.0028). CONCLUSIONS Our comparison of standardized small animal Aβ-PET acquired by three different scanners substantiates the possibility of moving towards a multicentric approach in preclinical AD research. The alignment of image acquisition and analysis methods achieved good overall comparability between data sets. Nevertheless, differences in variance of sensitivity and specificity of different scanners may limit data interpretation at the individual mouse level and deserves methodological optimization.
Collapse
Affiliation(s)
- Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| | - Mara Koehler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Giovanna Palumbo
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Manvir Lalia
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Laura Sebastian Monasor
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Center of Neuropathology and Prion Research, University of Munich, Munich Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Center of Neuropathology and Prion Research, University of Munich, Munich Germany.
| |
Collapse
|
3
|
Tran KKN, Wong VHY, Vessey KA, Finkelstein DI, Bui BV, Nguyen CTO. Levodopa Rescues Retinal Function in the Transgenic A53T Alpha-Synuclein Model of Parkinson's Disease. Biomedicines 2024; 12:130. [PMID: 38255235 PMCID: PMC10813165 DOI: 10.3390/biomedicines12010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Loss of substantia nigra dopaminergic cells and alpha-synuclein (α-syn)-rich intraneuronal deposits within the central nervous system are key hallmarks of Parkinson's disease (PD). Levodopa (L-DOPA) is the current gold-standard treatment for PD. This study aimed to evaluate in vivo retinal changes in a transgenic PD model of α-syn overexpression and the effect of acute levodopa (L-DOPA) treatment. METHODS Anaesthetised 6-month-old mice expressing human A53T alpha-synuclein (HOM) and wildtype (WT) control littermates were intraperitoneally given 20 mg/kg L-DOPA (50 mg levodopa, 2.5 mg benserazide) or vehicle saline (n = 11-18 per group). In vivo retinal function (dark-adapted full-field ERG) and structure (optical coherence tomography, OCT) were recorded before and after drug treatment for 30 min. Ex vivo immunohistochemistry (IHC) on flat-mounted retina was conducted to assess tyrosine hydroxylase (TH) positive cell counts (n = 7-8 per group). RESULTS We found that photoreceptor (a-wave) and bipolar cell (b-wave) ERG responses (p < 0.01) in A53T HOM mice treated with L-DOPA grew in amplitude more (47 ± 9%) than WT mice (16 ± 9%) treated with L-DOPA, which was similar to the vehicle group (A53T HOM 25 ± 9%; WT 19 ± 7%). While outer retinal thinning (outer nuclear layer, ONL, and outer plexiform layer, OPL) was confirmed in A53T HOM mice (p < 0.01), L-DOPA did not have an ameliorative effect on retinal layer thickness. These findings were observed in the absence of changes to the number of TH-positive amacrine cells across experiment groups. Acute L-DOPA treatment transiently improves visual dysfunction caused by abnormal alpha-synuclein accumulation. CONCLUSIONS These findings deepen our understanding of dopamine and alpha-synuclein interactions in the retina and provide a high-throughput preclinical framework, primed for translation, through which novel therapeutic compounds can be objectively screened and assessed for fast-tracking PD drug discovery.
Collapse
Affiliation(s)
- Katie K. N. Tran
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| | - Vickie H. Y. Wong
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| | - Kirstan A. Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| |
Collapse
|
4
|
Schmitz-Peiffer F, Lukas M, Mohan AM, Albrecht J, Aschenbach JR, Brenner W, Beindorff N. Effects of isoflurane anaesthesia depth and duration on renal function measured with [ 99mTc]Tc-mercaptoacetyltriglycine SPECT in mice. EJNMMI Res 2024; 14:4. [PMID: 38180547 PMCID: PMC10769950 DOI: 10.1186/s13550-023-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The influence of anaesthetic depth and the potential influence of different anaesthetic beds and thus different handling procedures were investigated in 86 severe combined immunodeficient (SCID) mice using semi-stationary dynamic single photon emission computed tomography (SPECT) for kidney scintigraphy. Therefore, isoflurane concentrations were adjusted using respiratory rate for low (80-90 breath/min) and deep anaesthesia (40-45 breath/min). At low anaesthesia, we additionally tested the influence of single bed versus 3-mouse bed hotel; the hotel mice were anaesthetized consecutively at ~ 30, 20, and 10 min before tracer injections for positions 1, 2, and 3, respectively. Intravenous [99mTc]Tc-MAG3 injection of ~ 28 MBq was performed after SPECT start. Time-activity curves were used to calculate time-to-peak (Tmax), T50 (50% clearance) and T25 (75% clearance). RESULTS Low and deep anaesthesia corresponded to median isoflurane concentrations of 1.3% and 1.5%, respectively, with no significant differences in heart rate (p = 0.74). Low anaesthesia resulted in shorter aortic blood clearance half-life (p = 0.091) and increased relative renal tracer influx rate (p = 0.018). A tendency toward earlier Tmax occurred under low anaesthesia (p = 0.063) with no differences in T50 (p = 0.40) and T25 (p = 0.24). Variance increased with deep anaesthesia. Compared to single mouse scans, hotel mice in position 1 showed a delayed Tmax, T50, and T25 (p < 0.05 each). Furthermore, hotel mice in position 1 showed delayed Tmax versus position 3, and delayed T50 and T25 versus position 2 and 3 (p < 0.05 each). No difference occurred between single bed and positions 2 (p = 1.0) and 3 (p = 1.0). CONCLUSIONS Deep anaesthesia and prolonged low anaesthesia should be avoided during renal scintigraphy because they result in prolonged blood clearance half-life, delayed renal influx and/or later Tmax. Vice versa, low anaesthesia with high respiratory rates of 80-90 rpm and short duration (≤ 20 min) should be preferred to obtain representative data with low variance.
Collapse
Affiliation(s)
- Fabian Schmitz-Peiffer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ajay-Mohan Mohan
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jakob Albrecht
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
5
|
DeBay DR, Brewer KD. Combined PET/MR: Where Anatomical Imaging Meets Cellular Function. Methods Mol Biol 2024; 2729:391-408. [PMID: 38006508 DOI: 10.1007/978-1-0716-3499-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Recent technological advances in medical imaging have allowed for both sequential and simultaneous acquisition of magnetic resonance imaging (MRI) and positron emission tomography (PET) data. Simultaneous PET/MRI offers distinct advantages by efficiently capturing functional and metabolic processes with co-localized, high-resolution anatomical images while minimizing time and movement. We will describe some of the technical and logistic requirements for optimizing sequential and simultaneous PET/MRI in the preclinical research setting.
Collapse
Affiliation(s)
- Drew R DeBay
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - Kimberly D Brewer
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.
- Diagnostic Radiology, Dalhousie University, Halifax, Canada.
| |
Collapse
|
6
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
7
|
Calvet C, Seebeck P. What to consider for ECG in mice-with special emphasis on telemetry. Mamm Genome 2023; 34:166-179. [PMID: 36749381 PMCID: PMC10290603 DOI: 10.1007/s00335-023-09977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Genetically or surgically altered mice are commonly used as models of human cardiovascular diseases. Electrocardiography (ECG) is the gold standard to assess cardiac electrophysiology as well as to identify cardiac phenotypes and responses to pharmacological and surgical interventions. A variety of methods are used for mouse ECG acquisition under diverse conditions, making it difficult to compare different results. Non-invasive techniques allow only short-term data acquisition and are prone to stress or anesthesia related changes in cardiac activity. Telemetry offers continuous long-term acquisition of ECG data in conscious freely moving mice in their home cage environment. Additionally, it allows acquiring data 24/7 during different activities, can be combined with different challenges and most telemetry systems collect additional physiological parameters simultaneously. However, telemetry transmitters require surgical implantation, the equipment for data acquisition is relatively expensive and analysis of the vast number of ECG data is challenging and time-consuming. This review highlights the limits of non-invasive methods with respect to telemetry. In particular, primary screening using non-invasive methods can give a first hint; however, subtle cardiac phenotypes might be masked or compensated due to anesthesia and stress during these procedures. In addition, we detail the key differences between the mouse and human ECG. It is crucial to consider these differences when analyzing ECG data in order to properly translate the insights gained from murine models to human conditions.
Collapse
Affiliation(s)
- Charlotte Calvet
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Tabatabaee S, Hatami M, Mostajeran H, Baheiraei N. Modeling of the PHEMA-gelatin scaffold enriched with graphene oxide utilizing finite element method for bone tissue engineering. Comput Methods Biomech Biomed Engin 2023; 26:499-507. [PMID: 35472279 DOI: 10.1080/10255842.2022.2066975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of computer-aided facilities has contributed to the optimization of tissue engineering techniques due to the reduction in necessary practical assessments and the removal of animal or human-related ethical issues. Herein, a bone scaffold based on poly (2-hydroxyethyl methacrylate) (PHEMA), gelatin and graphene oxide (GO), was simulated by SOLIDWORKS and ABAQUS under a normal compression force using finite element method (FEM). Concerning the mechanotransduction impact, GO could support the stability of the structure and reduce the possibility of the failure resulting in the integrity and durability of the scaffold efficiency which would be beneficial for osteogenic differentiation.
Collapse
Affiliation(s)
- Sara Tabatabaee
- Department of Bio-Computing, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mehran Hatami
- Department of Bio-Computing, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Hossein Mostajeran
- Department of Bio-Computing, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Layton R, Layton D, Beggs D, Fisher A, Mansell P, Stanger KJ. The impact of stress and anesthesia on animal models of infectious disease. Front Vet Sci 2023; 10:1086003. [PMID: 36816193 PMCID: PMC9933909 DOI: 10.3389/fvets.2023.1086003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Stress and general anesthesia have an impact on the functional response of the organism due to the detrimental effects on cardiovascular, immunological, and metabolic function, which could limit the organism's response to an infectious event. Animal studies have formed an essential step in understanding and mitigating infectious diseases, as the complexities of physiology and immunity cannot yet be replicated in vivo. Using animals in research continues to come under increasing societal scrutiny, and it is therefore crucial that the welfare of animals used in disease research is optimized to meet both societal expectations and improve scientific outcomes. Everyday management and procedures in animal studies are known to cause stress, which can not only cause poorer welfare outcomes, but also introduces variables in disease studies. Whilst general anesthesia is necessary at times to reduce stress and enhance animal welfare in disease research, evidence of physiological and immunological disruption caused by general anesthesia is increasing. To better understand and quantify the effects of stress and anesthesia on disease study and welfare outcomes, utilizing the most appropriate animal monitoring strategies is imperative. This article aims to analyze recent scientific evidence about the impact of stress and anesthesia as uncontrolled variables, as well as reviewing monitoring strategies and technologies in animal models during infectious diseases.
Collapse
Affiliation(s)
- Rachel Layton
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia,*Correspondence: Rachel Layton ✉
| | - Daniel Layton
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - David Beggs
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Fisher
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Mansell
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Kelly J. Stanger
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| |
Collapse
|
10
|
Decay-Accelerating Factor Creates an Organ-Protective Phenotype after Hemorrhage in Conscious Rats. Int J Mol Sci 2022; 23:ijms232113563. [PMID: 36362350 PMCID: PMC9655774 DOI: 10.3390/ijms232113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Preclinical and clinical studies have shown that traumatic hemorrhage (TH) induces early complement cascade activation, leading to inflammation-associated multiple-organ dysfunction syndrome (MODS). Several previous studies have demonstrated the beneficial effects of complement inhibition in anesthetized (unconscious) animal models of hemorrhage. Anesthetic agents profoundly affect the immune response, microcirculation response, and coagulation patterns and thereby may confound the TH research data acquired. However, no studies have addressed the effect of complement inhibition on inflammation-driven MODS in a conscious model of hemorrhage. This study investigated whether early administration of decay-accelerating factor (CD55/DAF, a complement C3/C5 inhibitor) alleviates hemorrhage-induced organ damage and how DAF modulates hemorrhage-induced organ damage. DAF was administered to unanesthetized male Sprague Dawley rats subjected to pressure-controlled hemorrhage followed by a prolonged (4 h) hypotensive resuscitation with or without lactated Ringer’s (LR). We assessed DAF effects on organ protection, tissue levels of complement synthesis and activation, T lymphocyte infiltration, fluid resuscitation requirements, and metabolic acidosis. Hemorrhage with (HR) or without (H) LR resuscitation resulted in significantly increased C3, C5a, and C5b-9 deposition in the lung and intestinal tissues. HR rats had significantly higher tissue levels of complement activation/deposition (particularly C5a and C5b-9 in the lung tissues), a higher but not significant amount of C3 and C5b-9 pulmonary microvascular deposition, and relatively severe injury in the lung and intestinal tissues compared to H rats. DAF treatment significantly reduced tissue C5b-9 formation and C3 deposition in the H or HR rats and decreased tissue levels of C5a and C3 mRNA in the HR rats. This treatment prevented the injury of these organs, improved metabolic acidosis, reduced fluid resuscitation requirements, and decreased T-cell infiltration in lung tissues. These findings suggest that DAF has the potential as an organ-protective adjuvant treatment for TH during prolonged damage control resuscitation.
Collapse
|
11
|
Merle N, Elmshäuser S, Strassheimer F, Wanzel M, König AM, Funk J, Neumann M, Kochhan K, Helmprobst F, Pagenstecher A, Nist A, Mernberger M, Schneider A, Braun T, Borggrefe T, Savai R, Timofeev O, Stiewe T. Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase. Mol Cancer 2022; 21:191. [PMID: 36192757 PMCID: PMC9531476 DOI: 10.1186/s12943-022-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. Methods To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. Results We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. Conclusions Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01661-2.
Collapse
Affiliation(s)
- Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Florian Strassheimer
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Alexander M König
- Clinic of Diagnostic and Interventional Radiology, Philipps-University, Core Facility 7T-small animal MRI, Marburg, Germany
| | - Julianne Funk
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Frederik Helmprobst
- Mouse Pathology and Electron Microscopy Core Facility, Department of Neuropathology, Philipps-University, Marburg, Germany
| | - Axel Pagenstecher
- Mouse Pathology and Electron Microscopy Core Facility, Department of Neuropathology, Philipps-University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - André Schneider
- Department of Cardiac Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tilman Borggrefe
- Department of Biochemistry, Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany. .,Genomics Core Facility, Philipps-University, Marburg, Germany. .,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| |
Collapse
|
12
|
Schmidt D, English G, Gent TC, Yanik MF, von der Behrens W. Machine learning reveals interhemispheric somatosensory coherence as indicator of anesthetic depth. Front Neuroinform 2022; 16:971231. [PMID: 36172256 PMCID: PMC9510780 DOI: 10.3389/fninf.2022.971231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to identify features in mouse electrocorticogram recordings that indicate the depth of anesthesia as approximated by the administered anesthetic dosage. Anesthetic depth in laboratory animals must be precisely monitored and controlled. However, for the most common lab species (mice) few indicators useful for monitoring anesthetic depth have been established. We used electrocorticogram recordings in mice, coupled with peripheral stimulation, in order to identify features of brain activity modulated by isoflurane anesthesia and explored their usefulness in monitoring anesthetic depth through machine learning techniques. Using a gradient boosting regressor framework we identified interhemispheric somatosensory coherence as the most informative and reliable electrocorticogram feature for determining anesthetic depth, yielding good generalization and performance over many subjects. Knowing that interhemispheric somatosensory coherence indicates the effectively administered isoflurane concentration is an important step for establishing better anesthetic monitoring protocols and closed-loop systems for animal surgeries.
Collapse
Affiliation(s)
- Dominik Schmidt
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Gwendolyn English
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
| | - Thomas C. Gent
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Anaesthesiology Section, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
- *Correspondence: Wolfger von der Behrens
| |
Collapse
|
13
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
14
|
Oliveira RG, Correia PMM, Silva ALM, Encarnação PMCC, Ribeiro FM, Castro IF, Veloso JFCA. Development of a New Integrated System for Vital Sign Monitoring in Small Animals. SENSORS 2022; 22:s22114264. [PMID: 35684885 PMCID: PMC9185494 DOI: 10.3390/s22114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 01/25/2023]
Abstract
Monitoring the vital signs of mice is an essential practice during imaging procedures to avoid populational losses and improve image quality. For this purpose, a system based on a set of devices (piezoelectric sensor, optical module and thermistor) able to detect the heart rate, respiratory rate, body temperature and arterial blood oxygen saturation (SpO2) in mice anesthetized with sevoflurane was implemented. Results were validated by comparison with the reported literature on similar anesthetics. A new non-invasive electrocardiogram (ECG) module was developed, and its first results reflect the viability of its integration in the system. The sensors were strategically positioned on mice, and the signals were acquired through a custom-made printed circuit board during imaging procedures with a micro-PET (Positron Emission Tomography). For sevoflurane concentration of 1.5%, the average values obtained were: 388 bpm (beats/minute), 124 rpm (respirations/minute) and 88.9% for the heart rate, respiratory rate and SpO2, respectively. From the ECG information, the value obtained for the heart rate was around 352 bpm for injectable anesthesia. The results compare favorably to the ones established in the literature, proving the reliability of the proposed system. The ECG measurements show its potential for mice heart monitoring during imaging acquisitions and thus for integration into the developed system.
Collapse
Affiliation(s)
- Regina G. Oliveira
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Pedro M. M. Correia
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
- Correspondence:
| | - Ana L. M. Silva
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Pedro M. C. C. Encarnação
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Fabiana M. Ribeiro
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Ismael F. Castro
- Radiation Imaging Technologies Lda. (RI-TE), University of Aveiro Incubator, PCI—Creative Science Park, 3830-352 Ílhavo, Portugal;
| | - João F. C. A. Veloso
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| |
Collapse
|
15
|
Yahyapour M, Ranjbar M, Mohadesi A, Rejaeinegad M. Determination of Buprenorphine (BUP) with Molecularly Imprinted Polymer Zn/La
3+
Metal Organic Framework on Modified Glassy Carbon Electrode (GCE). ELECTROANAL 2022. [DOI: 10.1002/elan.202100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Moghadaseh Yahyapour
- Neuroscience Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences P.O. Box: 76175–493 Kerman 76169-11319 Iran
| | - Alireza Mohadesi
- Department of Chemistry Payame Noor University Tehran 19395-4697 Iran
| | - Moslem Rejaeinegad
- Department of Chemistry, Kerman Branch Islamic Azad University Kerman Iran
| |
Collapse
|
16
|
Wank I, Kutsche L, Kreitz S, Reeh P, Hess A. Imaging the influence of peripheral TRPV1-signaling on cerebral nociceptive processing applying fMRI-based graph theory in a resiniferatoxin rat model. PLoS One 2022; 17:e0266669. [PMID: 35482725 PMCID: PMC9049522 DOI: 10.1371/journal.pone.0266669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Resiniferatoxin (RTX), an extract from the spurge plant Euphorbia resinifera, is a potent agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1), mainly expressed on peripheral nociceptors-a prerequisite for nociceptive heat perception. Systemic overdosing of RTX can be used to desensitize specifically TRPV1-expressing neurons, and was therefore utilized here to selectively characterize the influence of TRPV1-signaling on central nervous system (CNS) temperature processing. Resting state and CNS temperature processing of male rats were assessed via functional magnetic resonance imaging before and after RTX injection. General linear model-based and graph-theoretical network analyses disentangled the underlying distinct CNS circuitries. At baseline, rats displayed an increase of nociception-related response amplitude and activated brain volume that correlated highly with increasing stimulation temperatures. In contrast, RTX-treated rats showed a clear disruption of thermal nociception, reflected in a missing increase of CNS responses to temperatures above 48°C. Graph-theoretical analyses revealed two distinct brain subnetworks affected by RTX: one subcortical (brainstem, lateral and medial thalamus, hippocampus, basal ganglia and amygdala), and one cortical (primary sensory, motor and association cortices). Resting state analysis revealed first, that peripheral desensitization of TRPV1-expressing neurons did not disrupt the basic resting-state-network of the brain. Second, only at baseline, but not after RTX, noxious stimulation modulated the RS-network in regions associated with memory formation (e.g. hippocampus). Altogether, the combination of whole-brain functional magnetic resonance imaging and RTX-mediated desensitization of TRPV1-signaling provided further detailed insight into cerebral processing of noxious temperatures.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Kutsche
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Kumar M, Salem K, Jeffery JJ, Fowler AM. PET Imaging of Estrogen Receptors Using 18F-Based Radioligands. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2418:129-151. [PMID: 35119664 DOI: 10.1007/978-1-0716-1920-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vivo molecular imaging of estrogen receptor alpha (ER) can be performed via positron emission tomography (PET) using ER-specific radioligands, such as 16α-[18F]fluoro-17β-estradiol (18F-FES). 18F-FES is a radiopharmaceutical recently approved by the United States Food and Drug Administration for use with PET imaging to detect ER+ lesions in patients with recurrent or metastatic breast cancer as an adjunct to biopsy. 18F-FES PET imaging has been used in clinical studies and preclinical research to assess whole-body ER protein expression and ligand binding function across multiple metastatic sites, to demonstrate inter-tumoral and temporal heterogeneity of ER expression, to quantify the pharmacodynamic effects of ER antagonist treatment, and to predict endocrine therapy response. 18F-FES PET has also been studied for imaging ER in endometrial and ovarian cancer. This chapter details the experimental protocol for 18F-FES PET imaging of ER in preclinical tumor xenograft models. Consistent adherence to key methodologic details will facilitate obtaining meaningful and reproducible 18F-FES PET preclinical imaging results, which could yield additional insight for clinical trials regarding imaging biomarkers and oncologic therapy.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
18
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Lee MH, Hwang YH, Yun CS, Han BS, Kim DY. Altered small-world property of a dynamic metabolic network in murine left hippocampus after exposure to acute stress. Sci Rep 2022; 12:3885. [PMID: 35273207 PMCID: PMC8913833 DOI: 10.1038/s41598-022-07586-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
The acute stress response is a natural and fundamental reaction that balances the physiological conditions of the brain. To maintain homeostasis in the brain, the response is based on changes over time in hormones and neurotransmitters, which are related to resilience and can adapt successfully to acute stress. This increases the need for dynamic analysis over time, and new approaches to examine the relationship between metabolites have emerged. This study investigates whether the constructed metabolic network is a realistic or a random network and is affected by acute stress. While the metabolic network in the control group met the criteria for small-worldness at all time points, the metabolic network in the stress group did not at some time points, and the small-worldness had resilience after the fifth time point. The backbone metabolic network only met the criteria for small-worldness in the control group. Additionally, creatine had lower local efficiency in the stress group than the control group, and for the backbone metabolic network, creatine and glutamate were lower and higher in the stress group than the control group, respectively. These findings provide evidence of metabolic imbalance that may be a pre-stage of alterations to brain structure due to acute stress.
Collapse
Affiliation(s)
- Min-Hee Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yoon Ho Hwang
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Chang-Soo Yun
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Bong Soo Han
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Dong Youn Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
20
|
Peres C, Nardin C, Yang G, Mammano F. Commercially derived versatile optical architecture for two-photon STED, wavelength mixing and label-free microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1410-1429. [PMID: 35414982 PMCID: PMC8973165 DOI: 10.1364/boe.444525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Multimodal microscopy combines multiple non-linear techniques that take advantage of different optical processes to generate contrast and increase the amount of information that can be obtained from biological samples. However, the most advanced optical architectures are typically custom-made and often require on-site adjustment of optical components performed by trained personnel for optimal performance. Here, we describe a hybrid system we built based on a commercial upright microscope. We show that our multimodal imaging platform can be used to seamlessly perform two-photon STED, wavelength mixing and label-free microscopy in both ex vivo and in vivo turbid samples. The system is stable and endowed with remote alignment hardware that ensures long-term operability also for non-expert users, using the alignment protocol described in this article and in the related material. This optical architecture is an important step forward towards a wider practical applicability of non-linear optics to bioimaging.
Collapse
Affiliation(s)
- Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Rome, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Rome, Italy
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Rome, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
21
|
Venturini M, Mezzapelle R, La Marca S, Perani L, Spinelli A, Crippa L, Colarieti A, Palmisano A, Marra P, Coppola A, Fontana F, Carcano G, Tacchetti C, Bianchi M, Esposito A, Crippa MP. Use of an antagonist of HMGB1 in mice affected by malignant mesothelioma: a preliminary ultrasound and optical imaging study. Eur Radiol Exp 2022; 6:7. [PMID: 35132475 PMCID: PMC8821768 DOI: 10.1186/s41747-021-00260-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Background Malignant mesothelioma (MM) is an aggressive tumor, with a poor prognosis, usually unresectable due to late diagnosis, mainly treated with chemotherapy. BoxA, a truncated form of “high mobility group box 1” (HMGB1), acting as an HMGB1 antagonist, might exert a defensive action against MM. We investigated the potential of BoxA for MM treatment using experimental 40-MHz ultrasound and optical imaging (OI) in a murine model. Methods Murine MM cells infected with a lentiviral vector expressing the luciferase gene were injected into the peritoneum of 14 BALB/c mice (7 × 104 AB1-B/c-LUC cells). These mice were randomized to treatment with BoxA (n = 7) or phosphate-buffered saline (controls, n = 7). The experiment was repeated with 40 mice divided into two groups (n = 20 + 20) and treated as above to confirm the result and achieve greater statistical power. Tumor presence was investigated by experimental ultrasound and OI; suspected peritoneal masses underwent histopathology and immunohistochemistry examination. Results In the first experiment, none of the 7 controls survived beyond day 27, whereas 4/7 BoxA-treated mice (57.1%) survived up to day 70. In the second experiment, 6/20 controls (30.0%) and 16/20 BoxA-treated mice (80.0%) were still alive at day 34 (p = 0.004). In both experiments, histology confirmed the malignant nature of masses detected using experimental ultrasound and OI. Conclusion In our preclinical experience on a murine model, BoxA seems to exert a protective role toward MM. Both experimental ultrasound and OI proved to be reliable techniques for detecting MM peritoneal masses.
Collapse
|
22
|
Preclinical PET and SPECT imaging. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Markandran K, Yu H, Song W, Lam DTUH, Madathummal MC, Ferenczi MA. Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function. Int J Mol Sci 2021; 23:ijms23010088. [PMID: 35008512 PMCID: PMC8745055 DOI: 10.3390/ijms23010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.
Collapse
Affiliation(s)
- Kasturi Markandran
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Do Thuy Uyen Ha Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Mufeeda Changaramvally Madathummal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- A*STAR Microscopy Platform—Electron Microscopy, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Michael A. Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Brunel Medical School, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Correspondence:
| |
Collapse
|
24
|
Jahreis I, Bascuñana P, Ross TL, Bankstahl JP, Bankstahl M. Choice of anesthesia and data analysis method strongly increases sensitivity of 18F-FDG PET imaging during experimental epileptogenesis. PLoS One 2021; 16:e0260482. [PMID: 34818362 PMCID: PMC8612569 DOI: 10.1371/journal.pone.0260482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Alterations in brain glucose metabolism detected by 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) may serve as an early predictive biomarker and treatment target for epileptogenesis. Here, we aimed to investigate changes in cerebral glucose metabolism before induction of epileptogenesis, during epileptogenesis as well as during chronic epilepsy. As anesthesia is usually unavoidable for preclinical PET imaging and influences the distribution of the radiotracer, four different protocols were compared. Procedures We investigated 18F-FDG uptake phase in conscious rats followed by a static scan as well as dynamic scans under continuous isoflurane, medetomidine-midazolam-fentanyl (MMF), or propofol anesthesia. Furthermore, we applied different analysis approaches: atlas-based regional analysis, statistical parametric mapping, and kinetic analysis. Results At baseline and compared to uptake in conscious rats, isoflurane and propofol anesthesia resulted in decreased cortical 18F-FDG uptake while MMF anesthesia led to a globally decreased tracer uptake. During epileptogenesis, MMF anesthesia was clearly best distinctive for visualization of prominently increased glucometabolism in epilepsy-related brain areas. Kinetic modeling further increased sensitivity, particularly for continuous isoflurane anesthesia. During chronic epilepsy, hypometabolism affecting more or less the whole brain was detectable with all protocols. Conclusion This study reveals evaluation of anesthesia protocols for preclinical 18F-FDG PET imaging as a critical step in the study design. Together with an appropriate data analysis workflow, the chosen anesthesia protocol may uncover otherwise concealed disease-associated regional glucometabolic changes.
Collapse
Affiliation(s)
- Ina Jahreis
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias L. Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
25
|
Development of a new advanced animal cradle for small animal multiple imaging modalities: acquisition and evaluation of high-throughput multiple-mouse imaging. Phys Eng Sci Med 2021; 44:1367-1376. [PMID: 34724162 DOI: 10.1007/s13246-021-01065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
The physiological conditions of small animals are an essential component to be considered when acquiring images for pre-clinical studies, and they play a vital role in the overall results of a study. However, several previous studies did not consider these conditions. In this study, a new animal cradle that can be modified and adjusted to suit multiple imaging modalities such as positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI) was developed. Unlike previous cradles where only one mouse can be imaged at a time, a total of four mice can be imaged simultaneously using this new cradle. Additionally, fusion images with high-throughput multiple-mouse imaging (MMI) of PET/MRI and PET/CT images can be acquired using this newly developed cradle. The dynamic brain images were also acquired simultaneously by applying PET dynamic imaging technology to high-throughput MMI methods. The results of this study suggest that the newly developed small animal cradle can be widely used in pre-clinical studies.
Collapse
|
26
|
Silver NRG, Ward-Flanagan R, Dickson CT. Long-term stability of physiological signals within fluctuations of brain state under urethane anesthesia. PLoS One 2021; 16:e0258939. [PMID: 34695166 PMCID: PMC8544839 DOI: 10.1371/journal.pone.0258939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
Urethane, an acute laboratory anesthetic, produces distinct neurophysiological and physiological effects creating an effective model of the dynamics of natural sleep. As a model of both sleep-like neurophysiological activity and the downstream peripheral function urethane is used to model a variety of physiological and pathophysiological processes. As urethane is typically administered as a single-bolus dose, it is unclear the stability of peripheral physiological functions both within and between brain-states under urethane anesthesia. In this present study, we recorded respiration rate and heart rate concurrently with local field potentials from the neocortex and hippocampus to determine the stability of peripheral physiological functions within and between brain-states under urethane anesthesia. Our data shows electroencephalographic characteristics and breathing rate are remarkable stable over long-term recordings within minor reductions in heart rate on the same time scale. Our findings indicate that the use of urethane to model peripheral physiological functions associated with changing brain states are stable during long duration experiments.
Collapse
Affiliation(s)
| | - Rachel Ward-Flanagan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Anaesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
27
|
Priester MI, Curto S, van Rhoon GC, ten Hagen TLM. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers (Basel) 2021; 13:cancers13184628. [PMID: 34572855 PMCID: PMC8470307 DOI: 10.3390/cancers13184628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The application of mild hyperthermia can be beneficial for solid tumor treatment by induction of sublethal effects on a tissue- and cellular level. When designing a hyperthermia experiment, several factors should be taken into consideration. In this review, multiple elementary hyperthermia devices are described in detail to aid standardization of treatment design. Abstract Preclinical studies have shown that application of mild hyperthermia (40–43 °C) is a promising adjuvant to solid tumor treatment. To improve preclinical testing, enhance reproducibility, and allow comparison of the obtained results, it is crucial to have standardization of the available methods. Reproducibility of methods in and between research groups on the same techniques is crucial to have a better prediction of the clinical outcome and to improve new treatment strategies (for instance with heat-sensitive nanoparticles). Here we provide a preclinically oriented review on the use and applicability of basic hyperthermia systems available for solid tumor thermal treatment in small animals. The complexity of these techniques ranges from a simple, low-cost water bath approach, irradiation with light or lasers, to advanced ultrasound and capacitive heating devices.
Collapse
Affiliation(s)
- Marjolein I. Priester
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
28
|
Pusic KM, Kraig RP, Pusic AD. IFNγ-stimulated dendritic cell extracellular vesicles can be nasally administered to the brain and enter oligodendrocytes. PLoS One 2021; 16:e0255778. [PMID: 34388189 PMCID: PMC8363003 DOI: 10.1371/journal.pone.0255778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles secreted from IFNγ-stimulated rat dendritic cells (referred to here as IFNγ-DC-EVs) contain miRNAs which promote myelination (including but not limited to miR-219), and preferentially enter oligodendrocytes in brain slice cultures. IFNγ-DC-EVs also increase myelination when nasally administered to naïve rats. While we can infer that these extracellular vesicles enter the CNS from functional studies, here we demonstrate biodistribution throughout the brain after nasal delivery by way of imaging studies. After nasal administration, Xenolight DiR-labelled IFNγ-DC-EVs were detected 30 minutes later throughout the brain and the cervical spinal cord. We next examined cellular uptake of IFNγ-DC-EVs by transfecting IFNγ-DC-EVs with mCherry mRNA prior to nasal administration. mCherry-positive cells were found along the rostrocaudal axis of the brain to the brainstem. These cells morphologically resembled oligodendrocytes, and indeed cell-specific co-staining for neurons, astrocytes, microglia and oligodendrocytes showed that mcherry positive cells were predominantly oligodendrocytes. This is in keeping with our prior in vitro results showing that IFNγ-DC-EVs are preferentially taken up by oligodendrocytes, and to a lesser extent, microglia. To confirm that IFNγ-DC-EVs delivered cargo to oligodendrocytes, we quantified protein levels of miR-219 mRNA targets expressed in oligodendrocyte lineage cells, and found significantly reduced expression. Finally, we compared intranasal versus intravenous delivery of Xenolight DiR-labelled IFNγ-DC-EVs. Though labelled IFNγ-DC-EVs entered the CNS via both routes, we found that nasal delivery more specifically targeted the CNS with less accumulation in the liver. Taken together, these data show that intranasal administration is an effective route for delivery of IFNγ-DC-EVs to the CNS, and provides additional support for their development as an EV-based neurotherapeutic that, for the first time, targets oligodendrocytes.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gaarde L, Kolstrup S, Bollen P. The effects of post-operative oxygen supply on blood oxygenation and acid-base status in rats anaesthetized with fentanyl/fluanisone and midazolam. PLoS One 2021; 16:e0255829. [PMID: 34370776 PMCID: PMC8351956 DOI: 10.1371/journal.pone.0255829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
In anaesthetic practice the risk of hypoxia and arterial blood gas disturbances is evident, as most anaesthetic regimens depress the respiratory function. Hypoxia may be extended during recovery, and for this reason we wished to investigate if oxygen supply during a one hour post-operative period reduced the development of hypoxia and respiratory acidosis in rats anaesthetized with fentanyl/fluanisone and midazolam. Twelve Sprague Dawley rats underwent surgery and were divided in two groups, breathing either 100% oxygen or atmospheric air during a post-operative period. The peripheral blood oxygen saturation and arterial acid-base status were analyzed for differences between the two groups. We found that oxygen supply after surgery prevented hypoxia but did not result in a significant difference in the blood acid-base status. All rats developed respiratory acidosis, which could not be reversed by supplemental oxygen supply. We concluded that oxygen supply improved oxygen saturation and avoided hypoxia but did not have an influence on the acid-base status.
Collapse
Affiliation(s)
- Leander Gaarde
- Department of Cardio-Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefanie Kolstrup
- Biomedical Laboratory, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Peter Bollen
- Biomedical Laboratory, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
The ability of baroreflex activation to improve blood pressure and resistance vessel function in spontaneously hypertensive rats is dependent on stimulation parameters. Hypertens Res 2021; 44:932-940. [PMID: 33707760 DOI: 10.1038/s41440-021-00639-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 02/03/2023]
Abstract
Baroreflex activation by electric stimulation of the carotid sinus (CS) effectively lowers blood pressure. However, the degree to which differences between stimulation protocols impinge on cardiovascular outcomes has not been defined. To address this, we examined the effects of short- and long-duration (SD and LD) CS stimulation on hemodynamic and vascular function in spontaneously hypertensive rats (SHRs). We fit animals with miniature electrical stimulators coupled to electrodes positioned around the left CS nerve that delivered intermittent 5/25 s ON/OFF (SD) or 20/20 s ON/OFF (LD) square pulses (1 ms, 3 V, 30 Hz) continuously applied for 48 h in conscious animals. A sham-operated control group was also studied. We measured mean arterial pressure (MAP), systolic blood pressure variability (SBPV), heart rate (HR), and heart rate variability (HRV) for 60 min before stimulation, 24 h into the protocol, and 60 min after stimulation had stopped. SD stimulation reversibly lowered MAP and HR during stimulation. LD stimulation evoked a decrease in MAP that was sustained even after stimulation was stopped. Neither SD nor LD had any effect on SBPV or HRV when recorded after stimulation, indicating no adaptation in autonomic activity. Both the contractile response to phenylephrine and the relaxation response to acetylcholine were increased in mesenteric resistance vessels isolated from LD-stimulated rats only. In conclusion, the ability of baroreflex activation to modulate hemodynamics and induce lasting vascular adaptation is critically dependent on the electrical parameters and duration of CS stimulation.
Collapse
|
31
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
32
|
Lygate CA. The Pitfalls of in vivo Cardiac Physiology in Genetically Modified Mice - Lessons Learnt the Hard Way in the Creatine Kinase System. Front Physiol 2021; 12:685064. [PMID: 34054587 PMCID: PMC8160301 DOI: 10.3389/fphys.2021.685064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980's gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Rakymzhan A, Li Y, Tang P, Wang RK. Differences in cerebral blood vasculature and flow in awake and anesthetized mouse cortex revealed by quantitative optical coherence tomography angiography. J Neurosci Methods 2021; 353:109094. [PMID: 33549637 DOI: 10.1016/j.jneumeth.2021.109094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most of the in vivo neurovascular imaging studies are performed in anesthetized animals. However, anesthesia significantly affects cerebral hemodynamics. NEW METHOD We applied optical coherence tomography (OCT) methods such as optical microangiography (OMAG) and Doppler optical microangiography (DOMAG) to quantitatively evaluate the effect of anesthesia in cerebral vasculature and blood flow in mouse brain. RESULTS The OMAG results indicated the increase of large vessel diameter and capillary density induced by ketamine-xylazine and isoflurane, meaning that both anesthetics caused vasodilation. In addition, the preliminary results from DOMAG showed that isoflurane increased the baseline cerebral blood flow. COMPARISON WITH EXISTING METHODS In comparison with other in vivo imaging modalities, OCT can provide label-free assessment of cortical tissue including tissue morphology, cerebral blood vessel network and flow information down to capillary level, with a large field of view and high imaging speed. CONCLUSIONS OCT angiography methods demonstrated the ability to measure the differences in the baseline morphological and flow parameters of both large and capillary cerebrovascular networks between awake and anesthetized mice.
Collapse
Affiliation(s)
- Adiya Rakymzhan
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Peijun Tang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
34
|
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanism of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide an overview of the preparation and monitoring of small animals before, during, and after surgical interventions or MR imaging. Standardization of experimental settings such as body temperature or hydration of animals and minimizing pain and distress are essential for diminishing nonexperimental variables as well as for conducting ethical research.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
|
35
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
36
|
Scheuren AC, Kuhn GA, Müller R. Effects of long-term in vivo micro-CT imaging on hallmarks of osteopenia and frailty in aging mice. PLoS One 2020; 15:e0239534. [PMID: 32966306 PMCID: PMC7511008 DOI: 10.1371/journal.pone.0239534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022] Open
Abstract
In vivo micro-CT has already been used to monitor microstructural changes of bone in mice of different ages and in models of age-related diseases such as osteoporosis. However, as aging is accompanied by frailty and subsequent increased sensitivity to external stimuli such as handling and anesthesia, the extent to which longitudinal imaging can be applied in aging studies remains unclear. Consequently, the potential of monitoring individual mice during the entire aging process-from healthy to frail status-has not yet been exploited. In this study, we assessed the effects of long-term in vivo micro-CT imaging-consisting of 11 imaging sessions over 20 weeks-on hallmarks of aging both on a local (i.e., static and dynamic bone morphometry) and systemic (i.e., frailty index (FI) and body weight) level at various stages of the aging process. Furthermore, using a premature aging model (PolgA(D257A/D257A)), we assessed whether these effects differ between genotypes. The 6th caudal vertebrae of 4 groups of mice (PolgA(D257A/D257A) and PolgA(+/+)) were monitored by in vivo micro-CT every 2 weeks. One group was subjected to 11 scans between weeks 20 and 40 of age, whereas the other groups were subjected to 5 scans between weeks 26-34, 32-40 and 40-46, respectively. The long-term monitoring approach showed small but significant changes in the static bone morphometric parameters compared to the other groups. However, no interaction effect between groups and genotype was found, suggesting that PolgA mutation does not render bone more or less susceptible to long-term micro-CT imaging. The differences between groups observed in the static morphometric parameters were less pronounced in the dynamic morphometric parameters. Moreover, the body weight and FI were not affected by more frequent imaging sessions. Finally, we observed that longitudinal designs including baseline measurements at young adult age are more powerful at detecting effects of in vivo micro-CT imaging on hallmarks of aging than cross-sectional comparisons between multiple groups of aged mice subjected to fewer imaging sessions.
Collapse
Affiliation(s)
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Lanz B, Abaei A, Braissant O, Choi IY, Cudalbu C, Henry PG, Gruetter R, Kara F, Kantarci K, Lee P, Lutz NW, Marjańska M, Mlynárik V, Rasche V, Xin L, Valette J. Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4325. [PMID: 33565219 PMCID: PMC9429976 DOI: 10.1002/nbm.4325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 05/21/2023]
Abstract
In vivo MRS is a non-invasive measurement technique used not only in humans, but also in animal models using high-field magnets. MRS enables the measurement of metabolite concentrations as well as metabolic rates and their modifications in healthy animals and disease models. Such data open the way to a deeper understanding of the underlying biochemistry, related disturbances and mechanisms taking place during or prior to symptoms and tissue changes. In this work, we focus on the main preclinical 1H, 31P and 13C MRS approaches to study brain metabolism in rodent models, with the aim of providing general experts' consensus recommendations (animal models, anesthesia, data acquisition protocols). An overview of the main practical differences in preclinical compared with clinical MRS studies is presented, as well as the additional biochemical information that can be obtained in animal models in terms of metabolite concentrations and metabolic flux measurements. The properties of high-field preclinical MRS and the technical limitations are also described.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - In-Young Choi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Phil Lee
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Norbert W Lutz
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Lijing Xin
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives, MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
38
|
Crofts A, Trotman-Lucas M, Janus J, Kelly M, Gibson CL. Longitudinal Multimodal fMRI to Investigate Neurovascular Changes in Spontaneously Hypertensive Rats. J Neuroimaging 2020; 30:609-616. [PMID: 32648648 DOI: 10.1111/jon.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022] Open
Abstract
Hypertension is an important risk factor for age-related cognitive decline and neuronal pathologies. Studies have shown a correlation between hypertension, disruption in neurovascular coupling and cerebral autoregulation, and cognitive decline. However, the mechanisms behind this are unclear. To further understand this, it is advantageous to study neurovascular coupling as hypertension progresses in a rodent model. Here, we use a longitudinal functional MRI (fMRI) protocol to assess the impact of hypertension on neurovascular coupling in spontaneously hypertensive rats (SHRs). Eight female SHRs were studied at 2, 4, and 6 months of age, as hypertension progressed. Under an IV infusion of propofol, animals underwent fMRI, functional MR spectroscopy, and cerebral blood flow (CBF) quantification to study changes in neurovascular coupling over time. Blood pressure significantly increased at 4 and 6 months (P < .0001). CBF significantly increased at 4 months old (P < .05), in the acute stage of hypertension. The size of the active region decreased significantly at 6 months old (P < .05). Change in glutamate signal during activation, and N-acetyl-aspartate (NAA) signal, remained constant. This study shows that, while cerebral autoregulation is impaired in acute hypertension, the blood oxygenation-level-dependent (BOLD) response remains unaltered until later stages. At this stage, the consistent NAA and glutamate signals show that neuronal death has not occurred, and that neuronal activity is not affected at this stage. This suggests that neuronal activity and viability is not lost until much later, and changes observed here in BOLD activity are due to vascular effects.
Collapse
Affiliation(s)
- Andrew Crofts
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK.,Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Melissa Trotman-Lucas
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK.,School of Psychology, University of Nottingham, Nottingham, UK
| | - Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Michael Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Claire L Gibson
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK.,School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Fouquet JP, Lebel R, Cahill LS, Sled JG, Tremblay L, Lepage M. Cerebrovascular MRI in the mouse without an exogenous contrast agent. Magn Reson Med 2020; 84:405-415. [PMID: 31845401 PMCID: PMC7154782 DOI: 10.1002/mrm.28129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE To assess the effect of a variety of anesthetic regimes on T 2 ∗ -weighted MRI of the mouse brain and to determine the optimal regimes to perform T 2 ∗ -weighted MRI of the mouse cerebrovasculature without a contrast agent. METHODS Twenty mice were imaged with a 3D T 2 ∗ -weighted sequence under isoflurane, dexmedetomidine, or ketamine-xylazine anesthesia with a fraction of inspired oxygen varied between 10% and 95% + 5% CO2 . Some mice were also imaged after an injection of an iron oxide contrast agent as a positive control. For every regime, whole brain vessel conspicuity was visually assessed and the apparent vessel density in the cortex was quantified and compared. RESULTS The commonly used isoflurane anesthetic leads to poor vessel conspicuity for fraction of inspired oxygen higher or equal to 21%. Dexmedetomidine and ketamine-xylazine enable the visualization of a significantly larger portion of the vasculature for the same breathing gas. Under isoflurane anesthesia, the fraction of inspired oxygen must be lowered to between 10% and 14% to obtain similar vessel conspicuity. Initial results on automatic segmentation of veins and arteries using the iron oxide positive control are also reported. CONCLUSION T 2 ∗ -weighted MRI in combination with an appropriate anesthetic regime can be used to visualize the mouse cerebrovasculature without a contrast agent. The differences observed between regimes are most likely caused by blood-oxygen level dependent effects, highlighting the important impact of the anesthetic regimes on cerebral blood oxygenation of the mouse brain at rest.
Collapse
Affiliation(s)
- Jérémie P. Fouquet
- Department of Nuclear Medicine and RadiobiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Réjean Lebel
- Department of Nuclear Medicine and RadiobiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Lindsay S. Cahill
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - John G. Sled
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Luc Tremblay
- Department of Nuclear Medicine and RadiobiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Martin Lepage
- Department of Nuclear Medicine and RadiobiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| |
Collapse
|
40
|
Shin S, Kim K, Pak K, Nam HY, Im HJ, Lee MJ, Kim SJ, Kim IJ. Effects of animal handling on striatal DAT availability in rats. Ann Nucl Med 2020; 34:496-501. [PMID: 32424547 DOI: 10.1007/s12149-020-01476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Positron emission tomography (PET) is a non-invasive technique measuring quantification of physiological and biochemical processes in the living organism. However, there are many considerations including anesthesia and fasting to acquire small animal imaging. We aimed to evaluate the effects of anesthesia and fasting of rats in dopamine transporter (DAT) imaging acquisition. METHODS Male Sprague Dawley (SD) rats aged 7 weeks and weighing 180-260 g were used in this study. Rats were randomly divided by 4 groups. Group A was kept under anesthesia for 40 min and fasted over 12 h. Group B was only fasted over 12 h. Group C was only kept under anesthesia for 40 min. Group D was neither kept under anesthesia nor fasted over 12 h. PET scans were started at 40 min after 18F-FP-CIT injection and obtained for 20 min. Volumes-of-interest for striatum and extrastriatal area were used for 18F-FP-CIT PET analysis. Cerebellum was considered as a reference region. Specific binding ratio (SBR) was calculated as follows: [(uptake of target-uptake of cerebellum)]/(uptake of cerebellum). RESULTS SBR without fasting and anesthesia (group D) was significantly lower than those of other groups (vs group A, p = 0.0004; vs group B, p = 0.0377; vs group C, p = 0.0134). However, SBRs of extrastriatal area (p = 0.5120) were not affected by fasting and anesthesia. CONCLUSIONS In conclusion, the SBR of striatum was increased after anesthesia by isoflurane and fasting. When designing an experiment using DAT imaging, the effects of isoflurane and fasting should be considered.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| | - Hyung-Jun Im
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seong-Jang Kim
- Department of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| |
Collapse
|
41
|
Verification and Defined Dosage of Sodium Pentobarbital for a Urodynamic Study in the Possibility of Survival Experiments in Female Rat. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6109497. [PMID: 32626750 PMCID: PMC7306087 DOI: 10.1155/2020/6109497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 11/18/2022]
Abstract
Objectives To evaluate the effects of pentobarbital dosages on lower urinary tract function and to define an appropriate dosage of sodium pentobarbital that would be suitable for urodynamic studies in which recovery from anesthesia and long term survive were needed for subsequent experiment. Methods Twenty-four 8-week-old, female, virgin, Sprague-Dawley rats (200-250 g) were used in this study. Rats in study groups received gradient doses of pentobarbital intraperitoneally, and those in the control group received urethane intraperitoneally. External urethral sphincter electromyography (EUS-EMG) was recorded simultaneously during cystometry and leak point pressure tests. The toe-pinch reflex was used to determine the level of anesthesia. Results Micturition was normally induced in both the urethane group and 32 mg/kg pentobarbital group. However, in groups of 40 mg/kg or 36 mg/kg pentobarbital, micturition failed to be induced; instead, nonvoiding contractions accompanied by EUS-EMG tonic activity were observed. There were no significant differences in leak point pressure or EUS-EMG amplitude or frequency between the urethane and 32 mg/kg pentobarbital groups. Conclusions This study confirmed significant dose-dependent effects of pentobarbital on lower urinary tract function and 32 mg/kg pentobarbital as an appropriate dosage for recovery urodynamic testing, which enable the achievement of expected essential micturition under satisfactory anesthesia in female rats.
Collapse
|
42
|
Crofts A, Trotman-Lucas M, Janus J, Kelly M, Gibson CL. A longitudinal, multi-parametric functional MRI study to determine age-related changes in the rodent brain. Neuroimage 2020; 218:116976. [PMID: 32464290 PMCID: PMC7422839 DOI: 10.1016/j.neuroimage.2020.116976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
As the population ages, the incidence of age-related neurological diseases and cognitive decline increases. To further understand disease-related changes in brain function it is advantageous to examine brain activity changes in healthy aging rodent models to permit mechanistic investigation. Here, we examine the suitability, in rodents, of using a novel, minimally invasive anaesthesia protocol in combination with a functional MRI protocol to assess alterations in neuronal activity due to physiological aging. 11 Wistar Han female rats were studied at 7, 9, 12, 15 and 18 months of age. Under an intravenous infusion of propofol, animals underwent functional magnetic resonance imaging (fMRI) and functional magnetic resonance spectroscopy (fMRS) with forepaw stimulation to quantify neurotransmitter activity, and resting cerebral blood flow (CBF) quantification using arterial spin labelling (ASL) to study changes in neurovascular coupling over time. Animals showed a significant decrease in size of the active region with age (P < 0.05). fMRS results showed a significant decrease in glutamate change with stimulation (ΔGlu) with age (P < 0.05), and ΔGlu became negative from 12 months onwards. Global CBF remained constant for the duration of the study. This study shows age related changes in the blood oxygen level dependent (BOLD) response in rodents that correlate with those seen in humans. The results also suggest that a reduction in synaptic glutamate turnover with age may underlie the reduction in the BOLD response, while CBF is preserved. Describe a novel anaesthetic protocol to examine age-related alterations in neuronal activity in rodents. Size of the BOLD signal in the somatosensory cortex decreased with age. Reduction in glutamate turnover with age. No change in resting CBF with age.
Collapse
Affiliation(s)
- Andrew Crofts
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Melissa Trotman-Lucas
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; School of Psychology, University of Nottingham, Nottingham, UK
| | - Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Michael Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Claire L Gibson
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
43
|
Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab 2020; 40:845-859. [PMID: 31088235 PMCID: PMC7168795 DOI: 10.1177/0271678x19848510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We investigated the effect of chronic hypertension on hippocampal arterioles (HippAs) and hippocampal perfusion as underlying mechanisms of memory impairment, and how large artery stiffness relates to HippA remodeling. Using male spontaneously hypertensive rats (SHR) and normotensive Wistar rats (n = 12/group), long-term (LTM) and spatial memory were tested using object recognition and spontaneous alternation tasks. Hippocampal blood flow was measured via hydrogen clearance basally and during hypercapnia. Reactivity of isolated and pressurized HippAs to pressure and pharmacological activators and inhibitors was investigated. To determine large artery stiffness, distensibility and elastin content were measured in thoracic aorta. SHR had impaired LTM and spatial memory associated with decreased basal blood flow (68 ± 12 mL/100 g/min) vs. Wistar (111 ± 28 mL/100 g/min, p < 0.01) that increased during hypercapnia similarly between groups. Compared to Wistar, HippAs from SHR had increased tone at 60 mmHg (58 ± 9% vs. 37 ± 7%, p < 0.01), and decreased reactivity to small- and intermediate-conductance calcium-activated potassium (SK/IK) channel activation. HippAs in both groups were unaffected by NOS inhibition. Decreased elastin content correlated with increased stiffness in aorta of SHR that was associated with increased stiffness and hypertrophic remodeling of HippAs. Hippocampal vascular dysfunction during hypertension could potentiate memory deficits and may provide a therapeutic target to limit vascular cognitive impairment.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Justin E Miller
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
44
|
Insulin-like growth factor-1 inhibits spreading depression-induced trigeminal calcitonin gene related peptide, oxidative stress & neuronal activation in rat. Brain Res 2020; 1732:146673. [PMID: 31978377 DOI: 10.1016/j.brainres.2020.146673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022]
Abstract
Migraineurs can show brain hyperexcitability and oxidative stress that may promote headache. Since hyperexcitability can enhance oxidative stress which promotes hyperexcitability, ending this feed-back loop may reduce migraine. Neocortical spreading depression, an animal model of migraine begins with hyperexcitability and triggers oxidative stress in the neocortical area involved and in the trigeminal system, which is important to pain pathway nociceptive activation in migraine. Additionally, oxidative stress causes increased trigeminal ganglion calcitonin gene-related peptide release and oxidative stress can reduce spreading depression threshold. Insulin-like growth factor-1 significantly protects against spreading depression in vitro by reducing oxidative stress and it is effective against spreading depression after intranasal delivery to animals. Here, we used adult male rats and extend this work to study the trigeminal system where insulin-like growth factor-1 receptors are highly expressed. Recurrent neocortical spreading depression significantly increased surrogate markers of trigeminal activation - immunostaining for trigeminal ganglion oxidative stress, calcitonin gene related peptide levels and c-fos in the trigeminocervical complex versus sham. These effects were significantly reduced by intranasal delivery of insulin-like growth factor-1 a day before recurrent neocortical spreading depression. Furthermore, intranasal treatment with insulin-like growth factor-1 significantly reduced naïve levels of trigeminal ganglion calcitonin gene related peptide versus sham with no impact on blood glucose levels. Intranasal delivery of insulin-like growth factor-1 not only mitigates neocortical spreading depression, a cause of migraine hyperexcitability modeled in animals, but also when neocortical spreading depression is triggered by supra-threshold stimuli, insulin-like growth factor-1 effectively reduces nociceptive activation in the trigeminal system.
Collapse
|
45
|
Mohamed AS, Hosney M, Bassiony H, Hassanein SS, Soliman AM, Fahmy SR, Gaafar K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci Rep 2020; 10:378. [PMID: 31942001 PMCID: PMC6962368 DOI: 10.1038/s41598-019-57252-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
Rodents are widely used for animal research in Egypt. Pentobarbital is the most common anesthetic agent; however overdoses may affect the experimental outcomes and limit the use of tissues. To investigate the effects of sodium pentobarbital overdoses during exsanguination, three groups (6 rats/group) of male and female rats were injected i.p. with 50, 100 and 150 mg/kg of sodium pentobarbital, then carotid exsanguination was performed immediately after loss of consciousness. Hypoxia-inducible factor 1-alpha (Hif1a) and tumor necrosis factor-alpha (Tnfa) mRNA expressions in liver and kidney organs were evaluated. As well as, serum aminotransferase activities (AST&ALT), glucose, urea, creatinine, malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT) levels were determined. The histological alterations in liver, kidney and spleen were studied. It was found that Hif1a and Tnfa were significantly overexpressed in the studied organs and serum AST, glucose, creatinine and urea levels were significantly increased after sodium pentobarbital overdoses (100 and 150 mg/kg) compared to 50 mg/kg dose. Similarly, significant increase in MDA and GSH levels of liver, kidney and spleen were noticed. Results showed gender difference where Hif1a and Tnfa levels were significantly overexpressed at high dose of sodium pentobarbital of liver and kidney organs in female more than male rats. Since euthanasia protocol may influence the physiological variables and affect genes' expression, it is recommended to avoid sodium pentobarbital overdose during euthanasia as it may interfere with the biochemical, molecular and histological measurements.
Collapse
Affiliation(s)
- Ayman S Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Hosney
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba Bassiony
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Sarah S Hassanein
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sohair R Fahmy
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Khadiga Gaafar
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
46
|
Smith TM, Lee D, Bradley K, McMahon SB. Methodology for quantifying excitability of identified projection neurons in the dorsal horn of the spinal cord, specifically to study spinal cord stimulation paradigms. J Neurosci Methods 2020; 330:108479. [DOI: 10.1016/j.jneumeth.2019.108479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
|
47
|
Park HJ, Piao L, Seo EH, Lee SH, Kim SH. The effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Int J Med Sci 2020; 17:428-436. [PMID: 32174773 PMCID: PMC7053311 DOI: 10.7150/ijms.41899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: This study was designed to assess the effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Materials and Methods: The mice were divided into six groups: three intravenous anesthetic agents groups (dexmedetomidine, midazolam and propofol groups), and three corresponding control groups (CD, CM, and CP groups). The intravenous injections were administered once per day for 5 days. The immunity of mice was checked after the last intravenous injection. Histopathology and immunochemistry of liver and kidneys were evaluated. Cytokine levels in the blood was also checked. vs. evaluated with cytokine levels in the blood. Results: Cluster of differentiation (CD)4+ T cells were significantly less expressed in dexmedetomidine and propofol groups, compared with the corresponding control groups [34.08 ± 5.63% in the dexmedetomidine group vs. 59.74 ± 8.64% in the CD group, p < 0.05; 25.28 ± 7.28% in the propofol group vs. 61.12 ± 2.70% in the Cp group, p < 0.05]. Apoptosis of CD4+ T cells was increased significantly in dexmedetomidine and propofol groups, compared with the corresponding control groups. Histopathological findings of liver and kidneys did not show any specific differences of any of three intravenous anesthetic agents groups with their corresponding control groups, although immunohistochemical examination indicated significantly lower expression of Toll-like receptor-4 from liver and kidneys in dexmedetomidine and propofol groups. The cytokine levels were not different between the groups. Conclusion: Repetitive exposure to dexmedetomidine and propofol reduced the expression of CD4+ T cells but did not induce any significant liver or kidney injuries.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Liyun Piao
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Eun-Hye Seo
- BK21 plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea.,Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Keubler LM, Hoppe N, Potschka H, Talbot SR, Vollmar B, Zechner D, Häger C, Bleich A. Where are we heading? Challenges in evidence-based severity assessment. Lab Anim 2019; 54:50-62. [PMID: 31718424 DOI: 10.1177/0023677219877216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evidence-based severity assessment in laboratory animals is, apart from the ethical responsibility, imperative to generate reproducible, standardized and valid data. However, the path towards a valid study design determining the degree of pain, distress and suffering experienced by the animal is lined with pitfalls and obstacles as we will elucidate in this review. Furthermore, we will ponder on the genesis of a holistic concept relying on multifactorial composite scales. These have to combine robust and reliable parameters to measure the multidimensional aspects that define the severity of animal experiments, generating a basis for the substantiation of the refinement principle.
Collapse
Affiliation(s)
- Lydia M Keubler
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Nils Hoppe
- Centre for Ethics and Law in the Life Sciences, University of Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | | |
Collapse
|
49
|
Crofts A, Kelly ME, Gibson CL. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies. J Neuroimaging 2019; 30:5-14. [PMID: 31608550 PMCID: PMC7003729 DOI: 10.1111/jon.12668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Disability and effectiveness of physical therapy are highly variable following ischemic stroke due to different brain regions being affected. Functional magnetic resonance imaging (fMRI) studies of patients in the months and years following stroke have given some insight into how the brain recovers lost functions. Initially, new pathways are recruited to compensate for the lost region, showing as a brighter blood oxygen‐level‐dependent (BOLD) signal over a larger area during a task than in healthy controls. Subsequently, activity is reduced to baseline levels as pathways become more efficient, mimicking the process of learning typically seen during development. Preclinical models of ischemic stroke aim to enhance understanding of the biology underlying recovery following stroke. However, the pattern of recruitment and focusing seen in humans has not been observed in preclinical fMRI studies that are highly variable methodologically. Resting‐state fMRI studies show more consistency; however, there are still confounding factors to address. Anesthesia and method of stroke induction are the two main sources of variability in preclinical studies; improvements here can reduce variability and increase the intensity and reproducibility of the BOLD response detected by fMRI. Differences in task or stimulus and differences in analysis method also present a source of variability. This review compares clinical and preclinical fMRI studies of recovery following stroke and focuses on how refinement of preclinical models and MRI methods may obtain more representative fMRI data in relation to human studies.
Collapse
Affiliation(s)
- Andrew Crofts
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Michael E Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
50
|
Loonen ICM, Jansen NA, Cain SM, Schenke M, Voskuyl RA, Yung AC, Bohnet B, Kozlowski P, Thijs RD, Ferrari MD, Snutch TP, van den Maagdenberg AMJM, Tolner EA. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain 2019; 142:412-425. [PMID: 30649209 DOI: 10.1093/brain/awy325] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy in which brainstem spreading depolarization may play a pivotal role, as suggested by animal studies. However, patiotemporal details of spreading depolarization occurring in relation to fatal seizures have not been investigated. In addition, little is known about behavioural and neurophysiological features that may discriminate spontaneous fatal from non-fatal seizures. Transgenic mice carrying the missense mutation S218L in the α1A subunit of Cav2.1 (P/Q-type) Ca2+ channels exhibit enhanced excitatory neurotransmission and increased susceptibility to spreading depolarization. Homozygous Cacna1aS218L mice show spontaneous non-fatal and fatal seizures, occurring throughout life, resulting in reduced life expectancy. To identify characteristics of fatal and non-fatal spontaneous seizures, we compared behavioural and electrophysiological seizure dynamics in freely-behaving homozygous Cacna1aS218L mice. To gain insight on the role of brainstem spreading depolarization in SUDEP, we studied the spatiotemporal distribution of spreading depolarization in the context of seizure-related death. Spontaneous and electrically-induced seizures were investigated by video monitoring and electrophysiological recordings in freely-behaving Cacna1aS218L and wild-type mice. Homozygous Cacna1aS218L mice showed multiple spontaneous tonic-clonic seizures and died from SUDEP in adulthood. Death was preceded by a tonic-clonic seizure terminating with hindlimb clonus, with suppression of cortical neuronal activity during and after the seizure. Induced seizures in freely-behaving homozygous Cacna1aS218L mice were followed by multiple spreading depolarizations and death. In wild-type or heterozygous Cacna1aS218L mice, induced seizures and spreading depolarization were never followed by death. To identify temporal and regional features of seizure-induced spreading depolarization related to fatal outcome, diffusion-weighted MRI was performed in anaesthetized homozygous Cacna1aS218L and wild-type mice. In homozygous Cacna1aS218L mice, appearance of seizure-related spreading depolarization in the brainstem correlated with respiratory arrest that was followed by cardiac arrest and death. Recordings in freely-behaving homozygous Cacna1aS218L mice confirmed brainstem spreading depolarization during spontaneous fatal seizures. These data underscore the value of the homozygous Cacna1aS218L mouse model for identifying discriminative features of fatal compared to non-fatal seizures, and support a key role for cortical neuronal suppression and brainstem spreading depolarization in SUDEP pathophysiology.
Collapse
Affiliation(s)
- Inge C M Loonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico A Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob A Voskuyl
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew C Yung
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada
| | - Barry Bohnet
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada
| | - Piotr Kozlowski
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada
| | - Roland D Thijs
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,SEIN Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|