1
|
Onyango SA, Machani MG, Ochwedo KO, Oriango RM, Lee MC, Kokwaro E, Afrane YA, Githeko AK, Zhong D, Yan G. Plasmodium falciparum Pfs47 haplotype compatibility to Anopheles gambiae in Kisumu, a malaria-endemic region of Kenya. Sci Rep 2025; 15:6550. [PMID: 39994226 PMCID: PMC11850800 DOI: 10.1038/s41598-024-84847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Insecticide resistance and outdoor transmission have reduced the effectiveness of existing malaria transmission prevention strategies. As a result, targeted approaches to support continuing malaria control, such as transmission-blocking vaccines, are required. Cross-sectional mass blood screening in children between 5 and 15 years was conducted in Chulaimbo, Kisumu, during the dry and wet seasons in 2018 and 2019. Plasmodium falciparum gametocyte carriers were identified by Microscopy. Subsequently, carriers were used to feed colony bred Anopheles gambiae females in serum replacement and whole blood membrane feeding experiments. The infection prevalence was 19.7% (95% Cl 0.003-0.007) with 95% of the infections being caused by P. falciparum. Of all confirmed P. falciparum infections, 16.9% were gametocytes. Thirty-seven paired experiments showed infection rates of 0.9% and 0.5% in the serum replacement and whole blood experiments, respectively, with no significant difference (P = 0.738). Six Pfs47 haplotypes were identified from 24 sequenced infectious blood samples: Hap_1 (E27D and L240I), Hap_2 (S98T); Hap_3 (E27D); Hap_4 (L240I); Hap_5 (E188D); and Hap_6 without mutations. Haplotype 4 had the highest frequency of 29.2% followed by Hap_3 and Hap_6 at 20.8% each then Hap_1 with a frequency of 16.7%, whereas Hap_5 and Hap_2 had frequencies of 8.3% and 4.2% respectively. Varying frequencies of Pfs47 haplotypes observed from genetically heterogeneous parasite populations in endemic regions illuminates vector compatibility to refracting P. falciparum using the hypothesized lock and key analogy. This acts as a bottleneck that increases the frequency of P. falciparum haplotypes that escape elimination by vector immune responses. The interaction can be used as a potential target for transmission blocking through a refractory host.
Collapse
Affiliation(s)
- Shirley A Onyango
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya.
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin O Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Robin M Oriango
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | | | - Yaw A Afrane
- Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
2
|
Ayana GM, Jalilian A, Ashine T, Molla E, Hailemeskel E, Yemane DH, Yirgu H, Negash N, Teferi N, Teshome D, Reynolds AM, Weetman D, Wilson AL, Kenate B, Donnelly MJ, Sedda L, Gadisa E. Larval source management in Ethiopia: modelling to assess its effectiveness in curbing malaria surge in dire Dawa and Batu Towns. Malar J 2024; 23:366. [PMID: 39627824 PMCID: PMC11613928 DOI: 10.1186/s12936-024-05189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Ethiopia faces several severe challenges in terms of malaria elimination, including drug resistance and diagnostic evasion in the Plasmodium falciparum parasite, insecticide resistance in the primary Anopheles malaria vector, and, most recently, the invasion of the Asian malaria vector Anopheles stephensi. Novel malaria control methods are therefore needed, and in this paper, we describe the evaluation of a larval source management (LSM) strategy implemented in response to An. stephensi. The primary outcome was the malaria incidence rate compared between intervention and non-intervention sites in the presence of An. stephensi. METHODS Intervention (Batu and Dire Dawa) and control (Metehara) towns were selected, and weekly malaria passive case detection data collected between 2014 and 2023 were obtained from the Oromia regional state and Dire Dawa City Administration Health Bureau. In addition, data regarding intervention were obtained from the President's Malaria Initiative (PMI) reports. Weekly malaria passive case data were used to evaluate the change in the estimated malaria incidence rate and trends of temporal patterns of the estimated malaria incidence rate before and after interventions. An interrupted time series model with a cyclic second-order random walk structure periodic seasonal term was used to assess the impact of LSM on malaria incidence rate in the intervention and control settings. RESULTS An upsurge in malaria cases occurred after 2020 at both the intervention and control sites. The temporal patterns of malaria incidence rate showed an increasing trend after the intervention. The ITS model depicted that the LSM has no impact in reducing the malaria incidence rate at both intervention site Dire Dawa [immediate impact = 1.462 (0.891, 2.035)], [Lasting impact = 0.003 (- 0.012, 0.018)], and Batu [Immediate impact 0.007 (- 0.235, 0.249), [Lasting impact = 0.008 (- 0.003, 0.013)]. CONCLUSIONS An overall increasing trend in the malaria incidence rate was observed irrespective of the implementation of LSM in the urban settings of Ethiopia, where An. stephensi has been found. Further investigations and validations of the incorporation of LSM into control activities are warranted.
Collapse
Affiliation(s)
- Galana Mamo Ayana
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abdollah Jalilian
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK.
| | - Temesgen Ashine
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Eshetu Molla
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Elifaged Hailemeskel
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dagmawi Hailu Yemane
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hailegiorgis Yirgu
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Nigatu Negash
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Natnael Teferi
- Public Health Emergency Management, Research, and Blood Bank Service Directorate, Oromia Region Health Bureau, P.O. Box 24341, Addis Ababa, Ethiopia
| | - Daniel Teshome
- Public Health Emergency Management, Research, Dire Dawa Region Health Bureau, Dire Dawa, Ethiopia
| | - Alison M Reynolds
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Birhanu Kenate
- Public Health Emergency Management, Research, and Blood Bank Service Directorate, Oromia Region Health Bureau, P.O. Box 24341, Addis Ababa, Ethiopia
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Zembere K. The potential for attractive toxic sugar baits to complement core malaria interventions strategies: the need for more evidence. Malar J 2024; 23:356. [PMID: 39580442 PMCID: PMC11585956 DOI: 10.1186/s12936-024-05161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/29/2024] [Indexed: 11/25/2024] Open
Abstract
Despite its success, the increased use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) has contributed to the development of insecticide resistance in malaria vectors and shifts in biting patterns of the primary malaria vectors. The limitations portrayed by ITNs and IRS suggest that their use alone will not reduce malaria to elimination levels as the remaining untargeted vectors continue to sustain residual malaria transmission (RMT). RMT is a big challenge to malaria elimination because even at 100% ITN and IRS coverage, malaria transmission persists as outdoor vectors avoid or reduce contact with such interventions. With the recent increase in the outdoor biting Anopheles arabiensis (hard to control using routine tools), in most African countries, including Malawi, novel tools such as the attractive toxic sugar baits (ATSBs), targeting outdoor biting vectors in addition to controlling indoor vectors are greatly needed to complement current tools, and could facilitate sustainable malaria control. The ATSB is one potential tool that has been tested in different settings with promising results, and more trials are ongoing in other African countries. ATSBs have been attributed to reductions of mosquito densities and malaria incidence with over 80% and 50%, respectively, and there is hope that by 2025, ATSBs would be considered for the World Health Organization prequalification listing as a complementary tool for mosquito control. This article highlights evidence that ATSBs can advance malaria elimination by complementing indoor-based tools. However, for effective control programmes and elimination campaigns, the use of ATSBs alone might not be adequate, and this article recommends the combined use of ATSBs with either IRS or ITNs.
Collapse
|
4
|
Zhang Y, He S, He C, Zhou L, Xu O, Qiao L, Chen B, Cao Y, He Z. AsOBP1 is required for bioallethrin repellency in the malaria vector mosquito Anopheles sinensis. INSECT SCIENCE 2024; 31:1519-1532. [PMID: 38389031 DOI: 10.1111/1744-7917.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 02/24/2024]
Abstract
The use of insecticides, primarily pyrethroids, is a pivotal strategy for mosquito control globally. Bioallethrin, the first commercially available volatile pyrethroid, can elicit spatial (i.e., noncontact) repellency to mosquitoes through the coactivation of olfactory receptor neurons and sodium channels. However, the olfactory mechanism of the repellency elicited by bioallethrin in mosquitoes is still unclear. Here, we demonstrated the involvement of AsOBP1 in the bioallethrin repellency in Anopheles sinensis, one of the main vectors of vivax malaria in China and other Southeast Asian countries. The behavioral and electrophysiological analyses in AsOrco-/- mutant found that the spatial repellency elicited by bioallethrin depended on the odorant receptor (OR)-mediated olfactory pathway. Furthermore, the repellency was reduced in the AsOBP1-/- mutant and a pyrethroid-resistant strain, in which the expression of AsOBP1 was significantly decreased. Moreover, recombinant AsOBP1 protein bound to bioallethrin in an in vitro competition assay. These results indicate that activation of the AsOBP1-mediated olfactory pathway is an important component of bioallethrin repellency. Our research lays the foundation for further elucidation into the olfactory mechanism of bioallethrin repellency and the behavioral modifications of pyrethroid-resistant mosquitoes.
Collapse
Affiliation(s)
- Yongjie Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Shulin He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Chengyin He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ling Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ou Xu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yueqing Cao
- College of Life Sciences, Chongqing University, Chongqing, China
| | - Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
5
|
Ooko M, Bela NR, Leonard M, Maye VON, Efiri PBE, Ekoko W, Rivas MR, Galick DS, DeBoer KR, Donfack OT, Guerra CA, García GA, Kleinschmidt I. Malaria burden and residual transmission: two thirds of mosquito bites may not be preventable with current vector control tools on Bioko Island, Equatorial Guinea. Int J Infect Dis 2024; 147:107197. [PMID: 39128600 DOI: 10.1016/j.ijid.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES This study assesses exposure to malaria vector mosquitos that is nonpreventable through use of nets, the contribution of outdoor and indoor biting towards residual vector exposure, and the risk factors for being bitten and for being infected with malaria parasites on Bioko Island, Equatorial Guinea. METHODS Human behavior and malaria infection data were collected from 13,735 randomly selected residents during cross-sectional surveys, concomitantly with entomological human landing catches, indoors and outdoors, in 20 locations on the Island. Self-reported time of going indoors, going to bed and whether using a net were analyzed to impute for each respondent the number of bites received outdoors and indoors during the night before the survey. RESULTS On average, each person received 2.7 (95% CI: 2.6-2.8) bites per night outdoors, 8.5 (8.3 to 8.7) bites indoors if not using a net, and 4.7 (4.5 to 4.8) bites indoors if using a net. Malaria infection was associated with more bites, regardless of whether received indoors or outdoors. Older age, male gender, not using a net, rural location, and going indoors later increased the risk of being bitten. The proportion of bites not averted by using a net was estimated as 66% (61 to 71). CONCLUSIONS A large proportion of biting, mostly indoors, may not be preventable by bednets. Tools targeting indoor biting should be prioritized in Bioko. Novel vector control tools are urgently needed to reduce overall exposure to mosquito bites.
Collapse
Affiliation(s)
- Michael Ooko
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | | | | | | - Matilde Riloha Rivas
- National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | | | | | | | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Kambou SS, Valente A, Agnew P, Hien DFDS, Yerbanga RS, Moiroux N, Dabire KR, Pennetier C, Cohuet A, Carrasco D. Non-contact detection of pyrethroids widely used in vector control by Anopheles mosquitoes. PLoS One 2024; 19:e0298512. [PMID: 38995958 PMCID: PMC11244766 DOI: 10.1371/journal.pone.0298512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.
Collapse
Affiliation(s)
- Sassan Simplice Kambou
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Adeline Valente
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Philip Agnew
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Domonbabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé Serge Yerbanga
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut des Sciences et Techniques (InSTech), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Kounbobr Roch Dabire
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - David Carrasco
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
7
|
Mwaanga G, Ford J, Yukich J, Chanda B, Ashton RA, Chanda J, Munsanje B, Muntanga E, Mulota M, Simuyandi C, Mulala B, Simubali L, Saili K, Simulundu E, Miller J, Hamainza B, Orange E, Wagman J, Mburu MM, Harris AF, Entwistle J, Littrell M. Residual bioefficacy of attractive targeted sugar bait stations targeting malaria vectors during seasonal deployment in Western Province of Zambia. Malar J 2024; 23:169. [PMID: 38811947 PMCID: PMC11138038 DOI: 10.1186/s12936-024-04990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The primary vector control interventions in Zambia are long-lasting insecticidal nets and indoor residual spraying. Challenges with these interventions include insecticide resistance and the outdoor biting and resting behaviours of many Anopheles mosquitoes. Therefore, new vector control tools targeting additional mosquito behaviours are needed to interrupt transmission. Attractive targeted sugar bait (ATSB) stations, which exploit the sugar feeding behaviours of mosquitoes, may help in this role. This study evaluated the residual laboratory bioefficacy of Westham prototype ATSB® Sarabi v.1.2.1 Bait Station (Westham Ltd., Hod-Hasharon, Israel) in killing malaria vectors in Western Province, Zambia, during the first year of a large cluster randomized phase-III trial (Clinical Trials.gov Identifier: NCT04800055). METHODS This was a repeat cross-sectional study conducted within three districts, Nkeyema, Kaoma, and Luampa, in Western Province, Zambia. The study was conducted in 12 intervention clusters among the 70 trial clusters (35 interventions, 35 controls) between December 2021 and June 2022. Twelve undamaged bait stations installed on the outer walls of households were collected monthly (one per cluster per month) for bioassays utilizing adult female and male Anopheles gambiae sensu stricto (Kisumu strain) mosquitoes from a laboratory colony. RESULTS A total of 84 field-deployed ATSB stations were collected, and 71 ultimately met the study inclusion criteria for remaining in good condition. Field-deployed stations that remained in good condition (intact, non-depleted of bait, and free of dirt as well as mold) retained high levels of bioefficacy (mean induced mortality of 95.3% in males, 71.3% in females, 83.9% combined total) over seven months in the field but did induce lower mortality rates than non-deployed ATSB stations (mean induced mortality of 96.4% in males, 87.0% in females, 91.4% combined total). There was relatively little variation in corrected mortality rates between monthly rounds for those ATSB stations that had been deployed to the field. CONCLUSION While field-deployed ATSB stations induced lower mortality rates than non-deployed ATSB stations, these stations nonetheless retained relatively high and stable levels of bioefficacy across the 7-month malaria transmission season. While overall mean mosquito mortality rates exceeded 80%, mean mortality rates for females were 24 percentage points lower than among males and these differences merit attention and further evaluation in future studies. The duration of deployment was not associated with lower bioefficacy. Westham prototype ATSB stations can still retain bioefficacy even after deployment in the field for 7 months, provided they do not meet predetermined criteria for replacement.
Collapse
Affiliation(s)
| | - Jacob Ford
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | - Joshua Yukich
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | | | - Ruth A Ashton
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mushtaq I, Sarwar MS, Chaudhry A, Shah SAH, Ahmad MM. Updates on traditional methods for combating malaria and emerging Wolbachia-based interventions. Front Cell Infect Microbiol 2024; 14:1330475. [PMID: 38716193 PMCID: PMC11074371 DOI: 10.3389/fcimb.2024.1330475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
The escalating challenge of malaria control necessitates innovative approaches that extend beyond traditional control strategies. This review explores the incorporation of traditional vector control techniques with emerging Wolbachia-based interventions. Wolbachia, a naturally occurring bacteria, offers a novel approach for combatting vector-borne diseases, including malaria, by reducing the mosquitoes' ability to transmit these diseases. The study explores the rationale for this integration, presenting various case studies and pilot projects that have exhibited significant success. Employing a multi-dimensional approach that includes community mobilization, environmental modifications, and new biological methods, the paper posits that integrated efforts could mark a turning point in the struggle against malaria. Our findings indicate that incorporating Wolbachia-based strategies into existing vector management programs not only is feasible but also heightens the efficacy of malaria control initiatives in different countries especially in Pakistan. The paper concludes that continued research and international collaboration are imperative for translating these promising methods from the laboratory to the field, thereby offering a more sustainable and effective malaria control strategy.
Collapse
|
9
|
Zhou G, Githure J, Lee MC, Zhong D, Wang X, Atieli H, Githeko AK, Kazura J, Yan G. Malaria transmission heterogeneity in different eco-epidemiological areas of western Kenya: a region-wide observational and risk classification study for adaptive intervention planning. Malar J 2024; 23:74. [PMID: 38475793 PMCID: PMC10935946 DOI: 10.1186/s12936-024-04903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions. METHODS Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity of malaria was analyzed and classified into different eco-epidemiological zones. RESULTS There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and parasite prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence and vector density. Different zones have different vector species, species compositions and predominant species. Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood index and malaria parasite sporozoite rate. CONCLUSION The multi-transmission-indicator-based eco-epidemiological zone classifications will be helpful for making decisions on locally adapted malaria interventions.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA.
| | - John Githure
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Harrysone Atieli
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
10
|
Odero JI, Abong'o B, Moshi V, Ekodir S, Harvey SA, Ochomo E, Gimnig JE, Achee NL, Grieco JP, Oria PA, Monroe A. Early morning anopheline mosquito biting, a potential driver of malaria transmission in Busia County, western Kenya. Malar J 2024; 23:66. [PMID: 38438933 PMCID: PMC10910777 DOI: 10.1186/s12936-024-04893-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) contributed significantly to the decline in malaria since 2000. Their protective efficacy depends not only on access, use, and net integrity, but also location of people within the home environment and mosquito biting profiles. Anopheline mosquito biting and human location data were integrated to identify potential gaps in protection and better understand malaria transmission dynamics in Busia County, western Kenya. METHODS Direct observation of human activities and human landing catches (HLC) were performed hourly between 1700 to 0700 h. Household members were recorded as home or away; and, if at home, as indoors/outdoors, awake/asleep, and under a net or not. Aggregated data was analysed by weighting hourly anopheline biting activity with human location. Standard indicators of human-vector interaction were calculated using a Microsoft Excel template. RESULTS There was no significant difference between indoor and outdoor biting for Anopheles gambiae sensu lato (s.l.) (RR = 0.82; 95% CI 0.65-1.03); significantly fewer Anopheles funestus were captured outdoors than indoors (RR = 0.41; 95% CI 0.25-0.66). Biting peaked before dawn and extended into early morning hours when people began to awake and perform routine activities, between 0400-0700 h for An. gambiae and 0300-0700 h for An. funestus. The study population away from home peaked at 1700-1800 h (58%), gradually decreased and remained constant at 10% throughout the night, before rising again to 40% by 0600-0700 h. When accounting for resident location, nearly all bites within the peri-domestic space (defined as inside household structures and surrounding outdoor spaces) occurred indoors for unprotected people (98%). Using an ITN while sleeping was estimated to prevent 79% and 82% of bites for An. gambiae and An. funestus, respectively. For an ITN user, most remaining exposure to bites occurred indoors in the hours before bed and early morning. CONCLUSION While use of an ITN was estimated to prevent most vector bites in this context, results suggest gaps in protection, particularly in the early hours of the morning when biting peaks and many people are awake and active. Assessment of additional human exposure points, including outside of the peri-domestic setting, are needed to guide supplementary interventions for transmission reduction.
Collapse
Affiliation(s)
- Julius I Odero
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Bernard Abong'o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Moshi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sheila Ekodir
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Steven A Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA, USA
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Eck Institute for Global Health, Notre Dame, IN, USA
| | - John P Grieco
- Department of Biological Sciences, University of Notre Dame, Eck Institute for Global Health, Notre Dame, IN, USA
| | - Prisca A Oria
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| |
Collapse
|
11
|
Abong’o B, Agumba S, Moshi V, Simwero J, Otima J, Ochomo E. Insecticide treated eaves screens provide additional marginal protection compared to untreated eave screens under semi-field conditions in western Kenya. MALARIAWORLD JOURNAL 2024; 15:1. [PMID: 38322708 PMCID: PMC10842374 DOI: 10.5281/zenodo.10567425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Introduction Human habitats remain the main point of human-vector interaction leading to malaria transmission despite the sustained use of insecticide-treated nets and indoor residual spraying. Simple structural modifications involving screening of doors, windows and eaves have great potential for reducing indoor entry of mosquitoes. Moreover, insecticide treatment of the screen material may provide additional benefit in mosquito population reduction. Materials and Methods Four huts, each constructed inside a semi-field structure, were used in the study. Two had untreated eave and door screens and screened air cavities in place of windows (experiment 1) or were similar but with the eave screens treated with Actellic® 300CS insecticide (experiment 2). The other two huts remained unscreened throughout the study. Two hundred, 3-day old adults of F1 generation Anopheles funestus collected by aspiration or F0 reared from An. arabiensis larvae or An. arabiensis (Dongola strain) were released in each semi-field structure at dusk and recaptured the following morning. A single volunteer slept in each hut under an untreated bednet each night of the study. Recaptured mosquitoes were counted and recorded by location, either indoor or outdoor of each hut in the different semi-field structures. Results Based on modelled estimates, significantly fewer, 10% An. arabiensis from Ahero, 11% An. arabiensis Dongola strain and 10% An. funestus from Siaya were observed inside modified huts compared to unmodified ones. Treating of eave screen material with Actellic® 300CS significantly reduced indoor numbers of An. arabiensis from Ahero, to nearly 0%, and An. arabiensis Dongola strain, to 3%, compared to huts with untreated eave screens, while eliminating An. funestus indoors. These modifications cost US$180 /structure and have been observed to last more than 15 years in a different location. Conclusions Eave, door and window screening are effective ways of reducing mosquito entry into houses. Additionally, treatment of eave screen material with an effective insecticide further reduces the Anopheles population in and around the screened huts under semi-field conditions and could greatly complement existing vector control efforts.
Collapse
Affiliation(s)
- Bernard Abong’o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Research World Limited, Kisumu, Kenya
| | - Silas Agumba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Moshi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jacob Simwero
- Habitat for Humanity International, Lenana Road, Nairobi
| | - Jane Otima
- Habitat for Humanity International, Lenana Road, Nairobi
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Research World Limited, Kisumu, Kenya
| |
Collapse
|
12
|
DeBoer KR, Vaz LM, Ondo Mfumu TA, Nlang JAM, Ondo L, Riloha Rivas M, Incardona S, Pollock J, von Fricken ME, Mba Eyono JN, Donfack OT, Guerra CA, García GA. Assessing IRS performance in a gender-integrated vector control programme on Bioko Island, Equatorial Guinea, 2010-2021. Malar J 2023; 22:323. [PMID: 37880774 PMCID: PMC10599007 DOI: 10.1186/s12936-023-04755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a common vector control strategy in countries with high malaria burden. Historically, social norms have prevented women from working in IRS programmes. The Bioko Island Malaria Elimination Project has actively sought to reduce gender inequality in malaria control operations for many years by promoting women's participation in IRS. METHODS This study investigated the progress of female engagement and compared spray productivity by gender from 2010 to 2021, using inferential tests and multivariable regression. Spray productivity was measured by rooms sprayed by spray operator per day (RSOD), houses sprayed by spray operator per day (HSOD), and the daily productivity ratio (DPR), defined as the ratio of RSOD to HSOD, which standardized productivity by house size. RESULTS The percentage of women participating in IRS has increased over time. The difference in DPR comparing male and female spray operators was only statistically significant (p < 0.05) for two rounds, where the value was higher for women compared to men. Regression analyses showed marginal, significant differences in DPR between men and women, but beta coefficients were extremely small and thus not indicative of a measurable effect of gender on operational performance. CONCLUSIONS The quantitative analyses of spray productivity are counter to stigmatizing beliefs that women are less capable than male counterparts during IRS spray rounds. The findings from this research support the participation of women in IRS campaigns, and a renewed effort to implement equitable policies and practices that intentionally engage women in vector control activities.
Collapse
Affiliation(s)
| | | | - Teresa Ayingono Ondo Mfumu
- MCD Global Health, Malabo, Equatorial Guinea
- Ministry of Health and Social Welfare, National Malaria Control Programme, Malabo, Equatorial Guinea
| | | | - Lucas Ondo
- MCD Global Health, Malabo, Equatorial Guinea
| | - Matilde Riloha Rivas
- Ministry of Health and Social Welfare, National Malaria Control Programme, Malabo, Equatorial Guinea
| | | | | | - Michael E von Fricken
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
13
|
Mwangungulu SP, Dorothea D, Ngereja ZR, Kaindoa EW. Geospatial based model for malaria risk prediction in Kilombero valley, South-eastern, Tanzania. PLoS One 2023; 18:e0293201. [PMID: 37874849 PMCID: PMC10597495 DOI: 10.1371/journal.pone.0293201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts. METHODS This study employs a geospatial based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability. RESULTS The study demonstrates that the majority of the study area falls under moderate risk level (61%), followed by the low risk level (31%), while the high malaria risk area covers a small area, which occupies only 8% of the total area. CONCLUSION The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions.
Collapse
Affiliation(s)
- Stephen P. Mwangungulu
- Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania
| | - Deus Dorothea
- Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania
| | - Zakaria R. Ngereja
- Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
14
|
Nzioki I, Machani MG, Onyango SA, Kabui KK, Githeko AK, Ochomo E, Yan G, Afrane YA. Differences in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems of western Kenya. Parasit Vectors 2023; 16:376. [PMID: 37864217 PMCID: PMC10590029 DOI: 10.1186/s13071-023-05944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/24/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.
Collapse
Affiliation(s)
- Irene Nzioki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | - Kevin K Kabui
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
15
|
Liggri PGV, Pérez-Garrido A, Tsitsanou KE, Dileep KV, Michaelakis A, Papachristos DP, Pérez-Sánchez H, Zographos SE. 2D finger-printing and molecular docking studies identified potent mosquito repellents targeting odorant binding protein 1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103961. [PMID: 37217081 DOI: 10.1016/j.ibmb.2023.103961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Personal protection measures against the mosquitoes like the use of repellents constitute valuable tools in the effort to prevent the transmission of vector-borne diseases. Therefore, the discovery of novel repellent molecules which will be effective at lower concentrations and provide a longer duration of protection remains an urgent need. Mosquito Odorant-Binding Proteins (OBPs) involved in the initial steps of the olfactory signal transduction cascade have been recognized not only as passive carriers of odors and pheromones but also as the first molecular filter to discriminate semiochemicals, hence serving as molecular targets for the design of novel pest control agents. Among the three-dimensional structures of mosquito OBPs solved in the last decades, the OBP1 complexes with known repellents have been widely used as reference structures in docking analysis and molecular dynamics simulation studies for the structure-based discovery of new molecules with repellent activity. Herein, ten compounds known to be active against mosquitoes and/or displaying a binding affinity for Anopheles gambiae AgamOBP1 were used as queries in an in silico screening of over 96 million chemical samples in order to detect molecules with structural similarity. Further filtering of the acquired hits on the basis of toxicity, vapor pressure, and commercial availability resulted in 120 unique molecules that were subjected to molecular docking studies against OBP1. For seventeen potential OBP1-binders, the free energy of binding (FEB) and mode of interaction with the protein were further estimated by molecular docking simulations leading to the selection of eight molecules exhibiting the highest similarity with their parental compounds and favorable energy values. The in vitro determination of their binding affinity to AgamOBP1 and the evaluation of their repellent activity against female Aedes albopictus mosquitoes revealed that our combined ligand similarity screening and OBP1 structure-based molecular docking successfully detected three molecules with enhanced repellent properties. A novel DEET-like repellent with lower volatility (8.55 × 10-4 mmHg) but a higher binding affinity for OBP1 than DEET (1.35 × 10-3 mmHg). A highly active repellent molecule that is predicted to bind to the secondary Icaridin (sIC)-binding site of OBP1 with higher affinity than to the DEET-site and, therefore, represents a new scaffold to be exploited for the discovery of binders targeting multiple OBP sites. Finally, a third potent repellent exhibiting a high degree of volatility was found to be a strong DEET-site binder of OBP1 that could be used in slow-release formulations.
Collapse
Affiliation(s)
- Panagiota G V Liggri
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107, Spain
| | - Katerina E Tsitsanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, 8 S Delta Str. 14561, Kifissia, Athens, Greece
| | - Dimitrios P Papachristos
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, 8 S Delta Str. 14561, Kifissia, Athens, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107, Spain.
| | - Spyros E Zographos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece.
| |
Collapse
|
16
|
Kampango A, Pinto J, Abílio AP, Machoe E, Matusse J, McCall PJ. Characterisation of human exposure to nocturnal biting by malaria and arbovirus vectors in a rural community in Chókwè district, southern Mozambique. Wellcome Open Res 2023; 8:193. [PMID: 37484481 PMCID: PMC10357080 DOI: 10.12688/wellcomeopenres.19278.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Understanding the magnitude of human exposure to mosquito biting is fundamental to reduce pathogen transmission. Here we report on a study quantifying the levels of mosquitoes attacking humans throughout the night in a rural area of Southern Mozambique. Methods: Surveys were carried out in Massavasse village, southern Mozambique. The abundance and composition of host-seeking mosquito communities at night were assessed by human-landing catches (HLC) at one-hour intervals. Periods when people were located predominantly outdoors or indoors were used to estimate the amount of residents' exposure to mosquito bites in either location, to explore the potential impact a bed net could have had in reducing biting by each vector species. Results: A total of 69,758 host-seeking female mosquitoes comprising 23 species in four genera were collected. The exposure to biting by virtually all vector species was consistently high outdoors, typically at early evening and morning, with exception of An. gambiae s.l which was likely of biting a person with nearly same intensity indoors and outdoors throughout the night. Bed nets use could have reduced biting by An. gambiae s.l (dominated by An. arabiensis), Ma. africana, Ma. uniformis, Cx. pipiens, Cx. antennatus, and Cx. poicilipes by 53%, 47%, 46%, 38%, 31%, and 28% respectively, compared to non-users. Conversely, a bed net user would have had little protection against An. pharoensis, An. ziemanni, An. tenebrosus, and Cx. tritaeniorhynchus biting exposures. Conclusions: This study showed that Massavasse residents were exposed to high levels of outdoor biting by malaria and arbovirus vectors that abound in the village. The findings help to identify entomological drivers of persistent malaria transmission in Mozambique and identify a wide range of arbovirus vectors nocturnally active in rural areas, many with outbreak potential. The study highlights the need for a surveillance system for monitoring arboviral diseases vectors in Mozambique.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Hatfield, 0028, South Africa
| | - João Pinto
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine (IHMT), Lisbon, Rua da Junqueira, 100 1349-008, Portugal
| | - Ana Paula Abílio
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
| | - Elias Machoe
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
| | - Júlio Matusse
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, Pembroke Place, L3 5QA, UK
| |
Collapse
|
17
|
Lee JM, Wasserman RJ, Wilson RF, Cuthbert RN, Rahman S, Yek SH. Limited Effect of Ground Floor Fogging on Mosquito Distribution in High-Rise Condominia. ECOHEALTH 2023:10.1007/s10393-023-01629-8. [PMID: 37129695 DOI: 10.1007/s10393-023-01629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 01/25/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Fogging with insecticides is one of the main control measures for adult mosquito populations employed in countries that are affected by dengue. In many such countries, urban communities are increasingly characterised by high-density residence in high-rise condominia. Although fogging is typically applied at the ground level, its efficacy in three-dimensional urban environments is poorly understood. Here, we investigated the effect of fogging on vector mosquito distribution and abundance in high-rise condominia by conducting a before-after fogging survey. We showed that although mosquitoes were significantly concentrated at the lower levels in high-rise condominia, they were found throughout the three-dimensional environments. Fogging did not significantly alter this distribution or abundance pattern across any floor level. Thus, any fogging effect was short-lived as mosquito populations recovered within a few days before the subsequent scheduled treatment. In addition, increasing fogging frequency within practicable limits did not prolong the intended control effect. As urban mosquitoes are increasingly insusceptible to fogging due to insecticide resistance and vertical avoidance, this study demonstrates the need to implement other mosquito control strategies for high-rise condominia to manage mosquito populations.
Collapse
Affiliation(s)
- Jin Min Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ryan J Wasserman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Robyn F Wilson
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 5DL, UK
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sze Huei Yek
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
18
|
Njenga SM, Kanyi HM, Mwatele CM, Mukoko DA, Bockarie MJ, Kelly-Hope LA. Integrated survey of helminthic neglected tropical diseases and comparison of two mosquito sampling methods for lymphatic filariasis molecular xenomonitoring in the River Galana area, Kilifi County, coastal Kenya. PLoS One 2022; 17:e0278655. [PMID: 36490233 PMCID: PMC9733851 DOI: 10.1371/journal.pone.0278655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
A lymphatic filariasis (LF) endemic focus along the River Galana/ Sabaki in Kilifi County, coastal Kenya, provided a platform to conduct an integrated survey for three helminthic neglected tropical diseases (NTDs), namely soil-transmitted helminthiasis (STH), schistosomiasis (SCH) and LF. Additionally, the study compared the performance of two mosquito trapping methods for LF molecular xenomonitoring (MX). Cross-sectional surveys measuring STH, SCH and LF prevalence were conducted in four villages. Mosquitoes were trapped using the CDC light trap (CDC-LT) and the Ifakara A tent trap (Ifakara-TT) methods and stored in pools which were tested for Wuchereria bancrofti DNA using the real-time polymerase chain reaction assay. A total of 907 people (436 adults; 471 children) participated in the parasitological testing. Among the STH infections, Trichuris trichiura and hookworms were most prevalent among the children and adult populations, respectively. The schistosome worm eggs detected belonged to the species Schistosoma haematobium and the prevalence of the infection was generally higher among the children compared with the adult population. The prevalence of LF infection among the adult population ranged from 1.8% to 7.6% across all 4 villages (P < 0.05). A total of 3,652 mosquitoes, including Anopheles, Culex, Mansonia, and Aedes species were collected. One mosquito pool consisting of Anopheles mosquitoes tested positive for filarial DNA out of 1,055 pools that were tested. The CDC-LT caught significantly more mosquitoes compared with the Ifakara-TT (P < 0.001). This study demonstrated that integrated epidemiological surveys using standard parasitological and entomological methods can provide useful information on co-endemic parasitic diseases which could help direct interventions and surveillance activities.
Collapse
Affiliation(s)
- Sammy M. Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Henry M. Kanyi
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cassian M. Mwatele
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dunstan A. Mukoko
- Division of Vector Borne and Neglected Tropical Diseases, Ministry of Health, Nairobi, Kenya
| | - Moses J. Bockarie
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | - Louise A. Kelly-Hope
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
19
|
Abong’o B, Gimnig JE, Omoke D, Ochomo E, Walker ED. Screening eaves of houses reduces indoor mosquito density in rural, western Kenya. Malar J 2022; 21:377. [PMID: 36494664 PMCID: PMC9733111 DOI: 10.1186/s12936-022-04397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the scale-up of insecticide-treated nets and indoor residual spraying, the bulk of malaria transmission in western Kenya still occurs indoors, late at night. House improvement is a potential long-term solution to further reduce malaria transmission in the region. METHODS The impact of eave screening on mosquito densities was evaluated in two rural villages in western Kenya. One-hundred-and-twenty pairs of structurally similar, neighbouring houses were used in the study. In each pair, one house was randomly selected to receive eave screening at the beginning of the study while the other remained unscreened until the end of the sampling period. Mosquito sampling was performed monthly by motorized aspiration method for 4 months. The collected mosquitoes were analysed for species identification. RESULTS Compared to unscreened houses, significantly fewer female Anopheles funestus (RR = 0.40, 95% CI 0.29-0.55), Anopheles gambiae Complex (RR = 0.46, 95% CI 0.34-0.62) and Culex species (RR = 0.53, 95% CI 0.45-0.61) were collected in screened houses. No significant differences in the densities of the mosquitoes were detected in outdoor collections. Significantly fewer Anopheles funestus were collected indoors from houses with painted walls (RR = 0.05, 95% CI 0.01-0.38) while cooking in the house was associated with significantly lower numbers of Anopheles gambiae Complex indoors (RR = 0.60, 95% CI 0.45-0.79). Nearly all house owners (99.6%) wanted their houses permanently screened, including 97.7% that indicated a willingness to use their own resources. However, 99.2% required training on house screening. The cost of screening a single house was estimated at KES6,162.38 (US$61.62). CONCLUSION Simple house modification by eave screening has the potential to reduce the indoor occurrence of both Anopheles and Culex mosquito species. Community acceptance was very high although education and mobilization may be needed for community uptake of house modification for vector control. Intersectoral collaboration and favourable government policies on housing are important links towards the adoption of house improvements for malaria control.
Collapse
Affiliation(s)
- Bernard Abong’o
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - John E. Gimnig
- grid.416738.f0000 0001 2163 0069Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, GA 30341 USA
| | - Diana Omoke
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Eric Ochomo
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Edward D. Walker
- grid.17088.360000 0001 2150 1785Michigan State University, 6169 Biomedical Physical Sciences Building, East Lansing, MI 48824 USA
| |
Collapse
|
20
|
Bamou R, Tchuinkam T, Kopya E, Awono-Ambene P, Njiokou F, Mwangangi J, Antonio-Nkondjio C. Knowledge, attitudes, and practices regarding malaria control among communities living in the south Cameroon forest region. IJID REGIONS 2022; 5:169-176. [PMID: 36467507 PMCID: PMC9713328 DOI: 10.1016/j.ijregi.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 05/28/2023]
Abstract
OBJECTIVE This study assessed knowledge, attitudes, and practices (KAP) regarding malaria among communities living in the equatorial forest region of south Cameroon. METHODS The study was conducted in Olama and Nyabessan. Interviews were undertaken using a semi-structured questionnaire for data collection on KAP, while malaria rapid diagnostic testing, using SD BIOLINE kits, was employed for malaria parasite detection. RESULTS In total, 186 heads of households (HoH), comprising 105 (56.45%) males and 81 (43.45%) females, were interviewed. The majority of HoH demonstrated good knowledge of malaria (86.56%; n = 161) and control measures, with a high proportion of long-lasting insecticidal net (LLIN) ownership (96.8%; n = 180). More than two-thirds (81.1%; n = 151) of households owned at least one LLIN for two people. The majority of HoH (85.40%) declared visiting hospitals or clinics in cases of suspected malaria. Malaria parasite prevalence was high in the two study sites (63.9% in Nyabessan and 48.65% in Olama), and varied according to age, house type, and sleeping time. CONCLUSION The study indicated that despite good knowledge of malaria, high possession and utilization of control measures by population, transmission of malaria still persist in the area. The study stress the need for implementing additional control measures to improve the fight against malaria in the area.
Collapse
Key Words
- Cameroon
- HoH, head of household
- IRS, indoor residual spraying
- KAP
- KAP, knowledge, attitude, and practice
- LLIN, long-lasting insecticidal net
- MoH, Ministry of Health. PBO, piperonyl butoxide
- NMCP, National Malaria Control Program
- WHO, World Health Organization
- forested area
- mRDT, malaria rapid diagnostic test
- malaria determinants
- malaria prevalence
Collapse
Affiliation(s)
- Roland Bamou
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang
- Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang
| | - Edmond Kopya
- Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Joseph Mwangangi
- Center for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
- Centre for Vector Disease Control, Kenya Medical Research Institute (KEMRI), Kwale, Kenya
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
21
|
García GA, Fuseini G, Mba Nlang JA, Nsue Maye VO, Bela NR, Wofford RN, Weppelmann TA, Matulis G, Efiri PB, Smith JM, Rivas MR, Phiri WP, von Fricken ME. Evaluation of a Multi-Season, Community-Based Larval Source Management Program on Bioko Island, Equatorial Guinea. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.846955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundIn 2015 and 2016, the Bioko Island Malaria Control Project (BIMCP) introduced a pilot larvicide program, which recruited local volunteers to assess the sustainability and effectiveness of community-led larval source management. This study evaluates the effectiveness of the community-led LSM program to determine if this type of intervention could be used as a sustainable malaria control method on Bioko Island.MethodsThe pilot program was split into two phases, both taking place between February and December, with phase I in 2015 and phase II in 2016. During phase I, the BIMCP team assisted in identifying and treating Anopheles species mosquito breeding habitats. During phase II, community volunteers, with supervision from designated community leaders, identified and treated breeding habitats. Larval source management took place at thirteen locations around the Island during both phases. Human landing catches were conducted at seven sentinel sites once every month for the duration of the study period to determine average nightly biting rates.ResultsDuring phase I, 1,033 breeding sites were identified with a 100% treatment coverage rate. Only 970 breeding sites were identified in phase II with a 75% treatment coverage rate, a significant decrease from phase I (p<0.001). Between phase I and phase II, larvicide usage also decreased by 45% (95% CI: 32, 59%, p=0.003). However, excluding the sentinel site Balboa, vector density showed a nonsignificant (p=0.272) relationship between phase I and phase II.ConclusionOverall, community-based larval source management can be effective with strong operational management and oversight. However, repeated training and evaluation will be necessary to monitor the effectiveness and sustainability of such interventions.
Collapse
|
22
|
Hamid-Adiamoh M, Nwakanma D, Sraku I, Amambua-Ngwa A, A. Afrane Y. Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana. AAS Open Res 2022; 4:53. [PMID: 40078892 PMCID: PMC11347917 DOI: 10.12688/aasopenres.13317.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 03/14/2025] Open
Abstract
Background: Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed. This has been attributed to selection pressure from use of control tools. This present study examined if the outdoor resting behaviour in the vector population is random or indicative of a consistent preference of one resting site over the other. Methods: Mark-release-recapture experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from two villages in northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Twelves release events were conducted for outdoor-resting mosquitoes and two for indoor mosquitoes, with ten replicates in each event. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results: A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,636, 59%) and An. funestus complex (1,824, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were captured and recaptured during rainy season, but this was not statistically significant (Z=0.79, P=0.21). Conclusions: These results suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- Disease Control and Elimination, MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular,, University of Ghana, Accra, Ghana
| | - Davis Nwakanma
- Disease Control and Elimination, MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Isaac Sraku
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular,, University of Ghana, Accra, Ghana
| | - Yaw A. Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular,, University of Ghana, Accra, Ghana
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
23
|
Wetzler EA, Park C, Arroz JAH, Chande M, Mussambala F, Candrinho B. Impact of mass distribution of insecticide-treated nets in Mozambique, 2012 to 2025: Estimates of child lives saved using the Lives Saved Tool. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000248. [PMID: 36962318 PMCID: PMC10022185 DOI: 10.1371/journal.pgph.0000248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Malaria was the leading cause of post-neonatal deaths in Mozambique in 2017. The use of insecticide treated nets (ITNs) is recognized as one of the most effective ways to reduce malaria mortality in children. No previous analyses have estimated changes in mortality attributable to the scale-up of ITNs, accounting for provincial differences in mortality rates and coverage of health interventions. Based upon annual provincial ownership coverage of ITNs, the Lives Saved Tool (LiST), a multi-cause mathematical model, estimated under-5 lives saved attributable to increased household ITN coverage in 10 provinces of Mozambique between 2012 and 2018, and projected lives saved from 2019 to 2025 if 2018 coverage levels are sustained. An estimated 14,040 under-5 child deaths were averted between 2012 and 2018. If 2018 coverage levels are maintained until 2025, an additional 33,277 child deaths could be avoided. If coverage reaches at least 85% in all ten provinces by 2022, then a projected 36,063 child lives can be saved. From 2012 to 2018, the estimated number of lives saved was highest in Zambezia and Tete provinces. Increases in ITN coverage can save a substantial number of child lives in Mozambique. Without continued investment, thousands of avoidable child deaths will occur.
Collapse
Affiliation(s)
- Erica A Wetzler
- World Vision United States, Federal Way, Washington, United States of America
| | - Chulwoo Park
- Department of Public Health and Recreation, San José State University, San Jose, California, United States of America
| | | | | | | | | |
Collapse
|
24
|
Hamid-Adiamoh M, Nwakanma D, Sraku I, Amambua-Ngwa A, A. Afrane Y. Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13317.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed, attributed to selection pressure from use of control tools. This present study examined if the outdoor resting behaviour in the vector population is random or indicative of a consistent preference of one resting site over the other. Methods: Mark-release-recapture experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from two villages in northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results: A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,636, 59%) and An. funestus complex (1,824, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were captured and recaptured during rainy season, but this was not statistically significant (Z=0.79, P=0.21). Conclusions: These results suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.
Collapse
|
25
|
Stromsky VE, Hajkazemian M, Vaisbourd E, Mozūraitis R, Noushin Emami S. Plasmodium metabolite HMBPP stimulates feeding of main mosquito vectors on blood and artificial toxic sources. Commun Biol 2021; 4:1161. [PMID: 34620990 PMCID: PMC8497504 DOI: 10.1038/s42003-021-02689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Recent data show that parasites manipulate the physiology of mosquitoes and human hosts to increase the probability of transmission. Here, we investigate phagostimulant activity of Plasmodium-metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), in the primary vectors of multiple human diseases, Anopheles coluzzii, An. arabiensis, An. gambiae s.s., Aedes aegypti, and Culex pipiens/Culex torrentium complex species. The addition of 10 µM HMBPP to blood meals significantly increased feeding in all the species investigated. Moreover, HMBPP also exhibited a phagostimulant property in plant-based-artificial-feeding-solution made of beetroot juice adjusted to neutral pH similar to that of blood. The addition of AlbuMAXTM as a lipid/protein source significantly improved the feeding rate of An. gambiae s.l. females providing optimised plant-based-artificial-feeding-solution for delivery toxins to control vector populations. Among natural and synthetic toxins tested, only fipronil sulfone did not reduce feeding. Overall, the toxic-plant-based-artificial-feeding-solution showed potential as an effector in environmentally friendly vector-control strategies.
Collapse
Affiliation(s)
- Viktoria E Stromsky
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elizabeth Vaisbourd
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Attraction AB, Elektravägen 10, 126 30 Hägersten, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
26
|
Qureshi A, Connolly JB. A systematic review assessing the potential for release of vector species from competition following insecticide-based population suppression of Anopheles species in Africa. Parasit Vectors 2021; 14:462. [PMID: 34496931 PMCID: PMC8425169 DOI: 10.1186/s13071-021-04975-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While insecticide-based vector control can effectively target vector species in areas of high malaria endemicity, such as Anopheles gambiae in Africa, residual disease transmission can occur. Understanding the potential role of competitive displacement between vector species could inform both current insecticide-based vector control programmes and the development of future complementary interventions. METHODS A systematic review was conducted to identify published studies of insecticide-based vector control of Anopheles species in Africa that reported indices for absolute densities of vector species. After screening against inclusion, exclusion and risk of bias criteria, studies were assigned to three categories based on whether they showed population density changes involving decreases in two or more vector species (D), increases in two or more vector species (I), or increases in one vector species concomitant with decreases in another vector species (ID). Category ID studies could thus provide evidence consistent with the release of vector species from competition following the insecticide-based population suppression of Anopheles species. RESULTS Of 5569 papers identified in searches, 30 were selected for quantitative and qualitative analysis. Nineteen studies were assigned to category D and one to category I. Ten studies categorised as ID provided evidence ranging from weak to persuasive that release from competition could have contributed to changes in species composition. Category ID showed no statistical differences from category D for reductions in malaria transmission and levels of insecticide resistance, but did so for insecticide type, pyrethroids being associated with category ID. A qualitative assessment identified five studies that provided the most convincing evidence that release from competition could have contributed to changes in species composition. CONCLUSIONS This review identified evidence that insecticide-based reductions in the density of Anopheles species in Africa could facilitate the release of other vector species from competition. While it remains uncertain whether this evidence is representative of most entomological sequelae of insecticide-based vector control in the field, five studies provided persuasive evidence that insecticide use could lead, at least under some circumstances, to competitive release of non-targeted vector species. These results should inform current and future integrated vector management approaches to malaria control.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY UK
| | - John B. Connolly
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY UK
| |
Collapse
|
27
|
Sanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, Sagnon N, Ranson H, Matthiopoulos J, Ferguson HM. Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Sci Rep 2021; 11:17569. [PMID: 34475470 PMCID: PMC8413378 DOI: 10.1038/s41598-021-96759-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
The decline in malaria across Africa has been largely attributed to vector control using long-lasting insecticidal nets (LLINs). However, this intervention has prompted widespread insecticide resistance (IR) and been associated with changes in mosquito behaviour that reduce their contact with LLINs. The relative importance and rate at which IR and behavioural adaptations emerge are poorly understood. We conducted surveillance of mosquito behaviour and IR at 12 sites in Burkina Faso to assess the magnitude and temporal dynamics of insecticide, biting and resting behaviours in vectors in the 2-year period following mass LLIN distribution. Insecticide resistance was present in all vector populations and increased rapidly over the study period. In contrast, no longitudinal shifts in LLIN-avoidance behaviours (earlier or outdoor biting and resting) were detected. There was a moderate but statistically significant shift in vector species composition from Anopheles coluzzii to Anopheles gambiae which coincided with a reduction in the proportion of bites preventable by LLINs; possibly driven by between-species variation in behaviour. These findings indicate that adaptations based on insecticide resistance arise and intensify more rapidly than behavioural shifts within mosquito vectors. However, longitudinal shifts in mosquito vector species composition were evident within 2 years following a mass LLIN distribution. This ecological shift was characterized by a significant increase in the exophagic species (An. gambiae) and coincided with a predicted decline in the degree of protection expected from LLINs. Although human exposure fell through the study period due to reducing vector densities and infection rates, such ecological shifts in vector species along with insecticide resistance were likely to have eroded the efficacy of LLINs. While both adaptations impact malaria control, the rapid increase of the former indicates this strategy develops more quickly in response to selection from LLINS. However, interventions targeting both resistance strategies will be needed.
Collapse
Affiliation(s)
- Antoine Sanou
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso.
| | - Luca Nelli
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - W Moussa Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Fatoumata Cissé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Madou Tapsoba
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Pierre Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - N'falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
28
|
Citron DT, Guerra CA, García GA, Wu SL, Battle KE, Gibson HS, Smith DL. Quantifying malaria acquired during travel and its role in malaria elimination on Bioko Island. Malar J 2021; 20:359. [PMID: 34461902 PMCID: PMC8404405 DOI: 10.1186/s12936-021-03893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination. METHODS Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates. RESULTS The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates. CONCLUSIONS The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.
Collapse
Affiliation(s)
- Daniel T Citron
- Institute for Health Metrics and Evaluation, University of Washington, Population Health Building/Hans Rosling Center, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Carlos A Guerra
- Medical Care Development International, 8401 Colesville Road Suite 425, Silver Spring, MD, 20910, USA
| | - Guillermo A García
- Medical Care Development International, 8401 Colesville Road Suite 425, Silver Spring, MD, 20910, USA
| | - Sean L Wu
- Division of Epidemiology and Biostatistics, University of California, 2121 Berkeley Way, Berkeley, CA, 94720, USA
| | - Katherine E Battle
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, WA, 6009, Nedlands, Australia
- Institute for Disease Modeling, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Harry S Gibson
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, WA, 6009, Nedlands, Australia
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Population Health Building/Hans Rosling Center, 3980 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
29
|
Hamid-Adiamoh M, Nwakanma D, Assogba BS, Ndiath MO, D’Alessandro U, Afrane YA, Amambua-Ngwa A. Influence of insecticide resistance on the biting and resting preferences of malaria vectors in the Gambia. PLoS One 2021; 16:e0241023. [PMID: 34166376 PMCID: PMC8224845 DOI: 10.1371/journal.pone.0241023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background The scale-up of indoor residual spraying and long-lasting insecticidal nets, together with other interventions have considerably reduced the malaria burden in The Gambia. This study examined the biting and resting preferences of the local insecticide-resistant vector populations few years following scale-up of anti-vector interventions. Method Indoor and outdoor-resting Anopheles gambiae mosquitoes were collected between July and October 2019 from ten villages in five regions in The Gambia using pyrethrum spray collection (indoor) and prokopack aspirator from pit traps (outdoor). Polymerase chain reaction assays were performed to identify molecular species, insecticide resistance mutations, Plasmodium infection rate and host blood meal. Results A total of 844 mosquitoes were collected both indoors (421, 49.9%) and outdoors (423, 50.1%). Four main vector species were identified, including An. arabiensis (indoor: 15%, outdoor: 26%); An. coluzzii (indoor: 19%, outdoor: 6%), An. gambiae s.s. (indoor: 11%, outdoor: 16%), An. melas (indoor: 2%, outdoor: 0.1%) and hybrids of An. coluzzii-An. gambiae s.s (indoors: 3%, outdoors: 2%). A significant preference for outdoor resting was observed in An. arabiensis (Pearson X2 = 22.7, df = 4, P<0.001) and for indoor resting in An. coluzzii (Pearson X2 = 55.0, df = 4, P<0.001). Prevalence of the voltage-gated sodium channel (Vgsc)-1014S was significantly higher in the indoor-resting (allele freq. = 0.96, 95%CI: 0.78–1, P = 0.03) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87) An. arabiensis population. For An. coluzzii, the prevalence of most mutation markers was higher in the outdoor (allele freq. = 0.92, 95%CI: 0.81–0.98) than indoor-resting (allele freq. = 0.78, 95%CI: 0.56–0.86) mosquitoes. However, in An. gambiae s.s., the prevalence of Vgsc-1014F, Vgsc-1575Y and GSTe2-114T was high (allele freq. = 0.96–1), but did not vary by resting location. The overall sporozoite positivity rate was 1.3% (95% CI: 0.5–2%) in mosquito populations. Indoor-resting An. coluzzii had mainly fed on human blood while indoor-resting An. arabiensis fed on animal blood. Conclusion In this study, high levels of resistance mutations were observed that could be influencing the mosquito populations to rest indoors or outdoors. The prevalent animal-biting behaviour demonstrated in the mosquito populations suggest that larval source management could be an intervention to complement vector control in this setting.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Accra, Ghana
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- * E-mail:
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Benoit Sessinou Assogba
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Mamadou Ousmane Ndiath
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Umberto D’Alessandro
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Yaw A. Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Accra, Ghana
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
30
|
Traoré A, Niyondiko G, Sanou A, Langevin F, Sagnon N, Gansané A, Guelbeogo MW. Laboratory and field evaluation of MAÏA ®, an ointment containing N,N-diethyl-3-methylbenzamide (DEET) against mosquitoes in Burkina Faso. Malar J 2021; 20:226. [PMID: 34016099 PMCID: PMC8139107 DOI: 10.1186/s12936-021-03755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria vector control relies upon the use of insecticide-treated nets and indoor residual spraying. However, as the emergency of insecticide resistance in malaria vectors grows, the effectiveness of these measures could be limited. Alternative tools are needed. In this context, repellents can play an important role against exophagic and exophilic mosquitoes. This study evaluated the efficacy of MAÏA®, a novel repellent ointment, in laboratory and field conditions in Burkina Faso. METHODS For laboratory and field assessment, 20 volunteers were enrolled and trained for nocturnal collection of mosquitoes using human landing catches (HLC). In the laboratory tests, 2 mg/sq cm of treatment (either MAIA® or 20 % DEET) were used to assess median complete protection time (CPT) against two species: Anopheles gambiae and Aedes aegypti, following WHO guidelines. For both species, two strains consisting of susceptible and local strains were used. The susceptible strains were Kisumu and Bora Bora for An. gambiae and Ae. aegypti, respectively. For the field test, the median CPT of MAÏA® was compared to that of a negative (70 % ethanol) and positive (20 % DEET) after carrying out HLCs in rural Burkina Faso in both indoor and outdoor settings. RESULTS Laboratory tests showed median Kaplan-Meier CPT of 6 h 30 min for An. gambiae (Kisumu), 5 h 30 min for An. gambiae (Goden, local strain), and 4 h for Ae. aegypti for both the local and sensitive strain. These laboratory results suggest that MAÏA® is a good repellent against the three mosquito species. During these field tests, a total of 3979 mosquitoes were caught. In this population, anophelines represented 98.5 %, with culicines (Aedes) making up the remaining 1.5 %. Among anopheline mosquitoes, 95 % belonged to the An. gambiae complex, followed by Anopheles funestus and Anopheles pharoensis. The median CPT of 20 % DEET and MAÏA® were similar (8 h) and much longer than that of the negative control (2 h). CONCLUSIONS Results from the present studies showed that MAÏA® offers high protection against anophelines biting indoors and outdoors and could play an important role in malaria prevention in Africa.
Collapse
Affiliation(s)
- Alphonse Traoré
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | | | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | | | - N'Falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Moussa Wamdaogo Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
31
|
Keïta M, Doumbia S, Sissoko I, Touré M, Diawara SI, Konaté D, Sodio AB, Traoré SF, Diakité M, Doumbia SO, Sogoba N, Krogstad DJ, Shaffer JG, Coulibaly MB. Indoor and outdoor malaria transmission in two ecological settings in rural Mali: implications for vector control. Malar J 2021; 20:127. [PMID: 33663515 PMCID: PMC7931590 DOI: 10.1186/s12936-021-03650-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. Methods Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. Results A total of 11,237 An. gambiae sensu lato (s.l.) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1–4.3]) and indoor collections were 3.1% (95% BCI [2.4–5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7–6.3]) compared with outdoors at 2.4% (95% BCI [1.1–4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21–19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55–25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34–2.72] ib/p/m and 0.94 [95% BCI 0.43–1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. Conclusion The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.
Collapse
Affiliation(s)
- Moussa Keïta
- West African International Center of Excellence for Malaria Research, Bamako, Mali. .,Malaria Research and Training Center, Bamako, Mali. .,Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali. .,Faculty of Science and Techniques, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Sidy Doumbia
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Ibrahim Sissoko
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Mahamoudou Touré
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Sory Ibrahim Diawara
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Drissa Konaté
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Ambièlè Bernard Sodio
- Faculty of Science and Techniques, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traoré
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Mahamadou Diakité
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| | - Seydou O Doumbia
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali.,Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nafomon Sogoba
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali.,Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Donald J Krogstad
- School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | - Jeffrey G Shaffer
- School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | - Mamadou B Coulibaly
- West African International Center of Excellence for Malaria Research, Bamako, Mali.,Malaria Research and Training Center, Bamako, Mali
| |
Collapse
|
32
|
Almalik AMA, Guy Reeves R, Azrag RS. Comparison of the temporal efficacy of Aquatain surface films for the control of Anopheles arabiensis and Ochlerotatus caspius larvae from Sudan. ROYAL SOCIETY OPEN SCIENCE 2021; 8:200980. [PMID: 33972842 PMCID: PMC8074655 DOI: 10.1098/rsos.200980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Aquatain mosquito formulation (AMF) is a surfactant that spreads across the surface of water bodies to produce a monomolecular film. This study experimentally evaluates the temporal efficacy of AMF against aquatic stages of Anopheles arabiensis and Ochlerotatus caspius under laboratory conditions. Using the recommended application dose of 1 ml m-2, a large species-specific difference in the median lethal time for L3-L4 larvae was observed. The median lethal time to 50% mortality (LT50) and 90% mortality (LT90) was 1.3 h, 95% CI [1.2, 1.4] and 3.8 h, 95% CI [3.6, 4.0], respectively, for Oc. caspius. The corresponding values for An. arabiensis were 8.1 h, 95% CI [7.3, 9.0] and 59.6 h, 95% CI [48.5, 76.2]. Based on data from published laboratory studies for a total of seven mosquito species, drawn from four genera, results in the following three groups, [LT50 = 1-2 h, Culex quinquefasciatus, Ochlerotatus caspius] [LT50 = 8-24, hours, Anopheles minimus, Anopheles arabiensis, Anopheles gambiae s.s.] and [LT50 = 72-143 h, Anopheles stephensi, Aedes aegypti]. In all experiments, 100% mortality was achieved given sufficient time. The potential relevance of mortality rate estimates, in the context of other studies, on the use of monomolecular films for the control of malaria and arbovirus diseases is discussed.
Collapse
Affiliation(s)
- Alaa Mahmoud Ali Almalik
- Vector Genetics and Control Laboratory, Department of Zoology, Faculty of Science, University of Khartoum, Sudan
| | - R. Guy Reeves
- Max Planck Institute for Evolutionary Biology, Plön Germany
| | - Rasha Siddig Azrag
- Vector Genetics and Control Laboratory, Department of Zoology, Faculty of Science, University of Khartoum, Sudan
| |
Collapse
|
33
|
Njoroge MM, Fillinger U, Saddler A, Moore S, Takken W, van Loon JJA, Hiscox A. Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasit Vectors 2021; 14:42. [PMID: 33430963 PMCID: PMC7802213 DOI: 10.1186/s13071-020-04556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of malaria vectors in the peri-domestic space. Methods Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol® or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push–pull set-up were quantified. Results Microencapsulated Citriodiol® eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12–0.23). This impact was lower (OR 0.59; 95% CI 0.52–0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence (‘pull’ only) and in the presence of a spatial repellent (‘push-pull’), indicating that in its current configuration the tested ‘pull’ does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. Conclusion This step-by-step evaluation of the selected ‘push’ and ‘pull’ components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control.![]()
Collapse
Affiliation(s)
- Margaret Mendi Njoroge
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Alexandra Hiscox
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,London School of Hygiene and Tropical Medicine, ARCTEC, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
34
|
Bogale HN, Cannon MV, Keita K, Camara D, Barry Y, Keita M, Coulibaly D, Kone AK, Doumbo OK, Thera MA, Plowe CV, Travassos M, Irish S, Serre D. Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasit Vectors 2020; 13:619. [PMID: 33303025 PMCID: PMC7726613 DOI: 10.1186/s13071-020-04491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The commensal microbiota of mosquitoes impacts their development, immunity, and competency, and could provide a target for alternative entomological control approaches. However, despite the importance of the mosquito/microbiota interactions, little is known about the relative contribution of endogenous and exogenous factors in shaping the bacterial communities of mosquitoes. METHODS We used a high-throughput sequencing-based assay to characterize the bacterial composition and diversity of 665 individual field-caught mosquitoes, as well as their species, genotype at an insecticide resistance locus, blood-meal composition, and the eukaryotic parasites and viruses they carry. We then used these data to rigorously estimate the individual effect of each parameter on the bacterial diversity as well as the relative contribution of each parameter to the microbial composition. RESULTS Overall, multivariate analyses did not reveal any significant contribution of the mosquito species, insecticide resistance, or blood meal to the bacterial composition of the mosquitoes surveyed, and infection with parasites and viruses only contributed very marginally. The main driver of the bacterial diversity was the location at which each mosquito was collected, which explained roughly 20% of the variance observed. CONCLUSIONS This analysis shows that when confounding factors are taken into account, the site at which the mosquitoes are collected is the main driver of the bacterial diversity of wild-caught mosquitoes, although further studies will be needed to determine which specific components of the local environment affect bacterial composition.
Collapse
Affiliation(s)
- Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Matthew V. Cannon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kalil Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Denka Camara
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Yaya Barry
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Moussa Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Drissa Coulibaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mark Travassos
- Malaria Research Program, Center of Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Seth Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Prevention, Atlanta, GA USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
35
|
Hamid-Adiamoh M, Amambua-Ngwa A, Nwakanma D, D'Alessandro U, Awandare GA, Afrane YA. Insecticide resistance in indoor and outdoor-resting Anopheles gambiae in Northern Ghana. Malar J 2020; 19:314. [PMID: 32867769 PMCID: PMC7460795 DOI: 10.1186/s12936-020-03388-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. METHODS F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. RESULTS Susceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). CONCLUSIONS The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Alfred Amambua-Ngwa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
| | - Yaw A Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana.
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
36
|
Guerra CA, Fuseini G, Donfack OT, Smith JM, Ondo Mifumu TA, Akadiri G, Eyang DEM, Eburi CO, Motobe Vaz L, Micha VM, Okenve LA, Janes CR, Andeme RM, Rivas MR, Phiri WP, Slotman MA, Smith DL, García GA. Malaria outbreak in Riaba district, Bioko Island: lessons learned. Malar J 2020; 19:277. [PMID: 32746919 PMCID: PMC7398070 DOI: 10.1186/s12936-020-03347-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/25/2020] [Indexed: 11/18/2022] Open
Abstract
At the beginning of 2019, a sudden surge of malaria cases was observed in the district of Riaba, Bioko Island. Between January and April, confirmed malaria cases increased 3.8-fold compared to the same period in 2018. Concurrently, anopheline human biting rate (HBR) increased 2.1-fold. During the outbreak, 82.2% of the district population was tested for malaria with a rapid diagnostic test; 37.2% of those tested had a detectable infection and were treated according to national guidelines. Vector control interventions, including indoor residual spraying and larval source management were scaled-up. After the interventions, the number of confirmed cases decreased by 70% and the overall parasite prevalence in the communities by 43.8%. Observed prevalence in a follow up malaria indicator survey, however, was significantly higher than elsewhere on the island, and higher than in previous years. There was no significant reduction in HBR, which remained high for the rest of the year. The surge was attributed to various factors, chiefly increased rainfall and a large number of anthropogenic anopheline breeding sites created by construction works. This case study highlights the need for sustained vector control interventions and multi-sector participation, particularly in malaria control and elimination settings with persistently high local malaria receptivity.
Collapse
Affiliation(s)
- Carlos A Guerra
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA
| | - Godwin Fuseini
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea
| | | | - Jordan M Smith
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea
| | - Teresa Ayingono Ondo Mifumu
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea.,National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Gninoussa Akadiri
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea
| | - Delicias Esono Mba Eyang
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea.,National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Consuelo Oki Eburi
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea.,National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Liberato Motobe Vaz
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea
| | - Victor Mba Micha
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea
| | - Leonor Ada Okenve
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea.,National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Christopher R Janes
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA
| | - Ramona Mba Andeme
- National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Matilde Riloha Rivas
- National Malaria Control Programme, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Wonder P Phiri
- MedicalCare Development International, Av. Parques de Africa, Malabo, Equatorial Guinea
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Avenue, Seattle, WA, 98121, USA
| | - Guillermo A García
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA.
| |
Collapse
|
37
|
Degefa T, Yewhalaw D, Zhou G, Atieli H, Githeko AK, Yan G. Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Malar J 2020; 19:174. [PMID: 32381009 PMCID: PMC7206766 DOI: 10.1186/s12936-020-03244-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
Background Surveillance of outdoor host-seeking malaria vectors is crucial to monitor changes in vector biting behaviour and evaluate the impact of vector control interventions. Human landing catch (HLC) has been considered the most reliable and gold standard surveillance method to estimate human-biting rates. However, it is labour-intensive, and its use is facing an increasing ethical concern due to potential risk of exposure to infectious mosquito bites. Thus, alternative methods are required. This study was conducted to evaluate the performance of human-odour-baited CDC light trap (HBLT) and human-baited double net trap (HDNT) for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Methods The sampling efficiency of HBLT and HDNT was compared with CDC light trap and HLC using Latin Square Design in Ahero and Iguhu sites, western Kenya and Bulbul site, southwestern Ethiopia between November 2015 and December 2018. The differences in Anopheles mosquito density among the trapping methods were compared using generalized linear model. Results Overall, 16,963 female Anopheles mosquitoes comprising Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani and Anopheles squamosus were collected. PCR results (n = 552) showed that Anopheles arabiensis was the only member of An. gambiae s.l. in Ahero and Bulbul, while 15.7% An. arabiensis and 84.3% An. gambiae sensu stricto (s.s.) constituted An. gambiae s.l. in Iguhu. In Ahero, HBLT captured 2.23 times as many An. arabiensis and 2.11 times as many An. funestus as CDC light trap. In the same site, HDNT yielded 3.43 times more An. arabiensis and 3.24 times more An. funestus than HBLT. In Iguhu, the density of Anopheles mosquitoes did not vary between the traps (p > 0.05). In Bulbul, HBLT caught 2.19 times as many An. arabiensis as CDC light trap, while HDNT caught 6.53 times as many An. arabiensis as CDC light trap. The mean density of An. arabiensis did not vary between HDNT and HLC (p = 0.098), whereas the HLC yielded significantly higher density of An. arabiensis compared to HBLT and CDC light trap. There was a significant density-independent positive correlation between HDNT and HLC (r = 0.69). Conclusion This study revealed that both HBLT and HDNT caught higher density of malaria vectors than conventional CDC light trap. Moreover, HDNT yielded a similar vector density as HLC, suggesting that it could be an alternative tool to HLC for outdoor host-seeking malaria vector surveillance.
Collapse
Affiliation(s)
- Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia. .,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
38
|
Sanou A, Moussa Guelbéogo W, Nelli L, Hyacinth Toé K, Zongo S, Ouédraogo P, Cissé F, Mirzai N, Matthiopoulos J, Sagnon N, Ferguson HM. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar J 2019; 18:386. [PMID: 31791336 PMCID: PMC6889701 DOI: 10.1186/s12936-019-3030-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Measuring human exposure to mosquito bites is a crucial component of vector-borne disease surveillance. For malaria vectors, the human landing catch (HLC) remains the gold standard for direct estimation of exposure. This method, however, is controversial since participants risk exposure to potentially infected mosquito bites. Recently an exposure-free mosquito electrocuting trap (MET) was developed to provide a safer alternative to the HLC. Early prototypes of the MET performed well in Tanzania but have yet to be tested in West Africa, where malaria vector species composition, ecology and behaviour are different. The performance of the MET relative to HLC for characterizing mosquito vector population dynamics and biting behaviour in Burkina Faso was evaluated. METHODS A longitudinal study was initiated within 12 villages in Burkina Faso in October 2016. Host-seeking mosquitoes were sampled monthly using HLC and MET collections over 14 months. Collections were made at 4 households on each night, with METs deployed inside and outside at 2 houses, and HLC inside and outside at another two. Malaria vector abundance, species composition, sporozoite rate and location of biting (indoor versus outdoor) were recorded. RESULTS In total, 41,800 mosquitoes were collected over 324 sampling nights, with the major malaria vector being Anopheles gambiae sensu lato (s.l.) complex. Overall the MET caught fewer An. gambiae s.l. than the HLC (mean predicted number of 0.78 versus 1.82 indoors, and 1.05 versus 2.04 outdoors). However, MET collections gave a consistent representation of seasonal dynamics in vector populations, species composition, biting behaviour (location and time) and malaria infection rates relative to HLC. As the relative performance of the MET was somewhat higher in outdoor versus indoor settings, this trapping method slightly underestimated the proportion of bites preventable by LLINs compared to the HLC (MET = 82.08%; HLC = 87.19%). CONCLUSIONS The MET collected proportionately fewer mosquitoes than the HLC. However, estimates of An. gambiae s.l. density in METs were highly correlated with HLC. Thus, although less sensitive, the MET is a safer alternative than the HLC. Its use is recommended particularly for sampling vectors in outdoor environments where it is most sensitive.
Collapse
Affiliation(s)
- Antoine Sanou
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso.
| | - W Moussa Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Luca Nelli
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - K Hyacinth Toé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Pierre Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Fatoumata Cissé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Nosrat Mirzai
- Bioelectronics Units, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - N'falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
39
|
Yadav K, Dhiman S, Acharya BN, Ghorpade RR, Sukumaran D. Pyriproxyfen treated surface exposure exhibits reproductive disruption in dengue vector Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007842. [PMID: 31738760 PMCID: PMC6886876 DOI: 10.1371/journal.pntd.0007842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/02/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background Reduced susceptibility of mosquito vectors to currently used insecticides hampers control interventions. Recently pyriproxyfen, an insect growth regulator has been demonstrated to effectively reduce the reproductive potential in vector mosquitoes. Methods Pyriproxyfen (PPF), in different concentrations (0.75%, 0.075%, 0.0075%, and 0.00075%) was applied on papers and Indian wild type Aedes aegypti female mosquitoes (N ≥ 20 for each treatment) were exposed onto it as per WHO guidelines, to study the reproductive disruption. PPF concentration on treated papers was quantitatively cross-determined using HPLC method. Reduction in fecundity, fertility and adult emergence in exposed female Ae. aegypti was determined. Abnormal development in ovary and eggs of exposed females was studied microscopically after different time intervals. Results Eggs laid, eggs hatched, pupae formed and adults emerged per female exposed in both before blood meal and after blood meal groups declined significantly from lowest to highest concentration of PPF (F ≥ 5.2; p < 0.02). Adult emergence inhibition in females exposed to PPF before and after blood meal groups ranged from 58.8% [OR = 0.18 (95% CI = 0.09–0.36)] to 79.2% [OR = 0.04 (95% CI = 0.02–0.10)] and 64.4% [OR = 0.12 (95% CI = 0.05–0.28)] to 77.1% [OR = 0.05 (95% CI = 0.02–0.14)] respectively in different concentrations. The probit model used suggested that FI50 (50% fertility inhibition) and EI50 (50% emergence inhibition) were 0.002% (p = 0.82) and 0.0001% (p = 0.99) for females exposed before blood meal, while 0.01% (p = 0.63) and <0.0001% (p = 0.98) for the females exposed after blood meal, respectively. The eggs laid by the females exposed to PPF-treated surface showed altered body organization, desegmentation and disoriented abdominal and cervical regions in the developing embryo. Quantification of PPF on impregnated papers showed that it was uniformly distributed throughout the matrix. Conclusions The present study has shown that tarsal contact to PPF-treated surface for a small time drastically influenced the fecundity, fertility and adult emergence in Indian wild Ae. aegypti mosquitoes. Results suggest that a certain minimum concentration of PPF through contact exposure can reduce the abundance of vector mosquitoes to a considerable level. The formulations based on combination of PPF and other compatible insecticides may be an impactful approach where susceptible mosquitoes are killed by the insecticide component while resistant mosquitoes are sterilised by PPF. Development of resistance against insecticides has challenged mosquito control programmes globally and prompted the research of alternative options that can complement insecticides. An insect growth regulator, pyriproxyfen (PPF) usage against mosquitoes can effectively reduce the vector population. PPF mainly inhibits the metamorphosis of mosquito larvae into pupae and prevent the adult emergence, therefore it is generally applied in mosquito breeding habitats. PPF has been shown to exhibit delayed residual effect that may impair the reproductive capacity by affecting the survival, fecundity and fertility of adult mosquito exposed through tarsal contact. Presently, the effectiveness of different concentrations of PPF intended to be delivered through contact have been evaluated against dengue vector Ae. aegypti. Results suggested that very low PPF concentration treated surfaces drastically reduce the fecundity, fertility and adult emergence in mosquitoes. Study suggests that control interventions based on PPF-treated surfaces could provide an additional route to target mosquito vector control by overall population density reduction.
Collapse
Affiliation(s)
- Kavita Yadav
- Vector Management Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
- * E-mail:
| | - Sunil Dhiman
- Vector Management Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - BN Acharya
- Synthetic Chemistry Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Rama Rao Ghorpade
- Synthetic Chemistry Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Devanathan Sukumaran
- Vector Management Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| |
Collapse
|
40
|
Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta Trop 2019; 197:105059. [PMID: 31194960 DOI: 10.1016/j.actatropica.2019.105059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Assessing the biting behaviour of malaria vectors plays an integral role in understanding the dynamics of malaria transmission in a region. Biting times and preference for biting indoors or outdoors varies among mosquito species and across regions. These behaviours may also change over time in response to vector control measures such as long-lasting insecticidal nets (LLINs). Data on these parameters can provide the sites and times at which different interventions would be effective for vector control. This study assessed the biting patterns of malaria vectors in Chikwawa district, southern Malawi. The study was conducted during the dry and wet seasons in 2016 and 2017, respectively. In each season, mosquitoes were collected indoors and outdoors for 24 nights in six houses per night using the human landing catch. Volunteers were organized into six teams of two individuals, whereby three teams collected mosquitoes indoors and the other three collected mosquitoes outdoors each night, and the teams were rotated among twelve houses. All data were analyzed using Poisson log-linear models. The most abundant species were Anopheles gambiae sensu lato (primarily An. arabiensis) and An. funestus s.l. (exclusively An. funestus s.s.). During the dry season, the biting activity of An. gambiaes.l. was constant outdoors across the categorized hours (18:00 h to 08:45 h), but highest in the late evening hours (21:00 h to 23:45 h) during the wet season. The biting activity of An. funestus s.l. was highest in the late evening hours (21:00 h to 23:45 h) during the dry season and in the late night hours (03:00 h to 05:45 h) during the wet season. Whereas the number of An. funestuss.l. biting was constant (P = 0.662) in both seasons, that of An. gambiaes.l. was higher during the wet season than in the dry season (P = 0.001). Anopheles gambiae s.l. was more likely to bite outdoors than indoors in both seasons. During the wet season, An. funestus s.l. was more likely to bite indoors than outdoors but during the dry season, the bites were similar both indoors and outdoors. The biting activity that occurred in the early and late evening hours, both indoors and outdoors coincides with the times at which individuals may still be awake and physically active, and therefore unprotected by LLINs. Additionally, a substantial number of anopheline bites occurred outdoors. These findings imply that LLINs would only provide partial protection from malaria vectors, which would affect malaria transmission in this area. Therefore, protection against bites by malaria mosquitoes in the early and late evening hours is essential and can be achieved by designing interventions that reduce vector-host contacts during this period.
Collapse
|
41
|
Carrasco D, Lefèvre T, Moiroux N, Pennetier C, Chandre F, Cohuet A. Behavioural adaptations of mosquito vectors to insecticide control. CURRENT OPINION IN INSECT SCIENCE 2019; 34:48-54. [PMID: 31247417 DOI: 10.1016/j.cois.2019.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Behavioural resistance to insecticides may be an important factor restraining the efficacy of vector control against mosquito-transmitted diseases. However, our understanding of the mechanisms underlying such behavioural resistance remains sparse. In this review, we focus on the behavioural adaptations of mosquito vectors in response to the use of insecticides and provide a general framework for guiding future investigations. We present our review of vector behaviour in the field and a conceptual classification of behavioural adaptations to insecticides. We emphasise that behavioural adaptations can result from constitutive or induced (i.e. phenotypically plastic) traits. Lastly, we identify gaps in knowledge limiting a better understanding of how mosquito behavioural adaptations may affect the fight against vector-borne diseases.
Collapse
Affiliation(s)
- David Carrasco
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Thierry Lefèvre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France; Institut Pierre Richet, Bouaké, Cote d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
42
|
Fuseini G, Phiri WP, von Fricken ME, Smith J, Garcia GA. Evaluation of the residual effectiveness of Fludora™ fusion WP-SB, a combination of clothianidin and deltamethrin, for the control of pyrethroid-resistant malaria vectors on Bioko Island, Equatorial Guinea. Acta Trop 2019; 196:42-47. [PMID: 31077641 DOI: 10.1016/j.actatropica.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Over the past decade, insecticide resistance to malaria vectors has been identified in 71 malaria endemic countries. This has posed a major global health challenge in the fight against malaria, with declining rates of indoor residual spraying coverage attributed to pyrethroid-resistance. As part of its vector control monitoring strategies, the Bioko Island Malaria Control Project (BIMCP) in Equatorial Guinea conducted routine insecticide resistance bioassays using the WHO's standard susceptibility tests from 2013 to 2018. During the same period, the frequency of the target-site knockdown resistance allele (kdr) in the local vector population was also determined via PCR for detection of the L1014 F mutation. Biochemical analysis for metabolic resistance was also conducted in 2015. From 2016-2017, Fludora™ fusion, a formulated combination of clothianidin (a neonicotinoid) and deltamethrin (a pyrethroid) was evaluated for 9 months on Bioko Island, using the WHO's standard test procedure for determining residual effectiveness of insecticides on sprayed surfaces. In 2016, the mortality rate of the vectors on 0.05% deltamethrin was as low as 38%. The frequency of the West African form of knockdown resistance allele, L1014 F, in the vector population was as high as 80%, and metabolic resistance analysis indicated high upregulated cytochrome P450 s. However, the residual effectiveness of Fludora™ fusion recorded mortalities above 80% after 72 h of exposure for 8 months. Although both target-site knockdown resistance and metabolic resistance to pyrethroids were implicated in the local malaria vector population, Fludora™ fusion was effective under field conditions in controlling the resistant vectors for a period of 8 months on wooden surfaces on Bioko Island and represents a valuable addition to IRS programs, especially in regions with high levels of pyrethroid resistance.
Collapse
|
43
|
Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci U S A 2019; 116:15086-15095. [PMID: 31285346 PMCID: PMC6660788 DOI: 10.1073/pnas.1820646116] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria transmission persists even when mosquito control is used effectively. This “residual transmission” measures all forms of transmission that are beyond the reach of standard insecticidal nets and indoor residual spraying of insecticides when used optimally. The epidemiological importance of the time of day mosquitoes bite and how much this contributes to residual transmission is unclear. The scale of the problem must be understood to demonstrate the need for outdoor vector control tools. An additional 10.6 million clinical cases of malaria are predicted annually given the 10% higher level of outdoor biting observed here. Mosquito species and behavior data together with people’s resting and sleeping patterns are needed to fully measure indoor intervention efficacy and accurately quantify residual transmission. The antimalarial efficacy of the most important vector control interventions—long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)—primarily protect against mosquitoes’ biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa.
Collapse
|
44
|
Fuseini G, Nguema RN, Phiri WP, Donfack OT, Cortes C, Von Fricken ME, Meyers JI, Kleinschmidt I, Garcia GA, Maas C, Schwabe C, Slotman MA. Increased Biting Rate of Insecticide-Resistant Culex Mosquitoes and Community Adherence to IRS for Malaria Control in Urban Malabo, Bioko Island, Equatorial Guinea. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1071-1077. [PMID: 30882148 PMCID: PMC7182914 DOI: 10.1093/jme/tjz025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 05/31/2023]
Abstract
Sustaining high levels of indoor residual spraying (IRS) coverage (≥85%) for community protection against malaria remains a challenge for IRS campaigns. We examined biting rates and insecticide resistance in Culex species and Anopheles gambiae s.l., and their potential effect on community adherence to IRS. The average IRS coverage in urban Malabo between 2015 and 2017 remained at 80%. Culex biting rate increased 6.0-fold (P < 0.001) between 2014 and 2017, reaching 8.08 bites per person per night, whereas that of An. gambiae s.l. remained steady at around 0.68. Although An. gambiae s.l. was susceptible to carbamates and organophosphates insecticides, Culex spp. were phenotypically resistant to all four main classes of WHO-recommended IRS insecticides. Similarly, the residual activity of the organophosphate insecticide used since 2017, ACTELLIC 300CS, was 8 mo for An. gambiae s.l., but was almost absent against Culex for 2 mo post-spray. A survey conducted in 2018 within urban Malabo indicated that 77.0% of respondents related IRS as means of protection against mosquito bites, but only 3.2% knew that only Anopheles mosquitoes transmit malaria. Therefore, the increasing biting rates of culicines in urban Malabo, and their resistance to all IRS insecticides, is raising concern that a growing number of people may refuse to participate in IRS as result of its perceived failure in controlling mosquitoes. Although this is not yet the case on Bioko Island, communication strategies need refining to sensitize communities about the effectiveness of IRS in controlling malaria vectors in the midst of insecticide resistance in nonmalaria vector mosquitoes.
Collapse
Affiliation(s)
- Godwin Fuseini
- Medical Care Development International, Bioko Island Malaria Control Project, Malabo, Equatorial Guinea
| | - Raul Ncogo Nguema
- Medical Care Development International, Bioko Island Malaria Control Project, Malabo, Equatorial Guinea
| | - Wonder P Phiri
- Medical Care Development International, Bioko Island Malaria Control Project, Malabo, Equatorial Guinea
| | - Olivier Tresor Donfack
- Medical Care Development International, Bioko Island Malaria Control Project, Malabo, Equatorial Guinea
| | - Carlos Cortes
- Medical Care Development International, Bioko Island Malaria Control Project, Malabo, Equatorial Guinea
| | | | | | - Immo Kleinschmidt
- London School of Hygiene and Tropical Medicine, London, UK
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, South Africa
| | | | - Carl Maas
- Marathon EG Production Limited, Bioko Island, Equatorial Guinea
| | | | | |
Collapse
|
45
|
Campos M, Alonso DP, Conn JE, Vinetz JM, Emerson KJ, Ribolla PEM. Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasit Vectors 2019; 12:242. [PMID: 31101131 PMCID: PMC6525393 DOI: 10.1186/s13071-019-3498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background In the Amazon Basin, Nyssorhynchus (Anopheles) darlingi is the most aggressive and effective malaria vector. In endemic areas, behavioral aspects of anopheline vectors such as host preference, biting time and resting location post blood meal have a key impact on malaria transmission dynamics and vector control interventions. Nyssorhynchus darlingi presents a range of feeding and resting behaviors throughout its broad distribution. Methods To investigate the genetic diversity related to biting behavior, we collected host-seeking Ny. darlingi in two settlement types in Acre, Brazil: Granada (~ 20-year-old, more established, better access by road, few malaria cases) and Remansinho (~ 8-year-old, active logging, poor road access, high numbers malaria cases). Mosquitoes were classified by the location of collection (indoors or outdoors) and time (dusk or dawn). Results Genome-wide SNPs, used to assess the degree of genetic divergence and population structure, identified non-random distributions of individuals in the PCA for both location and time analyses. Although genetic diversity related to behavior was confirmed by non-model-based analyses and FST values, model-based STRUCTURE detected considerable admixture of these populations. Conclusions To our knowledge, this is the first study to detect genetic markers associated with biting behavior in Ny. darlingi. Additional ecological and genomic studies may help to understand the genetic basis of mosquito behavior and address appropriate surveillance and vector control. Electronic supplementary material The online version of this article (10.1186/s13071-019-3498-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melina Campos
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Diego Peres Alonso
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Laboratorio de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kevin J Emerson
- Biology Department, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Paulo Eduardo Martins Ribolla
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil.
| |
Collapse
|
46
|
He Z, Zhang J, Shi Z, Liu J, Zhang J, Yan Z, Chen B. Modification of contact avoidance behaviour associated with pyrethroid resistance in Anopheles sinensis (Diptera: Culicidae). Malar J 2019; 18:131. [PMID: 30971253 PMCID: PMC6458626 DOI: 10.1186/s12936-019-2765-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Background Anopheles sinensis is the primary vector of vivax malaria in China and its control is under great threat as the development of insecticide resistance. In contrast to physiological resistance, there is no report of behavioural modifications of resistant An. sinensis after long-term insecticide use, despite their huge potential impact on malaria transmission. Methods Larvae or pupae of An. sinensis were collected from Yuanyang, Bishan, and Wuhe counties from southwestern to eastern China. Resistance to deltamethrin was assayed using the standard World Health Organization (WHO) susceptibility test. The frequency distribution of the kdr allele of the para-type sodium channel gene was determined by polymerase chain reaction (PCR) amplification and DNA sequencing. Contact repellency to deltamethrin-impregnated bed nets was evaluated using a modified WHO cone bioassay. Results All contemporary field populations for all three geographic locations were resistant to deltamethrin, with mortality ranging from 6.00 to 26.79%. Three kdr genotypes with either an L1014F or L1014C substitution with frequencies of 76.10–100% were identified in the Bishan and Wuhe populations, but no kdr mutations were detected in the Yuanyang samples despite high phenotypic resistance. The susceptible mosquitoes exhibited significantly longer flying time and more takeoffs on deltamethrin-treated bed nets (DTN) than on untreated bed nets (UTN), suggestive of robust avoidance behaviour. However, no significant increases in the frequency of takeoffs or flying time were observed in deltamethrin-resistant An. sinensis populations when exposed on DTNs, regardless of the presence of a kdr mutation. Moreover, the first takeoff from DTNs by resistant mosquitoes significantly lagged behind compared to susceptible mosquitoes. Conclusion The An. sinensis populations were highly resistant to deltamethrin and exhibited decreased avoidance behaviour. Behavioural modification significantly associated with deltamethrin resistance, but not directly related to the presence of kdr mutations, indicating that there are additional factors contributing to the changes.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Jing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Zongpan Shi
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingang Liu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Zhentian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
47
|
Mburu MM, Zembere K, Hiscox A, Banda J, Phiri KS, van den Berg H, Mzilahowa T, Takken W, McCann RS. Assessment of the Suna trap for sampling mosquitoes indoors and outdoors. Malar J 2019; 18:51. [PMID: 30795766 PMCID: PMC6387520 DOI: 10.1186/s12936-019-2680-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entomological monitoring is important for public health because it provides data on the distribution, abundance and host-seeking behaviour of disease vectors. Various methods for sampling mosquitoes exist, most of which are biased towards, or specifically target, certain portions of a mosquito population. This study assessed the Suna trap, an odour-baited trap for sampling host-seeking mosquitoes both indoors and outdoors. METHODS Two separate field experiments were conducted in villages in southern Malawi. The efficiency of the Suna trap in sampling mosquitoes was compared to that of the human landing catch (HLC) indoors and outdoors and the Centers for Disease, Control and Prevention Light Trap (CDC-LT) indoors. Potential competition between two Suna traps during simultaneous use of the traps indoors and outdoors was assessed by comparing mosquito catch sizes across three treatments: one trap indoors only; one trap outdoors only; and one trap indoors and one trap outdoors used simultaneously at the same house. RESULTS The efficiency of the Suna trap in sampling female anophelines was similar to that of HLC indoors (P = 0.271) and HLC outdoors (P = 0.125), but lower than that of CDC-LT indoors (P = 0.001). Anopheline catch sizes in the Suna trap used alone indoors were similar to indoor Suna trap catch sizes when another Suna trap was simultaneously present outdoors (P = 0.891). Similarly, catch sizes of female anophelines with the Suna trap outdoors were similar to those that were caught outdoors when another Suna trap was simultaneously present indoors (P = 0.731). CONCLUSIONS The efficiency of the Suna trap in sampling mosquitoes was equivalent to that of the HLC. Whereas the CDC-LT was more efficient in collecting female anophelines indoors, the use of this trap outdoors is limited given the requirement of setting it next to an occupied bed net. As demonstrated in this research, outdoor collections are also essential because they provide data on the relative contribution of outdoor biting to malaria transmission. Therefore, the Suna trap could serve as an alternative to the HLC and the CDC-LT, because it does not require the use of humans as natural baits, allows standardised sampling conditions across sampling points, and can be used outdoors. Furthermore, using two Suna traps simultaneously indoors and outdoors does not interfere with the sampling efficiency of either trap, which would save a considerable amount of time, energy, and resources compared to setting the traps indoors and then outdoors in two consecutive nights.
Collapse
Affiliation(s)
- Monicah M Mburu
- College of Medicine, University of Malawi, Blantyre, Malawi. .,Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands.
| | | | - Alexandra Hiscox
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jomo Banda
- College of Medicine, University of Malawi, Blantyre, Malawi.,MAC Communicable Diseases Action Centre, Blantyre, Malawi
| | - Kamija S Phiri
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Themba Mzilahowa
- College of Medicine, University of Malawi, Blantyre, Malawi.,MAC Communicable Diseases Action Centre, Blantyre, Malawi
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert S McCann
- College of Medicine, University of Malawi, Blantyre, Malawi.,Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
48
|
Malathion-filled trilayer polyolefin film for malaria vector control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:419-425. [PMID: 30606551 DOI: 10.1016/j.msec.2018.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/17/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
Abstract
The emergence of pyrethroid resistance in mosquitoes is complicating malaria elimination efforts in Africa and alternative insecticides have to be considered for indoor residual spray. Unfortunately, the high volatility of WHO-approved organophosphate alternatives, e.g. malathion, translates into an early loss of residual efficacy. This laboratory study explored the concept of trilayer films as potential wall or ceiling linings. In the proposed design, the fugitive liquid insecticide is trapped in an inner core layer. The two sheath layers act as low-permeability membranes controlling the release of the insecticide. The concept was explored using poly(ethylene-co-vinyl acetate) (EVA) and low density polyethylene (LDPE) as core and sheath polymers respectively. The polarity of the EVA polymer matrix allowed incorporation of substantial quantities (up to 30 wt%) of malathion. The low polarity of the LDPE provided the necessary barrier properties and, in addition, allowed film blowing to be conducted at relatively low processing temperatures. Trilayer films containing about 6 wt% malathion were prepared on a film blowing line. Scanning electron microscopy confirmed the trilayer film structure. Confocal Raman microscopy studies revealed a malathion concentration gradient across the thickness of the polyethylene layers. Mass loss measurements and FTIR spectroscopy studies showed that the malathion release followed first-order kinetics. Bioassays, on samples aged at 22 °C, indicated that the residual efficacy against mosquitoes can be maintained for up to about six months. This suggests that trilayer films impregnated with organophosphates, may have potential as alternative mosquito control interventions in pyrethroid resistant settings.
Collapse
|
49
|
Pombi M, Calzetta M, Guelbeogo WM, Manica M, Perugini E, Pichler V, Mancini E, Sagnon N, Ranson H, Della Torre A. Unexpectedly high Plasmodium sporozoite rate associated with low human blood index in Anopheles coluzzii from a LLIN-protected village in Burkina Faso. Sci Rep 2018; 8:12806. [PMID: 30143698 PMCID: PMC6109043 DOI: 10.1038/s41598-018-31117-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/10/2018] [Indexed: 12/27/2022] Open
Abstract
Despite the effectiveness of mass distribution of long-lasting insecticidal nets (LLINs) in reducing malaria transmission in Africa, in hyperendemic areas such as Burkina Faso the burden of malaria remains high. We here report the results of a 4-month survey on the feeding habits and Plasmodium infection in malaria vectors from a village in Burkina Faso one year following a national LLIN distribution programme. Low values of human blood index (HBI) observed in the major malaria vectors in the area (Anopheles coluzzii: N = 263, 20.1%; An. arabiensis: 5.8%, N = 103) are consistent with the hypothesis that LLINs reduced the availability of human hosts to mosquitoes. A regression meta-analysis of data from a systematic review of published studies reporting HBI and sporozoite rates (SR) for An. gambiae complex revealed that the observed SR values (An. coluzzii: 7.6%, N = 503; An. arabiensis: 5.3%, N = 225) are out of the ranges expected based on the low HBI observed. We hypothesize that a small fraction of inhabitants unprotected by bednets acts as a "core group" repeatedly exposed to mosquito bites, representing the major Plasmodium reservoir for the vectors, able to maintain a high risk of transmission even in a village protected by LLINs.
Collapse
Affiliation(s)
- Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou, 01 BP 2208, Burkina Faso
| | - Mattia Manica
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
- Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Eleonora Perugini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Emiliano Mancini
- Università di "Roma Tre", Dipartimento di Scienze, Rome, 00154, Italy
| | - N'Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou, 01 BP 2208, Burkina Faso
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, L3 5QA, UK
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| |
Collapse
|
50
|
Bamou R, Mbakop LR, Kopya E, Ndo C, Awono-Ambene P, Tchuinkam T, Rono MK, Mwangangi J, Antonio-Nkondjio C. Changes in malaria vector bionomics and transmission patterns in the equatorial forest region of Cameroon between 2000 and 2017. Parasit Vectors 2018; 11:464. [PMID: 30103825 PMCID: PMC6090627 DOI: 10.1186/s13071-018-3049-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
Background Increased use of long-lasting insecticidal nets (LLINs) over the last decade has considerably improved the control of malaria in sub-Saharan Africa. However, there is still a paucity of data on the influence of LLIN use and other factors on mosquito bionomics in different epidemiological foci. The objective of this study was to provide updated data on the evolution of vector bionomics and malaria transmission patterns in the equatorial forest region of Cameroon over the period 2000–2017, during which LLIN coverage has increased substantially. Methods The study was conducted in Olama and Nyabessan, two villages situated in the equatorial forest region. Mosquito collections from 2016–2017 were compared to those of 2000–2001. Mosquitoes were sampled using both human landing catches and indoor sprays, and were identified using morphological taxonomic keys. Specimens belonging to the An. gambiae complex were further identified using molecular tools. Insecticide resistance bioassays were undertaken on An. gambiae to assess the susceptibility levels to both permethrin and deltamethrin. Mosquitoes were screened for Plasmodium falciparum infection and blood-feeding preference using the ELISA technique. Parasitological surveys in the population were conducted to determine the prevalence of Plasmodium infection using rapid diagnostic tests. Results A change in the species composition of sampled mosquitoes was recorded between the 2000–2001 collections and those of 2016–2017. A drop in the density of the local primary vectors An. nili and An. moucheti in the forest region was recorded, whereas there was an increase in the density of An. gambiae (s.l.), An. marshallii, An. ziemannii and An. paludis. A change in the biting behaviour from indoor to outdoor was recorded in Olama. Very few indoor resting mosquitoes were collected. A change in the night biting cycle was recorded with mosquitoes displaying a shift from night biting to late evening/early in the night. Several mosquitoes were found positive for Plasmodium infection, thus sustaining continuous transmission of malaria in both sites. Reduction of malaria transmission in Nyabessan was lower than that seen in Olama and associated with deforestation and the construction of a dam that may have enabled a more efficient vector, An. gambiae (s.l.), to invade the area. A high level of resistance to pyrethroids (permethrin and deltamethrin) was detected for An. gambiae in both sites. High parasite prevalence was recorded in both sites, with children of 0–16 years being the most affected. In both Olama and Nyabessan, bed net usage appeared to correlate to protection against malaria infection. Conclusions The study shows important changes in the bionomics of vector populations and malaria transmission patterns in the equatorial forest region. The changes call for more concerted efforts to address challenges such as insecticide resistance, environmental modifications or behavioural changes affecting the performance of current control measures.
Collapse
Affiliation(s)
- Roland Bamou
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P. O. Box 067, Dschang, Cameroon.,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon
| | - Lili Ranaise Mbakop
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Cyrille Ndo
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.,Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon
| | - Timoleon Tchuinkam
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P. O. Box 067, Dschang, Cameroon
| | - Martin Kibet Rono
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,KEMRI-Centre for Geographic Medicine Research Kilifi, Kilifi, Kenya
| | - Joseph Mwangangi
- KEMRI-Centre for Geographic Medicine Research Kilifi, Kilifi, Kenya.,Pwani University Health and Research Institute, Pwani University, Kilifi, Kenya
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon. .,Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|