1
|
Hartley C, Keast RSJ, Carr AJ, Roberts SSH, Bredie WLP. Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods 2024; 13:2130. [PMID: 38998636 PMCID: PMC11240887 DOI: 10.3390/foods13132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Previous research has demonstrated that complex carbohydrates (maltodextrins) can be perceived in the oral cavity. However, little research has been conducted to thoroughly investigate complex carbohydrate taste perception and contributing factors. This study explored the effects of the degree of polymerization and the concentration of complex carbohydrates on taste perception. Additionally, the impact of lactisole and acarbose on carbohydrate taste perception was investigated. Using a blinded, Latin Square design, participants (n = 40) received samples (control) or samples with acarbose (5 mM) or lactisole (1.4 mM). Per visit, participants received solutions: (1) short chain maltodextrin (average DP 6) (SCM), (2) long chain maltodextrin (average DP 24) (LCM), (3) maltose, and (4) glucose. Samples were evaluated in duplicate, both at low concentration and high concentration. Participants tasted the samples and rated sweetness, starchiness, and viscosity (mouthfeel) perceived on a 10 cm continuous line scale and perceived intensity on a Labelled Magnitude Scale. There was a significant effect of degree of polymerisation on sweetness (p = 0.001) and intensity (p = 0.001). For low concentration samples, no significant differences were found between LCM and acarbose LCM or SCM and acarbose SCM for sweetness, starchiness, or mouthfeel (all p > 0.05). Significant differences were observed between LCM and lactisole LCM for sweetness (1.1 ± 0.1 vs. 2.5 ± 0.3, p = 0.001), starchiness (1.4 ± 0.2 vs. 2.3 ± 0.3, p = 0.005), and mouthfeel (1.4 ± 0.2 vs. 2.3 ± 0.3, p = 0.013). In conclusion, the taste perception of maltodextrins is influenced by the degree of polymerisation. Furthermore, for this study, the sweet taste receptor was not involved in maltodextrin taste perception. While salivary α-amylase did not appear to influence taste perception with low concentration maltodextrins, further investigation is necessary.
Collapse
Affiliation(s)
- Claudia Hartley
- CASS Food Research Centre, Deakin University, Burwood Highway, Burwood, VIC 3125, Australia
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Russell S J Keast
- CASS Food Research Centre, Deakin University, Burwood Highway, Burwood, VIC 3125, Australia
| | - Amelia J Carr
- Centre for Sport Research, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC 3220, Australia
| | - Spencer S H Roberts
- Centre for Sport Research, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC 3220, Australia
| | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
2
|
Fan N, Shewan HM, Yakubov GE, Stokes JR. Structure Response of Preadsorbed Saliva Pellicle to the Interaction between Dairy and Saliva Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11516-11525. [PMID: 38778622 DOI: 10.1021/acs.langmuir.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Using the surface characterization techniques of quartz crystal microbalance with dissipation, atomic force microscopy, and scanning electron microscopy, the structure of the salivary pellicle was investigated before and after it was exposed to dairy proteins, including micellar casein, skim milk, whey protein isolate (WPI), and a mixture of skim milk and WPI. We have shown that the hydration, viscoelasticity, and adsorbed proteinaceous mass of a preadsorbed salivary pellicle on a PDMS surface are greatly affected by the type of dairy protein. After interaction with whey protein, the preadsorbed saliva pellicle becomes softer. However, exposure of the saliva pellicle to micellar casein causes the pellicle to partially collapse, which results in a thinner and more rigid surface layer. This structure change correlates with the measured lubrication behavior when the saliva pellicle is exposed to dairy proteins. While previous studies suggest that whey protein is the main component in milk to interact with salivary proteins, our study indicates interactions with casein are more important. The knowledge gained here provides insights into the mechanisms by which different components of dairy foods and beverages contribute to mouthfeel and texture perception, as well as influence oral hygiene.
Collapse
Affiliation(s)
- Nengneng Fan
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Heather M Shewan
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gleb E Yakubov
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jason R Stokes
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Ahmad P, Marin LM, Lowe C, Katselis GS, Siqueira WL. Salivary protein homology between humans and dogs: Mass spectrometry-based proteomics analysis. J Dent 2024; 142:104855. [PMID: 38246308 DOI: 10.1016/j.jdent.2024.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE This benchmark study aimed to investigate sex-related differences based on the identification and characterization of the salivary proteome of healthy male and female dogs using mass spectrometry (MS) technique and a homology-driven approach to analyze salivary proteins in both human and dog species utilizing protein sequence alignment technique. METHODS Unstimulated whole saliva was collected from 10 healthy Beagles. After processing the samples and determining the total protein content, in-solution protein digestion was performed involving denaturation, reduction of disulfide bonds, alkylation, and removal of interfering compounds. Samples were analyzed using LC-ESI-MS/MS. RESULTS LC-ESI-MS/MS analysis identified 327 and 341 unique proteins in male and female dog saliva, respectively, of which 318 (97.25 %) in male dogs and 326 (95.60 %) in female dogs were characterized. Abundant shared proteins included albumin, BPI fold-containing family A member 2, and VWFD domain-containing protein. A notable uncharacterized protein, VWFD domain-containing protein, was among the most abundant in both sexes. Comparative analysis of 69 abundant shared proteins indicated an upregulation of CES5A, EFHD, GC, IGHM, LOC100653049, KRT10, LCP1, PGD, TPI1 in male dogs, while LOC100855593 was upregulated in female dogs. In total, 84 % (n = 229/274) and 86 % (n = 235/275) salivary proteins identified in male and female dogs, respectively, were homologous to human proteins, with an overall homology of 86 % (n = 364/423), including 15 with 100 % homology. CONCLUSION The study revealed clear differences in the salivary proteomics profile of healthy male and female dogs. However, most of the salivary proteins in both male and female dogs showed homology with human salivary proteins. CLINICAL RELEVANCE The identification of unique salivary proteome profiles in male and female dogs, coupled with substantial homology to human proteins, provides promising biomarkers for health assessment, highlighting its clinical significance for diagnostics and therapeutic exploration not only in veterinary and human dentistry, but across mammalian species.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada
| | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada
| | - Candace Lowe
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Canadian Centre for Rural and Agricultural Health, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada.
| |
Collapse
|
4
|
Smith H, Giulivi C. Starch treatment improves the salivary proteome for subject identification purposes. Forensic Sci Med Pathol 2024; 20:117-128. [PMID: 37084127 PMCID: PMC10944386 DOI: 10.1007/s12024-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Identification of subjects, including perpetrators, is one of the most crucial goals of forensic science. Saliva is among the most common biological fluids found at crime scenes, containing identifiable components. DNA has been the most prominent identifier to date, but its analysis can be complex due to low DNA yields and issues preserving its integrity at the crime scene. Proteins are emerging as viable candidates for subject identification. Previous work has shown that the salivary proteome of the least-abundant proteins may be helpful for subject identification, but more optimized techniques are needed. Among them is removing the most abundant proteins, such as salivary α-amylase. Starch treatment of saliva samples elicited the removal of this enzyme and that of glycosylated, low-molecular-weight proteins, proteases, and immunoglobulins, resulting in a saliva proteome profile enriched with a subset of proteins, allowing a more reliable and nuanced subject identification.
Collapse
Affiliation(s)
- Hannah Smith
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| |
Collapse
|
5
|
Zhou Y, Liu Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023; 548:117503. [PMID: 37536520 DOI: 10.1016/j.cca.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.
Collapse
Affiliation(s)
- Yuehong Zhou
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Zhenqi Liu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Umapathy VR, Natarajan PM, Swamikannu B. Review Insights on Salivary Proteomics Biomarkers in Oral Cancer Detection and Diagnosis. Molecules 2023; 28:5283. [PMID: 37446943 PMCID: PMC10343386 DOI: 10.3390/molecules28135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Early detection is crucial for the treatment and prognosis of oral cancer, a potentially lethal condition. Tumor markers are abnormal biological byproducts produced by malignant cells that may be found and analyzed in a variety of bodily fluids, including saliva. Early detection and appropriate treatment can increase cure rates to 80-90% and considerably improve quality of life by reducing the need for costly, incapacitating medicines. Salivary diagnostics has drawn the interest of many researchers and has been proven to be an effective tool for both medication monitoring and the diagnosis of several systemic diseases. Since researchers are now searching for biomarkers in saliva, an accessible bodily fluid, for noninvasive diagnosis of oral cancer, measuring tumor markers in saliva is an interesting alternative to blood testing for early identification, post-treatment monitoring, and monitoring high-risk lesions. New molecular markers for oral cancer detection, treatment, and prognosis have been found as a result of developments in the fields of molecular biology and salivary proteomics. The numerous salivary tumor biomarkers and how they relate to oral cancer and pre-cancer are covered in this article. We are optimistic that salivary protein biomarkers may one day be discovered for the clinical detection of oral cancer because of the rapid advancement of proteomic technology.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
7
|
Shang R, Kaisarly D, Kunzelmann KH. Tooth whitening with an experimental toothpaste containing hydroxyapatite nanoparticles. BMC Oral Health 2022; 22:331. [PMID: 35941677 PMCID: PMC9361657 DOI: 10.1186/s12903-022-02266-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this study was to evaluate the postbrushing tooth-whitening effect of toothpaste containing hydroxyapatite nanoparticles (nano-HAPs). The impact of the concentration on the whitening performance of nano-HAP toothpaste was also investigated. Methods Two concentrations of nano-HAP (10 wt% and 1 wt%) were incorporated in nonabrasive toothpastes. Forty bovine incisors were randomly assigned into four groups: 10 wt% nano-HAP, 1 wt% nano-HAP, toothpaste without nano-HAP as a negative control and water as a blank control. Each tooth was treated with the toothpaste three times and hydrodynamic shear force (HSF) once. The teeth surfaces were observed by SEM after each application. Tooth color (L*, a* and b* values) was measured by a spectrophotometer, and color changes (△E, △L, △a and △b values) were calculated. Two-way mixed ANOVA was performed to evaluate the influence of the concentration and repeated application on the tooth-whitening effect of nano-HAP. Results We found that nano-HAP-treated enamel exhibited higher L* values and lower a* and b* values than the control groups (P < 0.05). The 10 wt% nano-HAP group showed significantly higher △E values than the 1 wt% nano-HAP group (P < 0.05). After three applications, the △E mean value of the 10 wt% nano-HAP group was 4.47. The △E and △L values were slightly reduced after HSF (P < 0.05). For both nano-HAP groups, HAP single crystallites and agglomerates were identified, and their sizes grew with nano-HAP reapplication. Conclusions In conclusion, nano-HAP toothpaste has a satisfying postbrushing whitening effect and good resistance to mechanical forces. The whitening effect seemed to be concentration-dependent.
Collapse
Affiliation(s)
- Ren Shang
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, D-80336, Munich, Germany.
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, D-80336, Munich, Germany
| | - Karl-Heinz Kunzelmann
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, D-80336, Munich, Germany
| |
Collapse
|
8
|
Chahal G, Quintana-Hayashi MP, Gaytán MO, Benktander J, Padra M, King SJ, Linden SK. Streptococcus oralis Employs Multiple Mechanisms of Salivary Mucin Binding That Differ Between Strains. Front Cell Infect Microbiol 2022; 12:889711. [PMID: 35782137 PMCID: PMC9247193 DOI: 10.3389/fcimb.2022.889711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus oralis is an oral commensal and opportunistic pathogen that can enter the bloodstream and cause bacteremia and infective endocarditis. Here, we investigated the mechanisms of S. oralis binding to oral mucins using clinical isolates, isogenic mutants and glycoconjugates. S. oralis bound to both MUC5B and MUC7, with a higher level of binding to MUC7. Mass spectrometry identified 128 glycans on MUC5B, MUC7 and the salivary agglutinin (SAG). MUC7/SAG contained a higher relative abundance of Lewis type structures, including Lewis b/y, sialyl-Lewis a/x and α2,3-linked sialic acid, compared to MUC5B. S. oralis subsp. oralis binding to MUC5B and MUC7/SAG was inhibited by Lewis b and Lacto-N-tetraose glycoconjugates. In addition, S. oralis binding to MUC7/SAG was inhibited by sialyl Lewis x. Binding was not inhibited by Lacto-N-fucopentaose, H type 2 and Lewis x conjugates. These data suggest that three distinct carbohydrate binding specificities are involved in S. oralis subsp. oralis binding to oral mucins and that the mechanisms of binding MUC5B and MUC7 differ. Efficient binding of S. oralis subsp. oralis to MUC5B and MUC7 required the gene encoding sortase A, suggesting that the adhesin(s) are LPXTG-containing surface protein(s). Further investigation demonstrated that one of these adhesins is the sialic acid binding protein AsaA.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Medea Padra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| | - Sara K. Linden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| |
Collapse
|
9
|
Salivary Assessments in Post-Liver Transplantation Patients. J Clin Med 2022; 11:jcm11113152. [PMID: 35683539 PMCID: PMC9181838 DOI: 10.3390/jcm11113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Saliva is in the first line of the body's defense mechanism. In order to better understand how liver transplantation impacts salivary biochemistry, the aim of this cross-sectional study was to explore variations of salivary markers for oral health in post-liver transplantation patients, as compared with systemically healthy dental outpatients (controls). In this case, 26 patients were enrolled in each group, with similar socio-demographic characteristics. Unstimulated whole saliva was collected; total protease activity and total protein content were measured. The oral health in both groups was assessed using a self-report oral health questionnaire. Data were analyzed using parametric and nonparametric tests. Comparable results were recorded in terms of salivary protein and protease activity assessments. In post-liver transplantation group, positive correlation was found between the salivary pH level and the salivary secretion rate (r = 0.39; p = 0.04). With respect to self-reported oral health, there were no significant differences between the two groups, except for dental and oral care habits, the controls reporting more frequently use of dental floss and mouthwash (p = 0.02, and p = 0.003, respectively). Considering the high risk for developing systemic complications after liver transplantation, oral health care is an important issue to be addressed, salivary investigations representing powerful tool for disease changes monitoring.
Collapse
|
10
|
Xie H, Zheng X, Huang Y, Li W, Wang W, Li Q, Hou J, Luo L, Kuang X, Lin CQ. Diurnal pattern of salivary alpha-amylase and cortisol under citric acid stimulation in young adults. PeerJ 2022; 10:e13178. [PMID: 35433126 PMCID: PMC9012170 DOI: 10.7717/peerj.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background Saliva composition has diurnal variations. Citric acid stimulation plays a major role in the change of salivary flow rate and salivary composition. However, diurnal variations and sex differences in salivary alpha-amylase (sAA), pH, salivary flow rate (SFR), and salivary cortisol before and after citric acid stimulation remain unclear. Methods We recruited 30 healthy volunteers, including 15 women (24.7 ± 1.0 years old) and 15 men (25.3 ± 1.3 years old). At four time points (T1, 7:00; T2, 10:00; T3, 16:00; and T4, 20:00), saliva was collected from healthy volunteers before and after citric acid stimulation; and sAA, pH, SFR and salivary cortisol were measured and compared between men and women. Results There were circadian fluctuations in sAA activity, SFR, pH, and cortisol level both before and after citric acid stimulation, and the diurnal fluctuations of these indexes were not affected by citric acid stimulation. There were significant differences in salivary cortisol between men and women before and after acid stimulation in T1. Neither SFR nor pH showed sex-related differences before or after acid stimulation. The variation trend of sAA activity was contrary to that of cortisol, with a significant negative correlation. Conclusions Our data suggest that sAA and cortisol showed diurnal fluctuation, and the variation characteristics of male and female under resting state and acid stimulation were basically the same. The variation trend of salivary alpha-amylase activity was opposite to that of cortisol, with significant negative correlation. Our findings may enable the selection of the correct sampling time for research and the selection of appropriate sampling strategies in studies investigating chronic psychosocial conditions.
Collapse
Affiliation(s)
- Haimei Xie
- Guangzhou University of Traditional Chinese Medicine, Science and Technology Innovation Center, Guangzhou, Guangdong, China,Guangzhou University of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaomei Zheng
- Guangzhou University of Traditional Chinese Medicine, Science and Technology Innovation Center, Guangzhou, Guangdong, China,Guangzhou University of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ye Huang
- Guangzhou University of Traditional Chinese Medicine, Science and Technology Innovation Center, Guangzhou, Guangdong, China
| | - Weihao Li
- Guangzhou University of Traditional Chinese Medicine, Science and Technology Innovation Center, Guangzhou, Guangdong, China
| | - Wenkai Wang
- Guangzhou University of Traditional Chinese Medicine, Science and Technology Innovation Center, Guangzhou, Guangdong, China
| | - Qiao Li
- Guangzhou University of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiangtao Hou
- Guangzhou University of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lulu Luo
- Guangzhou University of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiuying Kuang
- Guangzhou University of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuan-quan Lin
- Guangzhou University of Traditional Chinese Medicine, Science and Technology Innovation Center, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Balakrishnan B, Selvaraju V, Chen J, Ayine P, Yang L, Ramesh Babu J, Geetha T, Taneja V. Ethnic variability associating gut and oral microbiome with obesity in children. Gut Microbes 2022; 13:1-15. [PMID: 33596768 PMCID: PMC7894456 DOI: 10.1080/19490976.2021.1882926] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Obesity is a growing worldwide problem that generally starts in the early years of life and affects minorities more often than Whites. Thus, there is an urgency to determine factors that can be used as targets as indicators of obesity. In this study, we attempt to generate a profile of gut and oral microbial clades predictive of disease status in African American (AA) and European American (EA) children. 16S rDNA sequencing of the gut and saliva microbial profiles were correlated with salivary amylase, socioeconomic factors (e.g., education and family income), and obesity in both ethnic populations. Gut and oral microbial diversity between AA and EA children showed significant differences in alpha-, beta-, and taxa-level diversity. While gut microbial diversity between obese and non-obese was not evident in EA children, the abundance of gut Klebsiella and Magasphaera was associated with obesity in AA children. In contrast, an abundance of oral Aggregatibacter and Eikenella in obese EA children was observed. These observations suggest an ethnicity-specific association with gut and oral microbial profiles. Socioeconomic factors influenced microbiota in obesity, which were ethnicity dependent, suggesting that specific approaches to confront obesity are required for both populations.
Collapse
Affiliation(s)
| | - Vaithinathan Selvaraju
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Priscilla Ayine
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Lu Yang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA,Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA,Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, USA,Thangiah Geetha Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA,CONTACT Veena Taneja Department of Immunology, Mayo Clinic, 200 First St SWRochester, MN55905, USA
| |
Collapse
|
12
|
Abstract
The use of saliva as a diagnostic biofluid has been increasing in recent years, thanks to the identification and validation of new biomarkers and improvements in test accuracy, sensitivity, and precision that enable the development of new noninvasive and cost-effective devices. However, the lack of standardized methods for sample collection, treatment, and storage contribute to the overall variability and lack of reproducibility across analytical evaluations. Furthermore, the instability of salivary biomarkers after sample collection hinders their translation into commercially available technologies for noninvasive monitoring of saliva in home settings. The present review aims to highlight the status of research on the challenges of collecting and using diagnostic salivary samples, emphasizing the methodologies used to preserve relevant proteins, hormones, genomic, and transcriptomic biomarkers during sample handling and analysis.
Collapse
Affiliation(s)
- Luciana d'Amone
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Giusy Matzeu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Physics, Tufts University, Medford, Massachusetts 02155, United States.,Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Boroumand M, Olianas A, Cabras T, Manconi B, Fanni D, Faa G, Desiderio C, Messana I, Castagnola M. Saliva, a bodily fluid with recognized and potential diagnostic applications. J Sep Sci 2021; 44:3677-3690. [PMID: 34350708 PMCID: PMC9290823 DOI: 10.1002/jssc.202100384] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
Human whole saliva is a bodily fluid that can be obtained easily by noninvasive techniques. Specimens can be collected by the patient also at home in order to monitor health status and variations of several analytes of clinical interest. The contributions to whole saliva include secretions from salivary glands and, among others, from the gingival crevicular fluid that derives from the epithelial mucosa. Therefore, saliva is currently a relevant diagnostic fluid for many substances, including steroids, nonpeptide hormones, therapeutic drugs, and drugs of abuse. This review at first briefly describes the different contributions to whole saliva. A section illustrates the procedures for the collection, handling, and storage of salivary specimens. Another section describes the present use of whole saliva for diagnostic purposes and its specific utilization for the diagnosis of several local and systemic diseases. The final sections illustrate the future opportunities offered by various not conventional techniques with a focus on the most recent –omic investigations. It describes the various issues that have to be taken into account to avoid false positives and negatives, such as the strength of the experimental plan, the adequacy of the number of samples under study, and the proper choice of controls.
Collapse
Affiliation(s)
- Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Daniela Fanni
- Dipartimento di Scienze Mediche e Sanità Pubblica, Sezione di Patologia, Università di Cagliari, AOU of Cagliari, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Gavino Faa
- Dipartimento di Scienze Mediche e Sanità Pubblica, Sezione di Patologia, Università di Cagliari, AOU of Cagliari, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale Delle Ricerche, Roma, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale Delle Ricerche, Roma, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
14
|
Siqueira WL, Canales MP, Crosara KTB, Marin LM, Xiao Y. Proteome difference among the salivary proteins adsorbed onto metallic orthodontic brackets and hydroxyapatite discs. PLoS One 2021; 16:e0254909. [PMID: 34319997 PMCID: PMC8318307 DOI: 10.1371/journal.pone.0254909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the atomic composition and the proteome of the salivary proteins adsorbed on the surface of orthodontic metallic bracket. For this, the atomic composition of orthodontic metallic brackets was analyzed with X-ray Photoelectron Spectroscopy (XPS). The acquired bracket pellicle was characterized after brackets were immersed in human whole saliva supernatant for 2 hours at 37°C. Hydroxyapatite (HA) discs were used as a control. Acquired pellicle was harvested from the HA discs (n = 12) and from the metallic brackets (n = 12). Proteomics based on mass spectrometry technology was used for salivary protein identification and characterization. Results showed that most of the proteins adsorbed on the surface of orthodontic metallic brackets and on the HA discs were identified specifically to each group, indicating a small overlapping between the salivary proteins on each study group. A total of 311 proteins present on the HA discs were unique to this group while 253 proteins were unique to metallic brackets, and only 45 proteins were common to the two groups. Even though most proteins were unique to each study group, proteins related to antimicrobial activity, lubrication, and remineralization were present in both groups. These findings demonstrate that the salivary proteins adsorbed on the bracket surface are dependent on the material molecular composition.
Collapse
Affiliation(s)
- Walter Luiz Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Maria Pia Canales
- Schulich Dentistry & Medicine, The University of Western Ontario, London, ON, Canada
| | | | - Lina Maria Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yizhi Xiao
- Schulich Dentistry & Medicine, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Blancas B, Lanzagorta MDL, Jiménez‐Garcia LF, Lara R, Molinari JL, Fernández AM. Study of the ultrastructure of Enterococcus faecalis and Streptococcus mutans incubated with salivary antimicrobial peptides. Clin Exp Dent Res 2021; 7:365-375. [PMID: 33951334 PMCID: PMC8204031 DOI: 10.1002/cre2.430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Enterococcus faecalis has been associated with root canal infections, while Streptococcus mutans has a central role in the etiology of dental caries. One of the main reasons of endodontic failure has been associated to the presence of E. faecalis and the formation of biofilms. S. mutans inhabits the oral cavity, specifically the dental plaque, which is a multispecies biofilm formed on the hard surfaces of the tooth. The biofilm formation is the main factor determining the pathogenicity of numerous bacteria. Natural antimicrobial peptides in the saliva protect against pathogenic bacteria and biofilms. The aim of this study was to assess the ultrastructural damage induced by salivary peptides in bacteria involved in biofilms has not been previously studied. MATERIAL AND METHODS Enterococcus faecalis and S. mutans incubated with cystatin C, chromogranin A, or histatin 5 were morphologically analyzed and counted. The ultrastructural damage was evaluated by transmission electron microscopy (TEM). RESULTS A decrease in bacterial numbers was observed after incubation with cystatin C, chromogranin A, or histatin 5, compared to the control group (P < 0.001). Ultrastructural damage in E. faecalis and S. mutans incubated with salivary peptides was found in the cell wall, plasma membrane with a decreased distance between the bilayers, a granular pattern in the cytoplasm, and pyknotic nucleoids. CONCLUSIONS This study demonstrated that salivary peptides exert antibacterial activity and induce morphological damage on E. faecalis and S. mutans. Knowledge on the ultrastructural damage inflicted by salivary antimicrobial peptides on two important bacteria causing dental caries and root canal infections could aid the design of new therapeutic approaches to facilitate the elimination of these bacteria.
Collapse
Affiliation(s)
- Blanca Blancas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaCol. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Luis Felipe Jiménez‐Garcia
- Departamento de Biología Celular, Facultad de CienciasUNAM, Col. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Reyna Lara
- Departamento de Biología Celular, Facultad de CienciasUNAM, Col. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - José Luis Molinari
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Col. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Ana María Fernández
- Departamento de Microbiología y Parasitología, Facultad de MedicinaCol. Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Instituto de Estudios Avanzados en Odontologia Dr. Yury Kuttler, Maestria en EndodonciaMexico CityMexico
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucanMexico
| |
Collapse
|
16
|
Zhu Y, Marin LM, Xiao Y, Gillies ER, Siqueira WL. pH-Sensitive Chitosan Nanoparticles for Salivary Protein Delivery. NANOMATERIALS 2021; 11:nano11041028. [PMID: 33920657 PMCID: PMC8073935 DOI: 10.3390/nano11041028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022]
Abstract
Salivary proteins such as histatins (HTNs) have demonstrated critical biological functions directly related to tooth homeostasis and prevention of dental caries. However, HTNs are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to protect proteins from enzymatic degradation at physiological salivary pH. Four different types of chitosan polymers were investigated and the optimal formulation had good batch to batch reproducibility, with an average hydrodynamic diameter of 144 ± 6 nm, a polydispersity index of 0.15 ± 0.04, and a zeta potential of 18 ± 4 mV at a final pH of 6.3. HTN3 encapsulation and release profiles were characterized by cationic polyacrylamide gel electrophoresis. The CNs successfully encapsulated HTN3 and selectively swelled at acidic pH to facilitate HTN3 release. Protection of HTN3 against enzymatic degradation was investigated in diluted whole saliva. HTN3 encapsulated in the CNs had a prolonged survival time compared to the free HTN3. CNs with and without HTN3 also successfully reduced biofilm weight and bacterial viability. The results of this study have demonstrated the suitability of CNs as potential protein carriers for oral applications, especially for complications occurring at acidic conditions.
Collapse
Affiliation(s)
- Yi Zhu
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada; (Y.Z.); (E.R.G.)
| | - Lina M. Marin
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5E4, Canada;
| | - Yizhi Xiao
- Schulich Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada;
| | - Elizabeth R. Gillies
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada; (Y.Z.); (E.R.G.)
- Department of Chemistry, Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Walter L. Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5E4, Canada;
- Correspondence:
| |
Collapse
|
17
|
Dentino AR, Lee D, Dentino K, Guentsch A, Tahriri M. Inhibition of Candida albicans and Mixed Salivary Bacterial Biofilms on Antimicrobial Loaded Phosphated Poly(methyl methacrylate). Antibiotics (Basel) 2021; 10:antibiotics10040427. [PMID: 33924304 PMCID: PMC8070037 DOI: 10.3390/antibiotics10040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Biofilms play a crucial role in the development of Candida-associated denture stomatitis. Inhibition of microbial adhesion to poly(methyl methacrylate) (PMMA) and phosphate containing PMMA has been examined in this work. C. albicans and mixed salivary microbial biofilms were compared on naked and salivary pre-conditioned PMMA surfaces in the presence or absence of antimicrobials (Cetylpyridinium chloride [CPC], KSL-W, Histatin 5 [His 5]). Polymers with varying amounts of phosphate (0–25%) were tested using four C. albicans oral isolates as well as mixed salivary bacteria and 24 h biofilms were assessed for metabolic activity and confirmed using Live/Dead staining and confocal microscopy. Biofilm metabolism was reduced as phosphate density increased (15%: p = 0.004; 25%: p = 0.001). Loading of CPC on 15% phosphated disks showed a substantial decrease (p = 0.001) in biofilm metabolism in the presence or absence of a salivary pellicle. Salivary pellicle on uncharged PMMA enhanced the antimicrobial activity of CPC only. CPC also demonstrated remarkable antimicrobial activity on mixed salivary bacterial biofilms under different conditions displaying the potent efficacy of CPC (350 µg/mL) when combined with an artificial protein pellicle (Biotene half strength).
Collapse
Affiliation(s)
- Andrew R. Dentino
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
- Correspondence:
| | - DongHwa Lee
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | - Kelley Dentino
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | - Arndt Guentsch
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | | |
Collapse
|
18
|
Stangvaltaite-Mouhat L, Pūrienė A, Aleksejūnienė J, Stankeviciene I, Tommeras B, Al-Haroni M. Amylase Alpha 1 Gene (AMY1) Copy Number Variation and Dental Caries Experience: A Pilot Study among Adults in Lithuania. Caries Res 2021; 55:174-182. [PMID: 33735865 DOI: 10.1159/000514667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Genetic biomarkers have the potential to be used in personalised dentistry for improved prevention and decision-making in caries management. The amylase alpha 1 gene (AMY1) encodes salivary α-amylase and may be one such biomarker. We examined the association between AMY1 copy number variation (CNV) and dental caries experience in adults. MATERIALS AND METHODS A stratified random sample of 193 participants from the Lithuanian National Oral Health Survey (LNOHS) agreed to provide saliva samples and were included in this analysis (age 35-44 years; participation rate 43%). Information on socio-demographic and behavioural characteristics was taken from the LNHOS, which used the self-administered World Health Organisation (WHO) questionnaire. Data on fluoride levels in drinking water at the recruitment areas was recorded based on information provided by water suppliers. Dental caries experience was recorded at a surface level (smooth-surface and occlusal-surface decayed, missing, filled surfaces [D3MFS] score) by one trained and calibrated examiner using WHO criteria, and subsequently dichotomised for the statistical analyses. DNA extracted from saliva samples was used to investigate AMY1 CNV using the QX200 droplet digital PCR system. Bivariate and multivariable statistical analyses were employed. RESULTS When compared to participants with an AMY1 copy number (CN) of 2-3, higher odds of smooth-surface D3MFS >14 was observed for participants with a CN of 4-5 (OR 13.3, 95% CI 2.1-86.3), 6-9 (OR 7.0, 95% CI 1.4-34.1), and 10-16 (OR 5.8, 95% CI 1.2-32.2). Female sex was independently associated with a smooth-surface D3MFS >14 (OR 5.7, 95% CI 1.9-17.2). CONCLUSIONS Our study demonstrated an association between AMY1 CNV and high smooth-surface caries experience. Studies with larger sample sizes are needed to validate this association.
Collapse
Affiliation(s)
- Lina Stangvaltaite-Mouhat
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway, .,Oral Health Centre of Expertise in Eastern Norway, Oslo, Norway,
| | - Alina Pūrienė
- Institute of Dentistry, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Jolanta Aleksejūnienė
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Indre Stankeviciene
- Institute of Dentistry, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Berit Tommeras
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Centre for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
19
|
Gasmi Benahmed A, Gasmi A, Dadar M, Arshad M, Bjørklund G. The role of sugar-rich diet and salivary proteins in dental plaque formation and oral health. J Oral Biosci 2021; 63:134-141. [PMID: 33497842 DOI: 10.1016/j.job.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dental plaque is a complex colorless film of bacteria that develops on the surfaces of teeth. Different mechanisms of microbial adhesion to tooth surfaces exist. Both non-specific and specific types of adherence have been anticipated. HIGHLIGHT The present review evaluated the effect of sugar-rich diet and salivary proteins on oral hygiene and dental plaque development. CONCLUSION The oral microbiota is essential for maintaining and reestablishing a healthy oral cavity. Different types of sugars have different effects on the inhibition and formation of dental plaque. The peptides, proteins, and amino acids secreted by parotid glands in the oral cavity facilitate neutralizing the acidity in dental plaque and preventing dental caries. A properly balanced diet is crucial for both a healthy oral cavity and the oral microbiome.
Collapse
Affiliation(s)
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maria Arshad
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo I Rana, Norway.
| |
Collapse
|
20
|
Deutsch O, Haviv Y, Krief G, Keshet N, Westreich R, Stemmer SM, Zaks B, Navat SP, Yanko R, Lahav O, Aframian DJ, Palmon A. Possible proteomic biomarkers for the detection of pancreatic cancer in oral fluids. Sci Rep 2020; 10:21995. [PMID: 33319845 PMCID: PMC7738525 DOI: 10.1038/s41598-020-78922-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
The 80% mortality rate of pancreatic-cancer (PC) makes early diagnosis a challenge. Oral fluids (OF) may be considered the ultimate body fluid for non-invasive examinations. We have developed techniques to improve visualization of minor OF proteins thereby overcoming major barriers to using OF as a diagnostic fluid. The aim of this study was to establish a short discriminative panel of OF biomarkers for the detection of PC. Unstimulated OF were collected from PC patients and controls (n = 30). High-abundance-proteins were depleted and the remaining proteins were analyzed by two-dimensional-gel-electrophoresis and quantitative dimethylation-liquid-chromatography-tandem mass-spectrometry. Label-free quantitative-mass-spectrometry analysis (qMS) was performed on 20 individual samples (n = 20). More than 100 biomarker candidates were identified in OF samples, and 21 had a highly differential expression profile. qMS analysis yielded a ROC-plot AUC value of 0.91 with 90.0% sensitivity and specificity for a combination of five biomarker candidates. We found a combination of five biomarkers for PC. Most of these proteins are known to be related to PC or other gastric cancers, but have never been detected in OF. This study demonstrates the importance of novel OF depletion methodologies for increased protein visibility and highlights the clinical applicability of OF as a diagnostic fluid.
Collapse
Affiliation(s)
- O Deutsch
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Y Haviv
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Krief
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - N Keshet
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Westreich
- Department of Internal Medicine B, Soroka Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - S M Stemmer
- Rabin Medical Center, Davidoff Center, Petach Tiqwa, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - B Zaks
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S P Navat
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Yanko
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - O Lahav
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - D J Aframian
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Palmon
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Oral Medicine, Sedation and Maxillofacial Imaging, Faculty of Dental Medicine, Hebrew University - Hadassah, Jerusalem, Israel.
| |
Collapse
|
21
|
Saitou M, Gaylord EA, Xu E, May AJ, Neznanova L, Nathan S, Grawe A, Chang J, Ryan W, Ruhl S, Knox SM, Gokcumen O. Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Rep 2020; 33:108402. [PMID: 33207190 PMCID: PMC7703872 DOI: 10.1016/j.celrep.2020.108402] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Salivary proteins are essential for maintaining health in the oral cavity and proximal digestive tract, and they serve as potential diagnostic markers for monitoring human health and disease. However, their precise organ origins remain unclear. Through transcriptomic analysis of major adult and fetal salivary glands and integration with the saliva proteome, the blood plasma proteome, and transcriptomes of 28+ organs, we link human saliva proteins to their source, identify salivary-gland-specific genes, and uncover fetal- and adult-specific gene repertoires. Our results also provide insights into the degree of gene retention during gland maturation and suggest that functional diversity among adult gland types is driven by specific dosage combinations of hundreds of transcriptional regulators rather than by a few gland-specific factors. Finally, we demonstrate the heterogeneity of the human acinar cell lineage. Our results pave the way for future investigations into glandular biology and pathology, as well as saliva's use as a diagnostic fluid.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, U.S.A; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Viken, Norway
| | - Eliza A Gaylord
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Erica Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Alison J May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Lubov Neznanova
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Sara Nathan
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Anissa Grawe
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Jolie Chang
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - William Ryan
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A.
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| |
Collapse
|
22
|
Thamadilok S, Choi KS, Ruhl L, Schulte F, Kazim AL, Hardt M, Gokcumen O, Ruhl S. Human and Nonhuman Primate Lineage-Specific Footprints in the Salivary Proteome. Mol Biol Evol 2020; 37:395-405. [PMID: 31614365 PMCID: PMC6993864 DOI: 10.1093/molbev/msz223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins in saliva are needed for preprocessing food in the mouth, maintenance of tooth mineralization, and protection from microbial pathogens. Novel insights into human lineage-specific functions of salivary proteins and clues to their involvement in human disease can be gained through evolutionary studies, as recently shown for salivary amylase AMY1 and salivary agglutinin DMBT1/gp340. However, the entirety of proteins in saliva, the salivary proteome, has not yet been investigated from an evolutionary perspective. Here, we compared the proteomes of human saliva and the saliva of our closest extant evolutionary relatives, chimpanzees and gorillas, using macaques as an outgroup, with the aim to uncover features in saliva protein composition that are unique to each species. We found that humans produce a waterier saliva, containing less than half total protein than great apes and Old World monkeys. For all major salivary proteins in humans, we could identify counterparts in chimpanzee and gorilla saliva. However, we discovered unique protein profiles in saliva of humans that were distinct from those of nonhuman primates. These findings open up the possibility that dietary differences and pathogenic pressures may have shaped a distinct salivary proteome in the human lineage.
Collapse
Affiliation(s)
- Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Kyoung-Soo Choi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Lorenz Ruhl
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - A Latif Kazim
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - Omer Gokcumen
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
23
|
Montoya G, Lopez K, Arenas J, Zamora C, Hoz L, Romo E, Jiménez K, Arzate H. Nucleation and growth inhibition of biological minerals by cementum attachment protein-derived peptide (CAP-pi). J Pept Sci 2020; 26:e3282. [PMID: 32840040 DOI: 10.1002/psc.3282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
Biomineralization is a highly regulated process where proteins/peptides-crystal interactions contribute to the shaping, phasing and aggregation of minerals. We have identified and synthesized a cementum attachment protein-derived peptide (CAP-pi), which corresponds to amino acids 40-53 of the N-terminal CAP domain (MASSDEDGTNGGAS) and its phosphorylated variant (MASpSpDEDGTNGGASp) (CAP-pip). The peptide is composed of polar and negatively charged amino acids, which are disordered, according to in silico analysis. Our results show that CAP-pi inhibits hydroxyapatite (HA) formation and growth. However, it possesses low capacity to inhibit calcium oxalate crystal growth. CAP-pip showed a stronger inhibitory effect on the formation and growth of HA. As well as a high capacity to inhibit calcium oxalate monohydrate growth, mainly due to adsorption on specific growth faces. Small peptides have many advantages over the full-size protein, including low-cost production and modulation characteristics that allow for structural changes. Our findings suggest that CAP-pip-derived peptide could possess therapeutic potential to prevent or treat pathological calcifications such as renal stones and vascular calcification.
Collapse
Affiliation(s)
- Gonzalo Montoya
- Laboratory of Periodontal Biology, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Kevin Lopez
- Laboratory of Periodontal Biology, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jesús Arenas
- Institute of Physics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Claudia Zamora
- Laboratory of Periodontal Biology, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lía Hoz
- Laboratory of Periodontal Biology, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Enrique Romo
- Laboratory of Periodontal Biology, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Karina Jiménez
- Faculty of Chemistry, USAII, National Autonomous University of Mexico, Mexico City, Mexico
| | - Higinio Arzate
- Laboratory of Periodontal Biology, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
24
|
Boroumand M, Iavarone F, Manconi B, Pieroni L, Greco V, Vento G, Tirone C, Desiderio C, Fiorita A, Faa G, Messana I, Cabras T, Olianas A, Castagnola M. HPLC-ESI-MS top-down analysis of salivary peptides of preterm newborns evidenced high activity of some exopeptidases and convertases during late fetal development. Talanta 2020; 222:121429. [PMID: 33167196 DOI: 10.1016/j.talanta.2020.121429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
To have information on the proteolytic activity of convertases and exo-peptidases on human salivary proteins, this study investigated the relative amounts of the truncated proteoforms in the saliva of preterm newborns and compared them with the relative amounts measured in saliva of at-term newborns, of babies (0-10 years old) and of adults. Results indicated that convertase(s), acting on acidic proline-rich proteins and histatin 3, and carboxypeptidase(s) acting on acidic proline-rich proteins, P-C peptide, histatin 6 and statherin were many folds more active in preterm newborns than in the other groups. Conversely, the aminopeptidase responsible for the removal of the N-terminal Asp residue of statherin was not active in preterm newborns, becoming active only several months after the normal term of delivery. The high activity of convertases determined in preterm newborns suggests that it is required for the molecular events connected to the fetus development, and encourages further studies devoted to the characterization of their specific substrates.
Collapse
Affiliation(s)
- Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca Sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy.
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Roma, Italy.
| | - Barbara Manconi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy.
| | - Luisa Pieroni
- Laboratorio di Proteomica, Centro Europeo di Ricerca Sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy.
| | - Viviana Greco
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Roma, Italy.
| | - Giovanni Vento
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Roma, Italy; Divisione di Neonatologia, Dipartimento per La Salute Della Donna e Del Bambino, Università Cattolica Del Sacro Cuore, Roma, Italy.
| | - Chiara Tirone
- Divisione di Neonatologia, Dipartimento per La Salute Della Donna e Del Bambino, Università Cattolica Del Sacro Cuore, Roma, Italy.
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale Delle Ricerche, Roma, Italy.
| | - Antonella Fiorita
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Roma, Italy; Dipartimento di Scienze Dell'Invecchiamento, Neurologiche, Ortopediche e Della Testa e Del Collo, Università Cattolica Del Sacro Cuore, Roma, Italy.
| | - Gavino Faa
- Sezione di Anatomia Patologica, Dipartimento di Scienze Mediche e Sanità Pubblica, University of Cagliari, Cagliari, Italy; Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale Delle Ricerche, Roma, Italy.
| | - Tiziana Cabras
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy.
| | - Alessandra Olianas
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy.
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca Sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy.
| |
Collapse
|
25
|
Bringel M, Jorge PK, Francisco PA, Lowe C, Sabino-Silva R, Colombini-Ishikiriama BL, Machado MADAM, Siqueira WL. Salivary proteomic profile of dogs with and without dental calculus. BMC Vet Res 2020; 16:298. [PMID: 32814559 PMCID: PMC7437026 DOI: 10.1186/s12917-020-02514-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dogs' saliva is a complex mixture of inorganic and organic constituents, rich in proteins. Therefore, knowing the saliva composition of these animals is extremely important to identify the presence of proteins that may be involved in physiological and pathological mechanisms of their oral cavity. The present study aimed to characterize the proteomic profile of saliva from dogs with and without dental calculus. RESULTS Saliva samples were collected from 20 dogs. Before the collection, a visual clinical examination was performed and 8 subjects (40%) did not present any signs of dental calculus, while 12 (60%) presented dental calculus. After saliva collection, the samples were submitted to protein quantification (mBCA), and then they were prepared for analysis by nLC-ESI-MS/MS. A total of 658 unique proteins were identified, of which 225 were specific to dogs without dental calculus, 300 were specific to dogs with dental calculus, and 133 were common to all subjects. These proteins presented functions including transportation, immune response, structural, enzymatic regulation, signal transduction, transcription, metabolism, and some proteins perform functions as yet unknown. Several salivary proteins in dogs with dental calculus differed from those found in the group without dental calculus. Among the abundant proteins detected in periodontal affected cases, can be highlighting calcium-sensing receptor and transforming growth factor beta. Enrichment analysis reveled the presence of Rho GTPases signaling pathway. CONCLUSIONS This research identified salivary proteins, that should be further investigated as potencial biomarkers of chronic periodontits with dental calculus formation in dogs.
Collapse
Affiliation(s)
- Mayara Bringel
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pediatric Dentistry, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Paula Karine Jorge
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pediatric Dentistry, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | | | - Cadance Lowe
- College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robinson Sabino-Silva
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
26
|
Baskaran N, Chang YC, Chang CH, Hung SK, Kao CT, Wei Y. Quantify the Protein-Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface. Polymers (Basel) 2020; 12:E1658. [PMID: 32722491 PMCID: PMC7463787 DOI: 10.3390/polym12081658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Dental ceramic material is one of the widely preferred restorative materials to mimic the natural tooth enamel surface. However, it has continuously been degraded because of low wear resistance during mastication in the oral cavity. The friction involved was reduced by introducing the lubricant saliva protein layers to improve the wear resistance of the dental materials. However, little is understood regarding how the protein-protein interactions (PPI) influence the adsorbed-state structures and lubricating behaviors of saliva proteins on the ceramic material surface. The objective of this study is to quantify the influences of PPI effects on the structural changes and corresponding oral lubrications of adsorbed α-amylase, one of the abundant proteins in the saliva, on the dental ceramic material with glass as a model surface. α-Amylase was first adsorbed to glass surface under varying protein solution concentrations to saturate the surface to vary the PPI effects over a wide range. The areal density of the adsorbed protein was measured as an indicator of the level of PPI effects within the layer, and these values were then correlated with the measurements of the adsorbed protein's secondary structure and corresponding friction coefficient. The decreased friction coefficient value was an indicator of the lubricated surfaces with higher wear resistance. Our results indicate that PPI effects help stabilize the structure of α-amylase adsorbed on glass, and the correlation observed between the friction coefficient and the conformational state of adsorbed α-amylase was apparent. This study thus provides new molecular-level insights into how PPI influences the structure and lubricating behaviors of adsorbed protein, which is critical for the innovations of dental ceramic material designs with improved wear resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Section 3, Zhongxiao East Road, Taipei 10608, Taiwan; (N.B.); (Y.-C.C.); (C.-H.C.); (S.-K.H.); (C.-T.K.)
| |
Collapse
|
27
|
Samuel RZ, Lei P, Nam K, Baker OJ, Andreadis ST. Engineering the mode of morphogenetic signal presentation to promote branching from salivary gland spheroids in 3D hydrogels. Acta Biomater 2020; 105:121-130. [PMID: 31988042 DOI: 10.1016/j.actbio.2020.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Previously we developed a fibrin hydrogel (FH) decorated with laminin-111 peptides (L1p-FH) and supports three-dimensional (3D) gland microstructures containing polarized acinar cells. Here we expand on these results and show that co-culture of rat parotid Par-C10 cells with mesenchymal stem cells produces migrating branches of gland cells into the L1p-FH and we identify FGF-7 as the principal morphogenetic signal responsible for branching. On the other hand, another FGF family member and gland morphogen, FGF-10 increased proliferation but did not promote migration and therefore, limited the number and length of branched structures grown into the gel. By controlling the mode of growth factor presentation and delivery, we can control the length and cellularity of branches as well as formation of new nodes/clusters within the hydrogel. Such spatial delivery of two or more morphogens may facilitate engineering of anatomically complex tissues/mini organs such as salivary glands that can be used to address developmental questions or as platforms for drug discovery. STATEMENT OF SIGNIFICANCE: Hyposalivation leads to the development of a host of oral diseases. Current treatments only provide temporary relief. Tissue engineering may provide promising permanent solutions. Yet current models are limited to salivary spheroids with no branching networks. Branching structures are vital to an effective functioning gland as they increase the surface area/glandular volume ratio of the tissue, allowing a higher output from the small-sized gland. We describe a strategy that controls branch network formation in salivary glands that is a key in advancing the field of salivary gland tissue engineering.
Collapse
|
28
|
Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J Mater Chem B 2020; 8:2199-2215. [DOI: 10.1039/d0tb00139b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes the protein bioinspired materials for the repair of hard tissues such as enamel, dentin and bone.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610003
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
29
|
Hartenbach FARR, Velasquez É, Nogueira FCS, Domont GB, Ferreira E, Colombo APV. Proteomic analysis of whole saliva in chronic periodontitis. J Proteomics 2019; 213:103602. [PMID: 31809901 DOI: 10.1016/j.jprot.2019.103602] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease resulting from a dysbiosis of the dental biofilm and a dysregulated host response in susceptible individuals. It is characterized by periodontal attachment destruction, bone resorption and eventual tooth loss. Salivary biomarkers have been sought to predict and prevent periodontitis. This comparative study analyzed the salivary proteome of individuals with chronic periodontitis (CP) and periodontal health (PH) and correlated specific proteins with clinical parameters of disease by using mass spectrometry. Stimulated whole saliva was obtained 10 PH and 30 CP patients and pooled into 5 healthy control samples and 15 CP samples. After precipitation with TCA, samples were digested enzymatically with trypsin and analyzed by a LTQ Orbitrap Velos equipped with a nanoelectrospray ion source. A wide range of salivary proteins of various functions was significantly reduced in CP individuals, whereas salivary acidic proline-rich phosphoprotein, submaxillary gland androgen-regulated protein, histatin-1, fatty acid binding protein, thioredoxin and cystatin-SA were predominant in diseased patients and correlated significantly with signs of periodontal attachment loss and inflammation. In conclusion, few specific salivary proteins were associated with CP. These findings may contribute to the identification of disease indicators or signatures for the improvement of periodontal diagnosis. SIGNIFICANCE: Periodontitis is a chronic inflammatory disease that results in periodontal attachment destruction, bone resorption and eventual tooth loss. Salivary biomarkers have been sought to predict periodontitis. The analysis of the salivary proteome of individuals with chronic periodontitis indicated that several proteins of various functions were significantly reduced in these individuals, except for salivary acidic proline-rich phosphoprotein, submaxillary gland androgen-regulated protein, histatin, fatty acid binding protein, thioredoxin and cystatin. Differences in salivary proteome profiles between periodontal health and periodontitis may contribute to the identification of disease indicators and to the improvement of periodontal diagnosis and treatment.
Collapse
Affiliation(s)
- Fátima Aparecida Rocha Resende Hartenbach
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Brazil; Department of MedicalMicrobiology, Institute of Microbiology, FederalUniversity of Rio de Janeiro, Brazil
| | - Érika Velasquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil; Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Eliane Ferreira
- Department of MedicalMicrobiology, Institute of Microbiology, FederalUniversity of Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Brazil; Department of MedicalMicrobiology, Institute of Microbiology, FederalUniversity of Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Komatsu T, Kobayashi K, Helmerhorst E, Oppenheim F, Chang-Il Lee M. Direct assessment of the antioxidant property of salivary histatin. J Clin Biochem Nutr 2019; 65:217-222. [PMID: 31777423 PMCID: PMC6877405 DOI: 10.3164/jcbn.19-53] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/17/2019] [Indexed: 11/22/2022] Open
Abstract
Histatin, a salivary protein, affects oral homeostasis through preservation of tooth integrity and protection against caries and fungal infections. However, the effects of histatin in the generation of oxidative stress induced by reactive oxygen species and in the oral cavity remain unclear. In this study, the effects of histatin on direct reactive oxygen species scavenging activity were examined using electron spin resonance. We demonstrated, for the first time, that histatin exhibits antioxidant activity against hydroxyl radicals generated by Fenton's reaction by metal chelation or binding. The direct antioxidant effects of histatin, along with its antimicrobial activity, may be important in the oral protection of salivary proteins.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Division of Dentistry for the Special Patient, Department of Critical Care Medicine and Dentistry, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.,Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kyo Kobayashi
- Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Eva Helmerhorst
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Albany street, Boston, MA 02118, USA
| | - Frank Oppenheim
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Albany street, Boston, MA 02118, USA
| | - Masaichi Chang-Il Lee
- Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
31
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Singh V, Tripathi A, Dutta R. Proteomic Approaches to Decipher Mechanisms Underlying Pathogenesis in Multiple Sclerosis Patients. Proteomics 2019; 19:e1800335. [PMID: 31119864 PMCID: PMC6690771 DOI: 10.1002/pmic.201800335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). The cause of MS is unknown, with no effective therapies available to halt the progressive neurological disability. Development of new and improvement of existing therapeutic strategies therefore require a better understanding of MS pathogenesis, especially during the progressive phase of the disease. This can be achieved through development of biomarkers that can help to identify disease pathophysiology and monitor disease progression. Proteomics is a powerful and promising tool to accelerate biomarker detection and contribute to novel therapeutics. In this review, an overview of how proteomic technology using CNS tissues and biofluids from MS patients has provided important clues to the pathogenesis of MS is provided. Current publications, pitfalls, as well as directions of future research involving proteomic approaches to understand the pathogenesis of MS are discussed.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
33
|
Venkatapoorna CMK, Ayine P, Parra EP, Koenigs T, Phillips M, Babu JR, Sandey M, Geetha T. Association of Salivary Amylase ( AMY1) Gene Copy Number with Obesity in Alabama Elementary School Children. Nutrients 2019; 11:nu11061379. [PMID: 31248128 PMCID: PMC6627241 DOI: 10.3390/nu11061379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 01/14/2023] Open
Abstract
Salivary amylase (AMY1) is the most abundant enzyme in human saliva, responsible for the hydrolysis of α-1,4 glycosidic linkages that aids in the digestion of starch. Recently studies have shown that the copy number of AMY1 is associated with obesity; however, the data varies with location. One-third of children are overweight/obese in Alabama. In this study, we aim to determine the relationship between the copy number of AMY1 gene and obesity measurements in children from Alabama. One hundred twenty-seven children aged between 6 to 10 years participated in this study. Anthropometric measurements were measured using WHO recommendations. Genomic DNA was extracted from saliva, and the copy number of the AMY1 gene was estimated by digital PCR. The association between AMY1 copy number and obesity measurements was analyzed by linear regression. The mean AMY1 copy number significantly decreased in overweight/obese (6.21 ± 1.48) compared to normal weight (7.97 ± 2.35) children. AMY1 copy number inversely associated with the obesity measurements. African Americans had a stronger association between low AMY1 copy number and obesity compared to white/European Americans. Our findings suggest that overweight/obese children have a low AMY1 copy number and the effect is more prominent in African Americans.
Collapse
Affiliation(s)
- Chandra M K Venkatapoorna
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
| | - Priscilla Ayine
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
| | - Emily P Parra
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
| | - Taylor Koenigs
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
| | - Megan Phillips
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
34
|
Lim J, Pullicin AJ. Oral carbohydrate sensing: Beyond sweet taste. Physiol Behav 2019; 202:14-25. [DOI: 10.1016/j.physbeh.2019.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
|
35
|
Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols. Food Chem 2019; 272:210-215. [DOI: 10.1016/j.foodchem.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
|
36
|
Barranco T, Cerón JJ, López-Jornet P, Pastor J, Carrillo JM, Rubio M, Tornel PL, Cugat R, Tecles F, Tvarijonaviciute A. Impact of Saliva Collection and Processing Methods on Aspartate Aminotransferase, Creatin Kinase and Lactate Dehydrogenase Activities. ANAL SCI 2018; 34:619-622. [PMID: 29743436 DOI: 10.2116/analsci.17n035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to investigate the impact of saliva collection and processing methods on AST, CK and LDH. Saliva was collected from 17 healthy participants by a passive drool. Each saliva sample was distributed into 3 aliquots: not treated, centrifuged, and passed through cotton. Centrifugation improved the precision of assays and produced lower values of AST and CK. The use of cotton resulted in decreased levels of LDH. This data stress the importance of the standardization of sample processing to measure enzymes in saliva.
Collapse
Affiliation(s)
- Tomás Barranco
- Interdisciplinary Laboratory, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia
| | - Jose J Cerón
- Interdisciplinary Laboratory, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia
| | - Pía López-Jornet
- Interdisciplinary Laboratory, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia
| | - Josep Pastor
- Departament de Medicina i Cirugia Animals, Universidad Autónoma de Barcelona
| | - Jose M Carrillo
- Department of Animal Medicine and Surgery, Universidad CEU Cardenal Herrera
| | - Mónica Rubio
- Department of Animal Medicine and Surgery, Universidad CEU Cardenal Herrera
| | - Pedro L Tornel
- Clinical Analysis, University Hospital "Virgen de la Arixaca"
| | - Ramón Cugat
- Department of Orthopaedic Surgery and Traumatology, Hospital Quirón, Plaça d'Alfonso Comin
| | - Fernando Tecles
- Interdisciplinary Laboratory, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia
| |
Collapse
|
37
|
Padiglia A, Orrù R, Boroumand M, Olianas A, Manconi B, Sanna MT, Desiderio C, Iavarone F, Liori B, Messana I, Castagnola M, Cabras T. Extensive Characterization of the Human Salivary Basic Proline-Rich Protein Family by Top-Down Mass Spectrometry. J Proteome Res 2018; 17:3292-3307. [PMID: 30064219 DOI: 10.1021/acs.jproteome.8b00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human basic proline-rich proteins and basic glycosylated proline-rich proteins, encoded by the polymorphic PRB1-4 genes and expressed only in parotid glands, are the most complex family of adult salivary proteins. The family includes 11 parent peptides/proteins and more than 6 parent glycosylated proteins, but a high number of proteoforms with rather similar structures derive from polymorphisms and post-translational modifications. 55 new components of the family were characterized by top-down liquid chromatography-mass spectrometry and tandem-mass platforms, bringing the total number of proteoforms to 109. The new components comprise the three variants P-H S1 → A, P-Ko P36 → S, and P-Ko A41 → S and several of their naturally occurring proteolytic fragments. The paper represents an updated reference for the peptides included in the heterogeneous family of proteins encoded by PRB1/PRB4. MS data are available via ProteomeXchange with the identifier PXD009813.
Collapse
Affiliation(s)
- Alessandra Padiglia
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Roberto Orrù
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Mozhgan Boroumand
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Maria Teresa Sanna
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Claudia Desiderio
- Institute of Chemistry of Molecular Recognition , CNR , Rome 00168 , Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome 00168 , Italy.,Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome 00168 , Italy
| | - Barbara Liori
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| | - Irene Messana
- Institute of Chemistry of Molecular Recognition , CNR , Rome 00168 , Italy
| | - Massimo Castagnola
- Institute of Chemistry of Molecular Recognition , CNR , Rome 00168 , Italy.,Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome 00168 , Italy.,Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome 00168 , Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato 09042 , Cagliari , Italy
| |
Collapse
|
38
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
39
|
Elder PJD, Ramsden DB, Burnett D, Weickert MO, Barber TM. Human amylase gene copy number variation as a determinant of metabolic state. Expert Rev Endocrinol Metab 2018; 13:193-205. [PMID: 30063422 DOI: 10.1080/17446651.2018.1499466] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Humans have multiple genes encoding amylase that are broadly divided into salivary (AMY1) and pancreatic (AMY2) genes. They exhibit some of the greatest copy numbers of any human gene, an expansion possibly driven by increased dietary starch intake. Within the population, amylase gene copy number is highly variable and there is evidence of an inverse association between AMY1 copy number and BMI. AREAS COVERED We examine the evidence for the link between AMY1 and BMI, its potential mechanisms, and the metabolic effects of salivary and pancreatic amylase, both in the gastrointestinal tract and the blood EXPERT COMMENTARY Salivary amylase may influence postprandial 'cephalic phase' insulin release, which improves glucose tolerance, while serum amylase may have insulin-sensitizing properties. This could explain the favorable metabolic status associated with higher AMY1 copy number. The association with BMI is harder to explain and is potentially mediated by increased flux of undigested starch into the ileum, with resultant effects on short-chain fatty acids (SCFAs), changes in gut microbiota and effects on appetite and energy expenditure in those with low copy number. Future research on the role of amylase as a determinant of metabolic health and BMI may lead to novel therapies to target obesity.
Collapse
Affiliation(s)
- Patrick J D Elder
- a Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry , UK
| | - David B Ramsden
- b Institute of Metabolism and Systems Research, The Medical School, University of Birmingham , Birmingham , UK
| | - David Burnett
- c Micropathology Ltd, University of Warwick Science Park , Coventry , UK
| | - Martin O Weickert
- a Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry , UK
- d Division of Biomedical Sciences , Warwick Medical School, University of Warwick , Coventry , UK
- e Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences , Coventry University , Coventry , UK
| | - Thomas M Barber
- a Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry , UK
- d Division of Biomedical Sciences , Warwick Medical School, University of Warwick , Coventry , UK
| |
Collapse
|
40
|
Bhuptani D, Kumar S, Vats M, Sagav R. Age and gender related changes of salivary total protein levels for forensic application. THE JOURNAL OF FORENSIC ODONTO-STOMATOLOGY 2018; 36:26-33. [PMID: 29864027 PMCID: PMC6195944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saliva is one of the most commonly encountered biological fluids found at the crime scene. Forensic science including forensic odontology is focused on the positive identification of individuals. The salivary protein profiling can help in personalization by the changes associated with age throughout life and gender. These changes also seem to vary with the dietary habits, environmental factors and geographical areas. Thus, the aim of present study is to estimate these changes in salivary total protein concentration and profiling in individuals of Gujarat, India. The association of total protein concentration and protein content with the age, gender, tooth eruption, functions of the protein and its physiological significance are also intended for study in this population. One hundred unstimulated whole saliva samples from study subjects of Gujarat population were collected and grouped based on age and gender. Total protein concentration was determined by Bradford assay; also protein was separated and analyzed using Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS PAGE). T Test and ANOVA were used for statistical analysis. The concentration of Total Protein was found to be between 2-4 mg/ml. It showed a positive correlation with age and gender. It can be concluded more protein bands were prominently present in the adolescents group followed by children and lastly in the adults groups.More high (more than 80 kDa) and low (less than 30 kDa) molecular weight proteins are seen in children and adolescents than adults. SDS PAGE allowed identification and comparison of group variabilities in protein profiles. The total salivary protein showed an association between the parameters under this study which will aid in the individual identification in the field of forensics.
Collapse
Affiliation(s)
- Drashti Bhuptani
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University
| | - Satish Kumar
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University
| | - Maarisha Vats
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University
| | - Rahul Sagav
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University
| |
Collapse
|
41
|
Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:94-101. [PMID: 28516971 PMCID: PMC5463528 DOI: 10.14639/0392-100x-1598] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Saliva testing is a non-invasive and inexpensive test that can serve as a source of information useful for diagnosis of disease. As we enter the era of genomic technologies and -omic research, collection of saliva has increased. Recent proteomic platforms have analysed the human salivary proteome and characterised about 3000 differentially expressed proteins and peptides: in saliva, more than 90% of proteins in weight are derived from the secretion of three couples of "major" glands; all the other components are derived from minor glands, gingival crevicular fluid, mucosal exudates and oral microflora. The most common aim of proteomic analysis is to discriminate between physiological and pathological conditions. A proteomic protocol to analyze the whole saliva proteome is not currently available. It is possible distinguish two type of proteomic platforms: top-down proteomics investigates intact naturally-occurring structure of a protein under examination; bottom-up proteomics analyses peptide fragments after pre-digestion (typically with trypsin). Because of this heterogeneity, many different biomarkers may be proposed for the same pathology. The salivary proteome has been characterised in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease Sjögren's syndrome and other autoimmune disorders such as SAPHO, schizophrenia and bipolar disorder, and genetic diseases like Down's Syndrome and Wilson disease. The results of research reported herein suggest that in the near future human saliva will be a relevant diagnostic fluid for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- M Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - E Scarano
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G C Passali
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - I Messana
- Life and Enviromental Sciences Department, University of Cagliari, and Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - T Cabras
- Life and Enviromental Sciences Department, University of Cagliari, Italy
| | - F Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - G Di Cintio
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - A Fiorita
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - E De Corso
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| |
Collapse
|
42
|
Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M, Cabras T. Cryptides: latent peptides everywhere. Crit Rev Biochem Mol Biol 2018; 53:246-263. [PMID: 29564928 DOI: 10.1080/10409238.2018.1447543] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Proteomic surveys with top-down platforms are today revealing thousands of naturally occurring fragments of bigger proteins. Some of them have not functional meaning because they derive from pathways responsible for protein degradation, but many have specific functions, often completely different from that one of the parent proteins. These peptides encrypted in the protein sequence are nowadays called cryptides. They are frequent in the animal and plant kingdoms and represent a new interesting -omic field of investigation. To point out how much widespread is their presence, we describe here the most studied cryptides from very common sources such as serum albumin, immunoglobulins, hemoglobin, and from saliva and milk proteins. Given its vastness, it is unfeasible to cover the topic exhaustively, therefore only several selected examples of cryptides from other sources are thereafter reported. Demanding is the development of new -omic platforms for the functional screening of new cryptides, which could provide suggestion for peptides and peptido-mimetics with variegate fields of application.
Collapse
Affiliation(s)
- Federica Iavarone
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy
| | - Claudia Desiderio
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Alberto Vitali
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Irene Messana
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Claudia Martelli
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy
| | - Massimo Castagnola
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy.,b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Tiziana Cabras
- c Dipartimento di Scienze della Vita e dell'Ambiente , Università di Cagliari , Cagliari , Italy
| |
Collapse
|
43
|
Valente MT, Moffa EB, Crosara KTB, Xiao Y, de Oliveira TM, Machado MADAM, Siqueira WL. Acquired Enamel Pellicle Engineered Peptides: Effects on Hydroxyapatite Crystal Growth. Sci Rep 2018; 8:3766. [PMID: 29491390 PMCID: PMC5830524 DOI: 10.1038/s41598-018-21854-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to test the hypothesis that duplication/hybridization of functional domains of naturally occurring pellicle peptides amplified the inhibitory effect of hydroxyapatite crystal growth, which is related to enamel remineralization and dental calculus formation. Histatin 3, statherin, their functional domains (RR14 and DR9), and engineered peptides (DR9-DR9 and DR9-RR14) were tested at seven different concentrations to evaluate the effect on hydroxyapatite crystal growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite crystal growth. The half-maximal inhibitory concentration (IC50) was determined for each group. ANOVA and Student-Newman-Keuls pairwise comparisons were used to compare the groups. DR9-DR9 increased the inhibitory effect of hydroxyapatite crystal growth compared to single DR9 (p < 0.05), indicating that functional domain multiplication represented a strong protein evolution pathway. Interestingly, the hybrid peptide DR9-RR14 had an intermediate inhibitory effect compared to DR9 and DR9-DR9. This study used an engineered peptide approach to investigate a potential evolution protein pathway related to duplication/hybridization of acquired enamel pellicle's natural peptide constituents, contributing to the development of synthetic peptides for therapeutic use against dental caries and periodontal disease.
Collapse
Affiliation(s)
- Maria Teresa Valente
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | - Eduardo Buozi Moffa
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | - Karla Tonelli Bicalho Crosara
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Yizhi Xiao
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Thais Marchini de Oliveira
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | | | - Walter Luiz Siqueira
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
44
|
Hsiao YC, Chu LJ, Chen YT, Chi LM, Chien KY, Chiang WF, Chang YT, Chen SF, Wang WS, Chuang YN, Lin SY, Chien CY, Chang KP, Chang YS, Yu JS. Variability Assessment of 90 Salivary Proteins in Intraday and Interday Samples from Healthy Donors by Multiple Reaction Monitoring-Mass Spectrometry. Proteomics Clin Appl 2018; 12. [PMID: 29350471 DOI: 10.1002/prca.201700039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/11/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Saliva is an attractive sample source for the biomarker-based testing of several diseases, especially oral cancer. Here, we sought to apply multiplexed LC-MRM-MS to precisely quantify 90 disease-related proteins and assess their intra- and interindividual variability in saliva samples from healthy donors. EXPERIMENTAL DESIGN We developed two multiplexed LC-MRM-MS assays for 122 surrogate peptides representing a set of disease-related proteins. Saliva samples were collected from 10 healthy volunteers at three different time points (Day 1 morning and afternoon, and Day 2 morning). Each sample was spiked with a constant amount of a 15 N-labeled protein and analyzed by MRM-MS in triplicate. Quantitative results from LC-MRM-MS were calculated by single-point quantification with reference to a known amount of internal standard (heavy peptide). RESULTS The CVs for assay reproducibility and technical variation were 13 and 11%, respectively. The average concentrations of the 99 successfully quantified proteins ranged from 0.28 ± 0.58 ng mL-1 for profilin-2 (PFN2) to 8.55 ±8.96 μg mL-1 for calprotectin (S100A8). For the 90 proteins detectable in >50% of samples, the average CVs for intraday, interday, intraindividual, and interindividual samples were 38%, 43%, 45%, and 69%, respectively. The fluctuations of most target proteins in individual subjects were found to be within ± twofold. CONCLUSIONS AND CLINICAL RELEVANCE Our study elucidated the intra- and interindividual variability of 90 disease-related proteins in saliva samples from healthy donors. The findings may facilitate the further development of salivary biomarkers for oral and systemic diseases.
Collapse
Affiliation(s)
- Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lang-Ming Chi
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Fan Chiang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan.,School of Dentistry, National Yang Ming University, Taipei, Taiwan
| | - Ya-Ting Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Fan Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Shun Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Ning Chuang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yu Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Departments of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Departments of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
45
|
Abstract
The mix of bacteria that coat our teeth impact oral health, but it remains unclear what factors govern their composition. In this issue of Cell Host & Microbe, Gomez et al. (2017) examine the relationship between host genetics and the oral microbiome in the context of health and disease.
Collapse
Affiliation(s)
- Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci 2017; 9:e1. [PMID: 29125139 PMCID: PMC5775330 DOI: 10.1038/ijos.2017.35] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease.
Collapse
Affiliation(s)
- Abdullah S Hemadi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Abstract
AbstractBackground: Dental caries disease is a dynamic process with a multi-factorial etiology. It is manifested by demineralization of enamel followed by damage spreading into the tooth inner structure. Successful early diagnosis could identify caries-risk and improve dental screening, providing a baseline for evaluating personalized dental treatment and prevention strategies. Methodology: Salivary proteome of the whole unstimulated saliva (WUS) samples was assessed in caries-free and caries-susceptible individuals of older adolescent age with permanent dentition using a nano-HPLC and MALDI-TOF/TOF mass spectrometry. Results: 554 proteins in the caries-free and 695 proteins in the caries-susceptible group were identified. Assessment using bioinformatics tools and Gene Ontology (GO) term enrichment analysis revealed qualitative differences between these two proteomes. Members of the caries-susceptible group exhibited a branch of cytokine binding gene products responsible for the regulation of immune and inflammatory responses to infections. Inspection of molecular functions and biological processes of caries-susceptible saliva samples revealed significant categories predominantly related to the activity of proteolytic peptidases, and the regulation of metabolic and catabolic processes of carbohydrates. Conclusions: Proteomic analysis of the whole saliva revealed information about potential risk factors associated with the development of caries-susceptibility and provides a better understanding of tooth protection mechanisms.
Collapse
|
48
|
Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, Alitheen NB. RNA sequencing (RNA-Seq) of lymph node, spleen, and thymus transcriptome from wild Peninsular Malaysian cynomolgus macaque ( Macaca fascicularis). PeerJ 2017; 5:e3566. [PMID: 28828235 PMCID: PMC5563440 DOI: 10.7717/peerj.3566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53–63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
Collapse
Affiliation(s)
- Joey Ee Uli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University, Sepang, Selangor, Malaysia
| | - Jeffrine J Rovie-Ryan
- Department of Wildlife and National Parks (DWNP), Ex-Situ Conservation Division, Department of Wildlife and National Parks, Kuala Lumpur, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
49
|
Rukh G, Ericson U, Andersson-Assarsson J, Orho-Melander M, Sonestedt E. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI. Am J Clin Nutr 2017; 106:256-262. [PMID: 28539377 DOI: 10.3945/ajcn.116.149831] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Studies have shown conflicting associations between the salivary amylase gene (AMY1) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet.Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits.Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage.Results:AMY1 copy number was not associated with BMI (P = 0.80) or body fat percentage (P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI (P-interaction = 0.007) and body fat percentage (P-interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group (P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group (P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch.Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch.
Collapse
Affiliation(s)
- Gull Rukh
- Diabetes and Cardiovascular Disease - Genetic Epidemiology and
| | - Ulrika Ericson
- Diabetes and Cardiovascular Disease - Genetic Epidemiology and
| | - Johanna Andersson-Assarsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | | | - Emily Sonestedt
- Diabetes and Cardiovascular Disease - Genetic Epidemiology and .,Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and
| |
Collapse
|
50
|
Basiri T, Johnson N, Moffa E, Mulyar Y, Serra Nunes P, Machado M, Siqueira W. Duplicated or Hybridized Peptide Functional Domains Promote Oral Homeostasis. J Dent Res 2017; 96:1162-1167. [DOI: 10.1177/0022034517708552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- T. Basiri
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - N.D. Johnson
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - E.B. Moffa
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
- CEUMA University, Post-Graduate Program in Dentistry, Maranhão, Brazil
| | - Y. Mulyar
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - P.L. Serra Nunes
- CEUMA University, Post-Graduate Program in Dentistry, Maranhão, Brazil
| | - M.A.A.M. Machado
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | - W.L. Siqueira
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|