1
|
Belliard S, Merck C. Is semantic dementia an outdated entity? Cortex 2024; 180:64-77. [PMID: 39378711 DOI: 10.1016/j.cortex.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Does it still make clinical sense to talk about semantic dementia? For more than 10 years, some researchers and clinicians have highlighted the need for new diagnostic criteria, arguing for this entity either to be redefined or, more recently, to be divided into two partially distinct entities, each with its own supposed characteristics, namely the semantic variant primary progressive aphasia and the semantic behavioral variant frontotemporal dementia. Why such a shift? Is it no longer appropriate to talk about semantic dementia? Is it really useful to divide the concept of semantic dementia into verbal and socioemotional semantic subcomponents? Does this proposal have any clinical merit or does it solely reflect theoretical considerations? To shed light on these questions, the purpose of the present review was to explore theoretical considerations on the nature of the knowledge that is disturbed in this disease which might justify such terminological changes.
Collapse
Affiliation(s)
- Serge Belliard
- Service de neurologie, CMRR Haute Bretagne, CHU Pontchaillou, 35000 Rennes, France; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.
| | - Catherine Merck
- Service de neurologie, CMRR Haute Bretagne, CHU Pontchaillou, 35000 Rennes, France; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| |
Collapse
|
2
|
Mihailescu S, Hlava Q, Cook PA, Mandelli ML, Lee SE, Boeve BF, Dickerson BC, Gorno-Tempini ML, Rogalski E, Grossman M, Gee J, McMillan CT, Olm CA. Boundary-based registration improves sensitivity for detecting hypoperfusion in sporadic frontotemporal lobar degeneration. Front Neurol 2024; 15:1452944. [PMID: 39233675 PMCID: PMC11371585 DOI: 10.3389/fneur.2024.1452944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.
Collapse
Affiliation(s)
- Sylvia Mihailescu
- School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Quinn Hlava
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Care Center, University of Chicago, Chicago, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Olm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Kleinerova J, McKenna MC, Finnegan M, Tacheva A, Garcia-Gallardo A, Mohammed R, Tan EL, Christidi F, Hardiman O, Hutchinson S, Bede P. Clinical, Cortical, Subcortical, and White Matter Features of Right Temporal Variant FTD. Brain Sci 2024; 14:806. [PMID: 39199498 PMCID: PMC11352857 DOI: 10.3390/brainsci14080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The distinct clinical and radiological characteristics of right temporal variant FTD have only been recently recognized. METHODS Eight patients with right temporal variant FTD were prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI, and quantitative neuroimaging. RESULTS Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement was also observed, as well as disease burden in the right insular and opercula regions. White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical segmentation. The clinical profile of our patients was dominated by progressive indifference, decline in motivation, loss of interest in previously cherished activities, incremental social withdrawal, difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive behaviours. CONCLUSIONS Right temporal variant FTD has an insidious onset and may be mistaken for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal imaging signature with extra-temporal frontal and parietal involvement.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Martha Finnegan
- Department of Psychiatry, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Rayan Mohammed
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
4
|
Ulugut H, Bertoux M, Younes K, Montembeault M, Fumagalli GG, Samanci B, Illán‐Gala I, Kuchcinski G, Leroy M, Thompson JC, Kobylecki C, Santillo AF, Englund E, Waldö ML, Riedl L, Van den Stock J, Vandenbulcke M, Vandenberghe R, Laforce Jr R, Ducharme S, Pressman PS, Caramelli P, de Souza LC, Takada LT, Gurvit H, Hansson O, Diehl‐Schmid J, Galimberti D, Pasquier F, Miller BL, Scheltens P, Ossenkoppele R, van der Flier WM, Barkhof F, Fox NC, Sturm VE, Miyagawa T, Whitwell JL, Boeve B, Rohrer JD, Gorno‐Tempini ML, Josephs KA, Snowden J, Warren JD, Rankin KP, Pijnenburg YAL. Clinical recognition of frontotemporal dementia with right anterior temporal predominance: A multicenter retrospective cohort study. Alzheimers Dement 2024; 20:5647-5661. [PMID: 38982845 PMCID: PMC11350044 DOI: 10.1002/alz.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 05/26/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Although frontotemporal dementia (FTD) with right anterior temporal lobe (RATL) predominance has been recognized, a uniform description of the syndrome is still missing. This multicenter study aims to establish a cohesive clinical phenotype. METHODS Retrospective clinical data from 18 centers across 12 countries yielded 360 FTD patients with predominant RATL atrophy through initial neuroimaging assessments. RESULTS Common symptoms included mental rigidity/preoccupations (78%), disinhibition/socially inappropriate behavior (74%), naming/word-finding difficulties (70%), memory deficits (67%), apathy (65%), loss of empathy (65%), and face-recognition deficits (60%). Real-life examples unveiled impairments regarding landmarks, smells, sounds, tastes, and bodily sensations (74%). Cognitive test scores indicated deficits in emotion, people, social interactions, and visual semantics however, lacked objective assessments for mental rigidity and preoccupations. DISCUSSION This study cumulates the largest RATL cohort unveiling unique RATL symptoms subdued in prior diagnostic guidelines. Our novel approach, combining real-life examples with cognitive tests, offers clinicians a comprehensive toolkit for managing these patients. HIGHLIGHTS This project is the first international collaboration and largest reported cohort. Further efforts are warranted for precise nomenclature reflecting neural mechanisms. Our results will serve as a clinical guideline for early and accurate diagnoses.
Collapse
Affiliation(s)
- Hulya Ulugut
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Maxime Bertoux
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Kyan Younes
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Stanford Neuroscience Health CenterDepartment of NeurologyStanford UniversityPalo AltoCaliforniaUSA
| | - Maxime Montembeault
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PsychiatryDouglas Mental Health University InstituteMcGill University Health CentreMcGill UniversityMontrealQuebecCanada
| | - Giorgio G. Fumagalli
- Department of NeurologyUniversity of MilanMilanItaly
- Università degli Studi di Trento | UNITN·CIMEC ‐ Center for Mind/Brain SciencesMattarelloTrentinoItaly
| | - Bedia Samanci
- Department of NeurologyIstanbul UniversityFatihIstanbulTurkey
| | - Ignacio Illán‐Gala
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Gregory Kuchcinski
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Melanie Leroy
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Jennifer C. Thompson
- Cerebral Function Unit, Greater Manchester Neuroscience CentreSalford Royal NHS Foundation TrustSalfordUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthUniversity of ManchesterSalfordManchesterUK
| | - Christopher Kobylecki
- Department of NeurologyManchester Centre for Clinical Neurosciences NHS Foundation TrustSalfordUK
- Division of NeuroscienceUniversity of ManchesterSalfordManchesterUK
| | - Alexander F Santillo
- Clinical Memory Research UnitDepartment of Clinical SciencesFaculty of MedicineLund UniversityLundSweden
| | - Elisabet Englund
- Division of PathologyDepartment of Clinical SciencesLund UniversityLundSweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences HelsingborgDepartment of Clinical Sciences LundLund UniversityLundSweden
| | - Lina Riedl
- School of MedicineDepartment of Psychiatry and PsychotherapyTechnical University of MunichMunichGermany
| | - Jan Van den Stock
- Neuropsychiatry, Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | | | - Robert Laforce Jr
- Clinique Interdisciplinaire de Mémoire (CIME)Département des Sciences NeurologiquesLaval UniversityQuebec CityCanada
| | - Simon Ducharme
- Department of PsychiatryDouglas Mental Health University InstituteMcGill University Health CentreMcGill UniversityMontrealQuebecCanada
| | - Peter S. Pressman
- Anschutz Medical CampusBehavioral Neurology SectionDepartment of NeurologyUniversity of ColoradoAuroraColoradoUSA
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology UnitDepartment of Internal MedicineFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Leonardo Cruz de Souza
- Behavioral and Cognitive Neurology UnitDepartment of Internal MedicineFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Leonel T. Takada
- Cognitive and Behavioral UnitHospital das ClinicasDepartment of NeurologyUniversity of São Paulo Medical SchoolPacaembuSão PauloBrazil
| | - Hakan Gurvit
- Department of NeurologyIstanbul UniversityFatihIstanbulTurkey
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesFaculty of MedicineLund UniversityLundSweden
| | - Janine Diehl‐Schmid
- School of MedicineDepartment of Psychiatry and PsychotherapyTechnical University of MunichMunichGermany
- Kbo‐Inn‐Salzach‐KlinikumClinical Center for PsychiatryPsychotherapy, Psychosomatic Medicine, Geriatrics and NeurologyWasserburg/InnGermany
| | - Daniela Galimberti
- Department of BiomedicalSurgical and Dental SciencesUniversity of MilanMilanItaly
- Fondazione IRCCS Ca’ GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Florence Pasquier
- Lille Neuroscience & Cognition U1172, Univ. Lille, Inserm, CHU Lille, LiCEND & Labex DistALZLilleFrance
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Philip Scheltens
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
- Alzheimer Center AmsterdamDepartment of RadiologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | - Frederik Barkhof
- Alzheimer Center AmsterdamDepartment of RadiologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
- UCL Institutes of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Nick C. Fox
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Virginia E. Sturm
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Toji Miyagawa
- Department of NeurologyMayo Clinic, RochesterRochesterMinnesotaUSA
| | | | - Bradley Boeve
- Department of NeurologyMayo Clinic, RochesterRochesterMinnesotaUSA
| | | | - Maria Luisa Gorno‐Tempini
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Dyslexia CenterUniversity of California San FranciscoUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Keith A. Josephs
- Department of NeurologyMayo Clinic, RochesterRochesterMinnesotaUSA
| | - Julie Snowden
- Cerebral Function Unit, Greater Manchester Neuroscience CentreSalford Royal NHS Foundation TrustSalfordUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthUniversity of ManchesterSalfordManchesterUK
| | - Jason D. Warren
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Katherine P. Rankin
- Memory and Aging CenterDepartment of NeurologyUCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yolande A. L. Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCDe BoelelaanAmsterdamThe Netherlands
| | | |
Collapse
|
5
|
Holiday KA, Sheppard A, Khattab YI, Chavez D, Melrose RJ, Mendez MF. Socioemotional Dysfunction From Temporal Lobe Involvement in Frontotemporal Dementia: A Preliminary Report. J Neuropsychiatry Clin Neurosci 2024; 36:344-349. [PMID: 38988189 DOI: 10.1176/appi.neuropsych.20230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Socioemotional changes, rather than cognitive impairments, are the feature that defines behavioral variant frontotemporal dementia (bvFTD). Investigators have attributed the socioemotional changes in bvFTD and other dementias to frontal lobe dysfunction; however, recent work implies a further contribution from right anterior temporal disease. The authors evaluated relationships between regional brain atrophy and socioemotional changes in both bvFTD and early-onset Alzheimer's disease (EOAD). METHODS This study explored the neuroanatomical correlations of performance on the Socioemotional Dysfunction Scale (SDS), an instrument previously shown to document socioemotional changes in bvFTD, among 13 patients with bvFTD not preselected for anterior temporal involvement and 16 age-matched patients with early-onset Alzheimer's disease (EOAD). SDS scores were correlated with volumes of regions of interest assessed with tensor-based morphometric analysis of MRI images. RESULTS As expected, the bvFTD group had significantly higher SDS scores overall and smaller frontal regions compared with the EOAD group, which in turn had smaller volumes in temporoparietal regions. SDS scores significantly correlated with lateral anterior temporal lobe (ATL) atrophy, and a regression analysis that controlled for diagnosis indicated that SDS scores predicted lateral ATL volume. Within the bvFTD group, higher SDS scores were associated with smaller lateral and right ATL regions, as well as a smaller orbitofrontal cortex. Within the EOAD group, higher SDS scores were associated with a smaller right parietal cortex. CONCLUSIONS This study confirms that, in addition to orbitofrontal disease, there is a prominent right and lateral ATL origin of socioemotional changes in bvFTD and further suggests that right parietal involvement contributes to socioemotional changes in EOAD.
Collapse
Affiliation(s)
- Kelsey A Holiday
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Alexander Sheppard
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Youssef I Khattab
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Diana Chavez
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Rebecca J Melrose
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Mario F Mendez
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| |
Collapse
|
6
|
Ghirelli A, Spinelli EG, Canu E, Basaia S, Castelnovo V, Cecchetti G, Sibilla E, Domi T, Magnani G, Caso F, Caroppo P, Prioni S, Villa C, Rossi G, Tremolizzo L, Appollonio I, Verde F, Ticozzi N, Silani V, Filippi M, Agosta F. Clinical and neuroanatomical characterization of the semantic behavioral variant of frontotemporal dementia in a multicenter Italian cohort. J Neurol 2024; 271:4203-4215. [PMID: 38597943 PMCID: PMC11233398 DOI: 10.1007/s00415-024-12338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Semantic behavioral variant frontotemporal dementia (sbvFTD) is a neurodegenerative condition presenting with specific behavioral and semantic derangements and predominant atrophy of the right anterior temporal lobe (ATL). The objective was to evaluate clinical, neuropsychological, neuroimaging, and genetic features of an Italian sbvFTD cohort, defined according to recently proposed guidelines, compared to semantic variant primary progressive aphasia (svPPA) and behavioral variant FTD (bvFTD) patients. METHODS Fifteen sbvFTD, sixty-three bvFTD, and twenty-five svPPA patients and forty controls were enrolled. Patients underwent clinical, cognitive evaluations, and brain MRI. Symptoms of bvFTD patients between onset and first visit were retrospectively recorded and classified as early and late. Grey matter atrophy was investigated using voxel-based morphometry. RESULTS sbvFTD experienced early criteria-specific symptoms: world, object and person-specific semantic loss (67%), complex compulsions and rigid thought (60%). Sequentially, more behavioral symptoms emerged (apathy/inertia, loss of empathy) along with non-criteria-specific symptoms (anxiety, suspiciousness). sbvFTD showed sparing of attentive/executive functions, especially compared to bvFTD and better language functions compared to svPPA. All sbvFTD patients failed at the famous face recognition test and more than 80% failed in understanding written metaphors and humor. At MRI, sbvFTD had predominant right ATL atrophy, almost specular to svPPA. Three sbvFTD patients presented pathogenic genetic variants. CONCLUSION We replicated the application of sbvFTD diagnostic guidelines in an independent Italian cohort, demonstrating that the presence of person-specific semantic knowledge loss and mental rigidity, along with preserved executive functions and a predominant right ATL atrophy with sparing of frontal lobes, should prompt a diagnosis of sbvFTD.
Collapse
Affiliation(s)
- Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giordano Cecchetti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Sibilla
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Caroppo
- Unit of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Prioni
- Unit of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Villa
- Unit of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomina Rossi
- Unit of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Unit, "San Gerardo" Hospital and University of Milano-Bicocca, Monza, Italy
| | - Ildebrando Appollonio
- Neurology Unit, "San Gerardo" Hospital and University of Milano-Bicocca, Monza, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Buccellato FR, D'Anca M, Tartaglia GM, Del Fabbro M, Galimberti D. Frontotemporal dementia: from genetics to therapeutic approaches. Expert Opin Investig Drugs 2024; 33:561-573. [PMID: 38687620 DOI: 10.1080/13543784.2024.2349286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.
Collapse
Affiliation(s)
- Francesca R Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marianna D'Anca
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Hurley RS, Lapin B, Jones SE, Crawford A, Leverenz JB, Bonner-Jackson A, Pillai JA. Hemispheric asymmetries in hippocampal volume related to memory in left and right temporal variants of frontotemporal degeneration. Front Neurol 2024; 15:1374827. [PMID: 38742046 PMCID: PMC11089209 DOI: 10.3389/fneur.2024.1374827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
In addition to Alzheimer's disease (AD), the hippocampus is now known to be affected in variants of frontotemporal degeneration (FTD). In semantic variant primary progressive aphasia (svPPA), characterized by language impairments, hippocampal atrophy is greater in the left hemisphere. Nonverbal impairments (e.g., visual object recognition) are prominent in the right temporal variant of FTD (rtvFTD), and hippocampal atrophy may be greater in the right hemisphere. In this study we examined the hypothesis that leftward hippocampal asymmetry (predicted in svPPA) would be associated with selective verbal memory impairments (with relative preservation of visual memory), while rightward asymmetry (predicted in rtvFTD) would be associated with the opposite pattern (greater visual memory impairment). In contrast, we predicted that controls and individuals in the amnestic mild cognitive impairment stage of AD (aMCI), both of whom were expected to show symmetrical hippocampal volumes, would show roughly equivalent scores in verbal and visual memory. Participants completed delayed recall tests with words and geometric shapes, and hippocampal volumes were assessed with MRI. The aMCI sample showed symmetrical hippocampal atrophy, and similar degree of verbal and visual memory impairment. The svPPA sample showed greater left hippocampal atrophy and verbal memory impairment, while rtvFTD showed greater right hippocampal atrophy and visual memory impairment. Greater asymmetry in hippocampal volumes was associated with larger differences between verbal and visual memory in the FTD samples. Unlike AD, asymmetry is a core feature of brain-memory relationships in temporal variants of FTD.
Collapse
Affiliation(s)
- Robert S. Hurley
- Department of Psychology, Cleveland State University, Cleveland, OH, United States
| | - Brittany Lapin
- Department of Quantitative Health Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, United States
- Center for Outcomes Research and Evaluation, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| | - Stephen E. Jones
- Department of Diagnostic Radiology, Imaging Institute Cleveland Clinic, Cleveland, OH, United States
| | - Anna Crawford
- Department of Diagnostic Radiology, Imaging Institute Cleveland Clinic, Cleveland, OH, United States
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| | - Aaron Bonner-Jackson
- Lou Ruvo Center for Brain Health, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| | - Jagan A. Pillai
- Lou Ruvo Center for Brain Health, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
9
|
Carlos AF, Weigand SD, Duffy JR, Clark HM, Utianski RL, Machulda MM, Botha H, Thu Pham NT, Lowe VJ, Schwarz CG, Whitwell JL, Josephs KA. Volumetric analysis of hippocampal subregions and subfields in left and right semantic dementia. Brain Commun 2024; 6:fcae097. [PMID: 38572268 PMCID: PMC10988847 DOI: 10.1093/braincomms/fcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
10
|
Kawles A, Keszycki R, Minogue G, Zouridakis A, Ayala I, Gill N, Macomber A, Lubbat V, Coventry C, Rogalski E, Weintraub S, Mao Q, Flanagan ME, Zhang H, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Phenotypically concordant distribution of pick bodies in aphasic versus behavioral dementias. Acta Neuropathol Commun 2024; 12:31. [PMID: 38389095 PMCID: PMC10885488 DOI: 10.1186/s40478-024-01738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alyssa Macomber
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vivienne Lubbat
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Rogalski
- Department of Neurology, University of Chicago School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Corriveau-Lecavalier N, Barnard LR, Przybelski SA, Gogineni V, Botha H, Graff-Radford J, Ramanan VK, Forsberg LK, Fields JA, Machulda MM, Rademakers R, Gavrilova RH, Lapid MI, Boeve BF, Knopman DS, Lowe VJ, Petersen RC, Jack CR, Kantarci K, Jones DT. Assessing network degeneration and phenotypic heterogeneity in genetic frontotemporal lobar degeneration by decoding FDG-PET. Neuroimage Clin 2023; 41:103559. [PMID: 38147792 PMCID: PMC10944211 DOI: 10.1016/j.nicl.2023.103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Genetic mutations causative of frontotemporal lobar degeneration (FTLD) are highly predictive of a specific proteinopathy, but there exists substantial inter-individual variability in their patterns of network degeneration and clinical manifestations. We collected clinical and 18Fluorodeoxyglucose-positron emission tomography (FDG-PET) data from 39 patients with genetic FTLD, including 11 carrying the C9orf72 hexanucleotide expansion, 16 carrying a MAPT mutation and 12 carrying a GRN mutation. We performed a spectral covariance decomposition analysis between FDG-PET images to yield unbiased latent patterns reflective of whole brain patterns of metabolism ("eigenbrains" or EBs). We then conducted linear discriminant analyses (LDAs) to perform EB-based predictions of genetic mutation and predominant clinical phenotype (i.e., behavior/personality, language, asymptomatic). Five EBs were significant and explained 58.52 % of the covariance between FDG-PET images. EBs indicative of hypometabolism in left frontotemporal and temporo-parietal areas distinguished GRN mutation carriers from other genetic mutations and were associated with predominant language phenotypes. EBs indicative of hypometabolism in prefrontal and temporopolar areas with a right hemispheric predominance were mostly associated with predominant behavioral phenotypes and distinguished MAPT mutation carriers from other genetic mutations. The LDAs yielded accuracies of 79.5 % and 76.9 % in predicting genetic status and predominant clinical phenotype, respectively. A small number of EBs explained a high proportion of covariance in patterns of network degeneration across FTLD-related genetic mutations. These EBs contained biological information relevant to the variability in the pathophysiological and clinical aspects of genetic FTLD, and for offering valuable guidance in complex clinical decision-making, such as decisions related to genetic testing.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic Rochester, USA; Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | | | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic Rochester, USA
| | | | | | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, USA; VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Belgium
| | | | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic Rochester, USA
| | | | | | | | - David T Jones
- Department of Neurology, Mayo Clinic Rochester, USA; Department of Radiology, Mayo Clinic Rochester, USA.
| |
Collapse
|
12
|
Liu MN, Hu LY, Tsai CF, Hong CJ, Chou YH, Chang CC, Yang KC, You ZH, Lau CI. Abnormalities of Hippocampal Subfield and Amygdalar Nuclei Volumes and Clinical Correlates in Behavioral Variant Frontotemporal Dementia with Obsessive-Compulsive Behavior-A Pilot Study. Brain Sci 2023; 13:1582. [PMID: 38002542 PMCID: PMC10669726 DOI: 10.3390/brainsci13111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: The hippocampus (HP) and amygdala are essential structures in obsessive-compulsive behavior (OCB); however, the specific role of the HP in patients with behavioral variant frontotemporal dementia (bvFTD) and OCB remains unclear. (2) Objective: We investigated the alterations of hippocampal and amygdalar volumes in patients with bvFTD and OCB and assessed the correlations of clinical severity with hippocampal subfield and amygdalar nuclei volumes in bvFTD patients with OCB. (3) Materials and methods: Eight bvFTD patients with OCB were recruited and compared with eight age- and sex-matched healthy controls (HCs). Hippocampal subfield and amygdalar nuclei volumes were analyzed automatically using a 3T magnetic resonance image and FreeSurfer v7.1.1. All participants completed the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Neuropsychiatric Inventory (NPI), and Frontal Behavioral Inventory (FBI). (4) Results: We observed remarkable reductions in bilateral total hippocampal volumes. Compared with the HCs, reductions in the left hippocampal subfield volume over the cornu ammonis (CA)1 body, CA2/3 body, CA4 body, granule cell layer, and molecular layer of the dentate gyrus (GC-ML-DG) body, molecular layer of the HP body, and hippocampal tail were more obvious in patients with bvFTD and OCB. Right subfield volumes over the CA1 body and molecular layer of the HP body were more significantly reduced in bvFTD patients with OCB than in those in HCs. We observed no significant difference in amygdalar nuclei volume between the groups. Among patients with bvFTD and OCB, Y-BOCS score was negatively correlated with left CA2/3 body volume (τb = -0.729, p < 0.001); total NPI score was negatively correlated with left GC-ML-DG body (τb = -0.648, p = 0.001) and total bilateral hippocampal volumes (left, τb = -0.629, p = 0.002; right, τb = -0.455, p = 0.023); and FBI score was negatively correlated with the left molecular layer of the HP body (τb = -0.668, p = 0.001), CA4 body (τb = -0.610, p = 0.002), and hippocampal tail volumes (τb = -0.552, p < 0.006). Mediation analysis confirmed these subfield volumes as direct biomarkers for clinical severity, independent of medial and lateral orbitofrontal volumes. (5) Conclusions: Alterations in hippocampal subfield volumes appear to be crucial in the pathophysiology of OCB development in patients with bvFTD.
Collapse
Grants
- 102-2314-B-075 -082, 105-2314-B-075 -024 -MY2, 104-2314-B-075 -039, 111-2314-B-075 -015 Ministry of Science and Technology, Taiwan
- V108B-009, V112B-039, V110B-028, V111B-033 Taipei Veterans General Hospital, Taiwan
- RVHCY111024 Chiayi branch of Taichung Veterans General Hospital, Taiwan
- 2021SKHADR016 Shin Kong Wu Ho-Su Memorial Hospital, Taiwan
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-N.L.); (C.-J.H.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-N.L.); (C.-J.H.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-N.L.); (C.-J.H.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-N.L.); (C.-J.H.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-N.L.); (C.-J.H.)
- Center for Quality Management, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-N.L.); (C.-J.H.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Zi-Hong You
- Department of Nephrology, Chiayi Branch, Taichung Veterans General Hospital, Chiayi 60090, Taiwan
| | - Chi Ieong Lau
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, No.95, Wenchang Rd., Shilin Dist., Taipei 11101, Taiwan
- Department of Neurology, University Hospital, Taipai, Macao SAR, China
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, 17 Queen Square, University College London, London WC1N 3AZ, UK
| |
Collapse
|
13
|
Eldaief MC, Brickhouse M, Katsumi Y, Rosen H, Carvalho N, Touroutoglou A, Dickerson BC. Atrophy in behavioural variant frontotemporal dementia spans multiple large-scale prefrontal and temporal networks. Brain 2023; 146:4476-4485. [PMID: 37201288 PMCID: PMC10629759 DOI: 10.1093/brain/awad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023] Open
Abstract
The identification of a neurodegenerative disorder's distributed pattern of atrophy-or atrophy 'signature'-can lend insights into the cortical networks that degenerate in individuals with specific constellations of symptoms. In addition, this signature can be used as a biomarker to support early diagnoses and to potentially reveal pathological changes associated with said disorder. Here, we characterized the cortical atrophy signature of behavioural variant frontotemporal dementia (bvFTD). We used a data-driven approach to estimate cortical thickness using surface-based analyses in two independent, sporadic bvFTD samples (n = 30 and n = 71, total n = 101), using age- and gender-matched cognitively and behaviourally normal individuals. We found highly similar patterns of cortical atrophy across the two independent samples, supporting the reliability of our bvFTD signature. Next, we investigated whether our bvFTD signature targets specific large-scale cortical networks, as is the case for other neurodegenerative disorders. We specifically asked whether the bvFTD signature topographically overlaps with the salience network, as previous reports have suggested. We hypothesized that because phenotypic presentations of bvFTD are diverse, this would not be the case, and that the signature would cross canonical network boundaries. Consistent with our hypothesis, the bvFTD signature spanned rostral portions of multiple networks, including the default mode, limbic, frontoparietal control and salience networks. We then tested whether the signature comprised multiple anatomical subtypes, which themselves overlapped with specific networks. To explore this, we performed a hierarchical clustering analysis. This yielded three clusters, only one of which extensively overlapped with a canonical network (the limbic network). Taken together, these findings argue against the hypothesis that the salience network is preferentially affected in bvFTD, but rather suggest that-at least in patients who meet diagnostic criteria for the full-blown syndrome-neurodegeneration in bvFTD encompasses a distributed set of prefrontal, insular and anterior temporal nodes of multiple large-scale brain networks, in keeping with the phenotypic diversity of this disorder.
Collapse
Affiliation(s)
- Mark C Eldaief
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yuta Katsumi
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Howard Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicole Carvalho
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Ohm DT, Rhodes E, Bahena A, Capp N, Lowe M, Sabatini P, Trotman W, Olm CA, Phillips J, Prabhakaran K, Rascovsky K, Massimo L, McMillan C, Gee J, Tisdall MD, Yushkevich PA, Lee EB, Grossman M, Irwin DJ. Neuroanatomical and cellular degeneration associated with a social disorder characterized by new ritualistic belief systems in a TDP-C patient vs. a Pick patient. Front Neurol 2023; 14:1245886. [PMID: 37900607 PMCID: PMC10600461 DOI: 10.3389/fneur.2023.1245886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 10/31/2023] Open
Abstract
Frontotemporal dementia (FTD) is a spectrum of clinically and pathologically heterogenous neurodegenerative dementias. Clinical and anatomical variants of FTD have been described and associated with underlying frontotemporal lobar degeneration (FTLD) pathology, including tauopathies (FTLD-tau) or TDP-43 proteinopathies (FTLD-TDP). FTD patients with predominant degeneration of anterior temporal cortices often develop a language disorder of semantic knowledge loss and/or a social disorder often characterized by compulsive rituals and belief systems corresponding to predominant left or right hemisphere involvement, respectively. The neural substrates of these complex social disorders remain unclear. Here, we present a comparative imaging and postmortem study of two patients, one with FTLD-TDP (subtype C) and one with FTLD-tau (subtype Pick disease), who both developed new rigid belief systems. The FTLD-TDP patient developed a complex set of values centered on positivity and associated with specific physical and behavioral features of pigs, while the FTLD-tau patient developed compulsive, goal-directed behaviors related to general themes of positivity and spirituality. Neuroimaging showed left-predominant temporal atrophy in the FTLD-TDP patient and right-predominant frontotemporal atrophy in the FTLD-tau patient. Consistent with antemortem cortical atrophy, histopathologic examinations revealed severe loss of neurons and myelin predominantly in the anterior temporal lobes of both patients, but the FTLD-tau patient showed more bilateral, dorsolateral involvement featuring greater pathology and loss of projection neurons and deep white matter. These findings highlight that the regions within and connected to anterior temporal lobes may have differential vulnerability to distinct FTLD proteinopathies and serve important roles in human belief systems.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emma Rhodes
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Alejandra Bahena
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Noah Capp
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - MaKayla Lowe
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip Sabatini
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Winifred Trotman
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Olm
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Karthik Prabhakaran
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - M. Dylan Tisdall
- Center for Advanced Magnetic Resonance Imaging and Spectroscopy, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul A. Yushkevich
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - David J. Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Abu Raya M, Ogunyemi AO, Broder J, Carstensen VR, Illanes-Manrique M, Rankin KP. The neurobiology of openness as a personality trait. Front Neurol 2023; 14:1235345. [PMID: 37645602 PMCID: PMC10461810 DOI: 10.3389/fneur.2023.1235345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Openness is a multifaceted behavioral disposition that encompasses personal, interpersonal, and cultural dimensions. It has been suggested that the interindividual variability in openness as a personality trait is influenced by various environmental and genetic factors, as well as differences in brain functional and structural connectivity patterns along with their various associated cognitive processes. Alterations in degree of openness have been linked to several aspects of health and disease, being impacted by both physical and mental health, substance use, and neurologic conditions. This review aims to explore the current state of knowledge describing the neurobiological basis of openness and how individual differences in openness can manifest in brain health and disease.
Collapse
Affiliation(s)
- Maison Abu Raya
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, United States
| | - Adedoyin O. Ogunyemi
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Community Health and Primary Care, University of Lagos, Lagos, Nigeria
| | - Jake Broder
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Veronica Rojas Carstensen
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Maryenela Illanes-Manrique
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Katherine P. Rankin
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, United States
| |
Collapse
|
16
|
Mori K, Shigenobu K, Beck G, Uozumi R, Satake Y, Suzuki M, Kondo S, Gotoh S, Yonenobu Y, Kawai M, Suzuki Y, Saito Y, Morii E, Hasegawa M, Mochizuki H, Murayama S, Ikeda M. A heterozygous splicing variant IVS9-7A > T in intron 9 of the MAPT gene in a patient with right-temporal variant frontotemporal dementia with atypical 4 repeat tauopathy. Acta Neuropathol Commun 2023; 11:130. [PMID: 37563653 PMCID: PMC10413539 DOI: 10.1186/s40478-023-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Right temporal variant frontotemporal dementia, also called right-predominant semantic dementia, often has an unclear position within the framework of the updated diagnostic criteria for behavioral variant frontotemporal dementia or primary progressive aphasia. Recent studies have suggested that this population may be clinically, neuropathologically, and genetically distinct from those with behavioral variant frontotemporal dementia or left-predominant typical semantic variant primary progressive aphasia. Here we describe a Japanese case of right temporal variant frontotemporal dementia with novel heterozygous MAPT mutation Adenine to Thymidine in intervening sequence (IVS) 9 at position -7 from 3' splicing site of intron 9/exon 10 boundary (MAPT IVS9-7A > T). Postmortem neuropathological analysis revealed a predominant accumulation of 4 repeat tau, especially in the temporal lobe, amygdala, and substantia nigra, but lacked astrocytic plaques or tufted astrocytes. Immunoelectron microscopy of the tau filaments extracted from the brain revealed a ribbon-like structure. Moreover, a cellular MAPT splicing assay confirmed that this novel variant promoted the inclusion of exon 10, resulting in the predominant production of 4 repeat tau. These data strongly suggest that the MAPT IVS9-7 A > T variant found in our case is a novel mutation that stimulates the inclusion of exon 10 through alternative splicing of MAPT transcript and causes predominant 4 repeat tauopathy which clinically presents as right temporal variant frontotemporal dementia.
Collapse
Affiliation(s)
- Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan.
| | - Kazue Shigenobu
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan
- Department of Psychiatry, Asakayama General Hospital, Sakai, Japan
- Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Goichi Beck
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan
| | - Yuto Satake
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan
| | - Maki Suzuki
- Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Shizuko Kondo
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan
| | - Shiho Gotoh
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan
| | - Yuki Yonenobu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makiko Kawai
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuki Suzuki
- Department of Psychiatry, Kansai Rosai Hospital, Amagasaki, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Neuropathology), Tokyo Metropolitan Institute of Geriatrics and Gerontology, Tokyo, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
- Brain Bank for Aging Research (Neuropathology), Tokyo Metropolitan Institute of Geriatrics and Gerontology, Tokyo, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, Japan.
| |
Collapse
|
17
|
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, Di Lorenzo F, Koch G. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int J Mol Sci 2023; 24:11732. [PMID: 37511491 PMCID: PMC10380352 DOI: 10.3390/ijms241411732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease of growing interest, since it accounts for up to 10% of middle-age-onset dementias and entails a social, economic, and emotional burden for the patients and caregivers. It is characterised by a (at least initially) selective degeneration of the frontal and/or temporal lobe, generally leading to behavioural alterations, speech disorders, and psychiatric symptoms. Despite the recent advances, given its extreme heterogeneity, an overview that can bring together all the data currently available is still lacking. Here, we aim to provide a state of the art on the pathogenesis of this disease, starting with established findings and integrating them with more recent ones. In particular, advances in the genetics field will be examined, assessing them in relation to both the clinical manifestations and histopathological findings, as well as considering the link with other diseases, such as amyotrophic lateral sclerosis (ALS). Furthermore, the current diagnostic criteria will be explored, including neuroimaging methods, nuclear medicine investigations, and biomarkers on biological fluids. Of note, the promising information provided by neurophysiological investigations, i.e., electroencephalography and non-invasive brain stimulation techniques, concerning the alterations in brain networks and neurotransmitter systems will be reviewed. Finally, current and experimental therapies will be considered.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonia Pia Pace
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Martina Assogna
- Centro Demenze, Policlinico Tor Vergata, University of Rome 'Tor Vergata', 00133 Rome, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Daniela Gragnaniello
- Nuerology Unit, Neurosciences and Rehabilitation Department, Ferrara University Hospital, 44124 Ferrara, Italy
| | - Enrico Granieri
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section of Human Physiology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Mesulam MM, Gefen T, Flanagan M, Castellani R, Jamshidi P, Barbieri E, Sridhar J, Kawles A, Weintraub S, Geula C, Rogalski E. Frontotemporal Degeneration with Transactive Response DNA-Binding Protein Type C at the Anterior Temporal Lobe. Ann Neurol 2023; 94:1-12. [PMID: 37183762 PMCID: PMC10330481 DOI: 10.1002/ana.26677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
The anatomical distribution of most neurodegenerative diseases shows considerable interindividual variations. In contrast, frontotemporal lobar degeneration with transactive response DNA-binding protein type C (TDP-C) shows a consistent predilection for the anterior temporal lobe (ATL). The relatively selective atrophy of ATL in TDP-C patients has highlighted the importance of this region for complex cognitive and behavioral functions. This review includes observations on 28 TDP-C patients, 18 with semantic primary progressive aphasia and 10 with other syndromes. Longitudinal imaging allowed the delineation of progression trajectories. At post-mortem examination, the pathognomonic feature of TDP-C consisted of long, thick neurites found predominantly in superficial cortical layers. These neurites may represent dystrophic apical dendrites of layer III and V pyramidal neurons that are known to play pivotal roles in complex cortical computations. Other types of frontotemporal lobar degeneration TDP, such as TDP-A and TDP-B, are not associated with long dystrophic neurites in the cerebral cortex, and do not show similar predilection patterns for ATL. Research is beginning to identify molecular, structural, and immunological differences between pathological TDP-43 in TDP-C versus TDP-A and B. Parallel investigations based on proteomics, somatic mutations, and genome-wide association studies are detecting molecular features that could conceivably mediate the selective vulnerability of ATL to TDP-C. Future work will focus on characterizing the distinctive features of the abnormal TDP-C neurites, the mechanisms of neurotoxicity, initial cellular targets within the ATL, trajectory of spread, and the nature of ATL-specific markers that modulate vulnerability to TDP-C. ANN NEUROL 2023;94:1-12.
Collapse
Affiliation(s)
- Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Margaret Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pouya Jamshidi
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Carlos AF, Josephs KA. The Role of Clinical Assessment in the Era of Biomarkers. Neurotherapeutics 2023; 20:1001-1018. [PMID: 37594658 PMCID: PMC10457273 DOI: 10.1007/s13311-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Hippocratic Medicine revolved around the three main principles of patient, disease, and physician and promoted the systematic observation of patients, rational reasoning, and interpretation of collected information. Although these remain the cardinal features of clinical assessment today, Medicine has evolved from a more physician-centered to a more patient-centered approach. Clinical assessment allows physicians to encounter, observe, evaluate, and connect with patients. This establishes the patient-physician relationship and facilitates a better understanding of the patient-disease relationship, as the ultimate goal is to diagnose, prognosticate, and treat. Biomarkers are at the core of the more disease-centered approach that is currently revolutionizing Medicine as they provide insight into the underlying disease pathomechanisms and biological changes. Genetic, biochemical, radiographic, and clinical biomarkers are currently used. Here, we define a seven-level theoretical construct for the utility of biomarkers in neurodegenerative diseases. Level 1-3 biomarkers are considered supportive of clinical assessment, capable of detecting susceptibility or risk factors, non-specific neurodegeneration or dysfunction, and/or changes at the individual level which help increase clinical diagnostic accuracy and confidence. Level 4-7 biomarkers have the potential to surpass the utility of clinical assessment through detection of early disease stages and prediction of underlying pathology. In neurodegenerative diseases, biomarkers can potentiate, but cannot substitute, clinical assessment. In this current era, aside from adding to the discovery, evaluation/validation, and implementation of more biomarkers, clinical assessment remains crucial to maintaining the personal, humanistic, and sociocultural aspects of patient care. We would argue that clinical assessment is a custom that should never go obsolete.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA
| |
Collapse
|
20
|
Diehl-Schmid J. [Rare Dementias: Frontotemporal Dementia]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:262-274. [PMID: 37336209 DOI: 10.1055/a-2055-4496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
AbstractFrontotemporal dementias (FTD) are among the rare dementias. Their symptomatology is
- compared to the common Alzheimer’s disease - atypical, so that in many
cases it takes a long time until a correct diagnosis is made. The following article
gives an overview of the clinical symptoms, genetic and neuropathological basis,
diagnostics and differential diagnostics and therapy.
Collapse
|
21
|
Ding W, Ren P, Yi L, Si Y, Yang F, Li Z, Bao H, Yan S, Zhang X, Li S, Liang X, Yao L. Association of cortical and subcortical microstructure with disease severity: impact on cognitive decline and language impairments in frontotemporal lobar degeneration. Alzheimers Res Ther 2023; 15:58. [PMID: 36941645 PMCID: PMC10029187 DOI: 10.1186/s13195-023-01208-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Cortical and subcortical microstructural modifications are critical to understanding the pathogenic changes in frontotemporal lobar degeneration (FTLD) subtypes. In this study, we investigated cortical and subcortical microstructure underlying cognitive and language impairments across behavioral variant of frontotemporal dementia (bvFTD), semantic variant of primary progressive aphasia (svPPA), and nonfluent variant of primary progressive aphasia (nfvPPA) subtypes. METHODS The current study characterized 170 individuals with 3 T MRI structural and diffusion-weighted imaging sequences as portion of the Frontotemporal Lobar Degeneration Neuroimaging Initiative study: 41 bvFTD, 35 nfvPPA, 34 svPPA, and 60 age-matched cognitively unimpaired controls. To determine the severity of the disease, clinical dementia rating plus national Alzheimer's coordinating center behavior and language domains sum of boxes scores were used; other clinical measures, including the Boston naming test and verbal fluency test, were also evaluated. We computed surface-based cortical thickness and cortical and subcortical microstructural metrics using tract-based spatial statistics and explored their relationships with clinical and cognitive assessments. RESULTS Compared with controls, those with FTLD showed substantial cortical mean diffusivity alterations extending outside the regions with cortical thinning. Tract-based spatial statistics revealed that anomalies in subcortical white matter diffusion were widely distributed across the frontotemporal and parietal areas. Patients with bvFTD, nfvPPA, and svPPA exhibited distinct patterns of cortical and subcortical microstructural abnormalities, which appeared to correlate with disease severity, and separate dimensions of language functions. CONCLUSIONS Our findings imply that cortical and subcortical microstructures may serve as sensitive biomarkers for the investigation of neurodegeneration-associated microstructural alterations in FTLD subtypes. Flowchart of the study design (see materials and methods for detailed description).
Collapse
Affiliation(s)
- Wencai Ding
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, 150001, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yao Si
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Fan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhipeng Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, 150001, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Shi Yan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xinyu Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Siyang Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, 150001, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, 150001, China.
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
22
|
Chokesuwattanaskul A, Jiang H, Bond RL, Jimenez DA, Russell LL, Sivasathiaseelan H, Johnson JCS, Benhamou E, Agustus JL, van Leeuwen JEP, Chokesuwattanaskul P, Hardy CJD, Marshall CR, Rohrer JD, Warren JD. The architecture of abnormal reward behaviour in dementia: multimodal hedonic phenotypes and brain substrate. Brain Commun 2023; 5:fcad027. [PMID: 36942157 PMCID: PMC10023829 DOI: 10.1093/braincomms/fcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Abnormal reward processing is a hallmark of neurodegenerative diseases, most strikingly in frontotemporal dementia. However, the phenotypic repertoire and neuroanatomical substrates of abnormal reward behaviour in these diseases remain incompletely characterized and poorly understood. Here we addressed these issues in a large, intensively phenotyped patient cohort representing all major syndromes of sporadic frontotemporal dementia and Alzheimer's disease. We studied 27 patients with behavioural variant frontotemporal dementia, 58 with primary progressive aphasia (22 semantic variant, 24 non-fluent/agrammatic variant and 12 logopenic) and 34 with typical amnestic Alzheimer's disease, in relation to 42 healthy older individuals. Changes in behavioural responsiveness were assessed for canonical primary rewards (appetite, sweet tooth, sexual activity) and non-primary rewards (music, religion, art, colours), using a semi-structured survey completed by patients' primary caregivers. Changes in more general socio-emotional behaviours were also recorded. We applied multiple correspondence analysis and k-means clustering to map relationships between hedonic domains and extract core factors defining aberrant hedonic phenotypes. Neuroanatomical associations were assessed using voxel-based morphometry of brain MRI images across the combined patient cohort. Altered (increased and/or decreased) reward responsiveness was exhibited by most patients in the behavioural and semantic variants of frontotemporal dementia and around two-thirds of patients in other dementia groups, significantly (P < 0.05) more frequently than in healthy controls. While food-directed changes were most prevalent across the patient cohort, behavioural changes directed toward non-primary rewards occurred significantly more frequently (P < 0.05) in the behavioural and semantic variants of frontotemporal dementia than in other patient groups. Hedonic behavioural changes across the patient cohort were underpinned by two principal factors: a 'gating' factor determining the emergence of altered reward behaviour and a 'modulatory' factor determining how that behaviour is directed. These factors were expressed jointly in a set of four core, trans-diagnostic and multimodal hedonic phenotypes: 'reward-seeking', 'reward-restricted', 'eating-predominant' and 'control-like'-variably represented across the cohort and associated with more pervasive socio-emotional behavioural abnormalities. The principal gating factor was associated (P < 0.05 after correction for multiple voxel-wise comparisons over the whole brain) with a common profile of grey matter atrophy in anterior cingulate, bilateral temporal poles, right middle frontal and fusiform gyri: the cortical circuitry that mediates behavioural salience and semantic and affective appraisal of sensory stimuli. Our findings define a multi-domain phenotypic architecture for aberrant reward behaviours in major dementias, with novel implications for the neurobiological understanding and clinical management of these diseases.
Collapse
Affiliation(s)
- Anthipa Chokesuwattanaskul
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Neurology, Department of Internal Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Cognitive Clinical and Computational Neuroscience Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Harmony Jiang
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rebecca L Bond
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Daniel A Jimenez
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jeremy C S Johnson
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Elia Benhamou
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jennifer L Agustus
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Janneke E P van Leeuwen
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Chris J D Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Charles R Marshall
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
23
|
Frings L, Blazhenets G, Binder R, Bormann T, Hellwig S, Meyer PT. More extensive hypometabolism and higher mortality risk in patients with right- than left-predominant neurodegeneration of the anterior temporal lobe. Alzheimers Res Ther 2023; 15:11. [PMID: 36627641 PMCID: PMC9830748 DOI: 10.1186/s13195-022-01146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Left-predominant neurodegeneration of the anterior temporal lobe (ATL) and the associated syndrome termed semantic variant primary progressive aphasia (svPPA) are well characterized. Less is known about right-predominant neurodegeneration of the ATL, which has been associated with the clinical syndrome named right temporal variant of frontotemporal dementia (rtvFTD). Here, we assessed glucose metabolism across the brain, cognitive performance, and mortality in patients with right-predominant neurodegeneration of the ATL. METHODS Patients with predominant hypometabolism of the ATL on FDG PET (as a measure of neurodegeneration) were retrospectively identified and categorized into those with asymmetrical right, left, or symmetric bilateral involvement (N = 10, 17, and 8). We compared whole-brain, normalized regional glucose metabolism using SPM12, cognitive performance on the CERAD Neuropsychological Assessment Battery, and mortality risk (age- and sex-adjusted Cox proportional hazard model) between groups. RESULTS Hypometabolism was most pronounced and extensive in patients with right-predominant neurodegeneration of the ATL. Beyond the right temporal lobe, right frontal and left temporal lobes were affected in these patients. Cognitive performance was similarly impaired in all three groups, with predominant naming and hippocampal-dependent memory deficits. Mortality risk was 6.1 times higher in patients with right- than left-predominant ATL neurodegeneration (p < 0.05). Median survival duration after PET was shortest in patients with right- and longest in patients with left-predominant ATL neurodegeneration (5.7 vs 8.3 years after examination). DISCUSSION More extensive neurodegeneration and shorter survival duration in patients with right- than left-predominant neurodegeneration of the ATL might indicate that the former consult memory clinics at a later disease stage, when symptoms like naming and episodic memory deficits have already emerged. At the time of diagnosis, the shorter survival duration of patients with right- than left-predominant ATL neurodegeneration should be kept in mind when counseling patients and caregivers.
Collapse
Affiliation(s)
- Lars Frings
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Center of Geriatrics and Gerontology, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphael Binder
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bormann
- grid.5963.9Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Hellwig
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T. Meyer
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Mesulam MM. Temporopolar regions of the human brain. Brain 2023; 146:20-41. [PMID: 36331542 DOI: 10.1093/brain/awac339] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Following prolonged neglect during the formative decades of behavioural neurology, the temporopolar region has become a site of vibrant research on the neurobiology of cognition and conduct. This turnaround can be attributed to increasing recognition of neurodegenerative diseases that target temporopolar regions for peak destruction. The resultant syndromes include behavioural dementia, associative agnosia, semantic forms of primary progressive aphasia and semantic dementia. Clinicopathological correlations show that object naming and word comprehension are critically dependent on the language-dominant (usually left) temporopolar region, whereas behavioural control and non-verbal object recognition display a more bilateral representation with a rightward bias. Neuroanatomical experiments in macaques and neuroimaging in humans show that the temporoparietal region sits at the confluence of auditory, visual and limbic streams of processing at the downstream (deep) pole of the 'what' pathway. The functional neuroanatomy of this region revolves around three axes, an anterograde horizontal axis from unimodal to heteromodal and paralimbic cortex; a radial axis where visual (ventral), auditory (dorsal) and paralimbic (medial) territories encircle temporopolar cortex and display hemispheric asymmetry; and a vertical depth-of-processing axis for the associative elaboration of words, objects and interoceptive states. One function of this neural matrix is to support the transformation of object and word representations from unimodal percepts to multimodal concepts. The underlying process is likely to start at canonical gateways that successively lead to generic (superordinate), specific (basic) and unique levels of recognition. A first sign of left temporopolar dysfunction takes the form of taxonomic blurring where boundaries among categories are preserved but not boundaries among exemplars of a category. Semantic paraphasias and coordinate errors in word-picture verification tests are consequences of this phenomenon. Eventually, boundaries among categories are also blurred and comprehension impairments become more profound. The medial temporopolar region belongs to the amygdalocentric component of the limbic system and stands to integrate exteroceptive information with interoceptive states underlying social interactions. Review of the pertinent literature shows that word comprehension and conduct impairments caused by temporopolar strokes and temporal lobectomy are far less severe than those seen in temporopolar atrophies. One explanation for this unexpected discrepancy invokes the miswiring of residual temporopolar neurons during the many years of indolently progressive neurodegeneration. According to this hypothesis, the temporopolar regions become not only dysfunctional but also sources of aberrant outputs that interfere with the function of areas elsewhere in the language and paralimbic networks, a juxtaposition not seen in lobectomy or stroke.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, Lambon Ralph MA, Irish M. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun 2023; 5:fcac344. [PMID: 36687395 PMCID: PMC9847565 DOI: 10.1093/braincomms/fcac344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two common clinical variants of frontotemporal dementia are the behavioural variant frontotemporal dementia, presenting with behavioural and personality changes attributable to prefrontal atrophy, and semantic dementia, displaying early semantic dysfunction primarily due to anterior temporal degeneration. Despite representing independent diagnostic entities, mounting evidence indicates overlapping cognitive-behavioural profiles in these syndromes, particularly with disease progression. Why such overlap occurs remains unclear. Understanding the nature of this overlap, however, is essential to improve early diagnosis, characterization and management of those affected. Here, we explored common cognitive-behavioural and neural mechanisms contributing to heterogeneous frontotemporal dementia presentations, irrespective of clinical diagnosis. This transdiagnostic approach allowed us to ascertain whether symptoms not currently considered core to these two syndromes are present in a significant proportion of cases and to explore the neural basis of clinical heterogeneity. Sixty-two frontotemporal dementia patients (31 behavioural variant frontotemporal dementia and 31 semantic dementia) underwent comprehensive neuropsychological, behavioural and structural neuroimaging assessments. Orthogonally rotated principal component analysis of neuropsychological and behavioural data uncovered eight statistically independent factors explaining the majority of cognitive-behavioural performance variation in behavioural variant frontotemporal dementia and semantic dementia. These factors included Behavioural changes, Semantic dysfunction, General Cognition, Executive function, Initiation, Disinhibition, Visuospatial function and Affective changes. Marked individual-level overlap between behavioural variant frontotemporal dementia and semantic dementia was evident on the Behavioural changes, General Cognition, Initiation, Disinhibition and Affective changes factors. Compared to behavioural variant frontotemporal dementia, semantic dementia patients displayed disproportionate impairment on the Semantic dysfunction factor, whereas greater impairment on Executive and Visuospatial function factors was noted in behavioural variant frontotemporal dementia. Both patient groups showed comparable magnitude of atrophy to frontal regions, whereas severe temporal lobe atrophy was characteristic of semantic dementia. Whole-brain voxel-based morphometry correlations with emergent factors revealed associations between fronto-insular and striatal grey matter changes with Behavioural, Executive and Initiation factor performance, bilateral temporal atrophy with Semantic dysfunction factor scores, parietal-subcortical regions with General Cognitive performance and ventral temporal atrophy associated with Visuospatial factor scores. Together, these findings indicate that cognitive-behavioural overlap (i) occurs systematically in frontotemporal dementia; (ii) varies in a graded manner between individuals and (iii) is associated with degeneration of different neural systems. Our findings suggest that phenotypic heterogeneity in frontotemporal dementia syndromes can be captured along continuous, multidimensional spectra of cognitive-behavioural changes. This has implications for the diagnosis of both syndromes amidst overlapping features as well as the design of symptomatic treatments applicable to multiple syndromes.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Hashim El-Omar
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Roquet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
26
|
Koros C, Beratis I, Matsi S, Bougea A, Bonakis A, Papatriantafyllou I, Angelopoulou E, Kapaki E, Stefanis L, Papageorgiou SG. Prosopagnosia, Other Specific Cognitive Deficits, and Behavioral Symptoms: Comparison between Right Temporal and Behavioral Variant of Frontotemporal Dementia. VISION (BASEL, SWITZERLAND) 2022; 6:vision6040075. [PMID: 36548937 PMCID: PMC9781966 DOI: 10.3390/vision6040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Right temporal variant of frontotemporal dementia (rtv-FTD) represents an uncommon and recently described frontotemporal dementia (FTD) entity presenting with symptoms in many ways comparable to those of the frontal or behavioral variant of FTD (bv-FTD). The aims of this study were to explore the timing of cognitive and behavioral symptoms of rtv-FTD, and to compare the distinct cognitive deficits including prosopagnosia and behavioral symptoms of rtv-FTD patients with those observed in bv-FTD patients. We reviewed the records of 105 patients clinically diagnosed with FTD. A total of 7 patients (5 men/2 women) with FTD and marked right temporal atrophy in magnetic resonance imaging (MRI) were detected. Clinical features were compared with those observed in a group of 22 age-matched patients (16 men/6 women) with FTD and predominant frontal lobe atrophy. The main presenting symptoms of rtv-FTD were prosopagnosia, apathy, and episodic memory impairment. In contrast, social awkwardness and compulsive behaviors were dominant in later stages of the disease together with disinhibition and loss of insight with a marked personality change. Although the cognitive and behavioral profiles of patients with right temporal or frontal lobes atrophy present substantial similarities, each subtype has a number of distinct characteristics. It appears that prosopagnosia, obsessive behaviors, and psychotic symptoms are more prominent in rtv-FTD patients.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
- Deree-The American College of Greece, 15342 Athens, Greece
| | - Stavroula Matsi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| | - Anastasios Bonakis
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioannis Papatriantafyllou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
- Correspondence:
| | - Elisabeth Kapaki
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.B.); (S.M.); (A.B.); (I.P.); (E.K.); (L.S.); (S.G.P.)
| |
Collapse
|
27
|
Younes K, Borghesani V, Montembeault M, Spina S, Mandelli ML, Welch AE, Weis E, Callahan P, Elahi FM, Hua AY, Perry DC, Karydas A, Geschwind D, Huang E, Grinberg LT, Kramer JH, Boxer AL, Rabinovici GD, Rosen HJ, Seeley WW, Miller ZA, Miller BL, Sturm VE, Rankin KP, Gorno-Tempini ML. Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain 2022; 145:4080-4096. [PMID: 35731122 PMCID: PMC10200288 DOI: 10.1093/brain/awac217] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Focal anterior temporal lobe degeneration often preferentially affects the left or right hemisphere. While patients with left-predominant anterior temporal lobe atrophy show severe anomia and verbal semantic deficits and meet criteria for semantic variant primary progressive aphasia and semantic dementia, patients with early right anterior temporal lobe atrophy are more difficult to diagnose as their symptoms are less well understood. Focal right anterior temporal lobe atrophy is associated with prominent emotional and behavioural changes, and patients often meet, or go on to meet, criteria for behavioural variant frontotemporal dementia. Uncertainty around early symptoms and absence of an overarching clinico-anatomical framework continue to hinder proper diagnosis and care of patients with right anterior temporal lobe disease. Here, we examine a large, well-characterized, longitudinal cohort of patients with right anterior temporal lobe-predominant degeneration and propose new criteria and nosology. We identified individuals from our database with a clinical diagnosis of behavioural variant frontotemporal dementia or semantic variant primary progressive aphasia and a structural MRI (n = 478). On the basis of neuroimaging criteria, we defined three patient groups: right anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 46), frontal-predominant atrophy with relative sparing of the right anterior temporal lobe (n = 79) and left-predominant anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 75). We compared the clinical, neuropsychological, genetic and pathological profiles of these groups. In the right anterior temporal lobe-predominant group, the earliest symptoms were loss of empathy (27%), person-specific semantic impairment (23%) and complex compulsions and rigid thought process (18%). On testing, this group exhibited greater impairments in Emotional Theory of Mind, recognition of famous people (from names and faces) and facial affect naming (despite preserved face perception) than the frontal- and left-predominant anterior temporal lobe-predominant groups. The clinical symptoms in the first 3 years of the disease alone were highly sensitive (81%) and specific (84%) differentiating right anterior temporal lobe-predominant from frontal-predominant groups. Frontotemporal lobar degeneration-transactive response DNA binding protein (84%) was the most common pathology of the right anterior temporal lobe-predominant group. Right anterior temporal lobe-predominant degeneration is characterized by early loss of empathy and person-specific knowledge, deficits that are caused by progressive decline in semantic memory for concepts of socioemotional relevance. Guided by our results, we outline new diagnostic criteria and propose the name, 'semantic behavioural variant frontotemporal dementia', which highlights the underlying cognitive mechanism and the predominant symptomatology. These diagnostic criteria will facilitate early identification and care of patients with early, focal right anterior temporal lobe degeneration as well as in vivo prediction of frontotemporal lobar degeneration-transactive response DNA binding protein pathology.
Collapse
Affiliation(s)
- Kyan Younes
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ariane E Welch
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Weis
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Patrick Callahan
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Fanny M Elahi
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Alice Y Hua
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - David C Perry
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Daniel Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Eric Huang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Snowden JS. Changing perspectives on frontotemporal dementia: A review. J Neuropsychol 2022. [DOI: 10.1111/jnp.12297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Julie S. Snowden
- Cerebral Function Unit, Manchester Centre for Neurosciences Salford Royal NHS Foundation Trust Salford UK
- Division of Neuroscience & Experimental Psychology School of Biological Sciences, University of Manchester Manchester UK
| |
Collapse
|
29
|
Pressman PS, Chen KH, Casey J, Sillau S, Chial HJ, Filley CM, Miller BL, Levenson RW. Incongruences Between Facial Expression and Self-Reported Emotional Reactivity in Frontotemporal Dementia and Related Disorders. J Neuropsychiatry Clin Neurosci 2022; 35:192-201. [PMID: 35989572 PMCID: PMC10723939 DOI: 10.1176/appi.neuropsych.21070186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Emotional reactivity normally involves a synchronized coordination of subjective experience and facial expression. These aspects of emotional reactivity can be uncoupled by neurological illness and produce adverse consequences for patient and caregiver quality of life because of misunderstandings regarding the patient's presumed internal state. Frontotemporal dementia (FTD) is often associated with altered social and emotional functioning. FTD is a heterogeneous disease, and socioemotional changes in patients could result from altered internal experience, altered facial expressive ability, altered language skills, or other factors. The authors investigated how individuals with FTD subtypes differ from a healthy control group regarding the extent to which their facial expressivity aligns with their self-reported emotional experience. METHODS Using a compound measure of emotional reactivity to assess reactions to three emotionally provocative videos, the authors explored potential explanations for differences in alignment of facial expressivity with emotional experience, including parkinsonism, physiological reactivity, and nontarget verbal responses. RESULTS Participants with the three main subtypes of FTD all tended to express less emotion on their faces than they did through self-report. CONCLUSIONS Exploratory analyses suggest that reasons for this incongruence likely differ not only between but also within diagnostic subgroups.
Collapse
Affiliation(s)
- Peter S Pressman
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - Kuan Hua Chen
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - James Casey
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - Stefan Sillau
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - Heidi J Chial
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - Christopher M Filley
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - Bruce L Miller
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| | - Robert W Levenson
- Department of Neurology Behavioral Neurology Section (Pressman, Filley), Alzheimer's and Cognition Center (Pressman, Sillau, Chial), Linda Crnic Institute for Down Syndrome (Chial), and Marcus Institute for Brain Health (Filley), University of Colorado Anschutz Medical Campus, Aurora; Berkeley Psychophysiology Laboratory, University of California, Berkeley (Chen, Casey, Levenson); Memory and Aging Center, University of California, San Francisco (Miller)
| |
Collapse
|
30
|
Cruz de Souza L, Bertoux M, Radakovic R, Hornberger M, Mariano LI, de Paula França Resende E, Quesque F, Guimarães HC, Gambogi LB, Tumas V, Camargos ST, Costa Cardoso FE, Teixeira AL, Caramelli P. I’m Looking Through You: Mentalizing In Frontotemporal Dementia And Progressive Supranuclear Palsy. Cortex 2022; 155:373-389. [DOI: 10.1016/j.cortex.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|
31
|
Campos DF, Rocca AR, Caixeta LF. Right Temporal Lobe Variant of Frontotemporal Dementia: Systematic Review. Alzheimer Dis Assoc Disord 2022; 36:272-279. [PMID: 35867973 DOI: 10.1097/wad.0000000000000511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
Frontotemporal dementia corresponds to a heterogenous group of syndromes characterized by progressive changes in behavior and/or language. Approximately 30% of patients with primary progressive aphasia, semantic variant (semantic dementia), present with atrophy in the right cerebral hemisphere, in a rare clinical condition called right temporal variant of frontotemporal dementia (rtvFTD). The objective of the study is to present the main demographic, clinical, neuropsychological, neuroimaging, and pathologic characteristics of rtvFTD patients. A systematic review of the literature was carried out in the PubMed, LILACS, and SCIELO databases between January and March 2022. After the evaluation process, 41 articles were selected, published between 1993 and 2021. We found that rtvFTD presents with severe and progressive prosopagnosia (related to anterior temporal lobe injury) associated with behavioral symptoms-desinibition (51%), apathy (39%), obsessive-compulsive symptoms (37%), changes in eating habits (33%), and depression (28%), which is different from semantic dementia. The most common pathologic pattern is TDP-43, type C. This field of knowledge has few studies (mainly reports and case series) and heterogenous nomenclature, which is a limitation. A multinational longitudinal registry of people with rtvFTD, with standardized assessment and description of symptoms, is necessary to elucidate the characteristics of this entity.
Collapse
Affiliation(s)
- Danilo F Campos
- Center for Cognitive Neurology and Neuropsychiatry, Federal University of Goiás
| | - Andrey R Rocca
- Center for Cognitive Neurology and Neuropsychiatry, Federal University of Goiás
| | - Leonardo F Caixeta
- Center for Cognitive Neurology and Neuropsychiatry, Federal University of Goiás
- Department of Neurology, Federal University of Goiás School of Medicine, Goiânia, Goiás, Brazil
| |
Collapse
|
32
|
Disentangling Reversal-learning Impairments in Frontotemporal Dementia and Alzheimer Disease. Cogn Behav Neurol 2022; 35:110-122. [PMID: 35486540 DOI: 10.1097/wnn.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Individuals with frontotemporal dementia (FTD) often present with poor decision-making, which can affect both their financial and social situations. Delineation of the specific cognitive impairments giving rise to impaired decision-making in individuals with FTD may inform treatment strategies, as different neurotransmitter systems have been associated with distinct patterns of altered decision-making. OBJECTIVE To use a reversal-learning paradigm to identify the specific cognitive components of reversal learning that are most impaired in individuals with FTD and those with Alzheimer disease (AD) in order to inform future approaches to treatment for symptoms related to poor decision-making and behavioral inflexibility. METHOD We gave 30 individuals with either the behavioral variant of FTD or AD and 18 healthy controls a stimulus-discrimination reversal-learning task to complete. We then compared performance in each phase between the groups. RESULTS The FTD group demonstrated impairments in initial stimulus-association learning, though to a lesser degree than the AD group. The FTD group also performed poorly in classic reversal learning, with the greatest impairments being observed in individuals with frontal-predominant atrophy during trials requiring inhibition of a previously advantageous response. CONCLUSION Taken together, these results and the reversal-learning paradigm used in this study may inform the development and screening of behavioral, neurostimulatory, or pharmacologic interventions aiming to address behavioral symptoms related to stimulus-reinforcement learning and response inhibition impairments in individuals with FTD.
Collapse
|
33
|
Tisdall MD, Ohm DT, Lobrovich R, Das SR, Mizsei G, Prabhakaran K, Ittyerah R, Lim S, McMillan CT, Wolk DA, Gee J, Trojanowski JQ, Lee EB, Detre JA, Yushkevich P, Grossman M, Irwin DJ. Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. Neuroimage Clin 2022; 33:102913. [PMID: 34952351 PMCID: PMC8715243 DOI: 10.1016/j.nicl.2021.102913] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Comparative study of whole-hemisphere ex vivo T2*-weighted MRI and histopathology. Sample of FTLD-Tau and FTLD-TDP subtypes with reference to healthy and AD brain. Novel focal upper cortical-layer iron-rich pathology distinguishes FTLD-TDP from clinically-similar FTLD-Tau and AD. Distinct novel iron-rich FTLD-Tau pathology in mid-to-deep cortical-layers and WM. T2*-weighted MRI signatures offer in vivo biomarker targets for FTLD proteinopathy.
Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer’s disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.
Collapse
Affiliation(s)
- M Dylan Tisdall
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States.
| | - Daniel T Ohm
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Rebecca Lobrovich
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sandhitsu R Das
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Gabor Mizsei
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Karthik Prabhakaran
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Ranjit Ittyerah
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sydney Lim
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Corey T McMillan
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David A Wolk
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - James Gee
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - John Q Trojanowski
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - Edward B Lee
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - John A Detre
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States; Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Paul Yushkevich
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Murray Grossman
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David J Irwin
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States; Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
34
|
Paranhos T, Lucas T, de Salles A, Moll J, de Oliveira-Souza R. A presumptive association between obsessive compulsions and asymmetric temporal lobe atrophy: a case report. J Med Case Rep 2022; 16:21. [PMID: 35045865 PMCID: PMC8772087 DOI: 10.1186/s13256-021-03228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The relatively isolated atrophy of the temporal lobes leads to a clinical radiological pattern, referred to as the temporal variant of frontotemporal dementia. While semantic dementia and behavioral variant frontotemporal dementia are classically related to this syndrome, the logopenic variant of primary progressive aphasia has been less commonly reported. This case report aims to give a pictorial description of a case in which a patient with asymmetric temporal lobe atrophy presented with the logopenic variant of primary progressive aphasia and complex rituals of cleanliness. Case presentation We report on the case of a 68-year-old, right-handed White woman with complex rituals and progressive speech impairment. The obsessive–compulsive rituals represented an exacerbation of lifelong preoccupations with cleanliness and orderliness that were praised by her relatives. Neuropsychological assessment revealed a striking impairment of language and memory, with relative sparing of tool-use praxis and visuospatial skills. Magnetic resonance imaging and 18fluorodeoxyglucose-positron emission tomography scans showed bilateral asymmetrical temporal lobe atrophy and hypometabolism. A year later, she was still able to entertain conversation for a short while, but her vocabulary and fluency had further declined. Praxis and visuospatial skills remained intact. She did not experience pathological elation, delusions, or hallucinations. The disease followed a relentless progression into a partial Klüver–Bucy syndrome, abulia, and terminal dementia. She died from acute myocardial infarction 8 years after the onset of aphasia. The symptoms and their temporal course supported a diagnosis of logopenic variant of primary progressive aphasia due to asymmetric temporal variant frontotemporal lobar degeneration. Conclusions This report gives a pictorial description of a temporal variant of frontotemporal dementia in a patient who presented with worsening of a lifelong obsessive–compulsive disorder and logopenic variant of primary progressive aphasia. Supplementary Information The online version contains supplementary material available at 10.1186/s13256-021-03228-z.
Collapse
|
35
|
Belder CRS, Chokesuwattanaskul A, Marshall CR, Hardy CJD, Rohrer JD, Warren JD. The problematic syndrome of right temporal lobe atrophy: Unweaving the phenotypic rainbow. Front Neurol 2022; 13:1082828. [PMID: 36698890 PMCID: PMC9868162 DOI: 10.3389/fneur.2022.1082828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Christopher R S Belder
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Anthipa Chokesuwattanaskul
- Division of Neurology, Department of Internal Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charles R Marshall
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
36
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
37
|
Anderl‐Straub S, Lausser L, Lombardi J, Uttner I, Fassbender K, Fliessbach K, Huppertz H, Jahn H, Kornhuber J, Obrig H, Schneider A, Semler E, Synofzik M, Danek A, Prudlo J, Kassubek J, Landwehrmeyer B, Lauer M, Volk AE, Wiltfang J, Diehl‐Schmid J, Ludolph AC, Schroeter ML, Kestler HA, Otto M. Predicting disease progression in behavioral variant frontotemporal dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12262. [PMID: 35005196 PMCID: PMC8719425 DOI: 10.1002/dad2.12262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The behavioral variant of frontotemporal dementia (bvFTD) is a rare neurodegenerative disease. Reliable predictors of disease progression have not been sufficiently identified. We investigated multivariate magnetic resonance imaging (MRI) biomarker profiles for their predictive value of individual decline. METHODS One hundred five bvFTD patients were recruited from the German frontotemporal lobar degeneration (FTLD) consortium study. After defining two groups ("fast progressors" vs. "slow progressors"), we investigated the predictive value of MR brain volumes for disease progression rates performing exhaustive screenings with multivariate classification models. RESULTS We identified areas that predict disease progression rate within 1 year. Prediction measures revealed an overall accuracy of 80% across our 50 top classification models. Especially the pallidum, middle temporal gyrus, inferior frontal gyrus, cingulate gyrus, middle orbitofrontal gyrus, and insula occurred in these models. DISCUSSION Based on the revealed marker combinations an individual prognosis seems to be feasible. This might be used in clinical studies on an individualized progression model.
Collapse
Affiliation(s)
| | - Ludwig Lausser
- Institute of Medical Systems BiologyUniversity of UlmUlmGermany
| | | | - Ingo Uttner
- Department of NeurologyUniversity of UlmUlmGermany
| | | | - Klaus Fliessbach
- Clinic for Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
| | | | - Holger Jahn
- Department of Psychiatry and PsychotherapyUniversity Hospital Hamburg EppendorfHamburgGermany
| | - Johannes Kornhuber
- Department of Psychiatry and PsychotherapyUniversity ErlangenErlangenGermany
| | - Hellmuth Obrig
- Max‐Planck‐Institute of Human Cognitive and Brain Sciences & Clinic for Cognitive NeurologyUniversity Hospital LeipzigLeipzigGermany
| | - Anja Schneider
- Clinic for Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Elisa Semler
- Department of NeurologyUniversity of UlmUlmGermany
| | - Matthis Synofzik
- Department of Neurodegenerative DiseasesCenter of Neurology and Hertie‐Institute for Clinical Brain ResearchUniversityTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Adrian Danek
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Johannes Prudlo
- Department of NeurologyRostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Jan Kassubek
- Department of NeurologyUniversity of UlmUlmGermany
| | | | - Martin Lauer
- Department of Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany
| | - Alexander E. Volk
- Institute for Human GeneticsUniversity Hospital Hamburg EppendorfHamburgGermany
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Göttingen (UMG)GöttingenGermany
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Neurosciences and Signaling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Janine Diehl‐Schmid
- Department of Psychiatry and PsychotherapyTechnical University of MunichMunichGermany
| | | | - Matthias L. Schroeter
- Max‐Planck‐Institute of Human Cognitive and Brain Sciences & Clinic for Cognitive NeurologyUniversity Hospital LeipzigLeipzigGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUniversity of UlmUlmGermany
| | - Markus Otto
- Department of NeurologyUniversity of UlmUlmGermany
- Department of NeurologyMartin Luther University Halle‐WittenbergUniversity clinic HalleHalle (Saale)Germany
| | | |
Collapse
|
38
|
Vuksanović V, Staff RT, Morson S, Ahearn T, Bracoud L, Murray AD, Bentham P, Kipps CM, Harrington CR, Wischik CM. Degeneration of basal and limbic networks is a core feature of behavioural variant frontotemporal dementia. Brain Commun 2021; 3:fcab241. [PMID: 34939031 PMCID: PMC8688778 DOI: 10.1093/braincomms/fcab241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The behavioural variant of frontotemporal dementia is a clinical syndrome characterized by changes in behaviour, cognition and functional ability. Although atrophy in frontal and temporal regions would appear to be a defining feature, neuroimaging studies have identified volumetric differences distributed across large parts of the cortex, giving rise to a classification into distinct neuroanatomical subtypes. Here, we extended these neuroimaging studies to examine how distributed patterns of cortical atrophy map onto brain network hubs. We used baseline structural magnetic resonance imaging data collected from 213 behavioural variant of frontotemporal dementia patients meeting consensus diagnostic criteria and having definite evidence of frontal and/or temporal lobe atrophy from a global clinical trial conducted in 70 sites in Canada, United States of America, Australia, Asia and Europe. These were compared with data from 244 healthy elderly subjects from a well-characterized cohort study. We have used statistical methods of hierarchical agglomerative clustering of 68 regional cortical and subcortical volumes (34 in each hemisphere) to determine the reproducibility of previously described neuroanatomical subtypes in a global study. We have also attempted to link the structural findings to clinical features defined systematically using well-validated clinical scales (Addenbrooke’s Cognitive Examination Revised, the Mini-Mental Status Examination, the Frontotemporal Dementia Rating Scale and the Functional Assessment Questionnaire) and subscales derived from them. Whilst we can confirm that the subtypes are robust, they have limited value in explaining the clinical heterogeneity of the syndrome. We have found that a common pattern of degeneration affecting a small number of subcortical, limbic and frontal nodes within highly connected networks (most previously identified as rich club members or functional binding nodes) is shared by all the anatomical subtypes. Degeneration in these core regions is correlated with cognitive and functional impairment, but less so with behavioural impairment. These findings suggest that degeneration in highly connected basal, limbic and frontal networks is a core feature of the behavioural variant of frontotemporal dementia phenotype irrespective of neuroanatomical and clinical heterogeneity, and may underly the impairment of integration in cognition, function and behaviour responsible for the loss of insight that characterizes the syndrome.
Collapse
Affiliation(s)
- Vesna Vuksanović
- Swansea University Medical School, Health Data Research UK, Swansea University, Swansea SA2 8PP, UK.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics, Aberdeen AB24 5RP, UK
| | - Roger T Staff
- Medical Physics, NHS Grampian, Aberdeen AB25 2ZD, UK
| | - Suzannah Morson
- TauRx Therapeutics, Aberdeen AB24 5RP, UK.,School of Psychology, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Trevor Ahearn
- Medical Physics, NHS Grampian, Aberdeen AB25 2ZD, UK
| | | | - Alison D Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | - Christopher M Kipps
- University Hospital Southampton and University of Southampton, Southampton SO16 6YD, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics, Aberdeen AB24 5RP, UK
| |
Collapse
|
39
|
Tipton PW, Day GS, Graff-Radford N. A Neurologist's Practical Approach to Cognitive Impairment. Semin Neurol 2021; 41:686-698. [PMID: 34826872 DOI: 10.1055/s-0041-1726354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The global prevalence of dementia is expected to triple by the year 2050. This impending health care crisis has led to new heights of public awareness and general concern regarding cognitive impairment. Subsequently, clinicians are seeing more and more people presenting with cognitive concerns. It is important that clinicians meet these concerns with a strategy promoting accurate diagnoses. We have diagramed and described a practical approach to cognitive impairment. Through an algorithmic approach, we determine the presence and severity of cognitive impairment, systematically evaluate domains of function, and use this information to determine the next steps in evaluation. We also discuss how to proceed when cognitive impairment is associated with motor abnormalities or rapid progression.
Collapse
Affiliation(s)
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
40
|
Grasso SM, Peña ED, Kazemi N, Mirzapour H, Neupane R, Bonakdarpour B, Gorno-Tempini ML, Henry ML. Treatment for Anomia in Bilingual Speakers with Progressive Aphasia. Brain Sci 2021; 11:1371. [PMID: 34827370 PMCID: PMC8615710 DOI: 10.3390/brainsci11111371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Anomia is an early and prominent feature of primary progressive aphasia (PPA) and other neurodegenerative disorders. Research investigating treatment for lexical retrieval impairment in individuals with progressive anomia has focused primarily on monolingual speakers, and treatment in bilingual speakers is relatively unexplored. In this series of single-case experiments, 10 bilingual speakers with progressive anomia received lexical retrieval treatment designed to engage relatively spared cognitive-linguistic abilities and promote word retrieval. Treatment was administered in two phases, with one language targeted per phase. Cross-linguistic cognates (e.g., rose and rosa) were included as treatment targets to investigate their potential to facilitate cross-linguistic transfer. Performance on trained and untrained stimuli was evaluated before, during, and after each phase of treatment, and at 3, 6, and 12 months post-treatment. Participants demonstrated a significant treatment effect in each of their treated languages, with maintenance up to one year post-treatment for the majority of participants. Most participants showed a significant cross-linguistic transfer effect for trained cognates in both the dominant and nondominant language, with fewer than half of participants showing a significant translation effect for noncognates. A gradual diminution of translation and generalization effects was observed during the follow-up period. Findings support the implementation of dual-language intervention approaches for bilingual speakers with progressive anomia, irrespective of language dominance.
Collapse
Affiliation(s)
- Stephanie M. Grasso
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Elizabeth D. Peña
- School of Education, University of California, Irvine, CA 92697, USA;
| | - Nina Kazemi
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Haideh Mirzapour
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Rozen Neupane
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Borna Bonakdarpour
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Maya L. Henry
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
- Department of Neurology, Dell Medical School, University of Texas, Austin, TX 78705, USA
| |
Collapse
|
41
|
Sato S, Hashimoto M, Yoshiyama K, Kanemoto H, Hotta M, Azuma S, Suehiro T, Kakeda K, Nakatani Y, Umeda S, Fukuhara R, Takebayashi M, Ikeda M. Characteristics of behavioral symptoms in right-sided predominant semantic dementia and their impact on caregiver burden: a cross-sectional study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:166. [PMID: 34627361 PMCID: PMC8502362 DOI: 10.1186/s13195-021-00908-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
Background This study aimed to clarify the neuropsychiatric symptoms of right-sided predominant semantic dementia (SD-R) by comparing them with those of behavioral variant frontotemporal dementia (bvFTD), left-sided predominant SD (SD-L), and Alzheimer’s disease (AD). This study also aimed to identify clinical factors related to caregiver burden for bvFTD, SD-R, and SD-L. Methods The neuropsychiatric symptoms of 28 patients with bvFTD, 14 patients with SD-R, 24 patients with SD-L, and 43 patients with AD were evaluated using the Neuropsychiatric Inventory (NPI) and the Stereotypy Rating Inventory (SRI). Cognitive function was assessed using the Mini-Mental State Examination (MMSE). Dementia severity was assessed using the Clinical Dementia Rating. Activities of daily living were assessed using the Lawton Instrument Activities of Daily Living (IADL) scale and the Physical Self-Maintenance Scale. We compared the NPI and SRI scores among the four groups using the Kruskal-Wallis test. In addition, clinical factors related to caregiver burden, represented by the Japanese version of the Zarit Burden Interview (J-ZBI), were analyzed using multiple regression analysis in the bvFTD, SD-R, and SD-L groups. Results The NPI total score and the NPI subscale scores of apathy and disinhibition were significantly higher in the bvFTD group than in the SD-L and AD groups. The SD-R group scores were closer to those of the bvFTD group than the SD-L group. The SRI total score and SRI subscale scores for eating and cooking and speaking were significantly higher in the bvFTD, SD-R, and SD-L groups than in the AD group. The NPI total score was significantly associated with the J-ZBI score in the bvFTD group. The NPI total score and Lawton IADL scale score were independently associated with the J-ZBI score in the SD-R group. Furthermore, the NPI total score and MMSE score were independently associated with the J-ZBI score in the SD-L group. Conclusions SD-R seemed to be a similar condition to bvFTD rather than SD-L regarding behavioral symptoms. Our results suggest that each frontotemporal dementia subgroup requires different approaches to reduce the caregiver burden.
Collapse
Affiliation(s)
- Shunsuke Sato
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan. .,Department of Psychiatry, Osaka General Medical Center, Osaka, Japan.
| | - Mamoru Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan
| | - Kenji Yoshiyama
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan
| | - Maki Hotta
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan.,Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Azuma
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan.,Department of Psychiatry, Mizuma Hospital, Kaizuka, Japan
| | - Takashi Suehiro
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan
| | - Kyosuke Kakeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan
| | - Yoshitaka Nakatani
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan.,Department of Psychiatry, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Sumiyo Umeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan.,Department of Psychiatry, Daini Osaka Police Hospital, Osaka, Japan
| | - Ryuji Fukuhara
- Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka,, Suita City,, Osaka, 565-0871, Japan
| |
Collapse
|
42
|
Henderson SK, Dev SI, Ezzo R, Quimby M, Wong B, Brickhouse M, Hochberg D, Touroutoglou A, Dickerson BC, Cordella C, Collins JA. A category-selective semantic memory deficit for animate objects in semantic variant primary progressive aphasia. Brain Commun 2021; 3:fcab210. [PMID: 34622208 PMCID: PMC8493104 DOI: 10.1093/braincomms/fcab210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Data are mixed on whether patients with semantic variant primary progressive aphasia exhibit a category-selective semantic deficit for animate objects. Moreover, there is little consensus regarding the neural substrates of this category-selective semantic deficit, though prior literature has suggested that the perirhinal cortex and the lateral posterior fusiform gyrus may support semantic memory functions important for processing animate objects. In this study, we investigated whether patients with semantic variant primary progressive aphasia exhibited a category-selective semantic deficit for animate objects in a word-picture matching task, controlling for psycholinguistic features of the stimuli, including frequency, familiarity, typicality and age of acquisition. We investigated the neural bases of this category selectivity by examining its relationship with cortical atrophy in two primary regions of interest: bilateral perirhinal cortex and lateral posterior fusiform gyri. We analysed data from 20 patients with semantic variant primary progressive aphasia (mean age = 64 years, S.D. = 6.94). For each participant, we calculated an animacy index score to denote the magnitude of the category-selective semantic deficit for animate objects. Multivariate regression analysis revealed a main effect of animacy (β = 0.52, t = 4.03, P < 0.001) even after including all psycholinguistic variables in the model, such that animate objects were less likely to be identified correctly relative to inanimate objects. Inspection of each individual patient's data indicated the presence of a disproportionate impairment in animate objects in most patients. A linear regression analysis revealed a relationship between the right perirhinal cortex thickness and animacy index scores (β = -0.57, t = -2.74, P = 0.015) such that patients who were more disproportionally impaired for animate relative to inanimate objects exhibited thinner right perirhinal cortex. A vertex-wise general linear model analysis restricted to the temporal lobes revealed additional associations between positive animacy index scores (i.e. a disproportionately poorer performance on animate objects) and cortical atrophy in the right perirhinal and entorhinal cortex, superior, middle, and inferior temporal gyri, and the anterior fusiform gyrus, as well as the left anterior fusiform gyrus. Taken together, our results indicate that a category-selective semantic deficit for animate objects is a characteristic feature of semantic variant primary progressive aphasia that is detectable in most individuals. Our imaging findings provide further support for the role of the right perirhinal cortex and other temporal lobe regions in the semantic processing of animate objects.
Collapse
Affiliation(s)
- Shalom K Henderson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sheena I Dev
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rania Ezzo
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Claire Cordella
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Collins
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Hutchings R, Palermo R, Hazelton JL, Piguet O, Kumfor F. Considering Hemispheric Specialization in Emotional Face Processing: An Eye Tracking Study in Left- and Right-Lateralised Semantic Dementia. Brain Sci 2021; 11:brainsci11091195. [PMID: 34573215 PMCID: PMC8472320 DOI: 10.3390/brainsci11091195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/27/2023] Open
Abstract
Face processing relies on a network of occipito-temporal and frontal brain regions. Temporal regions are heavily involved in looking at and processing emotional faces; however, the contribution of each hemisphere to this process remains under debate. Semantic dementia (SD) is a rare neurodegenerative brain condition characterized by anterior temporal lobe atrophy, which is either predominantly left- (left-SD) or right-lateralised (right-SD). This syndrome therefore provides a unique lesion model to understand the role of laterality in emotional face processing. Here, we investigated facial scanning patterns in 10 left-SD and 6 right-SD patients, compared to 22 healthy controls. Eye tracking was recorded via a remote EyeLink 1000 system, while participants passively viewed fearful, happy, and neutral faces over 72 trials. Analyses revealed that right-SD patients had more fixations to the eyes than controls in the Fear (p = 0.04) condition only. Right-SD patients also showed more fixations to the eyes than left-SD patients in all conditions: Fear (p = 0.01), Happy (p = 0.008), and Neutral (p = 0.04). In contrast, no differences between controls and left-SD patients were observed for any emotion. No group differences were observed for fixations to the mouth, or the whole face. This study is the first to examine patterns of facial scanning in left- versus right- SD, demonstrating more of a focus on the eyes in right-SD. Neuroimaging analyses showed that degradation of the right superior temporal sulcus was associated with increased fixations to the eyes. Together these results suggest that right lateralised brain regions of the face processing network are involved in the ability to efficiently utilise changeable cues from the face.
Collapse
Affiliation(s)
- Rosalind Hutchings
- Brain & Mind Centre, School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia; (R.H.); (J.L.H.); (O.P.)
| | - Romina Palermo
- School of Psychological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Jessica L. Hazelton
- Brain & Mind Centre, School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia; (R.H.); (J.L.H.); (O.P.)
| | - Olivier Piguet
- Brain & Mind Centre, School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia; (R.H.); (J.L.H.); (O.P.)
| | - Fiona Kumfor
- Brain & Mind Centre, School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia; (R.H.); (J.L.H.); (O.P.)
- Correspondence: ; Tel.: +61-2-9114-4181
| |
Collapse
|
44
|
Ulugut H, Dijkstra AA, Scarioni M, Barkhof F, Scheltens P, Rozemuller AJM, Pijnenburg YAL. Right temporal variant frontotemporal dementia is pathologically heterogeneous: a case-series and a systematic review. Acta Neuropathol Commun 2021; 9:131. [PMID: 34344452 PMCID: PMC8330072 DOI: 10.1186/s40478-021-01229-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Although the right temporal variant frontotemporal dementia (rtvFTD) is characterised by distinct clinical and radiological features, its underlying histopathology remains elusive. Being considered a right-sided variant of semantic variant primary progressive aphasia (svPPA), TDP-43 type C pathology has been linked to the syndrome, but this has not been studied in detail in large cohorts. In this case report and systematic review, we report the autopsy results of five subjects diagnosed with rtvFTD from our cohort and 44 single rtvFTD subjects from the literature. Macroscopic pathological evaluation of the combined results revealed that rtvFTD demonstrated either a frontotemporal or temporal evolution, even if the degeneration started in the right temporal lobe initially. FTLD-TDP type C was the most common underlying pathology in rtvFTD, however, in 64% of rtvFTD, other underlying pathologies than FTLD-TDP type C were present, such as Tau-MAPT and FTLD-TDP type A and B. Additionally, accompanying motor neuron or corticospinal tract degeneration was observed in 28% of rtvFTD patients. Our results show that in contrast to the general assumption, rtvFTD might not be a pure FTLD-TDP type C disorder, unlike its left temporal counterpart svPPA. Large sample size pathological studies are warranted to understand the diverse pathologies of the right and left temporal variants of frontotemporal dementia.
Collapse
|
45
|
Rijpma MG, Shdo SM, Shany-Ur T, Toller G, Kramer JH, Miller BL, Rankin KP. Salience driven attention is pivotal to understanding others' intentions. Cogn Neuropsychol 2021; 38:88-106. [PMID: 33522407 DOI: 10.1080/02643294.2020.1868984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interpreting others' beliefs, desires and intentions is known as "theory of mind" (ToM), and is often evaluated using simplified measurement tools, which may not correctly reflect the brain circuits that are required for real-life ToM functioning. We aimed to identify the brain structures necessary to correctly infer intentions from realistic scenarios by administering The Awareness of Social Inference Test, Enriched subtest to 47 patients with behavioural variant frontotemporal dementia, 24 patients with progressive supranuclear palsy syndrome, 31 patients with Alzheimer's syndrome, and 77 older healthy controls. Neuroimaging data was analyzed using voxel based morphometry, and participants' understanding of intentions was correlated with voxel-wise and region-of interest data. We found that structural integrity of the cinguloinsular cortex in the salience network (SN) was more pivotal for accurate ToM than previously described, emphasizing the importance of the SN for selectively recognizing and attending to social cues during ToM inferences.
Collapse
Affiliation(s)
- Myrthe G Rijpma
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Suzanne M Shdo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tal Shany-Ur
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gianina Toller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
46
|
Ulugut H, Stek S, Wagemans LEE, Jutten RJ, Keulen MA, Bouwman FH, Prins ND, Lemstra AW, Krudop W, Teunissen CE, van Berckel BNM, Ossenkoppele R, Barkhof F, van der Flier WM, Scheltens P, Pijnenburg YAL. The natural history of primary progressive aphasia: beyond aphasia. J Neurol 2021; 269:1375-1385. [PMID: 34216263 PMCID: PMC8857134 DOI: 10.1007/s00415-021-10689-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Primary progressive aphasia (PPA) is divided into three prototypical subtypes that are all characterized by their single core symptom of aphasia. Although later in their course, other cognitive, behavioral, and motor domains may become involved, little is known about the progression profile of each subtype relative to the other subtypes. METHODS In this longitudinal retrospective cohort study, based on the recent biomarker-supported diagnostic criteria, 24 subjects diagnosed with semantic variant (svPPA), 22 with non-fluent variant (nfvPPA), and 18 with logopenic variant (lvPPA) were collected and followed up for 1-6 years. Symptom distribution, cognitive test and neuropsychiatric inventory scores, and progression into another syndrome were assessed. RESULTS Over time, lvPPA progressed with broader language problems (PPA-extended) and nfvPPA progressed to mutism, whereas semantic impairment remained the major problem in svPPA. Apart from linguistic problems, svPPA developed pronounced behavioral disturbances, whereas lvPPA exhibited a greater cognitive decline. By contrast, in nfvPPA motor deficits were more common. Furthermore, within 5 years (IQR = 2.5) after clinical onset, 65.6% of the patients additionally fulfilled the clinical criteria for another neurodegenerative syndrome (PPA-plus). Fourteen out of 24 (58%) svPPA patients additionally met the diagnostic criteria of behavioral variant frontotemporal dementia (5.1 years, IQR = 1.1), whereas the clinical features of 15/18 (83%) lvPPA patients were consistent with Alzheimer disease dementia (4.5 years IQR = 3.4). Furthermore, 12/22 (54%) of the subjects with the nfvPPA progressed to meet the diagnostic criteria of corticobasal syndrome, progressive supranuclear palsy, or motor neuron disease (5.1 years IQR = 3.4). DISCUSSION Despite aphasia being the initial and unique hallmark of the syndrome, our longitudinal results showed that PPA is not a language limited disorder and progression differs widely for each subtype, both with respect to the nature of symptoms and disease duration.
Collapse
Affiliation(s)
- Hulya Ulugut
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
| | - Simone Stek
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Lianne E E Wagemans
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Roos J Jutten
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Maria Antoinette Keulen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Niels D Prins
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Welmoed Krudop
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charlotte E Teunissen
- Neurological Laboratory Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- UCL Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Buciuc M, Duffy JR, Machulda MM, Graff-Radford J, Pham NTT, Martin PR, Senjem ML, Jack CR, Ertekin-Taner N, Dickson DW, Lowe VJ, Whitwell JL, Josephs KA. Clinical, Imaging, and Pathologic Characteristics of Patients With Right vs Left Hemisphere-Predominant Logopenic Progressive Aphasia. Neurology 2021; 97:e523-e534. [PMID: 34088877 DOI: 10.1212/wnl.0000000000012322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/27/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess and compare demographic, clinical, neuroimaging, and pathologic characteristics of a cohort of patients with right hemisphere-predominant vs left hemisphere-predominant logopenic progressive aphasia (LPA). METHODS This is a case-control study of patients with LPA who were prospectively followed at Mayo Clinic and underwent [18F]-fluorodeoxyglucose (FDG) PET scan. Patients were classified as rLPA if right temporal lobe metabolism was ≥1 SD lower than left temporal lobe metabolism. Patients with rLPA were frequency-matched 3:1 to typical left-predominant LPA based on degree of asymmetry and severity of temporal lobe metabolism. Patients were compared on clinical, imaging (MRI, FDG-PET, β-amyloid, and tau-PET), and pathologic characteristics. RESULTS Of 103 prospectively recruited patients with LPA, 8 (4 female) were classified as rLPA (7.8%); all patients with rLPA were right-handed. Patients with rLPA had milder aphasia based on the Western Aphasia Battery-Aphasia Quotient (p = 0.04) and less frequent phonologic errors (p = 0.015). Patients with rLPA had shorter survival compared to typical LPA: hazard ratio 4.0 (1.2-12.9), p = 0.02. There were no other differences in demographics, handedness, genetics, or neurologic or neuropsychological tests. Compared to the 24 frequency-matched patients with typical LPA, patients with rLPA showed greater frontotemporal hypometabolism of the nondominant hemisphere on FDG-PET and less atrophy in amygdala and hippocampus of the dominant hemisphere. Autopsy evaluation revealed a similar distribution of pathologic findings in both groups, with Alzheimer disease pathologic changes being the most frequent pathology. CONCLUSIONS rLPA is associated with less severe aphasia but has shorter survival from reported symptom onset than typical LPA, possibly related to greater involvement of the nondominant hemisphere.
Collapse
Affiliation(s)
- Marina Buciuc
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Joseph R Duffy
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Mary M Machulda
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Nha Trang Thu Pham
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Peter R Martin
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Nilüfer Ertekin-Taner
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Jennifer L Whitwell
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Keith Anthony Josephs
- From the Departments of Neurology (M.B., J.R.D., J.G.-R., K.A.J.), Psychiatry and Psychology (M.M.M.), Radiology (N.T.T.P., M.L.S., C.R.J., V.J.L., J.L.W.), Health Science Research (P.R.M.), and Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; and Departments of Neurology (N.E.-T.) and Neuroscience (N.E.-T., D.W.D.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
48
|
Joo JY, Kim HG, Lee KM, Ko SH, Rhee HY, Park KC, Lee JS. Parosmia in Right-lateralized Semantic Variant Primary Progressive Aphasia: A Case Report. Alzheimer Dis Assoc Disord 2021; 35:160-163. [PMID: 33443872 DOI: 10.1097/wad.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Parosmia, defined as the distorted perception of an odor stimulus, has been reported to be associated with head trauma, upper respiratory tract infections, sinonasal diseases, and toxin/drug consumption. To date, little is known about parosmia in right-lateralized semantic variant primary progressive aphasia. A 60-year-old right-handed man presented with a 2-year history of parosmia and prosopagnosia. Brain magnetic resonance imaging demonstrated severe atrophy of the right anterior and mesial temporal lobe, particularly in the fusiform cortex and the regions known as the primary olfactory cortex. 18F-fluorodeoxyglucose position emission tomography showed asymmetric hypometabolism of the bilateral temporal lobes (right > left). We clinically diagnosed him with right-lateralized semantic variant primary progressive aphasia. As the right hemisphere is known to be more involved in the processing of pleasant odors than the left hemisphere, we speculate that the unique manifestation of parosmia observed in this patient might be associated with the lateralization of the olfactory system.
Collapse
Affiliation(s)
| | | | | | - Seok Hoon Ko
- Emergency Medicine, Kyung Hee University Hospital
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
49
|
Peet BT, Spina S, Mundada N, La Joie R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics 2021; 18:728-752. [PMID: 34389969 PMCID: PMC8423978 DOI: 10.1007/s13311-021-01101-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia encompasses a group of clinical syndromes defined pathologically by degeneration of the frontal and temporal lobes. Historically, these syndromes have been challenging to diagnose, with an average of about three years between the time of symptom onset and the initial evaluation and diagnosis. Research in the field of neuroimaging has revealed numerous biomarkers of the various frontotemporal dementia syndromes, which has provided clinicians with a method of narrowing the differential diagnosis and improving diagnostic accuracy. As such, neuroimaging is considered a core investigative tool in the evaluation of neurodegenerative disorders. Furthermore, patterns of neurodegeneration correlate with the underlying neuropathological substrates of the frontotemporal dementia syndromes, which can aid clinicians in determining the underlying etiology and improve prognostication. This review explores the advancements in neuroimaging and discusses the phenotypic and pathologic features of behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, and nonfluent variant primary progressive aphasia, as seen on structural magnetic resonance imaging and positron emission tomography.
Collapse
Affiliation(s)
- Bradley T Peet
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
50
|
Curet Burleson AX, Pham NTT, Buciuc M, Botha H, Duffy JR, Clark HM, Utianski RL, Machulda MM, Baker MC, Rademakers R, Lowe VJ, Whitwell JL, Josephs KA. Neurobehavioral Characteristics of FDG-PET Defined Right-Dominant Semantic Dementia: A Longitudinal Study. Dement Geriatr Cogn Disord 2021; 50:17-28. [PMID: 33756466 PMCID: PMC8243786 DOI: 10.1159/000513979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Semantic dementia (SD) is characterized by fluent speech, anomia, and loss of word and object knowledge with varying degrees of right and left anterior-medial temporal lobe hypometabolism on [18F] fluorodeoxyglucose (FDG)-PET. We assessed neurobehavioral features in SD patients across 3 FDG-PET-defined metabolic patterns and investigated progression over time. METHODS Thirty-four patients with SD who completed FDG-PET were classified into a left- and right-dominant group based on the degree of hypometabolism in each temporal lobe. The left-dominant group was further subdivided depending on whether hypometabolism in the right temporal lobe was more or less than 2 standard deviations from controls (left+ group). Neurobehavioral characteristics determined using the Neuropsychiatric Inventory Questionnaire (NPI-Q) were compared across groups. Progression of NPI-Q scores and FDG-PET hypometabolism was assessed in 14 patients with longitudinal follow-up. RESULTS The right-dominant group performed worse on the NPI-Q and had a greater frequency of abnormal behaviors and more severe disinhibition compared to the left-dominant group. Performance on the NPI-Q and severity of disinhibition correlated with right medial and lateral, but not left, temporal lobe hypometabolism. Severity of abnormal behaviors worsened over time in most left-dominant and left+ patients but appeared to improve in the 2 right-dominant patients with longitudinal follow-up. All groups showed progressive worsening of metabolism in both temporal lobes over time, with hypometabolism spreading from anteromedial to posterior temporal regions. However, the degree of temporal lobe asymmetry remained relatively constant over time. CONCLUSION In SD, neurobehavioral features, especially disinhibition, are associated with right medial and lateral temporal lobe hypometabolism and commonly develop over time even in patients that present with left-dominant patterns of hypometabolism.
Collapse
Affiliation(s)
- Alexis X Curet Burleson
- Medical School of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|