1
|
Kawasaki M, Kawasaki K, Sari FT, Kudo T, Nihara J, Kitamura M, Nagai T, Utama V, Ishida Y, Meguro F, Kesuma A, Fujita A, Nishimura T, Kogure Y, Maruyama S, Tanuma JI, Kakihara Y, Maeda T, Ghafoor S, Khonsari RH, Corre P, Sharpe PT, Cobourne M, Franco B, Ohazama A. Cell-cell interaction determines cell fate of mesoderm-derived cell in tongue development through Hh signaling. eLife 2024; 13:e85042. [PMID: 39392396 PMCID: PMC11469673 DOI: 10.7554/elife.85042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Dysfunction of primary cilia leads to genetic disorder, ciliopathies, which shows various malformations in many vital organs such as brain. Multiple tongue deformities including cleft, hamartoma, and ankyloglossia are also seen in ciliopathies, which yield difficulties in fundamental functions such as mastication and vocalization. Here, we found these tongue anomalies in mice with mutation of ciliary protein. Abnormal cranial neural crest-derived cells (CNCC) failed to evoke Hh signal for differentiation of mesoderm-derived cells into myoblasts, which resulted in abnormal differentiation of mesoderm-derived cells into adipocytes. The ectopic adipose subsequently arrested tongue swelling formation. Ankyloglossia was caused by aberrant cell migration due to lack of non-canonical Wnt signaling. In addition to ciliopathies, these tongue anomalies are often observed as non-familial condition in human. We found that these tongue deformities could be reproduced in wild-type mice by simple mechanical manipulations to disturb cellular processes which were disrupted in mutant mice. Our results provide hints for possible future treatment in ciliopathies.
Collapse
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Finsa Tisna Sari
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Jun Nihara
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Madoka Kitamura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Vanessa Utama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yoko Ishida
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Alex Kesuma
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Akira Fujita
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takayuki Nishimura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yuan Kogure
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Jun-ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Sarah Ghafoor
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Roman H Khonsari
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Pierre Corre
- Service de Chirurgie Maxillofaciale et tomatology, Centre Hospitalier Universitaire de Nantes,1 place Alexis Ricordeau 44000NantesFrance
| | - Paul T Sharpe
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Martyn Cobourne
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics, Department of Translational Medical Sciences, Federico II University of Naples, ItalyNaplesItaly
- Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program,NaplesItaly
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| |
Collapse
|
2
|
Okino R, Goda Y, Ono Y. The Hox-based positional memory in muscle stem cells. J Biochem 2024; 176:277-283. [PMID: 39194026 DOI: 10.1093/jb/mvae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
The skeletal muscle is a contractile tissue distributed throughout the body with various anatomical sizes, shapes and functions. In pathological conditions, such as muscular dystrophy, age-related sarcopenia and cancer cachexia, skeletal muscles are not uniformly affected throughout the body. This region-specific vulnerability cannot be fully explained by known physiological classifications, including muscle fiber types. Accumulating evidence indicates that the expression patterns of topographic homeobox (Hox) genes provide a molecular signature of positional memory, reflecting the anatomical locations and embryonic history of muscles and their associated muscle stem cells in adult mice and humans. Hox-based positional memory is not merely a remnant of embryonic development but is expected to be an intrinsic determinant controlling muscle function because recent studies have shown that aberrant Hox genes affect muscle stem cells. In this review, we discuss the concept of Hox-based positional memory, which may offer a new perspective on the region-specific pathophysiology of muscle disorders.
Collapse
Affiliation(s)
- Ryosuke Okino
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yuki Goda
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yusuke Ono
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| |
Collapse
|
3
|
Dumas CE, Rousset C, De Bono C, Cortés C, Jullian E, Lescroart F, Zaffran S, Adachi N, Kelly RG. Retinoic acid signalling regulates branchiomeric neck muscle development at the head/trunk interface. Development 2024; 151:dev202905. [PMID: 39082789 DOI: 10.1242/dev.202905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024]
Abstract
Skeletal muscles of the head and trunk originate in distinct lineages with divergent regulatory programmes converging on activation of myogenic determination factors. Branchiomeric head and neck muscles share a common origin with cardiac progenitor cells in cardiopharyngeal mesoderm (CPM). The retinoic acid (RA) signalling pathway is required during a defined early time window for normal deployment of cells from posterior CPM to the heart. Here, we show that blocking RA signalling in the early mouse embryo also results in selective loss of the trapezius neck muscle, without affecting other skeletal muscles. RA signalling is required for robust expression of myogenic determination factors in posterior CPM and subsequent expansion of the trapezius primordium. Lineage-specific activation of a dominant-negative RA receptor reveals that trapezius development is not regulated by direct RA signalling to myogenic progenitor cells in CPM, or through neural crest cells, but indirectly through the somitic lineage, closely apposed with posterior CPM in the early embryo. These findings suggest that trapezius development is dependent on precise spatiotemporal interactions between cranial and somitic mesoderm at the head/trunk interface.
Collapse
Affiliation(s)
- Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Célia Rousset
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Claudio Cortés
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Estelle Jullian
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Stéphane Zaffran
- Aix-Marseille Université, INSERM, MMG U1251, 13005 Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| |
Collapse
|
4
|
Grau-Bové X, Subirana L, Meister L, Soubigou A, Neto A, Elek A, Naranjo S, Fornas O, Gomez-Skarmeta JL, Tena JJ, Irimia M, Bertrand S, Sebé-Pedrós A, Escriva H. An amphioxus neurula stage cell atlas supports a complex scenario for the emergence of vertebrate head mesoderm. Nat Commun 2024; 15:4550. [PMID: 38811547 PMCID: PMC11136973 DOI: 10.1038/s41467-024-48774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Anaël Soubigou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Oscar Fornas
- Flow Cytometry Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
- Institut universitaire de France (IUF), Paris, France.
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
| |
Collapse
|
5
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
8
|
Horackova A, Pospisilova A, Stundl J, Minarik M, Jandzik D, Cerny R. Pre-mandibular pharyngeal pouches in early non-teleost fish embryos. Proc Biol Sci 2023; 290:20231158. [PMID: 37700650 PMCID: PMC10498051 DOI: 10.1098/rspb.2023.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
The vertebrate pharynx is a key embryonic structure with crucial importance for the metameric organization of the head and face. The pharynx is primarily built upon progressive formation of paired pharyngeal pouches that typically develop in post-oral (mandibular, hyoid and branchial) domains. However, in the early embryos of non-teleost fishes, we have previously identified pharyngeal pouch-like outpocketings also in the pre-oral domain of the cranial endoderm. This pre-oral gut (POG) forms by early pouching of the primitive gut cavity, followed by the sequential formation of typical (post-oral) pharyngeal pouches. Here, we tested the pharyngeal nature of the POG by analysing expression patterns of selected core pharyngeal regulatory network genes in bichir and sturgeon embryos. Our comparison revealed generally shared expression patterns, including Shh, Pax9, Tbx1, Eya1, Six1, Ripply3 or Fgf8, between early POG and post-oral pharyngeal pouches. POG thus shares pharyngeal pouch-like morphogenesis and a gene expression profile with pharyngeal pouches and can be regarded as a pre-mandibular pharyngeal pouch. We further suggest that pre-mandibular pharyngeal pouches represent a plesiomorphic vertebrate trait inherited from our ancestor's pharyngeal metameric organization, which is incorporated in the early formation of the pre-chordal plate of vertebrate embryos.
Collapse
Affiliation(s)
- Agata Horackova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Jan Stundl
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Martin Minarik
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - David Jandzik
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| |
Collapse
|
9
|
Koyabu D. Evolution, conservatism and overlooked homologies of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220081. [PMID: 37183902 PMCID: PMC10184252 DOI: 10.1098/rstb.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/22/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, studies integrating palaeontology, embryology and experimental developmental biology have markedly altered our homological understanding of the mammalian skull. Indeed, new evidence suggests that we should revisit and restructure the conventional anatomical terminology applied to the components of the mammalian skull. Notably, these are classical problems that have remained unresolved since the ninteenth century. In this review, I offer perspectives on the overlooked problems associated with the homology, development, and conservatism of the mammalian skull, aiming to encourage future studies in these areas. I emphasise that ossification patterns, bone fusion, cranial sutures and taxon-specific neomorphic bones in the skull are virtually unexplored, and further studies would improve our homological understanding of the mammalian skull. Lastly, I highlight that overlooked bones may exist in the skull that are not yet known to science and suggest that further search is needed. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
11
|
Wurmser M, Madani R, Chaverot N, Backer S, Borok M, Dos Santos M, Comai G, Tajbakhsh S, Relaix F, Santolini M, Sambasivan R, Jiang R, Maire P. Overlapping functions of SIX homeoproteins during embryonic myogenesis. PLoS Genet 2023; 19:e1010781. [PMID: 37267426 DOI: 10.1371/journal.pgen.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Rouba Madani
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Nathalie Chaverot
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stéphanie Backer
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Matthew Borok
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | | | - Glenda Comai
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Marc Santolini
- Université de Paris Cité, Interaction Data Lab, CRI Paris, INSERM. Paris, France
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
12
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
13
|
Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development 2023; 150:dev201189. [PMID: 36825984 PMCID: PMC10108707 DOI: 10.1242/dev.201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;β-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;β-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Aileen Ghobadi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Angelita Araujo-Villalba
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Heliya Ziaei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jasmine Alvarez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Lee JH, Peng DQ, Jin XC, Smith SB, Lee HG. Vitamin D3 decreases myoblast fusion during the growth and increases myogenic gene expression during the differentiation phase in muscle satellite cells from Korean native beef cattle. J Anim Sci 2023; 101:skad192. [PMID: 37313716 PMCID: PMC10424720 DOI: 10.1093/jas/skad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dong Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial key laboratory of livestock and poultry feed and feeding in northeastern frigid area, Changchun, China
| | - Xue Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Stephen B Smith
- Department of Animal Science, A&M University, College Station, TX, USA
| | - Hong Gu Lee
- †Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
15
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
16
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
17
|
Feng J, Han X, Yuan Y, Cho CK, Janečková E, Guo T, Pareek S, Rahman MS, Zheng B, Bi J, Jing J, Zhang M, Xu J, Ho TV, Chai Y. TGF-β signaling and Creb5 cooperatively regulate Fgf18 to control pharyngeal muscle development. eLife 2022; 11:e80405. [PMID: 36542062 PMCID: PMC9771365 DOI: 10.7554/elife.80405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The communication between myogenic cells and their surrounding connective tissues is indispensable for muscle morphogenesis. During late embryonic development in mice, myogenic progenitors migrate to discrete sites to form individual muscles. The detailed mechanism of this process remains unclear. Using mouse levator veli palatini (LVP) development as a model, we systematically investigated how a distinct connective tissue subpopulation, perimysial fibroblasts, communicates with myogenic cells to regulate mouse pharyngeal myogenesis. Using single-cell RNAseq data analysis, we identified that TGF-β signaling is a key regulator for the perimysial fibroblasts. Loss of TGF-β signaling in the neural crest-derived palatal mesenchyme leads to defects in perimysial fibroblasts and muscle malformation in the soft palate in Osr2Cre;Tgfbr1fl/fl mice. In particular, Creb5, a transcription factor expressed in the perimysial fibroblasts, cooperates with TGF-β signaling to activate expression of Fgf18. Moreover, Fgf18 supports pharyngeal muscle development in vivo and exogenous Fgf18 can partially rescue myogenic cell numbers in Osr2Cre;Tgfbr1fl/fl samples, illustrating that TGF-β-regulated Fgf18 signaling is required for LVP development. Collectively, our findings reveal the mechanism by which TGF-β signaling achieves its functional specificity in defining the perimysial-to-myogenic signals for pharyngeal myogenesis.
Collapse
Affiliation(s)
- Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Courtney Kyeong Cho
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Banghong Zheng
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jing Bi
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
18
|
Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022; 144:1157-1170. [PMID: 36197469 PMCID: PMC9637588 DOI: 10.1007/s00401-022-02503-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 01/26/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.
Collapse
|
19
|
Zhang Y, Zeuthen C, Zhu C, Wu F, Mezzell AT, Whitlow TJ, Choo HJ, Vest KE. Pharyngeal pathology in a mouse model of oculopharyngeal muscular dystrophy is associated with impaired basal autophagy in myoblasts. Front Cell Dev Biol 2022; 10:986930. [PMID: 36313551 PMCID: PMC9614327 DOI: 10.3389/fcell.2022.986930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset dominant disease that primarily affects craniofacial muscles. Despite the fact that the genetic cause of OPMD is known to be expansion mutations in the gene encoding the nuclear polyadenosine RNA binding protein PABPN1, the molecular mechanisms of pathology are unknown and no pharmacologic treatments are available. Due to the limited availability of patient tissues, several animal models have been employed to study the pathology of OPMD. However, none of these models have demonstrated functional deficits in the muscles of the pharynx, which are predominantly affected by OPMD. Here, we used a knock-in mouse model of OPMD, Pabpn1 +/A17 , that closely genocopies patients. In Pabpn1 +/A17 mice, we detected impaired pharyngeal muscle function, and impaired pharyngeal satellite cell proliferation and fusion. Molecular studies revealed that basal autophagy, which is required for normal satellite cell function, is higher in pharynx-derived myoblasts than in myoblasts derived from limb muscles. Interestingly, basal autophagy is impaired in cells derived from Pabpn1 +/A17 mice. Pabpn1 knockdown in pharyngeal myoblasts failed to recapitulate the autophagy defect detected in Pabpn1 +/A17 myoblasts suggesting that loss of PABPN1 function does not contribute to the basal autophagy defect. Taken together, these studies provide the first evidence for pharyngeal muscle and satellite cell pathology in a mouse model of OPMD and suggest that aberrant gain of PABPN1 function contributes to the craniofacial pathology in OPMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christopher Zeuthen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Carol Zhu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fang Wu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas J. Whitlow
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Whitman MC, Gilette NM, Bell JL, Kim SA, Tischfield M, Engle EC. TWIST1, a gene associated with Saethre-Chotzen syndrome, regulates extraocular muscle organization in mouse. Dev Biol 2022; 490:126-133. [PMID: 35944701 PMCID: PMC9765759 DOI: 10.1016/j.ydbio.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe. Using conditional knock-out alleles for Twist1 in cranial mesenchyme, we test the hypothesis that Twist1 is required for extraocular muscle organization and position, attachment to the globe, and/or innervation by the cranial nerves. We examined the extraocular muscles in conditional Twist1 knock-out animals using Twist2-cre and Pdgfrb-cre drivers. Both are expressed in cranial mesoderm and neural crest. Conditional inactivation of Twist1 using these drivers leads to disorganized extraocular muscles that cannot be reliably identified as specific muscles. Tendons do not form normally at the insertion and origin of these dysplastic muscles. Knock-out of Twist1 expression in tendon precursors, using scleraxis-cre, however, does not alter EOM organization. Furthermore, developing motor neurons, which do not express Twist1, display abnormal axonal trajectories in the orbit in the presence of dysplastic extraocular muscles. Strabismus in individuals with TWIST1 mutations may therefore be caused by abnormalities in extraocular muscle development and secondary abnormalities in innervation and tendon formation.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole M Gilette
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seoyoung A Kim
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Max Tischfield
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
21
|
Yahya I, Hockman D, Brand-Saberi B, Morosan-Puopolo G. New Insights into the Diversity of Branchiomeric Muscle Development: Genetic Programs and Differentiation. BIOLOGY 2022; 11:biology11081245. [PMID: 36009872 PMCID: PMC9404950 DOI: 10.3390/biology11081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary We review the transcription factors and signaling molecules driving differentiation of a subset of head muscles known as the branchiomeric muscles due to their origin in the pharyngeal arches. We provide novel data on the distinct myogenic programs within these muscles and explore how the cranial neural crest cell regulates branchiomeric muscle patterning and differentiation. Abstract Branchiomeric skeletal muscles are a subset of head muscles originating from skeletal muscle progenitor cells in the mesodermal core of pharyngeal arches. These muscles are involved in facial expression, mastication, and function of the larynx and pharynx. Branchiomeric muscles have been the focus of many studies over the years due to their distinct developmental programs and common origin with the heart muscle. A prerequisite for investigating these muscles’ properties and therapeutic potential is understanding their genetic program and differentiation. In contrast to our understanding of how branchiomeric muscles are formed, less is known about their differentiation. This review focuses on the differentiation of branchiomeric muscles in mouse embryos. Furthermore, the relationship between branchiomeric muscle progenitor and neural crest cells in the pharyngeal arches of chicken embryos is also discussed. Additionally, we summarize recent studies into the genetic networks that distinguish between first arch-derived muscles and other pharyngeal arch muscles.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11115, Sudan
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- Correspondence: (I.Y.); (G.M.-P.)
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany
- Correspondence: (I.Y.); (G.M.-P.)
| |
Collapse
|
22
|
Wendt KD, Brown J, Lungova V, Mohad V, Kendziorski C, Thibeault SL. Transcriptome Dynamics in the Developing Larynx, Trachea, and Esophagus. Front Cell Dev Biol 2022; 10:942622. [PMID: 35938172 PMCID: PMC9353518 DOI: 10.3389/fcell.2022.942622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
The larynx, trachea, and esophagus share origin and proximity during embryonic development. Clinical and experimental evidence support the existence of neurophysiological, structural, and functional interdependencies before birth. This investigation provides the first comprehensive transcriptional profile of all three organs during embryonic organogenesis, where differential gene expression gradually assembles the identity and complexity of these proximal organs from a shared origin in the anterior foregut. By applying bulk RNA sequencing and gene network analysis of differentially expressed genes (DEGs) within and across developing embryonic mouse larynx, esophagus, and trachea, we identified co-expressed modules of genes enriched for key biological processes. Organ-specific temporal patterns of gene activity corresponding to gene modules within and across shared tissues during embryonic development (E10.5-E18.5) are described, and the laryngeal transcriptome during vocal fold development and maturation from birth to adulthood is characterized in the context of laryngeal organogenesis. The findings of this study provide new insights into interrelated gene sets governing the organogenesis of this tripartite organ system within the aerodigestive tract. They are relevant to multiple families of disorders defined by cardiocraniofacial syndromes.
Collapse
Affiliation(s)
- Kristy D. Wendt
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Vlasta Lungova
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
| | - Vidisha Mohad
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
| | - Christina Kendziorski
- Department of Biostatistics and Medical Information, University of Wisconsin-Madison, Madison, WI, United States
| | - Susan L. Thibeault
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Susan L. Thibeault,
| |
Collapse
|
23
|
Yahya I, Böing M, Hockman D, Brand-Saberi B, Morosan-Puopolo G. The Emergence of Embryonic Myosin Heavy Chain during Branchiomeric Muscle Development. Life (Basel) 2022; 12:life12060785. [PMID: 35743816 PMCID: PMC9224566 DOI: 10.3390/life12060785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/31/2022] Open
Abstract
A prerequisite for discovering the properties and therapeutic potential of branchiomeric muscles is an understanding of their fate determination, pattering and differentiation. Although the expression of differentiation markers such as myosin heavy chain (MyHC) during trunk myogenesis has been more intensively studied, little is known about its expression in the developing branchiomeric muscle anlagen. To shed light on this, we traced the onset of MyHC expression in the facial and neck muscle anlagen by using the whole-mount in situ hybridization between embryonic days E9.5 and E15.5 in the mouse. Unlike trunk muscle, the facial and neck muscle anlagen express MyHC at late stages. Within the branchiomeric muscles, our results showed variation in the emergence of MyHC expression. MyHC was first detected in the first arch-derived muscle anlagen, while its expression in the second arch-derived muscle and non-somitic neck muscle began at a later time point. Additionally, we show that non-ectomesenchymal neural crest invasion of the second branchial arch is delayed compared with that of the first brachial arch in chicken embryos. Thus, our findings reflect the timing underlying branchiomeric muscle differentiation.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11115, Sudan;
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa;
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa;
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
- Correspondence:
| |
Collapse
|
24
|
Kim E, Wu F, Lim D, Zeuthen C, Zhang Y, Allen J, Muraine L, Trollet C, Vest KE, Choo HJ. Fibroadipogenic Progenitors Regulate the Basal Proliferation of Satellite Cells and Homeostasis of Pharyngeal Muscles via HGF Secretion. Front Cell Dev Biol 2022; 10:875209. [PMID: 35669512 PMCID: PMC9164287 DOI: 10.3389/fcell.2022.875209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle stem cells, known as satellite cells (SCs), are quiescent in normal adult limb muscles. Injury stimulates SC proliferation, differentiation, and fusion to regenerate muscle structure. In pharyngeal muscles, which are critical for swallowing foods and liquids, SCs proliferate and fuse in the absence of injury. It is unknown what factors drive increased basal activity of pharyngeal SCs. Here, we determined how niche factors influence the status of pharyngeal versus limb SCs. In vivo, a subset of pharyngeal SCs present features of activated SCs, including large cell size and increased mitochondrial content. In this study, we discovered that the pharyngeal muscle contains high levels of active hepatocyte growth factor (HGF), which is known to activate SCs in mice and humans. We found that fibroadipogenic progenitors (FAPs) are the major cell type providing HGF and are thus responsible for basal proliferation of SCs in pharyngeal muscles. Lastly, we confirmed the critical role of FAPs for pharyngeal muscle function and maintenance. This study gives new insights to explain the distinctive SC activity of pharyngeal muscles.
Collapse
Affiliation(s)
- Eunhye Kim
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Fang Wu
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Danbi Lim
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Christopher Zeuthen
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Yiming Zhang
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
| | - James Allen
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hyojung J. Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Hur MS, Lee S, Jung HS, Schneider RA. Anatomical connections among the depressor supercilii, levator labii superioris alaeque nasi, and inferior fibers of orbicularis oculi: Implications for variation in human facial expressions. PLoS One 2022; 17:e0264148. [PMID: 35231048 PMCID: PMC8887774 DOI: 10.1371/journal.pone.0264148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine how the depressor supercilii (DS) connects to the levator labii superioris alaeque nasi (LLSAN) and inferior fibers of the orbicularis oculi (OOc INF) in the human midface. While grimacing, contraction of the DS with fibers connecting to the LLSAN and OOc INF can assist in pulling the medial eyebrow downward more than when these connecting fibers are not present. Contraction of these distinct connecting fibers between the DS and the LLSAN can also slightly elevate the nasal ala and upper lip. The DS was examined in 44 specimens of embalmed adult Korean cadavers. We found that the DS connected to the LLSAN or the OOc INF by muscle fibers or thin aponeuroses in 33 (75.0%) of the 44 specimens. The DS was connected to both the LLSAN and OOc INF by muscle fibers or aponeuroses and had no connection to either in 5 (11.4%) and 11 (25.0%) specimens, respectively. The DS was connected to the LLSAN by the muscle fibers and thin aponeuroses in 6 (13.6%) and 4 (9.1%) specimens, respectively. The DS was connected to the OOc INF by the muscle fibers and thin aponeuroses in 5 (11.4%) and 23 (52.3%) specimens, respectively. Our findings regarding the anatomical connections of the glabellar region DS to the midface LLSAN and OOc INF provide insights on the dynamic balance between the brow depressors such as the DS and brow-elevating muscle and contribute to understanding the anatomical origins of individual variation in facial expressions. These results can also improve the safety, predictability, and aesthetics of treatments for the glabellar region with botulinum toxin type A and can be helpful when performing electromyography.
Collapse
Affiliation(s)
- Mi-Sun Hur
- Department of Anatomy, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Seunggyu Lee
- Division of Applied Mathematical Sciences, Korea University, Sejong, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
26
|
Goto A, Kokabu S, Dusadeemeelap C, Kawaue H, Matsubara T, Tominaga K, Addison WN. Tongue Muscle for the Analysis of Head Muscle Regeneration Dynamics. J Dent Res 2022; 101:962-971. [PMID: 35193429 DOI: 10.1177/00220345221075966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tongue muscle damage impairs speaking and eating, thereby degrading overall health and quality of life. Skeletal muscles of the body are diverse in embryonic origin, anatomic location, and gene expression profiles. Responses to disease, atrophy, aging, or drugs vary among different muscles. Currently, most muscle studies are focused on limb muscles and the tongue is neglected. The regenerative ability of tongue muscle remains unknown, and thus there is need for tongue muscle research models. Here, we present a comprehensive characterization of the spatiotemporal dynamics in a mouse model of tongue muscle regeneration and establish a method for the isolation of primary tongue-derived satellite cells. We compare and contrast our observations with the tibialis anterior (TA) limb muscle. Acute injury was induced by intramuscular injection of cardiotoxin, a cytolytic agent, and examined at multiple timepoints. Initially, necrotic myofibers with fragmented sarcoplasm became infiltrated with inflammatory cells. Concomitantly, satellite cells expanded rapidly. Seven days postinjury, regenerated myofibers with centralized nuclei appeared. Full regeneration, as well as an absence of fibrosis, was evident 21 d postinjury. Primary tongue-derived satellite cells were isolated by enzymatic separation of tongue epithelium from mesenchyme followed by magnetic-activated cell sorting. We observed that tongue displays an efficient regenerative response similar to TA but with slightly faster kinetics. In vitro, tongue-derived satellite cells differentiated robustly into mature myotubes with spontaneous contractile behavior and myogenic marker expression. Comparison of gene expression signatures between tongue and TA-derived satellite cells revealed differences in the expression of positional-identity genes, including the HOX family. In conclusion, we have established a model for tongue regeneration useful for investigations of orofacial muscle biology. Furthermore, we showed that tongue is a viable source of satellite cells with unique properties and inherited positional memory.
Collapse
Affiliation(s)
- A Goto
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - S Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - C Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - H Kawaue
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - K Tominaga
- Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - W N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
27
|
Lescroart F, Dumas CE, Adachi N, Kelly RG. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm. Exp Cell Res 2021; 410:112931. [PMID: 34798131 DOI: 10.1016/j.yexcr.2021.112931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
Branchiomeric muscles of the head and neck originate in a population of cranial mesoderm termed cardiopharyngeal mesoderm that also contains progenitor cells contributing to growth of the embryonic heart. Retrospective lineage analysis has shown that branchiomeric muscles share a clonal origin with parts of the heart, indicating the presence of common heart and head muscle progenitor cells in the early embryo. Genetic lineage tracing and functional studies in the mouse, as well as in Ciona and zebrafish, together with recent experiments using single cell transcriptomics and multipotent stem cells, have provided further support for the existence of bipotent head and heart muscle progenitor cells. Current challenges concern defining where and when such common progenitor cells exist in mammalian embryos and how alternative myogenic derivatives emerge in cardiopharyngeal mesoderm. Addressing these questions will provide insights into mechanisms of cell fate acquisition and the evolution of vertebrate musculature, as well as clinical insights into the origins of muscle restricted myopathies and congenital defects affecting craniofacial and cardiac development.
Collapse
Affiliation(s)
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France.
| |
Collapse
|
28
|
Dempsey B, Sungeelee S, Bokiniec P, Chettouh Z, Diem S, Autran S, Harrell ER, Poulet JFA, Birchmeier C, Carey H, Genovesio A, McMullan S, Goridis C, Fortin G, Brunet JF. A medullary centre for lapping in mice. Nat Commun 2021; 12:6307. [PMID: 34728601 PMCID: PMC8563905 DOI: 10.1038/s41467-021-26275-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.
Collapse
Affiliation(s)
- Bowen Dempsey
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Selvee Sungeelee
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Phillip Bokiniec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Zoubida Chettouh
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Séverine Diem
- Université Paris-Saclay, CNRS, Institut des Neurosciences NeuroPSI, Gif-sur-Yvette, France
| | - Sandra Autran
- Université Paris-Saclay, CNRS, Institut des Neurosciences NeuroPSI, Gif-sur-Yvette, France
| | - Evan R Harrell
- Institut Pasteur, INSERM, Institut de l'Audition, Paris, France
| | - James F A Poulet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, and Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Harry Carey
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Auguste Genovesio
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Simon McMullan
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Christo Goridis
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Gilles Fortin
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France.
| |
Collapse
|
29
|
Wang Q, Xu L, Miura J, Saha MK, Uemura Y, Sandell LL, Trainor PA, Yamashiro T, Kurosaka H. Branchiomeric Muscle Development Requires Proper Retinoic Acid Signaling. Front Cell Dev Biol 2021; 9:596838. [PMID: 34307338 PMCID: PMC8299418 DOI: 10.3389/fcell.2021.596838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
The first and second branchiomeric (branchial arch) muscles are craniofacial muscles that derive from branchial arch mesoderm. In mammals, this set of muscles is indispensable for jaw movement and facial expression. Defects during embryonic development that result in congenital partial absence of these muscles can have significant impact on patients’ quality of life. However, the detailed molecular and cellular mechanisms that regulate branchiomeric muscle development remains poorly understood. Herein we investigated the role of retinoic acid (RA) signaling in developing branchiomeric muscles using mice as a model. We administered all-trans RA (25 mg/kg body weight) to Institute of Cancer Research (ICR) pregnant mice by gastric intubation from E8.5 to E10.5. In their embryos at E13.5, we found that muscles derived from the first branchial arch (temporalis, masseter) and second branchial arch (frontalis, orbicularis oculi) were severely affected or undetectable, while other craniofacial muscles were hypoplastic. We detected elevated cell death in the branchial arch mesoderm cells in RA-treated embryos, suggesting that excessive RA signaling reduces the survival of precursor cells of branchiomeric muscles, resulting in the development of hypoplastic craniofacial muscles. In order to uncover the signaling pathway(s) underlying this etiology, we focused on Pitx2, Tbx1, and MyoD1, which are critical for cranial muscle development. Noticeably reduced expression of all these genes was detected in the first and second branchial arch of RA-treated embryos. Moreover, elevated RA signaling resulted in a reduction in Dlx5 and Dlx6 expression in cranial neural crest cells (CNCCs), which disturbed their interactions with branchiomeric mesoderm cells. Altogether, we discovered that embryonic craniofacial muscle defects caused by excessive RA signaling were associated with the downregulation of Pitx2, Tbx1, MyoD1, and Dlx5/6, and reduced survival of cranial myogenic precursor cells.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan.,The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Lin Xu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mithun Kumar Saha
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Yume Uemura
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
30
|
Yoshioka K, Nagahisa H, Miura F, Araki H, Kamei Y, Kitajima Y, Seko D, Nogami J, Tsuchiya Y, Okazaki N, Yonekura A, Ohba S, Sumita Y, Chiba K, Ito K, Asahina I, Ogawa Y, Ito T, Ohkawa Y, Ono Y. Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. SCIENCE ADVANCES 2021; 7:7/24/eabd7924. [PMID: 34108202 PMCID: PMC8189581 DOI: 10.1126/sciadv.abd7924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Muscle stem cells (satellite cells) are distributed throughout the body and have heterogeneous properties among muscles. However, functional topographical genes in satellite cells of adult muscle remain unidentified. Here, we show that expression of Homeobox-A (Hox-A) cluster genes accompanied with DNA hypermethylation of the Hox-A locus was robustly maintained in both somite-derived muscles and their associated satellite cells in adult mice, which recapitulates their embryonic origin. Somite-derived satellite cells were clearly separated from cells derived from cranial mesoderm in Hoxa10 expression. Hoxa10 inactivation led to genomic instability and mitotic catastrophe in somite-derived satellite cells in mice and human. Satellite cell-specific Hoxa10 ablation in mice resulted in a decline in the regenerative ability of somite-derived muscles, which were unobserved in cranial mesoderm-derived muscles. Thus, our results show that Hox gene expression profiles instill the embryonic history in satellite cells as positional memory, potentially modulating region-specific pathophysiology in adult muscles.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hiroshi Nagahisa
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshifumi Tsuchiya
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Akihiko Yonekura
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshinori Sumita
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
31
|
Kent RD. Developmental Functional Modules in Infant Vocalizations. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1581-1604. [PMID: 33861626 DOI: 10.1044/2021_jslhr-20-00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Purpose Developmental functional modules (DFMs) are biological modules that are defined by their structural (morphological), functional, or developmental elements, and, in some cases, all three of these. This review article considers the hypothesis that vocal development in the first year of life can be understood in large part with respect to DFMs that characterize the speech production system. Method Literature is reviewed on relevant embryology, orofacial reflexes, craniofacial muscle properties, stages of vocal development, and related topics to identity candidates for DFMs. Results The following DFMs are identified and described: laryngeal, pharyngo-laryngeal, mandibular, velopharyngeal, labial complex, and lingual complex. These DFMs and their submodules, considered along with phenomena such as rhythmic movements, account for several well-documented features of vocal development in the first year of life. The proposed DFMs, rooted in embryologic, histologic, and kinematic properties, serve as low-dimensional control variables for the developing vocal tract. Each DFM is semi-autonomous but interacts with other DFMs to produce patterns of vocal behavior. Discussion Considered in relation to contemporary profiles and models of vocal development in the first year of life, DFMs have interpretive and explanatory value. DFMs complement other approaches in the study of infant vocalizations and are grounded in biology.
Collapse
Affiliation(s)
- Ray D Kent
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison
| |
Collapse
|
32
|
Jiao S, Xu R, Du S. Smyd1 is essential for myosin expression and sarcomere organization in craniofacial, extraocular, and cardiac muscles. J Genet Genomics 2021; 48:208-218. [PMID: 33958316 PMCID: PMC9234968 DOI: 10.1016/j.jgg.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known. Here, we analyze the developmental expression and function of two smyd1 paralogous genes, smyd1a and smyd1b, in craniofacial and cardiac muscles of zebrafish embryos. Our data show that loss of smyd1a (smyd1amb5) or smyd1b (smyd1bsa15678) has no visible effects on myogenic commitment and expression of myod and myosin heavy-chain mRNA transcripts in craniofacial muscles. However, myosin heavy-chain protein accumulation and sarcomere organization are dramatically reduced in smyd1bsa15678 single mutant, and almost completely diminish in smyd1amb5; smyd1bsa15678 double mutant, but not in smyd1amb5 mutant. Similar defects are also observed in cardiac muscles of smyd1bsa15678 mutant. Defective craniofacial and cardiac muscle formation is associated with an upregulation of hsp90α1 and unc45b mRNA expression in smyd1bsa15678 and smyd1amb5; smyd1bsa15678 mutants. Together, our studies indicate that Smyd1b, but not Smyd1a, plays a key role in myosin heavy-chain protein expression and sarcomere organization in craniofacial and cardiac muscles. Loss of smyd1b results in muscle-specific stress response.
Collapse
Affiliation(s)
- Shuang Jiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA.
| |
Collapse
|
33
|
Ozolek JA, Tekkesin MS. THE "-OMAS" and "-OPIAS": Targeted and Philosophical Considerations Regarding Hamartomas, Choristomas, Teratomas, Ectopias, and Heterotopias in Pediatric Otorhinolaryngologic Pathology. Head Neck Pathol 2021; 15:25-40. [PMID: 33723758 PMCID: PMC8010027 DOI: 10.1007/s12105-020-01251-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
The spectrum of "developmental" lesions that occur in the head and neck predominantly congenital in origin and arising at birth and/or discovered in childhood is broad and fascinating. These have been grouped into categories such as "ectopias", "heterotopias", "hamartomas", and "choristomas". On a philosophical and consequently systematic level, these lesions, mostly benign tumors seem to lack a true understanding of the pathogenetic foundation on which to base a more unified taxonomic designation. In this review, we will consider some of these select tumors as they represent syndromic associations (nasal chondromesenchymal hamartoma and DICER1 syndrome), the lingual choristoma from the perspective of its nomenclature and classification, lesions with ectopic meningothelial elements, and teratomas and the enigmatic "hairy polyp" in reference to a broader discussion of pathogenesis and pluripotent cells in the head and neck. A consistent thread will be how these lesions are designated with some final thoughts on future directions regarding the investigation of their pathogenesis and taxonomic nomenclature.
Collapse
Affiliation(s)
- John A Ozolek
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Merva Soluk Tekkesin
- Department of Tumour Pathology, Institute of Oncology, Istanbul University, Istanbul, Capa-Istanbul, 34093, Turkey
| |
Collapse
|
34
|
Guibentif C, Griffiths JA, Imaz-Rosshandler I, Ghazanfar S, Nichols J, Wilson V, Göttgens B, Marioni JC. Diverse Routes toward Early Somites in the Mouse Embryo. Dev Cell 2021; 56:141-153.e6. [PMID: 33308481 PMCID: PMC7808755 DOI: 10.1016/j.devcel.2020.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
Somite formation is foundational to creating the vertebrate segmental body plan. Here, we describe three transcriptional trajectories toward somite formation in the early mouse embryo. Precursors of the anterior-most somites ingress through the primitive streak before E7 and migrate anteriorly by E7.5, while a second wave of more posterior somites develops in the vicinity of the streak. Finally, neuromesodermal progenitors (NMPs) are set aside for subsequent trunk somitogenesis. Single-cell profiling of T-/- chimeric embryos shows that the anterior somites develop in the absence of T and suggests a cell-autonomous function of T as a gatekeeper between paraxial mesoderm production and the building of the NMP pool. Moreover, we identify putative regulators of early T-independent somites and challenge the T-Sox2 cross-antagonism model in early NMPs. Our study highlights the concept of molecular flexibility during early cell-type specification, with broad relevance for pluripotent stem cell differentiation and disease modeling.
Collapse
Affiliation(s)
- Carolina Guibentif
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK; Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Jonathan A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of the Biological Sciences, University of Edinburgh, EH16 4UU Edinburgh, UK.
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, European Molecular Biology Laboratory, EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| |
Collapse
|
35
|
Yoshioka K, Kitajima Y, Seko D, Tsuchiya Y, Ono Y. The body region specificity in murine models of muscle regeneration and atrophy. Acta Physiol (Oxf) 2021; 231:e13553. [PMID: 32875719 PMCID: PMC7757168 DOI: 10.1111/apha.13553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
AIM Skeletal muscles are distributed throughout the body, presenting a variety of sizes, shapes and functions. Here, we examined whether muscle regeneration and atrophy occurred homogeneously throughout the body in mouse models. METHODS Acute muscle regeneration was induced by a single intramuscular injection of cardiotoxin in adult mice. Chronic muscle regeneration was assessed in mdx mice. Muscle atrophy in different muscles was evaluated by cancer cachexia, ageing and castration mouse models. RESULTS We found that, in the cardiotoxin-injected acute muscle injury model, head muscles slowly regenerated, while limb muscles exhibited a rapid regeneration and even overgrowth. This overgrowth was also observed in limb muscles alone (but not in head muscles) in mdx mice as chronic injury models. We described the body region-specific decline in the muscle mass in muscle atrophy models: cancer cachexia-induced, aged and castrated mice. The positional identities, including gene expression profiles and hormone sensitivity, were robustly preserved in the ectopically engrafted satellite cell-derived muscles in the castrated model. CONCLUSION Our results indicate that positional identities in muscles should be considered for the development of efficient regenerative therapies for muscle weakness, such as muscular dystrophy and age-related sarcopenia.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yoshifumi Tsuchiya
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| |
Collapse
|
36
|
Yahya I, Morosan-Puopolo G, Brand-Saberi B. The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles. Front Cell Dev Biol 2020; 8:615264. [PMID: 33415110 PMCID: PMC7783292 DOI: 10.3389/fcell.2020.615264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany.,Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
38
|
Comai GE, Tesařová M, Dupé V, Rhinn M, Vallecillo-García P, da Silva F, Feret B, Exelby K, Dollé P, Carlsson L, Pryce B, Spitz F, Stricker S, Zikmund T, Kaiser J, Briscoe J, Schedl A, Ghyselinck NB, Schweitzer R, Tajbakhsh S. Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biol 2020; 18:e3000902. [PMID: 33201874 PMCID: PMC7707851 DOI: 10.1371/journal.pbio.3000902] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/01/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.
Collapse
Affiliation(s)
- Glenda Evangelina Comai
- Stem Cells & Development Unit, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
- * E-mail: (GEC); (ST)
| | - Markéta Tesařová
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Valérie Dupé
- Université de Rennes, CNRS, IGDR, Rennes, France
| | - Muriel Rhinn
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | | | - Fabio da Silva
- Université Côte d'Azur, INSERM, CNRS, iBV, Nice, France
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Betty Feret
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | | | - Pascal Dollé
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, United States of America
| | - François Spitz
- Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | | | | | - Norbert B. Ghyselinck
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, United States of America
| | - Shahragim Tajbakhsh
- Stem Cells & Development Unit, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
- * E-mail: (GEC); (ST)
| |
Collapse
|
39
|
Is the plantaris muscle the most undefined human skeletal muscle? Anat Sci Int 2020; 96:471-477. [PMID: 33159667 PMCID: PMC8139894 DOI: 10.1007/s12565-020-00586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023]
Abstract
The plantaris muscle is located in the posterior aspect of the superficial compartment of the lower leg, running from the lateral condyle of the femur to the calcaneal tuberosity. Classically, it is characterized by a small and fusiform muscle belly, which then changes into a long slender tendon. From the evolutionary point of view, the muscle is considered vestigial. However, it has recently been suspected of being a highly specialized sensory muscle because of its high density of muscle spindles. It has a noticeable tendency to vary in respect of both origin and insertion. Researchers have published many reports on the potential clinical significance of the muscle belly and tendon, including mid-portion Achilles tendinopathy, ‘tennis leg syndrome’, and popliteal artery entrapment syndrome. The right knee joint area was subjected to classical anatomical dissection, during which an atypical plantaris muscle was found and examined in detail. Accurate morphometric measurements were made. The muscle belly was assessed as bifurcated. Morphologically, superior and inferior parts were presented. There was a tendinous connection (named band A) with the iliotibial tract and an additional insertion (named band B) to the semimembranosus tendon. Both bands A and B presented very broad fan-shaped attachments. The human plantaris muscle is of considerable interest and has frequent morphological variations in its proximal part. Its specific characteristics can cause clinical problems and lead to confusion in diagnosis. More studies are needed to define its actual features and functions.
Collapse
|
40
|
Vyas B, Nandkishore N, Sambasivan R. Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin. Cell Mol Life Sci 2020; 77:1933-1945. [PMID: 31722070 PMCID: PMC11105048 DOI: 10.1007/s00018-019-03373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Vertebrate cranial mesoderm is a discrete developmental unit compared to the mesoderm below the developing neck. An extraordinary feature of the cranial mesoderm is that it includes a common progenitor pool contributing to the chambered heart and the craniofacial skeletal muscles. This striking developmental potential and the excitement it generated led to advances in our understanding of cranial mesoderm developmental mechanism. Remarkably, recent findings have begun to unravel the origin of its distinct developmental characteristics. Here, we take a detailed view of the ontogenetic trajectory of cranial mesoderm and its regulatory network. Based on the emerging evidence, we propose that cranial and posterior mesoderm diverge at the earliest step of the process that patterns the mesoderm germ layer along the anterior-posterior body axis. Further, we discuss the latest evidence and their impact on our current understanding of the evolutionary origin of cranial mesoderm. Overall, the review highlights the findings from contemporary research, which lays the foundation to probe the molecular basis of unique developmental potential and evolutionary origin of cranial mesoderm.
Collapse
Affiliation(s)
- Bhakti Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitya Nandkishore
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus, Karakambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
41
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
42
|
Cxcr4 and Sdf-1 are critically involved in the formation of facial and non-somitic neck muscles. Sci Rep 2020; 10:5049. [PMID: 32193486 PMCID: PMC7081242 DOI: 10.1038/s41598-020-61960-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
The present study shows that the CXCR4/SDF-1 axis regulates the migration of second branchial arch-derived muscles as well as non-somitic neck muscles. Cxcr4 is expressed by skeletal muscle progenitor cells in the second branchial arch (BA2). Muscles derived from the second branchial arch, but not from the first, fail to form in Cxcr4 mutants at embryonic days E13.5 and E14.5. Cxcr4 is also required for the development of non-somitic neck muscles. In Cxcr4 mutants, non-somitic neck muscle development is severely perturbed. In vivo experiments in chicken by means of loss-of-function approach based on the application of beads loaded with the CXCR4 inhibitor AMD3100 into the cranial paraxial mesoderm resulted in decreased expression of Tbx1 in the BA2. Furthermore, disrupting this chemokine signal at a later stage by implanting these beads into the BA2 caused a reduction in MyoR, Myf5 and MyoD expression. In contrast, gain-of-function experiments based on the implantation of SDF-1 beads into BA2 resulted in an attraction of myogenic progenitor cells, which was reflected in an expansion of the expression domain of these myogenic markers towards the SDF-1 source. Thus, Cxcr4 is required for the formation of the BA2 derived muscles and non-somitic neck muscles.
Collapse
|
43
|
Adachi N, Bilio M, Baldini A, Kelly RG. Cardiopharyngeal mesoderm origins of musculoskeletal and connective tissues in the mammalian pharynx. Development 2020; 147:147/3/dev185256. [PMID: 32014863 DOI: 10.1242/dev.185256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Cardiopharyngeal mesoderm (CPM) gives rise to muscles of the head and heart. Using genetic lineage analysis in mice, we show that CPM develops into a broad range of pharyngeal structures and cell types encompassing musculoskeletal and connective tissues. We demonstrate that CPM contributes to medial pharyngeal skeletal and connective tissues associated with both branchiomeric and somite-derived neck muscles. CPM and neural crest cells (NCC) make complementary mediolateral contributions to pharyngeal structures, in a distribution established in the early embryo. We further show that biallelic expression of the CPM regulatory gene Tbx1, haploinsufficient in 22q11.2 deletion syndrome patients, is required for the correct patterning of muscles with CPM-derived connective tissue. Our results suggest that CPM plays a patterning role during muscle development, similar to that of NCC during craniofacial myogenesis. The broad lineage contributions of CPM to pharyngeal structures provide new insights into congenital disorders and evolution of the mammalian pharynx.
Collapse
Affiliation(s)
- Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Marchesa Bilio
- CNR Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonio Baldini
- CNR Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino 111, 80131 Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| |
Collapse
|
44
|
Bordoni B, Morabito B. Reflections on the Development of Fascial Tissue: Starting from Embryology. ADVANCES IN MEDICAL EDUCATION AND PRACTICE 2020; 11:37-39. [PMID: 32021541 PMCID: PMC6970272 DOI: 10.2147/amep.s232947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/23/2019] [Indexed: 05/05/2023]
Abstract
A great many articles discuss the histological aspects of fascial tissue in detail, but at the same time, there are many contradictions within the literature. In addition, there is a paucity of scientific data that allow straightforward classification of what tissue the fascia truly is. More precise classification of fascial tissue is essential in improving clinical care and effectively framing patient needs. Embryology is an indispensable starting point for understanding the many functions of the fascial tissue. This scientific discipline allows us to observe the relationships and adaptability of fascia both at local and systemic levels. This article reflects on modern scientific knowledge concerning the classification of fascia from an embryological standpoint with the aim of improving our understanding of connective tissue.
Collapse
Affiliation(s)
- Bruno Bordoni
- Foundation Don Carlo Gnocchi IRCCS, Department of Cardiology, Institute of Hospitalization and Care with Scientific Address, S Maria Nascente, Milan20100, Italy
- Department of Osteopathy, Asomi, Torino, Italy
| | - Bruno Morabito
- Foundation Polyclinic University A. Gemelli University Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
45
|
Mechanism of muscle–tendon–bone complex development in the head. Anat Sci Int 2020; 95:165-173. [DOI: 10.1007/s12565-019-00523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
|
46
|
Bordoni B, Walkowski S, Morabito B, Varacallo MA. Fascial Nomenclature: An Update. Cureus 2019; 11:e5718. [PMID: 31720186 PMCID: PMC6823065 DOI: 10.7759/cureus.5718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Throughout the development of anatomy as a scientific study, authors have been challenged to give a singular comprehensive definition of what should be considered as a fascial tissue. Instead, the multiplicity of synthesis and analysis is the true richness of scientific research: individual points of view and background look at the fascia from their own perspective, sometimes influenced by their own cultural assumptions. No person or organization in science ever have the absolute truth, because scientific truth is always evolving, driven by new observations and analysis of data. Only by observing the fascia from multiple perspectives (doctor, surgeon, osteopath, physiotherapist, bioengineer and more) can we define more fully what fascial tissue is. It becomes the synergistic result of several scientific disciplines (anatomy, cardiology, angiology, orthopaedics, osteopathy, cytology, and more). The fascia is not the exclusive domain of a few people or individual private associations, but of all researchers who journey through the study of knowledge and arrive at an understanding, improving the clinical aspects for the good of the patient, without profit. This article reviews the embryological evolution of muscle and connective tissue to affirm how the fascial system should be ideally conceptualized: an absolute anatomic functional continuum.
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Stevan Walkowski
- Osteopathic Manipulative Medicine, Heritage College of Osteopathic Medicine-Dublin, Ohio, USA
| | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| | - Matthew A Varacallo
- Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, USA
| |
Collapse
|
47
|
Comai G, Heude E, Mella S, Paisant S, Pala F, Gallardo M, Langa F, Kardon G, Gopalakrishnan S, Tajbakhsh S. A distinct cardiopharyngeal mesoderm genetic hierarchy establishes antero-posterior patterning of esophagus striated muscle. eLife 2019; 8:e47460. [PMID: 31535973 PMCID: PMC6752947 DOI: 10.7554/elife.47460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.
Collapse
Affiliation(s)
- Glenda Comai
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Eglantine Heude
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Department Adaptation du VivantCNRS/MNHN UMR 7221, Muséum national d’Histoire naturelleParisFrance
| | - Sebastian Mella
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Sylvain Paisant
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Francesca Pala
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Laboratory of Clinical Immunology and Microbiology (LCIM)National Institutes of HealthBethesdaUnited States
| | - Mirialys Gallardo
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Francina Langa
- Mouse Genetics Engineering CenterInstitut PasteurParisFrance
| | - Gabrielle Kardon
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Swetha Gopalakrishnan
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Institute of Biotechnology, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| |
Collapse
|
48
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
49
|
Wang H, Holland PWH, Takahashi T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo 2019; 10:14. [PMID: 31312422 PMCID: PMC6612195 DOI: 10.1186/s13227-019-0128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. Results Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior–posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial–lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. Conclusions In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial–lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites. Electronic supplementary material The online version of this article (10.1186/s13227-019-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijia Wang
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Peter W H Holland
- 2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Tokiharu Takahashi
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
50
|
Aldea D, Subirana L, Keime C, Meister L, Maeso I, Marcellini S, Gomez-Skarmeta JL, Bertrand S, Escriva H. Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol 2019; 3:1233-1240. [PMID: 31263232 DOI: 10.1038/s41559-019-0933-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'.
Collapse
Affiliation(s)
- Daniel Aldea
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258, CNRS, UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|