1
|
Yan S, Liu Z, Wang T, Sui Y, Wu X, Shen J, Pu P, Yang Y, Wu S, Qiu S, Wang Z, Jiang X, Feng F, Li G, Liu F, Zhao C, Liu K, Feng J, Li M, Man K, Wang C, Tang Y, Liu Y. Super-Enhancer Reprograming Driven by SOX9 and TCF7L2 Represents Transcription-Targeted Therapeutic Vulnerability for Treating Gallbladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406448. [PMID: 39492805 DOI: 10.1002/advs.202406448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy lacking clinically available targeted therapeutic agents. Super-enhancers (SEs) are crucial epigenetic cis-regulatory elements whose extensive reprogramming drives aberrant transcription in cancers. To study SE in GBC, the genomic distribution of H3K27ac is profiled in multiple GBC tissue and cell line samples to establish the SE landscape and its associated core regulatory circuitry (CRC). The biliary lineage factor SOX9 and Wnt pathway effector TCF7L2, two master transcription factor (TF) candidates identified by CRC analysis, are verified to co-occupy each other's SE region, forming a mutually autoregulatory loop to drive oncogenic SE reprogramming in a subset of GBC. The SOX9/TCF7L2 double-high GBC cells are highly dependent on the two TFs and enriched of SE-associated gene signatures related to stemness, ErbB and Wnt pathways. Patients with more such GBC cells exhibited significantly worse prognosis. Furthermore, SOX9/TCF7L2 double-high GBC preclinical models are found to be susceptible to SE-targeted CDK7 inhibition therapy in vitro and in vivo. Together, this study provides novel insights into the epigenetic mechanisms underlying the oncogenesis of a subset of GBCs with poorer prognosis and illustrates promising prognostic stratification and therapeutic strategies for treating those GBC patients in future clinical trials.
Collapse
Affiliation(s)
- Siyuan Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Zhaonan Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, P. R. China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jiayi Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Sizhong Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - FaTao Liu
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Chaoxian Zhao
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Jiayi Feng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077, P. R. China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, P. R. China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, P. R. China
- Department of General Surgery, Jiading Branch, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201800, P. R. China
| |
Collapse
|
2
|
Chatterjee A, Gallent B, Katiki M, Qian C, Harter MR, Silletti S, Komives EA, Freeman MR, Murali R. The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2. Nat Commun 2024; 15:9037. [PMID: 39426953 PMCID: PMC11490551 DOI: 10.1038/s41467-024-53159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
The CUT and homeodomain are ubiquitous DNA binding elements often tandemly arranged in multiple transcription factor families. However, how the CUT and homeodomain work concertedly to bind DNA remains unknown. Using ONECUT2, a driver and therapeutic target of advanced prostate cancer, we show that while the CUT initiates DNA binding, the homeodomain thermodynamically stabilizes the ONECUT2-DNA complex through allosteric modulation of CUT. We identify an arginine pair in the ONECUT family homeodomain that can adapt to DNA sequence variations. Base interactions by this ONECUT family-specific arginine pair as well as the evolutionarily conserved residues are critical for optimal DNA binding and ONECUT2 transcriptional activity in a prostate cancer model. The evolutionarily conserved base interactions additionally determine the ONECUT2-DNA binding energetics. These findings provide insights into the cooperative DNA binding by CUT-homeodomain proteins.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brad Gallent
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Madhusudhanarao Katiki
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew R Harter
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steve Silletti
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Toriyama K, Uehara T, Iwakoshi A, Kawashima H, Hosoda W. HNF6 and HNF4α expression in adenocarcinomas of the liver, pancreaticobiliary tract, and gastrointestinal tract: an immunohistochemical study of 480 adenocarcinomas of the digestive system. Pathology 2024; 56:804-813. [PMID: 38926048 DOI: 10.1016/j.pathol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 06/28/2024]
Abstract
Hepatocyte nuclear factors (HNF) 6 and 4α are master transcriptional regulators of development and maintenance of the liver and pancreaticobiliary tract in mice and humans. However, little is known about the prevalence of HNF6 and HNF4α expression in carcinomas of the hepatobiliary tract and pancreas. We aimed to reveal the diagnostic utility of HNF6 and HNF4α immunolabelling in adenocarcinomas of these organs. We investigated HNF6 and HNF4α expression by immunohistochemistry using a total of 480 adenocarcinomas of the digestive system, including 282 of the hepatobiliary tract and pancreas and 198 of the gastrointestinal tract. HNF6 expression was primarily restricted to intrahepatic cholangiocarcinomas (CCs) (63%, n=80) and gallbladder adenocarcinomas (43%, n=88), among others. Notably, small duct intrahepatic CCs almost invariably expressed HNF6 (90%, n=42), showing stark contrast to a low prevalence in large duct intrahepatic CCs (10%, n=21; p<0.0001). HNF6 expression was infrequent in extrahepatic CCs (9%, n=55) and pancreatic ductal adenocarcinomas (7%, n=58), and it was rare in adenocarcinomas of the gastrointestinal tract [oesophagus/oesophagogastric junction (EGJ) (2%, n=45), stomach (2%, n=86), duodenum (0%, n=25), and colorectum (0%, n=42)]. In contrast, HNF4α was widely expressed among adenocarcinomas of the digestive system, including intrahepatic CCs (88%), extrahepatic CCs (94%), adenocarcinomas of the gallbladder (98%), pancreas (98%), oesophagus/EGJ (96%), stomach (98%), duodenum (80%), and colorectum (100%). HNF6 was frequently expressed in and almost restricted to intrahepatic CCs of small duct type and gallbladder adenocarcinomas, while HNF4α was expressed throughout adenocarcinomas of the digestive system. HNF6 immunolabelling may be useful in distinguishing small duct intrahepatic CCs from other types of CC as well as metastatic gastrointestinal adenocarcinomas.
Collapse
Affiliation(s)
- Kazuhiro Toriyama
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akari Iwakoshi
- Department of Pathology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.
| |
Collapse
|
4
|
Laddach A, Pachnis V, Shapiro M. TrajectoryGeometry suggests cell fate decisions can involve branches rather than bifurcations. NAR Genom Bioinform 2024; 6:lqae139. [PMID: 39380945 PMCID: PMC11459380 DOI: 10.1093/nargab/lqae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Differentiation of multipotential progenitor cells is a key process in the development of any multi-cellular organism and often continues throughout its life. It is often assumed that a bi-potential progenitor develops along a (relatively) straight trajectory until it reaches a decision point where the trajectory bifurcates. At this point one of two directions is chosen, each direction representing the unfolding of a new transcriptional programme. However, we have lacked quantitative means for testing this model. Accordingly, we have developed the R package TrajectoryGeometry. Applying this to published data we find several examples where, rather than bifurcate, developmental pathways branch. That is, the bipotential progenitor develops along a relatively straight trajectory leading to one of its potential fates. A second relatively straight trajectory branches off from this towards the other potential fate. In this sense only cells that branch off to follow the second trajectory make a 'decision'. Our methods give precise descriptions of the genes and cellular pathways involved in these trajectories. We speculate that branching may be the more common behaviour and may have advantages from a control-theoretic viewpoint.
Collapse
Affiliation(s)
- Anna Laddach
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Michael Shapiro
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
5
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
7
|
Fujisawa H, Ota N, Shiojiri N. Inversin-deficient (inv) mice do not establish a polarized duct system in the liver and pancreas. Anat Rec (Hoboken) 2024; 307:2197-2212. [PMID: 37921502 DOI: 10.1002/ar.25346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Inversin-deficient (inv) mice have anomalies in liver and pancreatic development in addition to an inverted left-right axis of the body. The present study was undertaken to unveil mechanisms of bile and pancreatic duct development from immunohistochemical analyses of anomalies in inv mice. Intrahepatic bile ducts having proximodistal polarity in size and the height of their epithelia, and ductules were formed in livers of wild-type neonates. By contrast, in inv mice, ductal plates, precursor structures of intrahepatic bile ducts and ductules, persisted without the proximodistal polarity. Their epithelial cells did not acquire planar cell polarity (PCP) in terms of expression of tight junction proteins although they expressed bile duct markers, HNF1β and SOX9. They had an apicobasal polarity from expression of basal laminar components. Enlargement of the hepatic artery and poor connective tissue development, including the abnormal deposition of the extracellular matrices, were also noted in inv mice, suggesting that bile duct development was coupled to that of the hepatic artery and portal vein. In pancreata of inv neonates, neither the main pancreatic duct was formed, nor dilated duct-like structures had the morphological polarity from the connecting point with the common bile duct. Lumina of acini was dilated, and centroacinar cells changed their position in the acini to their neck region. Immunohistochemical analyses of tight junction proteins suggested that epithelial cells of the duct-like structures did not have a PCP. Thus, Invs may be required for the establishment of the PCP of the whole duct system in the liver and pancreas.
Collapse
Affiliation(s)
- Hiromu Fujisawa
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Noriaki Ota
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
8
|
Matsumoto S, Kikuchi A. Wnt/β-catenin signaling pathway in liver biology and tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:466-481. [PMID: 38379098 DOI: 10.1007/s11626-024-00858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling pathway that controls fundamental physiological and pathological processes by regulating cell proliferation and differentiation. The Wnt/β-catenin pathway enables liver homeostasis by inducing differentiation and contributes to liver-specific features such as metabolic zonation and regeneration. In contrast, abnormalities in the Wnt/β-catenin pathway promote the development and progression of hepatocellular carcinoma (HCC). Similarly, hepatoblastoma, the most common childhood liver cancer, is frequently associated with β-catenin mutations, which activate Wnt/β-catenin signaling. HCCs with activation of the Wnt/β-catenin pathway have unique gene expression patterns and pathological and clinical features. Accordingly, they are highly differentiated with retaining hepatocyte-like characteristics and tumorigenic. Activation of the Wnt/β-catenin pathway in HCC also alters the state of immune cells, causing "immune evasion" with inducing resistance to immune checkpoint inhibitors, which have recently become widely used to treat HCC. Activated Wnt/β-catenin signaling exhibits these phenomena in liver tumorigenesis through the expression of downstream target genes, and the molecular basis is still poorly understood. In this review, we describe the physiological roles of Wnt/b-catenin signaling and then discuss their characteristic changes by the abnormal activation of Wnt/b-catenin signaling. Clarification of the mechanism would contribute to the development of therapeutic agents in the future.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Center of Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Elmahboub Y, Albash R, Magdy William M, Rayan AH, Hamed NO, Ousman MS, Raslan NA, Mosallam S. Metformin Loaded Zein Polymeric Nanoparticles to Augment Antitumor Activity against Ehrlich Carcinoma via Activation of AMPK Pathway: D-Optimal Design Optimization, In Vitro Characterization, and In Vivo Study. Molecules 2024; 29:1614. [PMID: 38611893 PMCID: PMC11013883 DOI: 10.3390/molecules29071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.
Collapse
Affiliation(s)
- Yasmina Elmahboub
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amal H. Rayan
- Department of Medical Education, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Najat O. Hamed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Mona S. Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Nahed A Raslan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
- Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Medina 42541, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| |
Collapse
|
10
|
Liu S, Li T, Yang Q, Ke X, Zhan J. Biliary atresia: the development, pathological features, and classification of the bile duct. Pediatr Surg Int 2024; 40:42. [PMID: 38289412 DOI: 10.1007/s00383-023-05627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
Biliary atresia is an occlusive biliary disease involving intrahepatic and extrahepatic bile ducts. Its etiology and pathogenesis are unclear. There are many manifestations of bile duct involvement in biliary atresia, but little is known about its occurrence and development. In addition, different classification methods have been proposed in different periods of biliary atresia, each with its advantages and disadvantages. The combined application of biliary atresia classification will help to improve the survival rate of patients with native liver. Therefore, this article reviews the development, pathological features, and classification of intrahepatic and extrahepatic bile ducts in biliary atresia, to provide a reference for the study of the pathogenesis and the choice of treatment methods.
Collapse
Affiliation(s)
- Shaowen Liu
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Tengfei Li
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Qianhui Yang
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Xingyuan Ke
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
11
|
Russ-Silsby J, Patel KA, Laver TW, Hawkes G, Johnson MB, Wakeling MN, Patil PP, Hattersley AT, Flanagan SE, Weedon MN, De Franco E. The Role of ONECUT1 Variants in Monogenic and Type 2 Diabetes Mellitus. Diabetes 2023; 72:1729-1734. [PMID: 37639628 DOI: 10.2337/db23-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
ONECUT1 (also known as HNF6) is a transcription factor involved in pancreatic development and β-cell function. Recently, biallelic variants in ONECUT1 were reported as a cause of neonatal diabetes mellitus (NDM) in two subjects, and missense monoallelic variants were associated with type 2 diabetes and possibly maturity-onset diabetes of the young (MODY). Here we examine the role of ONECUT1 variants in NDM, MODY, and type 2 diabetes in large international cohorts of subjects with monogenic diabetes and >400,000 subjects from UK Biobank. We identified a biallelic frameshift ONECUT1 variant as the cause of NDM in one individual. However, we found no enrichment of missense or null ONECUT1 variants among 484 individuals clinically suspected of MODY, in whom all known genes had been excluded. Finally, using a rare variant burden test in the UK Biobank European cohort, we identified a significant association between heterozygous ONECUT1 null variants and type 2 diabetes (P = 0.006) but did not find an association between missense variants and type 2 diabetes. Our results confirm biallelic ONECUT1 variants as a cause of NDM and highlight monoallelic null variants as a risk factor for type 2 diabetes. These findings confirm the critical role of ONECUT1 in human β-cell function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- James Russ-Silsby
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Thomas W Laver
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Matthew B Johnson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Prashant P Patil
- The Society for the Rehabilitation of Crippled Children Narayana Health Children's Hospital, Mumbai, India
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
12
|
Ai C, Xie X, Lv Y, Zheng Q, Yang J, Xiang B, Chen J. LncRNA-mRNA coexpression analysis reveals distinct pathogenic mechanisms for subtypes of congenital biliary dilatation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023; 30:1227-1240. [PMID: 37882150 DOI: 10.1002/jhbp.1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND/PURPOSE Congenital biliary dilatation (CBD) is a bile duct malformation often associated with pancreaticobiliary maljunction. Different subtypes of CBD have been noted for clinical differences, but their pathogenic mechanisms are unclear. METHODS To elucidate the genetic basis of CBD, we performed lncRNA and mRNA sequencing and bioinformatic analysis on 18 cystic and 18 fusiform CBD samples. RESULTS We identified differentially expressed mRNAs and lncRNAs between the two types of CBD, and constructed coexpression modules that correlated with clinical characteristics of CBD using weighted gene coexpression network analysis. We found that the brown module was the highest positive correlation with fusiform CBD (R = 0.67, p = 7.9e-6) and contained the most genes. We then built a lncRNA-mRNA coexpression network to identify potential target genes of lncRNAs in CBD, and a protein-protein interaction network to investigate the hub genes from the target genes and the brown module. Finally, we performed enrichment analyses and found differences between cystic and fusiform CBD in hepatobiliary system development, liver and pancreas development involving hub genes ONECUT1 and HNF1B that could be regulated by corresponding lncRNAs. CONCLUSION Our study suggests that lncRNAs may modulate pancreaticobiliary duct development differently in cystic and fusiform CBD, providing new insights for etiology studies and clinical treatment.
Collapse
Affiliation(s)
- Chengbo Ai
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Xiaolong Xie
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Yong Lv
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Qianwen Zheng
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
13
|
Liang J, Wei J, Cao J, Qian J, Gao R, Li X, Wang D, Gu Y, Dong L, Yu J, Zhao B, Wang X. In-organoid single-cell CRISPR screening reveals determinants of hepatocyte differentiation and maturation. Genome Biol 2023; 24:251. [PMID: 37907970 PMCID: PMC10617096 DOI: 10.1186/s13059-023-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Harnessing hepatocytes for basic research and regenerative medicine demands a complete understanding of the genetic determinants underlying hepatocyte differentiation and maturation. Single-cell CRISPR screens in organoids could link genetic perturbations with parallel transcriptomic readout in single cells, providing a powerful method to delineate roles of cell fate regulators. However, a big challenge for identifying key regulators during data analysis is the low expression levels of transcription factors (TFs), which are difficult to accurately estimate due to noise and dropouts in single-cell sequencing. Also, it is often the changes in TF activities in the transcriptional cascade rather than the expression levels of TFs that are relevant to the cell fate transition. RESULTS Here, we develop Organoid-based Single-cell CRISPR screening Analyzed with Regulons (OSCAR), a framework using regulon activities as readouts to dissect gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we map transcriptomes in 80,576 cells upon 246 perturbations associated with transcriptional regulation of hepatocyte formation. Using OSCAR, we identify known and novel positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse and human liver organoids promote hepatocyte differentiation by specific upregulation of liver metabolic genes and pathways, and conditional knockout of Ubr5 in mouse liver delays hepatocyte maturation. CONCLUSIONS Altogether, we provide a framework to explore lineage specifiers in a rapid and systematic manner, and identify hepatocyte determinators with potential clinical applications.
Collapse
Affiliation(s)
- Junbo Liang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Qian
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Ran Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Xiaoyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dingding Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yani Gu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, 210023, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, 650500, China.
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
14
|
Lotto J, Stephan TL, Hoodless PA. Fetal liver development and implications for liver disease pathogenesis. Nat Rev Gastroenterol Hepatol 2023; 20:561-581. [PMID: 37208503 DOI: 10.1038/s41575-023-00775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
The metabolic, digestive and homeostatic roles of the liver are dependent on proper crosstalk and organization of hepatic cell lineages. These hepatic cell lineages are derived from their respective progenitors early in organogenesis in a spatiotemporally controlled manner, contributing to the liver's specialized and diverse microarchitecture. Advances in genomics, lineage tracing and microscopy have led to seminal discoveries in the past decade that have elucidated liver cell lineage hierarchies. In particular, single-cell genomics has enabled researchers to explore diversity within the liver, especially early in development when the application of bulk genomics was previously constrained due to the organ's small scale, resulting in low cell numbers. These discoveries have substantially advanced our understanding of cell differentiation trajectories, cell fate decisions, cell lineage plasticity and the signalling microenvironment underlying the formation of the liver. In addition, they have provided insights into the pathogenesis of liver disease and cancer, in which developmental processes participate in disease emergence and regeneration. Future work will focus on the translation of this knowledge to optimize in vitro models of liver development and fine-tune regenerative medicine strategies to treat liver disease. In this Review, we discuss the emergence of hepatic parenchymal and non-parenchymal cells, advances that have been made in in vitro modelling of liver development and draw parallels between developmental and pathological processes.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Zupančič M, Tretiakov E, Máté Z, Erdélyi F, Szabó G, Clotman F, Hökfelt T, Harkany T, Keimpema E. Brain-wide mapping of efferent projections of glutamatergic (Onecut3 + ) neurons in the lateral mouse hypothalamus. Acta Physiol (Oxf) 2023; 238:e13973. [PMID: 37029761 PMCID: PMC10909463 DOI: 10.1111/apha.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
AIM This study mapped the spatiotemporal positions and connectivity of Onecut3+ neuronal populations in the developing and adult mouse brain. METHODS We generated fluorescent reporter mice to chart Onecut3+ neurons for brain-wide analysis. Moreover, we crossed Onecut3-iCre and Mapt-mGFP (Tau-mGFP) mice to visualize axonal projections. A dual Cre/Flp-dependent AAV construct in Onecut3-iCre cross-bred with Slc17a6-FLPo mice was used in an intersectional strategy to map the connectivity of glutamatergic lateral hypothalamic neurons in the adult mouse. RESULTS We first found that Onecut3 marks a hitherto undescribed Slc17a6+ /Vglut2+ neuronal cohort in the lateral hypothalamus, with the majority expressing thyrotropin-releasing hormone. In the adult, Onecut3+ /Vglut2+ neurons of the lateral hypothalamus had both intra- and extrahypothalamic efferents, particularly to the septal complex and habenula, where they targeted other cohorts of Onecut3+ neurons and additionally to the neocortex and hippocampus. This arrangement suggests that intrinsic reinforcement loops could exist for Onecut3+ neurons to coordinate their activity along the brain's midline axis. CONCLUSION We present both a toolbox to manipulate novel subtypes of hypothalamic neurons and an anatomical arrangement by which extrahypothalamic targets can be simultaneously entrained.
Collapse
Affiliation(s)
- Maja Zupančič
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Evgenii Tretiakov
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Frédéric Clotman
- Animal Molecular and Cellular Biology Group, Louvain Institute of Biomolecular Science and TechnologyUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
17
|
Chatterjee A, Gallent B, Katiki M, Qian C, Harter MR, Freeman MR, Murali R. The homeodomain drives favorable DNA binding energetics of prostate cancer target ONECUT2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544830. [PMID: 37398277 PMCID: PMC10312739 DOI: 10.1101/2023.06.13.544830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The ONECUT transcription factors feature a CUT and a homeodomain, evolutionarily conserved elements that bind DNA cooperatively, but the process remains mechanistically enigmatic. Using an integrative DNA binding analysis of ONECUT2, a driver of aggressive prostate cancer, we show that the homeodomain energetically stabilizes the ONECUT2-DNA complex through allosteric modulation of CUT. Further, evolutionarily conserved base-interactions in both the CUT and homeodomain are necessary for the favorable thermodynamics. We have identified a novel arginine pair unique to the ONECUT family homeodomain that can adapt to DNA sequence variations. Base interactions in general, including by this arginine pair, are critical for optimal DNA binding and transcription in a prostate cancer model. These findings provide fundamental insights into DNA binding by CUT-homeodomain proteins with potential therapeutic implications. One-Sentence Summary Base-specific interactions regulate homeodomain-mediated stabilization of DNA binding by the ONECUT2 transcription factor.
Collapse
|
18
|
Takashina T, Matsunaga A, Shimizu Y, Sakuma T, Okamura T, Matsuoka K, Yamamoto T, Ishizaka Y. Robust protein-based engineering of hepatocyte-like cells from human mesenchymal stem cells. Hepatol Commun 2023; 7:e0051. [PMID: 36848084 PMCID: PMC9974069 DOI: 10.1097/hc9.0000000000000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Cells of interest can be prepared from somatic cells by forced expression of lineage-specific transcription factors, but it is required to establish a vector-free system for their clinical use. Here, we report a protein-based artificial transcription system for engineering hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells (MSCs). METHODS MSCs were treated for 5 days with 4 artificial transcription factors (4F), which targeted hepatocyte nuclear factor (HNF)1α, HNF3γ, HNF4α, and GATA-binding protein 4 (GATA4). Then, engineered MSCs (4F-Heps) were subjected to epigenetic analysis, biochemical analysis and flow cytometry analysis with antibodies to marker proteins of mature hepatocytes and hepatic progenitors such as delta-like homolog 1 (DLK1) and trophoblast cell surface antigen 2 (TROP2). Functional properties of the cells were also examined by injecting them to mice with lethal hepatic failure. RESULTS Epigenetic analysis revealed that a 5-day treatment of 4F upregulated the expression of genes involved in hepatic differentiation, and repressed genes related to pluripotency of MSCs. Flow cytometry analysis detected that 4F-Heps were composed of small numbers of mature hepatocytes (at most 1%), bile duct cells (~19%) and hepatic progenitors (~50%). Interestingly, ~20% of 4F-Heps were positive for cytochrome P450 3A4, 80% of which were DLK1-positive. Injection of 4F-Heps significantly increased survival of mice with lethal hepatic failure, and transplanted 4F-Heps expanded to more than 50-fold of human albumin-positive cells in the mouse livers, well consistent with the observation that 4F-Heps contained DLK1-positive and/or TROP2-positive cells. CONCLUSION Taken together with observations that 4F-Heps were not tumorigenic in immunocompromised mice for at least 2 years, we propose that this artificial transcription system is a versatile tool for cell therapy for hepatic failures.
Collapse
Affiliation(s)
- Tomoki Takashina
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunie Matsuoka
- Deafness Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Liu S, Wang J, Chen S, Han Z, Wu H, Chen H, Duan Y. C/EBPβ Coupled with E2F2 Promoted the Proliferation of hESC-Derived Hepatocytes through Direct Binding to the Promoter Regions of Cell-Cycle-Related Genes. Cells 2023; 12:cells12030497. [PMID: 36766839 PMCID: PMC9914899 DOI: 10.3390/cells12030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPβ during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPβ is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPβ and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPβ could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPβ. Moreover, the results of CUT&Tag sequencing showed that C/EBPβ also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPβ and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPβ first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sen Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zonglin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| |
Collapse
|
20
|
Insight into microvascular adaptive alterations in the Glisson system of biliary atresia after Kasai portoenterostomy using X-ray phase-contrast CT. Eur Radiol 2022; 33:4082-4093. [PMID: 36576546 DOI: 10.1007/s00330-022-09364-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate microvascular alterations in the Glisson system of biliary atresia (BA) patients after Kasai portoenterostomy (KP) using three-dimensional (3D) virtual histopathology based on X-ray phase-contrast CT (PCCT). METHODS Liver explants from BA patients were imaged using PCCT, and 32 subjects were included and divided into two groups: KP (n = 16) and non-KP (n = 16). Combined with histological analysis and 3D visualization technology, 3D virtual histopathological assessment of the biliary, arterial, and portal venous systems was performed. According to loop volume ratio, 3D spatial density, relative surface area, tortuosity, and other parameters, pathological changes of microvasculature in the Glisson system were investigated. RESULTS In the non-KP group, bile ducts mostly manifested as radial multifurcated hyperplasia and twisted into loops. In the KP group, the bile duct hyperplasia was less, and the loop volume ratio of bile ducts decreased by 13.89%. Simultaneously, the arterial and portal venous systems presented adaptive alterations in response to degrees of bile duct hyperplasia. Compared with the non-KP group, the 3D spatial density of arteries in the KP group decreased by 3.53%, and the relative surface area decreased from 0.088 ± 0.035 to 0.039 ± 0.015 (p < .01). Deformed portal branches gradually recovered after KP, with a 2.93% increase in 3D spatial density and a decrease in tortuosity from 1.17 ± 0.06 to 1.14 ± 0.04 (p < .01) compared to the non-KP group. CONCLUSION 3D virtual histopathology via PCCT clearly reveals the microvascular structures in the Glisson system of BA patients and provides key insights into the morphological mechanism of microvascular adaptation induced by biliary tract dredging after KP in BA disease. KEY POINTS • 3D virtual histopathology via X-ray phase-contrast computed tomography clearly presented the morphological structures and pathological changes of microvasculature in the Glisson system of biliary atresia patients. • The morphological alterations of microvasculature in the Glisson system followed the competitive occupancy mechanism in the process of biliary atresia.
Collapse
|
21
|
Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
23
|
Loss of FOXA2 induces ER stress and hepatic steatosis and alters developmental gene expression in human iPSC-derived hepatocytes. Cell Death Dis 2022; 13:713. [PMID: 35973994 PMCID: PMC9381545 DOI: 10.1038/s41419-022-05158-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
FOXA2 has been known to play important roles in liver functions in rodents. However, its role in human hepatocytes is not fully understood. Recently, we generated FOXA2 mutant induced pluripotent stem cell (FOXA2-/-iPSC) lines and illustrated that loss of FOXA2 results in developmental defects in pancreatic islet cells. Here, we used FOXA2-/-iPSC lines to understand the role of FOXA2 on the development and function of human hepatocytes. Lack of FOXA2 resulted in significant alterations in the expression of key developmental and functional genes in hepatic progenitors (HP) and mature hepatocytes (MH) as well as an increase in the expression of ER stress markers. Functional assays demonstrated an increase in lipid accumulation, bile acid synthesis and glycerol production, while a decrease in glucose uptake, glycogen storage, and Albumin secretion. RNA-sequencing analysis further validated the findings by showing a significant increase in genes associated with lipid metabolism, bile acid secretion, and suggested the activation of hepatic stellate cells and hepatic fibrosis in MH lacking FOXA2. Overexpression of FOXA2 reversed the defective phenotypes and improved hepatocyte functionality in iPSC-derived hepatic cells lacking FOXA2. These results highlight a potential role of FOXA2 in regulating human hepatic development and function and provide a human hepatocyte model, which can be used to identify novel therapeutic targets for FOXA2-associated liver disorders.
Collapse
|
24
|
Fukuchi T, Ueno T, Yamamoto T, Noguchi T, Shiojiri N. Liver progenitor cells may construct cysts having heterogeneous gene expression of liver-enriched transcription factors in mice with conditional knockout of the Hhex gene. Biochem Biophys Res Commun 2022; 602:49-56. [DOI: 10.1016/j.bbrc.2022.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022]
|
25
|
Zhao C, Lancman JJ, Yang Y, Gates KP, Cao D, Barske L, Matalonga J, Pan X, He J, Graves A, Huisken J, Chen C, Dong PDS. Intrahepatic cholangiocyte regeneration from an Fgf-dependent extrahepatic progenitor niche in a zebrafish model of Alagille Syndrome. Hepatology 2022; 75:567-583. [PMID: 34569629 PMCID: PMC8844142 DOI: 10.1002/hep.32173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Alagille Syndrome (ALGS) is a congenital disorder caused by mutations in the Notch ligand gene JAGGED1, leading to neonatal loss of intrahepatic duct (IHD) cells and cholestasis. Cholestasis can resolve in certain patients with ALGS, suggesting regeneration of IHD cells. However, the mechanisms driving IHD cell regeneration following Jagged loss remains unclear. Here, we show that cholestasis due to developmental loss of IHD cells can be consistently phenocopied in zebrafish with compound jagged1b and jagged2b mutations or knockdown. APPROACH AND RESULTS Leveraging the transience of jagged knockdown in juvenile zebrafish, we find that resumption of Jagged expression leads to robust regeneration of IHD cells through a Notch-dependent mechanism. Combining multiple lineage tracing strategies with whole-liver three-dimensional imaging, we demonstrate that the extrahepatic duct (EHD) is the primary source of multipotent progenitors that contribute to the regeneration, but not to the development, of IHD cells. Hepatocyte-to-IHD cell transdifferentiation is possible but rarely detected. Progenitors in the EHD proliferate and migrate into the liver with Notch signaling loss and differentiate into IHD cells if Notch signaling increases. Tissue-specific mosaic analysis with an inducible dominant-negative Fgf receptor suggests that Fgf signaling from the surrounding mesenchymal cells maintains this extrahepatic niche by directly preventing premature differentiation and allocation of EHD progenitors to the liver. Indeed, transcriptional profiling and functional analysis of adult mouse EHD organoids uncover their distinct differentiation and proliferative potential relative to IHD organoids. CONCLUSIONS Our data show that IHD cells regenerate upon resumption of Jagged/Notch signaling, from multipotent progenitors originating from an Fgf-dependent extrahepatic stem cell niche. We posit that if Jagged/Notch signaling is augmented, through normal stochastic variation, gene therapy, or a Notch agonist, regeneration of IHD cells in patients with ALGS may be enhanced.
Collapse
Affiliation(s)
- Chengjian Zhao
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Dan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Lindsey Barske
- Department of Pediatrics, College of Medicine & Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonathan Matalonga
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Jiaye He
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Alyssa Graves
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
26
|
Sun Q, Shen Z, Liang X, He Y, Kong D, Midgley AC, Wang K. Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. MATERIALS 2021; 14:ma14237468. [PMID: 34885623 PMCID: PMC8658964 DOI: 10.3390/ma14237468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
Bile duct injury (BDI) and bile tract diseases are regarded as prominent challenges in hepatobiliary surgery due to the risk of severe complications. Hepatobiliary, pancreatic, and gastrointestinal surgery can inadvertently cause iatrogenic BDI. The commonly utilized clinical treatment of BDI is biliary-enteric anastomosis. However, removal of the Oddi sphincter, which serves as a valve control over the unidirectional flow of bile to the intestine, can result in complications such as reflux cholangitis, restenosis of the bile duct, and cholangiocarcinoma. Tissue engineering and biomaterials offer alternative approaches for BDI treatment. Reconstruction of mechanically functional and biomimetic structures to replace bile ducts aims to promote the ingrowth of bile duct cells and realize tissue regeneration of bile ducts. Current research on artificial bile ducts has remained within preclinical animal model experiments. As more research shows artificial bile duct replacements achieving effective mechanical and functional prevention of biliary peritonitis caused by bile leakage or obstructive jaundice after bile duct reconstruction, clinical translation of tissue-engineered bile ducts has become a theoretical possibility. This literature review provides a comprehensive collection of published works in relation to three tissue engineering approaches for biomimetic bile duct construction: mechanical support from scaffold materials, cell seeding methods, and the incorporation of biologically active factors to identify the advancements and current limitations of materials and methods for the development of effective artificial bile ducts that promote tissue regeneration.
Collapse
Affiliation(s)
- Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Zefeng Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| |
Collapse
|
27
|
Lendahl U, Lui VCH, Chung PHY, Tam PKH. Biliary Atresia - emerging diagnostic and therapy opportunities. EBioMedicine 2021; 74:103689. [PMID: 34781099 PMCID: PMC8604670 DOI: 10.1016/j.ebiom.2021.103689] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biliary Atresia is a devastating pediatric cholangiopathy affecting the bile ducts of the liver. In this review, we describe recent progress in the understanding of liver development with a focus on cholangiocyte differentiation and how use of technical platforms, including rodent, zebrafish and organoid models, advances our understanding of Biliary Atresia. This is followed by a description of potential pathomechanisms, such as autoimmune responses, inflammation, disturbed apical-basal cell polarity, primary cilia dysfunction as well as beta-amyloid accumulation. Finally, we describe current and emerging diagnostic opportunities and recent translation breakthroughs for Biliary Atresia in the area of emerging therapy development, including immunomodulation and organoid-based systems for liver and bile duct repair.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong.
| | - Vincent C H Lui
- Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong; Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Patrick H Y Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Paul K H Tam
- Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong; Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
28
|
Mutations and variants of ONECUT1 in diabetes. Nat Med 2021; 27:1928-1940. [PMID: 34663987 DOI: 10.1038/s41591-021-01502-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.
Collapse
|
29
|
Tachmatzidi EC, Galanopoulou O, Talianidis I. Transcription Control of Liver Development. Cells 2021; 10:cells10082026. [PMID: 34440795 PMCID: PMC8391549 DOI: 10.3390/cells10082026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
During liver organogenesis, cellular transcriptional profiles are constantly reshaped by the action of hepatic transcriptional regulators, including FoxA1-3, GATA4/6, HNF1α/β, HNF4α, HNF6, OC-2, C/EBPα/β, Hex, and Prox1. These factors are crucial for the activation of hepatic genes that, in the context of compact chromatin, cannot access their targets. The initial opening of highly condensed chromatin is executed by a special class of transcription factors known as pioneer factors. They bind and destabilize highly condensed chromatin and facilitate access to other "non-pioneer" factors. The association of target genes with pioneer and non-pioneer transcription factors takes place long before gene activation. In this way, the underlying gene regulatory regions are marked for future activation. The process is called "bookmarking", which confers transcriptional competence on target genes. Developmental bookmarking is accompanied by a dynamic maturation process, which prepares the genomic loci for stable and efficient transcription. Stable hepatic expression profiles are maintained during development and adulthood by the constant availability of the main regulators. This is achieved by a self-sustaining regulatory network that is established by complex cross-regulatory interactions between the major regulators. This network gradually grows during liver development and provides an epigenetic memory mechanism for safeguarding the optimal expression of the regulators.
Collapse
Affiliation(s)
- Evangelia C. Tachmatzidi
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ourania Galanopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Correspondence:
| |
Collapse
|
30
|
Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ. Liver Organoids: Recent Developments, Limitations and Potential. Front Med (Lausanne) 2021; 8:574047. [PMID: 34026769 PMCID: PMC8131532 DOI: 10.3389/fmed.2021.574047] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.
Collapse
Affiliation(s)
- Sean Philip Harrison
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira Felicitas Baumgarten
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Rajneesh Verma
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Gareth John Sullivan
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
|
32
|
Inada H, Udono M, Matsuda-Ito K, Horisawa K, Ohkawa Y, Miura S, Goya T, Yamamoto J, Nagasaki M, Ueno K, Saitou D, Suyama M, Maehara Y, Kumamaru W, Ogawa Y, Sekiya S, Suzuki A. Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells. Nat Commun 2020; 11:5292. [PMID: 33087715 PMCID: PMC7578104 DOI: 10.1038/s41467-020-19041-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/26/2020] [Indexed: 12/18/2022] Open
Abstract
Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases. The conditions to induce human hepatic progenitor cells from other cell types are unclear. Here, the authors reprogram human endothelial cells to hepatic progenitor cells by expressing FOXA3, HNF1A and HNF6, capable of giving rise to hepatocytes and cholangiocytes that reconstitute damaged liver tissues on transplantation.
Collapse
Affiliation(s)
- Hiroki Inada
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miyako Udono
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kanae Matsuda-Ito
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeshi Goya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masao Nagasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,Human Biosciences Unit for the Top Global Course, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Daisuke Saitou
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wataru Kumamaru
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
33
|
Development of Bifunctional Three-Dimensional Cysts from Chemically Induced Liver Progenitors. Stem Cells Int 2019; 2019:3975689. [PMID: 31565060 PMCID: PMC6745155 DOI: 10.1155/2019/3975689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chemically induced liver progenitors (CLiPs) have promising applications in liver regenerative medicine. Three-dimensional (3D) structures generated from liver progenitor cells possess wide applications in cell transplantation, disease model, and drug testing. Here, we report on the spontaneous formation of 3D cystic structures comprising maturing rat CLiPs on gelatin-coated dishes. Our 3D cysts contained Alb+/+CK19+/− and Ck19+/+Alb+/− cells. These cell types gradually diverged into specialized mature cells, as demonstrated by the expression of mature biliary markers (Cftr, Ae2, and Aqp1) and hepatic markers (Alb and Mrp2). The 3D cysts also expressed functional multidrug resistance protein 1 (Mdr1), as indicated by epithelial efflux of rhodamine. Furthermore, we observed bile canaliculi functions between hepatocytes and cholyl-lysyl-fluorescein extrusions, indicating that the functional characteristics of 3D cysts and active bile salt export pump (Bsep) transporters were intact. Thus, our study revealed a natural characteristic of rat CLiPs to spontaneously form 3D cystic structures accompanied with cell maturation in vitro, offering a platform for studies of liver development and drug screening.
Collapse
|
34
|
Van Hul N, Lendahl U, Andersson ER. Mouse Models for Diseases in the Cholangiocyte Lineage. Methods Mol Biol 2019; 1981:203-236. [PMID: 31016657 DOI: 10.1007/978-1-4939-9420-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiopathies are an important group of liver diseases affecting the biliary system, and the purpose of this review is to describe how diseases in the biliary system can be studied in mouse models. A particular focus is placed on mouse models for Alagille syndrome, a cholangiopathy with a strong genetic link to dysfunctional Notch signaling. Recently, a number of different genetic mouse models based on various manipulations of the Notch signaling pathway have been generated to study Alagille syndrome, and we discuss the resulting phenotypes, and possible causes for the phenotypic heterogeneity among the various models. In the final section, we provide a more general discussion on how well mouse models can be expected to mimic human liver disease, as well as an outlook toward the need for new technologies that can help us to gain new insights from mouse models for liver disease.
Collapse
Affiliation(s)
- Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Biliary atresia is a poorly understood deadly disease. Genetic predisposition factors are suspected albeit not firmly established. This review summarizes recent evidence of genetic alterations in biliary atresia. RECENT FINDINGS Whole-genome association studies in biliary atresia patients identified four distinct predisposition loci with four different genes potentially involved in the disease occurrence. Variations in these genes were searched for, but none were found in patients with biliary atresia suggesting complex mechanisms. SUMMARY Despite decades since its description and decades of intensive researches, cause of biliary atresia disease remains enigmatic. The inheritance of biliary atresia is not Mendelian. Genetic predisposition factor is one of the explored fields to explain biliary atresia pathogenicity. Biliary atresia has been associated with several inborn syndromes, chromosome anomalies, and gene polymorphisms in specific populations. Four predisposition loci encompassing genes relevant to the disease have been identified, but no pathogenic variations were found in biliary atresia patients. Few reported cases of isolated biliary atresia manifestation in the context of known genetic diseases suggest coincidental findings. Alternatives to classic genetic alterations are proposed to explain genetic predisposition in biliary atresia including noncoding and epigenetic factors. Biliary atresia is most likely related to complex traits making its genetic exploration challenging.
Collapse
|
37
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
38
|
Chen C, Jochems PGM, Salz L, Schneeberger K, Penning LC, van de Graaf SFJ, Beuers U, Clevers H, Geijsen N, Masereeuw R, Spee B. Bioengineered bile ducts recapitulate key cholangiocyte functions. Biofabrication 2018; 10:034103. [PMID: 29848792 DOI: 10.1088/1758-5090/aac8fd] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigation of diseases of the bile duct system and identification of potential therapeutic targets are hampered by the lack of tractable in vitro systems to model cholangiocyte biology. Here, we show a step-wise method for the differentiation of murine Lgr5+ liver stem cells (organoids) into cholangiocyte-like cells (CLCs) using a combination of growth factors and extracellular matrix components. Organoid-derived CLCs display key properties of primary cholangiocytes, such as expressing cholangiocyte markers, forming primary cilia, transporting small molecules and responding to farnesoid X receptor agonist. Integration of organoid-derived cholangiocytes with collagen-coated polyethersulfone hollow fiber membranes yielded bioengineered bile ducts that morphologically resembled native bile ducts and possessed polarized bile acid transport activity. As such, we present a novel in vitro model for studying and therapeutically modulating cholangiocyte function.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands. Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 2018; 557:247-251. [PMID: 29720662 PMCID: PMC6597492 DOI: 10.1038/s41586-018-0075-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 03/22/2018] [Indexed: 12/15/2022]
Abstract
Transdifferentiation is a complete and stable change in cell identity that serves as an alternative to stem-cell-mediated organ regeneration. In adult mammals, findings of transdifferentiation have been limited to the replenishment of cells lost from preexisting structures, in the presence of a fully developed scaffold and niche1. Here we show that transdifferentiation of hepatocytes in the mouse liver can build a structure that failed to form in development-the biliary system in a mouse model that mimics the hepatic phenotype of human Alagille syndrome (ALGS)2. In these mice, hepatocytes convert into mature cholangiocytes and form bile ducts that are effective in draining bile and persist after the cholestatic liver injury is reversed, consistent with transdifferentiation. These findings redefine hepatocyte plasticity, which appeared to be limited to metaplasia, that is, incomplete and transient biliary differentiation as an adaptation to cell injury, based on previous studies in mice with a fully developed biliary system3-6. In contrast to bile duct development7-9, we show that de novo bile duct formation by hepatocyte transdifferentiation is independent of NOTCH signalling. We identify TGFβ signalling as the driver of this compensatory mechanism and show that it is active in some patients with ALGS. Furthermore, we show that TGFβ signalling can be targeted to enhance the formation of the biliary system from hepatocytes, and that the transdifferentiation-inducing signals and remodelling capacity of the bile-duct-deficient liver can be harnessed with transplanted hepatocytes. Our results define the regenerative potential of mammalian transdifferentiation and reveal opportunities for the treatment of ALGS and other cholestatic liver diseases.
Collapse
|
40
|
Soini T, Pihlajoki M, Andersson N, Lohi J, Huppert KA, Rudnick DA, Huppert SS, Wilson DB, Pakarinen MP, Heikinheimo M. Transcription factor GATA6: a novel marker and putative inducer of ductal metaplasia in biliary atresia. Am J Physiol Gastrointest Liver Physiol 2018; 314:G547-G558. [PMID: 29388792 PMCID: PMC6008062 DOI: 10.1152/ajpgi.00362.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary atresia (BA), a neonatal liver disease, is characterized by obstruction of extrahepatic bile ducts with subsequent cholestasis, inflammation, and progressive liver fibrosis. To gain insights into the pathophysiology of BA, we focused attention on GATA6, a transcription factor implicated in biliary development. Early in fetal development GATA6 expression is evident in cholangiocytes and hepatocytes, but by late gestation it is extinguished in hepatocytes. Utilizing a unique set of BA liver samples collected before and after successful portoenterostomy (PE), we found that GATA6 expression is markedly upregulated in hepatocytes of patients with BA compared with healthy and cholestatic disease controls. This upregulation is recapitulated in two murine models simulating bile duct obstruction and intrahepatic bile ductule expansion. GATA6 expression in BA livers correlates with two established negative prognostic indicators (age at PE, degree of intrahepatic bile ductule expansion) and decreases after normalization of serum bilirubin by PE. GATA6 expression in BA livers correlates with expression of known regulators of cholangiocyte differentiation ( JAGGED1, HNF1β, and HNF6). These same genes are upregulated after enforced expression of GATA6 in human hepatocyte cell models. In conclusion, GATA6 is a novel marker and a putative driver of hepatocyte-cholangiocyte metaplasia in BA, and its expression in hepatocytes is downregulated after successful PE. NEW & NOTEWORTHY A pathological hallmark in the liver of patients with biliary atresia is ductular reaction, an expansion of new bile ductules that are thought to arise from conversion of mature hepatocytes. Here, we show that transcription factor GATA6 is a marker and potential driver of hepatocyte ductal metaplasia in biliary atresia. Hepatocyte GATA6 expression is elevated in biliary atresia, correlates with bile duct expansion, and decreases after successful portoenterostomy.
Collapse
Affiliation(s)
- Tea Soini
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri
| | - Noora Andersson
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari A. Huppert
- 4Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A. Rudnick
- 2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri,5Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stacey S. Huppert
- 4Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio,5Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B. Wilson
- 2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| | - Mikko P. Pakarinen
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,7Pediatric Surgery and Pediatric Liver and Gut Research Group, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
41
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
42
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
43
|
Benhamouche-Trouillet S, O'Loughlin E, Liu CH, Polacheck W, Fitamant J, McKee M, El-Bardeesy N, Chen CS, McClatchey AI. Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis. Development 2018; 145:dev162123. [PMID: 29712669 PMCID: PMC10682933 DOI: 10.1242/dev.162123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
The architecture of individual cells and cell collectives enables functional specification, a prominent example being the formation of epithelial tubes that transport fluid or gas in many organs. The intrahepatic bile ducts (IHBDs) form a tubular network within the liver parenchyma that transports bile to the intestine. Aberrant biliary 'neoductulogenesis' is also a feature of several liver pathologies including tumorigenesis. However, the mechanism of biliary tube morphogenesis in development or disease is not known. Elimination of the neurofibromatosis type 2 protein (NF2; also known as merlin or neurofibromin 2) causes hepatomegaly due to massive biliary neoductulogenesis in the mouse liver. We show that this phenotype reflects unlimited biliary morphogenesis rather than proliferative expansion. Our studies suggest that NF2 normally limits biliary morphogenesis by coordinating lumen expansion and cell architecture. This work provides fundamental insight into how biliary fate and tubulogenesis are coordinated during development and will guide analyses of disease-associated and experimentally induced biliary pathologies.
Collapse
Affiliation(s)
- Samira Benhamouche-Trouillet
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Evan O'Loughlin
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Ching-Hui Liu
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - William Polacheck
- Department of Biomedical Engineering, Boston University, Wyss Institute, Boston, MA 02115, USA
| | - Julien Fitamant
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Mary McKee
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA
| | - Nabeel El-Bardeesy
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Wyss Institute, Boston, MA 02115, USA
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
44
|
Demarez C, Gérard C, Cordi S, Poncy A, Achouri Y, Dauguet N, Rosa DA, Gunning PT, Manfroid I, Lemaigre FP. MicroRNA-337-3p controls hepatobiliary gene expression and transcriptional dynamics during hepatic cell differentiation. Hepatology 2018; 67:313-327. [PMID: 28833283 DOI: 10.1002/hep.29475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Transcriptional networks control the differentiation of the hepatocyte and cholangiocyte lineages from embryonic liver progenitor cells and their subsequent maturation to the adult phenotype. However, how relative levels of hepatocyte and cholangiocyte gene expression are determined during differentiation remains poorly understood. Here, we identify microRNA (miR)-337-3p as a regulator of liver development. miR-337-3p stimulates expression of cholangiocyte genes and represses hepatocyte genes in undifferentiated progenitor cells in vitro and in embryonic mouse livers. Beyond the stage of lineage segregation, miR-337-3p controls the transcriptional network dynamics of developing hepatocytes and balances both cholangiocyte populations that constitute the ductal plate. miR-337-3p requires Notch and transforming growth factor-β signaling and exerts a biphasic control on the hepatocyte transcription factor hepatocyte nuclear factor 4α by modulating its activation and repression. With the help of an experimentally validated mathematical model, we show that this biphasic control results from an incoherent feedforward loop between miR-337-3p and hepatocyte nuclear factor 4α. CONCLUSION Our results identify miR-337-3p as a regulator of liver development and highlight how tight quantitative control of hepatic cell differentiation is exerted through specific gene regulatory network motifs. (Hepatology 2018;67:313-327).
Collapse
Affiliation(s)
- Céline Demarez
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Claude Gérard
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Sabine Cordi
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Alexis Poncy
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Younes Achouri
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium.,Université catholique de Louvain, Transgenic Core Facility, Brussels, Belgium
| | - Nicolas Dauguet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - David A Rosa
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
45
|
Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:351-378. [PMID: 29125798 DOI: 10.1146/annurev-pathol-020117-044010] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type-specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
46
|
Yang L, Wang WH, Qiu WL, Guo Z, Bi E, Xu CR. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 2017; 66:1387-1401. [PMID: 28681484 PMCID: PMC5650503 DOI: 10.1002/hep.29353] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/21/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022]
Abstract
UNLABELLED How bipotential hepatoblasts differentiate into hepatocytes and cholangiocytes remains unclear. Here, using single-cell transcriptomic analysis of hepatoblasts, hepatocytes, and cholangiocytes sorted from embryonic day 10.5 (E10.5) to E17.5 mouse embryos, we found that hepatoblast-to-hepatocyte differentiation occurred gradually and followed a linear default pathway. As more cells became fully differentiated hepatocytes, the number of proliferating cells decreased. Surprisingly, proliferating and quiescent hepatoblasts exhibited homogeneous differentiation states at a given developmental stage. This unique feature enabled us to combine single-cell and bulk-cell analyses to define the precise timing of the hepatoblast-to-hepatocyte transition, which occurs between E13.5 and E15.5. In contrast to hepatocyte development at almost all levels, hepatoblast-to-cholangiocyte differentiation underwent a sharp detour from the default pathway. New cholangiocyte generation occurred continuously between E11.5 and E14.5, but their maturation states at a given developmental stage were heterogeneous. Even more surprising, the number of proliferating cells increased as more progenitor cells differentiated into mature cholangiocytes. Based on an observation from the single-cell analysis, we also discovered that the protein kinase C/mitogen-activated protein kinase signaling pathway promoted cholangiocyte maturation. CONCLUSION Our studies have defined distinct pathways for hepatocyte and cholangiocyte development in vivo, which are critically important for understanding basic liver biology and developing effective strategies to induce stem cells to differentiate toward specific hepatic cell fates in vitro. (Hepatology 2017;66:1387-1401).
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,Academy for Advanced Interdisciplinary Studies; Peking University, Beijing, 100871 China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,Academy for Advanced Interdisciplinary Studies; Peking University, Beijing, 100871 China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,PKU-Tsinghua-NIBS Graduate Program; Peking University, Beijing, 100871, China
| | - Zhen Guo
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China
| | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,Corresponding author: Dr. Cheng-Ran Xu,
| |
Collapse
|
47
|
Tanimizu N, Mitaka T. Epithelial Morphogenesis during Liver Development. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027862. [PMID: 28213465 DOI: 10.1101/cshperspect.a027862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue stem/progenitor cells supply multiple types of epithelial cells that eventually acquire specialized functions during organ development. In addition, three-dimensional (3D) tissue structures need to be established for organs to perform their physiological functions. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes, which are derived from hepatoblasts, fetal liver stem/progenitor cells (LPCs), in mid-gestation. Hepatocytes performing many metabolic reactions form cord-like structures, whereas cholangiocytes, biliary epithelial cells, form tubular structures called intrahepatic bile ducts. Analyses for human genetic diseases and mutant mice have identified crucial molecules for liver organogenesis. Functions of those molecules can be examined in in vitro culture systems where LPCs are induced to differentiate into hepatocytes or cholangiocytes. Recent technical advances have revealed 3D epithelial morphogenesis during liver organogenesis. Therefore, the liver is a good model to understand how tissue stem/progenitor cells differentiate and establish 3D tissue architectures during organ development.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
48
|
Footprint-free human fetal foreskin derived iPSCs: A tool for modeling hepatogenesis associated gene regulatory networks. Sci Rep 2017; 7:6294. [PMID: 28740077 PMCID: PMC5524812 DOI: 10.1038/s41598-017-06546-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells and can be generated from somatic cells. We have generated episomal plasmid-based and integration-free iPSCs (E-iPSCs) from human fetal foreskin fibroblast cells (HFF1). We used an E-iPSC-line to model hepatogenesis in vitro. The HLCs were characterized biochemically, i.e. glycogen storage, ICG uptake and release, UREA and bile acid production, as well as CYP3A4 activity. Ultra-structure analysis by electron microscopy revealed the presence of lipid and glycogen storage, tight junctions and bile canaliculi- all typical features of hepatocytes. Furthermore, the transcriptome of undifferentiated E-iPSC, DE, HE and HLCs were compared to that of fetal liver and primary human hepatocytes (PHH). K-means clustering identified 100 clusters which include developmental stage-specific groups of genes, e.g. OCT4 expression at the undifferentiated stage, SOX17 marking the DE stage, DLK and HNF6 the HE stage, HNF4α and Albumin is specific to HLCs, fetal liver and adult liver (PHH) stage. We use E-iPSCs for modeling gene regulatory networks associated with human hepatogenesis and gastrulation in general.
Collapse
|
49
|
Zhu JN, Jiang L, Jiang JH, Yang X, Li XY, Zeng JX, Shi RY, Shi Y, Pan XR, Han ZP, Wei LX. Hepatocyte nuclear factor-1beta enhances the stemness of hepatocellular carcinoma cells through activation of the Notch pathway. Sci Rep 2017; 7:4793. [PMID: 28684878 PMCID: PMC5500528 DOI: 10.1038/s41598-017-04116-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor-1beta plays an important role in the development and progression of liver cancer. In recent years, the expression of HNF-1β has been reported to be associated with risk for a variety of cancers. The purpose of this study is to investigate whether the expression of HNF-1β promotes the malignancy of HCC and its mechanism. We retrospectively investigated the expression of HNF-1β in 90 patients with hepatocellular carcinoma and found that the high expression of HNF-1β indicated poor prognosis. We overexpressed HNF-1β in liver cancer cell lines and found the expression of liver progenitor cell markers and stemness were upregulated. The invasion ability and epithelial-mesenchymal transition (EMT)-associated genes were also significantly higher in liver cancer cells overexpressing HNF-1β than in the control group. A mechanistic study suggested the activation of the Notch signalling pathway probably plays a key role downstream of HNF-1β. More importantly, HNF-1β promoted tumourigenesis of HCC cells in vivo. In conclusion, high expression of HNF-1β not only promoted the de-differentiation of HCC cells into liver cancer stem cells through activating the Notch pathway but also enhanced the invasive potential of HCC cells and EMT occurrence, which would contribute to the enhancement of cell migration and invasion.
Collapse
Affiliation(s)
- Jing-Ni Zhu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lu Jiang
- Center of Digestive Endoscopy, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Jing-Hua Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao-Yong Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | | | | | - Yang Shi
- Department of general surgery, Chinese PLA 82nd Hospital, Jiangsu, China
| | | | - Zhi-Peng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
50
|
Villasenor A, Stainier DYR. On the development of the hepatopancreatic ductal system. Semin Cell Dev Biol 2017; 66:69-80. [PMID: 28214561 DOI: 10.1016/j.semcdb.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
The hepatopancreatic ductal system is the collection of ducts that connect the liver and pancreas to the digestive tract. The formation of this system is necessary for the transport of exocrine secretions, for the correct assembly of the pancreatobiliary ductal system, and for the overall function of the digestive system. Studies on endoderm organ formation have significantly advanced our understanding of the molecular mechanisms that govern organ induction, organ specification and morphogenesis of the major foregut-derived organs. However, little is known about the mechanisms that control the development of the hepatopancreatic ductal system. Here, we provide a description of the different components of the system, summarize its development from the endoderm to a complex system of tubes, list the pathologies produced by anomalies in its development, as well as the molecules and signaling pathways that are known to be involved in its formation. Finally, we discuss its proposed potential as a multipotent cell reservoir and the unresolved questions in the field.
Collapse
Affiliation(s)
- Alethia Villasenor
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|