1
|
Winzeler E, Carolino K, De Souza ML, Chen D, Farre JC, Blauwkamp J, Absalon S, Ghidelli-Disse S, Morano A, Dvorin J, Lafuente-Monasterio MJ, Gamo FJ. Plasmodium SEY1 is a novel druggable target that contributes to imidazolopiperazine mechanism of action. RESEARCH SQUARE 2024:rs.3.rs-4892449. [PMID: 39399671 PMCID: PMC11469372 DOI: 10.21203/rs.3.rs-4892449/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The precise mode of action of ganaplacide (KAF156), a phase III antimalarial candidate, remains elusive. Here we employ omics-based methods with the closely related chemical analog, GNF179, to search for potential Plasmodium targets. Ranking potential targets derived from chemical genetics and proteomic affinity chromatography methodologies identifies SEY1, or Synthetic Enhancement of YOP1, which is predicted to encode an essential dynamin-like GTPase implicated in homotypic fusion of endoplasmic reticulum (ER) membranes. We demonstrate that GNF179 decreases Plasmodium SEY1 melting temperature. We further show that GNF179 binds to recombinant Plasmodium SEY1 and subsequently inhibits its GTPase activity, which is required for maintaining ER architecture. Using ultrastructure expansion microscopy, we find GNF179 treatment changes parasite ER and Golgi morphology. We also confirm that SEY1 is an essential gene in P. falciparum. These data suggest that SEY1 may contribute to the mechanism of action of imidazolopiperazines and is a new and attractive druggable target.
Collapse
|
2
|
Renna L, Stefano G, Puggioni MP, Kim SJ, Lavell A, Froehlich JE, Burkart G, Mancuso S, Benning C, Brandizzi F. ER-associated VAP27-1 and VAP27-3 proteins functionally link the lipid-binding ORP2A at the ER-chloroplast contact sites. Nat Commun 2024; 15:6008. [PMID: 39019917 PMCID: PMC11255254 DOI: 10.1038/s41467-024-50425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs. Specifically, through in vivo and in vitro association assays, we found that VAP27 proteins interact with the outer envelope membrane (OEM) of chloroplasts, where they bind to ORP2A. Through lipidomic analyses, we established that VAP27 proteins and ORP2A directly interact with the chloroplast OEM monogalactosyldiacylglycerol (MGDG), and we demonstrated that the loss of the VAP27-ORP2A complex is accompanied by subtle changes in the acyl composition of MGDG and PG. We also found that ORP2A interacts with phytosterols and established that the loss of the VAP27-ORP2A complex alters sterol levels in chloroplasts. We propose that, by interacting directly with OEM lipids, the VAP27-ORP2A complex defines plant-unique MCSs that bridge ER and chloroplasts and are involved in chloroplast lipid homeostasis.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, University of Florence, Florence, Italy
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biology, University of Florence, Florence, Italy
| | - Maria Paola Puggioni
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Sang-Jin Kim
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Anastasiya Lavell
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - John E Froehlich
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, MI, USA
| | - Graham Burkart
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, Florence, Italy
- Fondazione per il Futuro delle Città, Florence, Italy
| | - Christoph Benning
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Xue M, Sofer L, Simon V, Arvy N, Diop M, Lion R, Beucher G, Bordat A, Tilsner J, Gallois J, German‐Retana S. AtHVA22a, a plant-specific homologue of Reep/DP1/Yop1 family proteins is involved in turnip mosaic virus propagation. MOLECULAR PLANT PATHOLOGY 2024; 25:e13466. [PMID: 38767756 PMCID: PMC11104427 DOI: 10.1111/mpp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Luc Sofer
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Vincent Simon
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Mamoudou Diop
- UR 1052, INRAe, GAFL Domaine St MauriceMontfavet CedexFrance
| | - Roxane Lion
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Guillaume Beucher
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Amandine Bordat
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Jens Tilsner
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
| | | | - Sylvie German‐Retana
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| |
Collapse
|
4
|
Shi L, Yang C, Zhang M, Li K, Wang K, Jiao L, Liu R, Wang Y, Li M, Wang Y, Ma L, Hu S, Bian X. Dissecting the mechanism of atlastin-mediated homotypic membrane fusion at the single-molecule level. Nat Commun 2024; 15:2488. [PMID: 38509071 PMCID: PMC10954664 DOI: 10.1038/s41467-024-46919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by dynamin-like GTPase atlastin (ATL). This fundamental process relies on GTP-dependent domain rearrangements in the N-terminal region of ATL (ATLcyto), including the GTPase domain and three-helix bundle (3HB). However, its conformational dynamics during the GTPase cycle remain elusive. Here, we combine single-molecule FRET imaging and molecular dynamics simulations to address this conundrum. Different from the prevailing model, ATLcyto can form a loose crossover dimer upon GTP binding, which is tightened by GTP hydrolysis for membrane fusion. Furthermore, the α-helical motif between the 3HB and transmembrane domain, which is embedded in the surface of the lipid bilayer and self-associates in the crossover dimer, is required for ATL function. To recycle the proteins, Pi release, which disassembles the dimer, activates frequent relative movements between the GTPase domain and 3HB, and subsequent GDP dissociation alters the conformational preference of the ATLcyto monomer for entering the next reaction cycle. Finally, we found that two disease-causing mutations affect human ATL1 activity by destabilizing GTP binding-induced loose crossover dimer formation and the membrane-embedded helix, respectively. These results provide insights into ATL-mediated homotypic membrane fusion and the pathological mechanisms of related disease.
Collapse
Affiliation(s)
- Lijun Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Chenguang Yang
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Kangning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Keying Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Li Jiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruming Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Ming Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Lu Ma
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shuxin Hu
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Shao Y, Sun J. The antagonistic dance between two ER-shaping proteins in plant cells. PLANT PHYSIOLOGY 2024; 194:1253-1254. [PMID: 37943849 PMCID: PMC10904318 DOI: 10.1093/plphys/kiad593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Yang Shao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 226237, China
| | - Jiaqi Sun
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 226237, China
| |
Collapse
|
6
|
Wang W, Zheng H. Arabidopsis reticulons inhibit ROOT HAIR DEFECTIVE3 to form a stable tubular endoplasmic reticulum network. PLANT PHYSIOLOGY 2024; 194:1431-1446. [PMID: 37879114 DOI: 10.1093/plphys/kiad574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
The endoplasmic reticulum (ER) is a network of interconnected tubules and sheets stretching throughout the cytoplasm of plant cells. In Arabidopsis (Arabidopsis thaliana), ROOT HAIR DEFECTIVE3 (RHD3) mediates ER tubule fusion, while reticulon proteins induce ER membrane curvature to produce ER tubules. However, it is unclear if and how RHD3-reticulon interplay during the formation of the interconnected tubular ER network. We discovered that RHD3 physically interacts with Arabidopsis reticulon proteins, including reticulon-like protein subfamily B3 (RTNLB3), on ER tubules and at 3-way junctions of the ER. The RTNLB3 protein is widely expressed in Arabidopsis seedlings and localizes to ER tubules. Although the growth of knockout rtnlb3 mutant plants was relatively normal, root hairs of rtnlb3 were shorter than those of wild type. The ER in mature mutant cells was also more sheeted than that in wild type. rhd3 is known to have short roots and root hairs and less branched ER tubules in cells. Interestingly, rtnlb3 genetically antagonizes rhd3 in plant root development and in ER interconnectivity. We show that reticulons including RTNLB3 inhibit the ER fusion activity of RHD3, partly by interfering with RHD3 dimerization. We conclude that reticulon proteins negatively regulate RHD3 to balance its ER fusion activity for the formation of a stable tubular ER network in plant cell growth.
Collapse
Affiliation(s)
- Weina Wang
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
7
|
Hou Z, Liang J, Cai X, Lin J, Wang X, Liu R, Lu L, Chai G, An C, Chen S, Qin Y, Zheng P. PeHVA22 gene family in passion fruit ( Passiflora edulis): initial characterization and expression profiling diversity. FRONTIERS IN PLANT SCIENCE 2024; 14:1279001. [PMID: 38312363 PMCID: PMC10835403 DOI: 10.3389/fpls.2023.1279001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Passion fruit, an economically valuable fruit crop, is highly vulnerable to adverse climate conditions. The HVA22 genes, recognized as abscisic acid (ABA) and stress-inducible, play vital roles in stress response and growth regulation in diverse eukaryotic organisms. Here, six HVA22 genes were firstly identified in passion fruit genome and all predicted to be localized within the endoplasmic reticulum. Phylogenetic analyses showed that all PeHVA22s were divided into four subgroups. The gene structural features of PeHVA22 genes clustered in the same subgroup were relatively conserved, while the gene structure characteristics of PeHVA22s from different subgroups varied significantly. PeHVA22A and PeHVA22C closely clustered with barley HVA22 in Group II, were also induced by ABA and drought stress treatment, suggesting conserved roles similar to barley HVA22. Meanwhile, most PeHVA22s exhibited induced expression post-drought treatment but were suppressed under salt, low and high-temperature conditions, indicating a unique role in drought response. Additionally, PeHVA22s displayed tissue-specific expression patterns across diverse tissues, except for PeHVA22B which maybe a pseudogene. Notably, PeHVA22C, PeHVA22E, and PeHVA22F predominantly expressed in fruit, indicating their involvement in fruit development. Almost all PeHVA22s showed variable expression at different developmental stages of stamens or ovules, implying their roles in passion fruit's sexual reproduction. The intricate roles of PeHVA22s may result from diverse regulatory factors including transcription factors and CREs related to plant growth and development, hormone and stress responsiveness. These observations highlighted that PeHVA22s might play conserved roles in ABA response and drought stress tolerance, and also be participated in the regulation of passion fruit growth and floral development.
Collapse
Affiliation(s)
- Zhimin Hou
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianxiang Liang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinkai Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingting Lin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Lu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaifeng Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chang An
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengzhen Chen
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Sandor A, Samalova M, Brandizzi F, Kriechbaumer V, Moore I, Fricker MD, Sweetlove LJ. Characterization of intracellular membrane structures derived from a massive expansion of endoplasmic reticulum (ER) membrane due to synthetic ER-membrane-resident polyproteins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:45-59. [PMID: 37715992 PMCID: PMC10735356 DOI: 10.1093/jxb/erad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Ian Moore
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Mark D Fricker
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
9
|
Moon S, Derakhshani B, Gho YS, Kim EJ, Lee SK, Jiang X, Lee C, Jung KH. PRX102 Participates in Root Hairs Tip Growth of Rice. RICE (NEW YORK, N.Y.) 2023; 16:51. [PMID: 37971600 PMCID: PMC10654324 DOI: 10.1186/s12284-023-00668-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase. During root hair growth, PRX102 has a polar localization pattern within the tip regions of root hairs but it loses this polarity after growth termination. Moreover, PRX102 participates in root hair outgrowth by regulating dense cytoplasmic streaming toward the tip. This role is distinct from those of other peroxidases playing roles in the root hairs and regulating reactive oxygen species homeostasis. RNA-seq analysis using prx102 root hairs revealed that 87 genes including glutathione S-transferase were downregulated. Our results therefore suggest a new function of peroxidase as a player in the delivery of substances to the tips of growing root hairs.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Behnam Derakhshani
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yun Shil Gho
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Su Kyoung Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Choonseok Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
10
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
11
|
Wimalagunasekara SS, Weeraman JWJK, Tirimanne S, Fernando PC. Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa). J Genet Eng Biotechnol 2023; 21:69. [PMID: 37246172 DOI: 10.1186/s43141-023-00515-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The root system is vital to plant growth and survival. Therefore, genetic improvement of the root system is beneficial for developing stress-tolerant and improved plant varieties. This requires the identification of proteins that significantly contribute to root development. Analyzing protein-protein interaction (PPI) networks is vastly beneficial in studying developmental phenotypes, such as root development, because a phenotype is an outcome of several interacting proteins. PPI networks can be analyzed to identify modules and get a global understanding of important proteins governing the phenotypes. PPI network analysis for root development in rice has not been performed before and has the potential to yield new findings to improve stress tolerance. RESULTS Here, the network module for root development was extracted from the global Oryza sativa PPI network retrieved from the STRING database. Novel protein candidates were predicted, and hub proteins and sub-modules were identified from the extracted module. The validation of the predictions yielded 75 novel candidate proteins, 6 sub-modules, 20 intramodular hubs, and 2 intermodular hubs. CONCLUSIONS These results show how the PPI network module is organized for root development and can be used for future wet-lab studies for producing improved rice varieties.
Collapse
Affiliation(s)
| | - Janith W J K Weeraman
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka.
| | - Shamala Tirimanne
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Pasan C Fernando
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
12
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
13
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
14
|
Takatsuka H, Higaki T, Ito M. At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles. Int J Mol Sci 2023; 24:4143. [PMID: 36835552 PMCID: PMC9967756 DOI: 10.3390/ijms24044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
15
|
Wang J, Zhang Q, Bao Y, Bassham D. Autophagic degradation of membrane-bound organelles in plants. Biosci Rep 2023; 43:BSR20221204. [PMID: 36562332 PMCID: PMC9842949 DOI: 10.1042/bsr20221204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
16
|
Xue Y, Jia PF, Li HJ. SUN3/4/5 proteins regulate endoplasmic reticulum tubule formation and luminal spacing in Arabidopsis. J Genet Genomics 2022; 50:370-373. [PMID: 36402306 DOI: 10.1016/j.jgg.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Yong Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Hung CY, Zhu C, Kittur FS, He M, Arning E, Zhang J, Johnson AJ, Jawa GS, Thomas MD, Ding TT, Xie J. A plant-based mutant huntingtin model-driven discovery of impaired expression of GTPCH and DHFR. Cell Mol Life Sci 2022; 79:553. [PMID: 36251090 PMCID: PMC9576654 DOI: 10.1007/s00018-022-04587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Pathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Httex1) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants. Here, we show that transgenic plants accumulated Httex1 proteins with corresponding polyQ tracts, and mHttex1 induced protein aggregation and affected plant growth, especially root and root hair development, in a polyQ length-dependent manner. Quantitative proteomic analysis of young roots from severely affected Httex1Q63 and unaffected Httex1Q21 plants showed that the most reduced protein by polyQ63 is a GTP cyclohydrolase I (GTPCH) along with many of its related one-carbon (C1) metabolic pathway enzymes. GTPCH is a key enzyme involved in folate biosynthesis in plants and tetrahydrobiopterin (BH4) biosynthesis in mammals. Validating studies in 4-week-old R6/2 HD mice expressing a mHttex1 showed reduced levels of GTPCH and dihydrofolate reductase (DHFR, a key folate utilization/alternate BH4 biosynthesis enzyme), and impaired C1 and BH4 metabolism. Our findings from mHttex1 plants and mice reveal impaired expressions of GTPCH and DHFR and may contribute to a better understanding of mHtt-altered C1 and BH4 metabolism, and their roles in the pathogenesis of HD.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Chuanshu Zhu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Maotao He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,Department of Pathology, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Erland Arning
- Baylor Scott and White Research Institute, Institute of Metabolic Disease, Dallas, TX, 75204, USA
| | - Jianhui Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Asia J Johnson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Gurpreet S Jawa
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,DePuy Synthes Companies of Johnson & Johnson, West Chester, PA, 19380, USA
| | - Michelle D Thomas
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Tomas T Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
18
|
Pain C, Tolmie F, Wojcik S, Wang P, Kriechbaumer V. intER-ACTINg: the structure and dynamics of ER and actin are interlinked. J Microsc 2022. [PMID: 35985796 DOI: 10.1111/jmi.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The actin cytoskeleton is the driver of gross ER remodelling and the movement and positioning of other membrane-bound organelles such as Golgi bodies. Rapid ER membrane remodelling is a feature of most plant cells and is important for normal cellular processes, including targeted secretion, immunity and signalling. Modifications to the actin cytoskeleton, through pharmacological agents such as Latrunculin B and phalloidin, or disruption of normal myosin function also affect ER structure and/or dynamics. Here, we investigate the impact of changes in the actin cytoskeleton on structure and dynamics on the ER as well as in return the impact of modified ER structure on the architecture of the actin cytoskeleton. By expressing actin markers that affect actin dynamics, or expressing of ER-shaping proteins that influence ER architecture, we found that the structure of ER-actin networks is closely inter-related; affecting one component is likely to have a direct effect on the other. Therefore, our results indicate that a complicated regulatory machinery and cross-talk between these two structures must exist in plants to co-ordinate the function of ER-actin network during multiple subcellular processes. In addition, when considering organelle structure and dynamics, the choice of actin marker is essential in preventing off-target organelle structure and dynamics modifications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Charlotte Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Frances Tolmie
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Stefan Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
19
|
Meng F, Zhao Q, Zhao X, Yang C, Liu R, Pang J, Zhao W, Wang Q, Liu M, Zhang Z, Kong Z, Liu J. A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance. Cell Rep 2022; 39:110941. [PMID: 35705042 DOI: 10.1016/j.celrep.2022.110941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for plants to manage responses under environmental stress. Plant immune activation requires the ER, but how ER homeostasis is associated with plant immune activation is largely unexplored. Here we find that transcription of an HVA22 family gene, OsHLP1 (HVA22-like protein 1), is induced by Magnaporthe oryzae infection. Overexpression of OsHLP1 significantly enhances blast disease resistance but impairs ER morphology in rice (Oryza sativa), resulting in enhanced sensitivity to ER stress. OsHLP1 interacts with the NAC (NAM, ATAF, and CUC) transcription factor OsNTL6 at the ER. OsNTL6 localizes to the ER and is relocated to the nucleus after cleavage of the transmembrane domain. OsHLP1 suppresses OsNTL6 protein accumulation, whereas OsNTL6 counteracts OsHLP1 by alleviating sensitivity to ER stress and decreasing disease resistance in OsHLP1 overexpression plants. These findings unravel a mechanism whereby OsHLP1 promotes disease resistance by compromising ER homeostasis when plants are infected by pathogens.
Collapse
Affiliation(s)
- Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiqi Zhao
- School of Life Sciences, University of Inner Mongolia, Hohhot 010021, China
| | - Xia Zhao
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chao Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wensheng Zhao
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Muxing Liu
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Xue Y, Meng JG, Jia PF, Zhang ZR, Li HJ, Yang WC. POD1-SUN-CRT3 chaperone complex guards the ER sorting of LRR receptor kinases in Arabidopsis. Nat Commun 2022; 13:2703. [PMID: 35577772 PMCID: PMC9110389 DOI: 10.1038/s41467-022-30179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Protein sorting in the secretory pathway is essential for cellular compartmentalization and homeostasis in eukaryotic cells. The endoplasmic reticulum (ER) is the biosynthetic and folding factory of secretory cargo proteins. The cargo transport from the ER to the Golgi is highly selective, but the molecular mechanism for the sorting specificity is unclear. Here, we report that three ER membrane localized proteins, SUN3, SUN4 and SUN5, regulate ER sorting of leucine-rich repeat receptor kinases (LRR-RKs) to the plasma membrane. The triple mutant sun3/4/5 displays mis-sorting of these cargo proteins to acidic compartments and therefore impairs the growth of pollen tubes and the whole plant. Furthermore, the extracellular LRR domain of LRR-RKs is responsible for the correct sorting. Together, this study reports a mechanism that is important for the sorting of cell surface receptors. Cargo transport from the ER to the Golgi is highly selective. Here the authors identify three secretory pathway localized proteins that regulate ER sorting of receptor kinases in Arabidopsis and are required to support pollen tube growth.
Collapse
|
21
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
22
|
In Planta Labeling Using a Clickable ER-Disrupting Probe Suggests a Role for Oleosins in Arabidopsis Seedling ER Integrity. ACS Chem Biol 2021; 16:2151-2157. [PMID: 34505514 DOI: 10.1021/acschembio.1c00607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several small-molecule perturbagens of the plant endomembrane system are known, but few selectively disrupt endoplasmic reticulum (ER) structure and function. We conducted a microscopy-based screen for small-molecule disruptors of ER structure and discovered eroonazole, a 1,2-4-triazole that induces extensive ER vesiculation in Arabidopsis seedlings. To identify eroonazole targets, we synthesized a clickable photoaffinity derivative and used it for whole-seedling labeling experiments. These reveal that the probe labels multiple oleosins, plant membrane proteins that stabilize ER-derived lipid droplets. Oleosin labeling is absent in an oleosin1234 quadruple mutant and reduced using an inactive analog. Cellular analyses of the ER in the quadruple mutant demonstrate that oleosins are required for normal ER structure during seed germination and suggest that perturbation of oleosin function by eroonazole underlies its effects on seedling ER structure.
Collapse
|
23
|
Zheng H. Partnership in action: The endoplasmic reticulum regulates the cytoskeleton. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153540. [PMID: 34619556 DOI: 10.1016/j.jplph.2021.153540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The endoplasmic reticulum (ER) and the cytoskeleton are functionally linked in living cells. Past research has focused on how the cytoskeleton regulates ER dynamics. How the ER may contribute to cytoskeletal dynamics has been overlooked. In this commentary, I examined how the ER mediates actin and microtubule dynamics in plant cells.
Collapse
Affiliation(s)
- Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, H3A 1B1, Canada.
| |
Collapse
|
24
|
ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells 2021; 10:cells10112870. [PMID: 34831093 PMCID: PMC8616106 DOI: 10.3390/cells10112870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is the most abundant and widespread organelle in cells. Its peculiar membrane architecture, formed by an intricate network of tubules and cisternae, is critical to its multifaceted function. Regulation of ER morphology is coordinated by a few ER-specific membrane proteins and is thought to be particularly important in neurons, where organized ER membranes are found even in the most distant neurite terminals. Mutation of ER-shaping proteins has been implicated in the neurodegenerative disease hereditary spastic paraplegia (HSP). In this review we discuss the involvement of these proteins in the pathogenesis of HSP, focusing on the experimental evidence linking their molecular function to disease onset. Although the precise biochemical activity of some ER-related HSP proteins has been elucidated, the pathological mechanism underlying ER-linked HSP is still undetermined and needs to be further investigated.
Collapse
|
25
|
Zang J, Kriechbaumer V, Wang P. Plant cytoskeletons and the endoplasmic reticulum network organization. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153473. [PMID: 34298331 DOI: 10.1016/j.jplph.2021.153473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Plant endoplasmic reticulum (ER) remodelling is likely to be important for its function in targeted protein secretion, organelle interaction and signal exchange. It has been known for decades that the structure and movement of the ER network is mainly regulated by the actin cytoskeleton through actin motor proteins and membrane-cytoskeleton adaptors. Recent discoveries also revealed alternative pathways that influence ER movement, through a microtubule-based machinery. Therefore, plants utilize both cytoskeletal components to drive ER dynamics, a process that is likely to be dependent on the cell type and the developmental stages. On the other hand, the ER membrane also has a direct effect towards the organization of the cytoskeletal network and disrupting the tethering factors at the ER-PM interface also rearranges the cytoskeletal structure. However, the influence of the ER network on the cytoskeleton organization has not been studied. In this review, we will provide an overview of the ER-cytoskeleton network in plants, and discuss the most recent discoveries in the field.
Collapse
Affiliation(s)
- Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
26
|
Gong J, Tian Z, Qu X, Meng Q, Guan Y, Liu P, Chen C, Deng X, Guo W, Cheng Y, Wang P. Illuminating the cells: transient transformation of citrus to study gene functions and organelle activities related to fruit quality. HORTICULTURE RESEARCH 2021; 8:175. [PMID: 34333523 PMCID: PMC8325690 DOI: 10.1038/s41438-021-00611-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 05/16/2023]
Abstract
Although multiple microscopic techniques have been applied to horticultural research, few studies of individual organelles in living fruit cells have been reported to date. In this paper, we established an efficient system for the transient transformation of citrus fruits using an Agrobacterium-mediated method. Kumquat (Fortunella crassifolia Swingle) was used; it exhibits higher transformation efficiency than all citrus fruits that have been tested and a prolonged-expression window. Fruits were transformed with fluorescent reporters, and confocal microscopy and live-cell imaging were used to study their localization and dynamics. Moreover, various pH sensors targeting different subcellular compartments were expressed, and the local pH environments in cells from different plant tissues were compared. The results indicated that vacuoles are most likely the main organelles that contribute to the low pH of citrus fruits. In summary, our method is effective for studying various membrane trafficking events, protein localization, and cell physiology in fruit and can provide new insight into fruit biology research.
Collapse
Affiliation(s)
- Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhen Tian
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
| | - Qiunan Meng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yajie Guan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ping Liu
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, 541004, Guilin, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, 541004, Guilin, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China.
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China.
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
27
|
Liu N, Zhao H, Zhao YG, Hu J, Zhang H. Atlastin 2/3 regulate ER targeting of the ULK1 complex to initiate autophagy. J Cell Biol 2021; 220:e202012091. [PMID: 33988678 PMCID: PMC8129792 DOI: 10.1083/jcb.202012091] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Dynamic targeting of the ULK1 complex to the ER is crucial for initiating autophagosome formation and for subsequent formation of ER-isolation membrane (IM; autophagosomal precursor) contact during IM expansion. Little is known about how the ULK1 complex, which comprises FIP200, ULK1, ATG13, and ATG101 and does not exist as a constitutively coassembled complex, is recruited and stabilized on the ER. Here, we demonstrate that the ER-localized transmembrane proteins Atlastin 2 and 3 (ATL2/3) contribute to recruitment and stabilization of ULK1 and ATG101 at the FIP200-ATG13-specified autophagosome formation sites on the ER. In ATL2/3 KO cells, formation of FIP200 and ATG13 puncta is unaffected, while targeting of ULK1 and ATG101 is severely impaired. Consequently, IM initiation is compromised and slowed. ATL2/3 directly interact with ULK1 and ATG13 and facilitate the ATG13-mediated recruitment/stabilization of ULK1 and ATG101. ATL2/3 also participate in forming ER-IM tethering complexes. Our study provides insights into the dynamic assembly of the ULK1 complex on the ER for autophagosome formation.
Collapse
Affiliation(s)
- Nan Liu
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yan G. Zhao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
28
|
Changes in Subcellular Localization of Host Proteins Induced by Plant Viruses. Viruses 2021; 13:v13040677. [PMID: 33920930 PMCID: PMC8071230 DOI: 10.3390/v13040677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Viruses are dependent on host factors at all parts of the infection cycle, such as translation, genome replication, encapsidation, and cell-to-cell and systemic movement. RNA viruses replicate their genome in compartments associated with the endoplasmic reticulum, chloroplasts, and mitochondria or peroxisome membranes. In contrast, DNA viruses replicate in the nucleus. Viral infection causes changes in plant gene expression and in the subcellular localization of some host proteins. These changes may support or inhibit virus accumulation and spread. Here, we review host proteins that change their subcellular localization in the presence of a plant virus. The most frequent change is the movement of host cytoplasmic proteins into the sites of virus replication through interactions with viral proteins, and the protein contributes to essential viral processes. In contrast, only a small number of studies document changes in the subcellular localization of proteins with antiviral activity. Understanding the changes in the subcellular localization of host proteins during plant virus infection provides novel insights into the mechanisms of plant–virus interactions and may help the identification of targets for designing genetic resistance to plant viruses.
Collapse
|
29
|
Rosado A, Bayer EM. Geometry and cellular function of organelle membrane interfaces. PLANT PHYSIOLOGY 2021; 185:650-662. [PMID: 33793898 PMCID: PMC8133572 DOI: 10.1093/plphys/kiaa079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2020] [Indexed: 05/09/2023]
Abstract
A vast majority of cellular processes take root at the surface of biological membranes. By providing a two-dimensional platform with limited diffusion, membranes are, by nature, perfect devices to concentrate signaling and metabolic components. As such, membranes often act as "key processors" of cellular information. Biological membranes are highly dynamic and deformable and can be shaped into curved, tubular, or flat conformations, resulting in differentiated biophysical properties. At membrane contact sites, membranes from adjacent organelles come together into a unique 3D configuration, forming functionally distinct microdomains, which facilitate spatially regulated functions, such as organelle communication. Here, we describe the diversity of geometries of contact site-forming membranes in different eukaryotic organisms and explore the emerging notion that their shape, 3D architecture, and remodeling jointly define their cellular activity. The review also provides selected examples highlighting changes in membrane contact site architecture acting as rapid and local responses to cellular perturbations, and summarizes our current understanding of how those structural changes confer functional specificity to those cellular territories.
Collapse
Affiliation(s)
- Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuelle M Bayer
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France
- Author for communication:
| |
Collapse
|
30
|
Sandor A, Fricker MD, Kriechbaumer V, Sweetlove LJ. IntEResting structures: formation and applications of organized smooth endoplasmic reticulum in plant cells. PLANT PHYSIOLOGY 2021; 185:550-561. [PMID: 33822222 PMCID: PMC8892044 DOI: 10.1104/pp.20.00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle with remarkable plasticity, capable of rapidly changing its structure to accommodate different functions based on intra- and extracellular cues. One of the ER structures observed in plants is known as "organized smooth endoplasmic reticulum" (OSER), consisting of symmetrically stacked ER membrane arrays. In plants, these structures were first described in certain specialized tissues, e.g. the sieve elements of the phloem, and more recently in transgenic plants overexpressing ER membrane resident proteins. To date, much of the investigation of OSER focused on yeast and animal cells but research into plant OSER has started to grow. In this update, we give a succinct overview of research into the OSER phenomenon in plant cells with case studies highlighting both native and synthetic occurrences of OSER. We also assess the primary driving forces that trigger the formation of OSER, collating evidence from the literature to compare two competing theories for the origin of OSER: that OSER formation is initiated by oligomerizing protein accumulation in the ER membrane or that OSER is the result of ER membrane proliferation. This has long been a source of controversy in the field and here we suggest a way to integrate arguments from both sides into a single unifying theory. Finally, we discuss the potential biotechnological uses of OSER as a tool for the nascent plant synthetic biology field with possible applications as a synthetic microdomain for metabolic engineering and as an extensive membrane surface for synthetic chemistry or protein accumulation.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
31
|
Maintaining the structural and functional homeostasis of the plant endoplasmic reticulum. Dev Cell 2021; 56:919-932. [PMID: 33662257 DOI: 10.1016/j.devcel.2021.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that is vital to the life of eukaryotic cells. It synthesizes essential lipids and proteins and initiates the glycosylation of intracellular and surface proteins. As such, the ER is necessary for cell growth and communication with the external environment. The ER is also a highly dynamic organelle, whose structure is continuously remodeled through an interaction with the cytoskeleton and the action of specialized ER shapers. Recent and significant advances in ER studies have brought to light conserved and unique features underlying the structure and function of this organelle in plant cells. In this review, exciting developments in the understanding of the mechanisms for plant ER structural and functional homeostasis, particularly those that underpin ER network architecture and ER degradation, are presented and discussed.
Collapse
|
32
|
Hüsler D, Steiner B, Welin A, Striednig B, Swart AL, Molle V, Hilbi H, Letourneur F. Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the Legionella-containing vacuole. Cell Microbiol 2021; 23:e13318. [PMID: 33583106 DOI: 10.1111/cmi.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - A Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
33
|
Bao Y, Bassham DC. ER-Phagy and Its Role in ER Homeostasis in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1771. [PMID: 33327515 PMCID: PMC7764954 DOI: 10.3390/plants9121771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is the largest continuous membrane-bound cellular organelle and plays a central role in the biosynthesis of lipids and proteins and their distribution to other organelles. Autophagy is a conserved process that is required for recycling unwanted cellular components. Recent studies have implicated the ER as a membrane source for the formation of autophagosomes, vesicles that transport material to the vacuole during autophagy. When unfolded proteins accumulate in the ER and/or the ER lipid bilayer is disrupted, a condition known as ER stress results. During ER stress, ER membranes can also be engulfed through autophagy in a process termed ER-phagy. An interplay between ER stress responses and autophagy thus maintains the functions of the ER to allow cellular survival. In this review, we discuss recent progress in understanding ER-phagy in plants, including identification of regulatory factors and selective autophagy receptors. We also identify key unanswered questions in plant ER-phagy for future study.
Collapse
Affiliation(s)
- Yan Bao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
34
|
Montagna A, Vajente N, Pendin D, Daga A. In vivo Analysis of CRISPR/Cas9 Induced Atlastin Pathological Mutations in Drosophila. Front Neurosci 2020; 14:547746. [PMID: 33177972 PMCID: PMC7593789 DOI: 10.3389/fnins.2020.547746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic network whose shape is thought to be actively regulated by membrane resident proteins. Mutation of several such morphology regulators cause the neurological disorder Hereditary Sp astic Paraplegia (HSP), suggesting a critical role of ER shape maintenance in neuronal activity and function. Human Atlastin-1 mutations are responsible for SPG3A, the earliest onset and one of the more severe forms of dominant HSP. Atlastin has been initially identified in Drosophila as the GTPase responsible for the homotypic fusion of ER membrane. The majority of SPG3A-linked Atlastin-1 mutations map to the GTPase domain, potentially interfering with atlastin GTPase activity, and to the three-helix-bundle (3HB) domain, a region critical for homo-oligomerization. Here we have examined the in vivo effects of four pathogenetic missense mutations (two mapping to the GTPase domain and two to the 3HB domain) using two complementary approaches: CRISPR/Cas9 editing to introduce such variants in the endogenous atlastin gene and transgenesis to generate lines overexpressing atlastin carrying the same pathogenic variants. We found that all pathological mutations examined reduce atlastin activity in vivo although to different degrees of severity. Moreover, overexpression of the pathogenic variants in a wild type atlastin background does not give rise to the loss of function phenotypes expected for dominant negative mutations. These results indicate that the four pathological mutations investigated act through a loss of function mechanism.
Collapse
Affiliation(s)
- Aldo Montagna
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| | - Nicola Vajente
- Neuroscience Institute, Italian National Research Council, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Diana Pendin
- Neuroscience Institute, Italian National Research Council, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| |
Collapse
|
35
|
Sun J, Zhang M, Qi X, Doyle C, Zheng H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat Commun 2020; 11:5510. [PMID: 33139737 PMCID: PMC7606470 DOI: 10.1038/s41467-020-19343-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Mi Zhang
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Department of Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Caitlin Doyle
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
36
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
37
|
|
38
|
Shi X, Hai L, Govindasamy K, Gao J, Coppens I, Hu J, Wang Q, Bhanot P. A Plasmodium homolog of ER tubule-forming proteins is required for parasite virulence. Mol Microbiol 2020; 114:454-467. [PMID: 32432369 DOI: 10.1111/mmi.14526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023]
Abstract
Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1's disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Lei Hai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Kavitha Govindasamy
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jian Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
39
|
The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Appl Environ Microbiol 2020; 86:AEM.02720-19. [PMID: 32220839 DOI: 10.1128/aem.02720-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Fusarium graminearum, the main pathogenic fungus causing Fusarium head blight (FHB), produces deoxynivalenol (DON), a key virulence factor, which is synthesized in the endoplasmic reticulum (ER). Sey1/atlastin, a dynamin-like GTPase protein, is known to be required for homotypic fusion of ER membranes, but the functions of this protein are unknown in pathogenic fungi. Here, we characterized Sey1/atlastin homologue FgSey1 in F. graminearum Like Sey1/atlastin, FgSey1 is located in the ER. The FgSEY1 deletion mutant exhibited significantly reduced vegetative growth, asexual development, DON biosynthesis, and virulence. Moreover, the ΔFgsey1 mutant was impaired in the formation of normal lipid droplets (LDs) and toxisomes, both of which participate in DON biosynthesis. The GTPase, helix bundle (HB), transmembrane segment (TM), and cytosolic tail (CT) domains of FgSey1 are essential for its function, but only the TM domain is responsible for its localization. Furthermore, the mutants FgSey1K63A and FgSey1T87A lacked GTPase activity and failed to rescue the defects of the ΔFgsey1 mutant. Collectively, our data suggest that the dynamin-like GTPase protein FgSey1 affects the generation of LDs and toxisomes and is required for DON biosynthesis and pathogenesis in F. graminearum IMPORTANCE Fusarium graminearum is a major plant pathogen that causes Fusarium head blight (FHB) of wheats worldwide. In addition to reducing the plant yield, F. graminearum infection of wheats also results in the production of deoxynivalenol (DON) mycotoxins, which are harmful to humans and animals and therefore cause great economic losses through pollution of food products and animal feed. At present, effective strategies for controlling FHB are not available. Therefore, understanding the regulation mechanisms of fungal development, pathogenesis, and DON biosynthesis is important for the development of effective control strategies of this disease. In this study, we demonstrated that a dynamin-like GTPase protein Sey1/atlastin homologue, FgSey1, is required for vegetative growth, DON production, and pathogenicity in F. graminearum Our results provide novel information on critical roles of FgSey1 in fungal pathogenicity; therefore, FgSey1 could be a potential target for effective control of the disease caused by F. graminearum.
Collapse
|
40
|
Nielsen E. The Small GTPase Superfamily in Plants: A Conserved Regulatory Module with Novel Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:247-272. [PMID: 32442390 DOI: 10.1146/annurev-arplant-112619-025827] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants-with a focus on the model organism Arabidopsis-is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
41
|
Zhang X, Ding X, Marshall RS, Paez-Valencia J, Lacey P, Vierstra RD, Otegui MS. Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. eLife 2020; 9:51918. [PMID: 32011236 PMCID: PMC7046470 DOI: 10.7554/elife.51918] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and re-model ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.
Collapse
Affiliation(s)
- Xiaoguo Zhang
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | - Xinxin Ding
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | | | - Julio Paez-Valencia
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | - Patrick Lacey
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | | | - Marisa S Otegui
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States.,Department of Genetics, University of Wisconsin, Madison, United States
| |
Collapse
|
42
|
Brooks RL, Dixon AM. Revealing the mechanism of protein-lipid interactions for a putative membrane curvature sensor in plant endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183160. [PMID: 31874147 DOI: 10.1016/j.bbamem.2019.183160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
Membrane curvature sensing via helical protein domains, such as those identified in Amphiphysin and ArfGAP1, have been linked to a diverse range of cellular processes. However, these regions can vary significantly between different protein families and thus remain challenging to identify from sequence alone. Greater insight into the protein-lipid interactions that drive this behavior could lead to production of therapeutics that specifically target highly curved membranes. Here we demonstrate the curvature-dependence of membrane binding for an amphipathic helix (APH) in a plant reticulon, namely RTNLB13 from A. thaliana. We utilize solution-state nuclear magnetic resonance spectroscopy to establish the exact location of the APH and map the residues involved in protein-membrane interactions at atomic resolution. We find that the hydrophobic residues making up the membrane binding site are conserved throughout all A. thaliana reticulons. Our results also provide mechanistic insight that leads us to propose that membrane binding by this APH may act as a feedback element, only forming when ER tubules reach a critical size and adding stabilization to these structures without disrupting the bilayer. A shallow hydrophobic binding interface appears to be a feature shared more broadly across helical curvature sensors and would automatically restrict the penetration depth of these structures into the membrane. We also suggest this APH is highly tuned to the composition of the membrane in which it resides, and that this property may be universal in curvature sensors thus rationalizing the variety of mechanisms reported for these functional elements.
Collapse
Affiliation(s)
- Rhiannon L Brooks
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
43
|
Ren B, Wang X, Duan J, Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 2019; 365:919-922. [PMID: 31346137 DOI: 10.1126/science.aav8907] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Rhizobial infection and root nodule formation in legumes require recognition of signal molecules produced by the bacteria and their hosts. Here, we show that rhizobial transfer RNA (tRNA)-derived small RNA fragments (tRFs) are signal molecules that modulate host nodulation. Three families of rhizobial tRFs were confirmed to regulate host genes associated with nodule initiation and development through hijacking the host RNA-interference machinery that involves ARGONAUTE 1. Silencing individual tRFs with the use of short tandem target mimics or by overexpressing their targets represses root hair curling and nodule formation, whereas repressing these targets with artificial microRNAs identical to the respective tRFs or mutating these targets with CRISPR-Cas9 promotes nodulation. Our findings thus uncover a bacterial small RNA-mediated mechanism for prokaryote-eukaryote interaction and may pave the way for enhancing nodulation efficiency in legumes.
Collapse
MESH Headings
- Argonaute Proteins/genetics
- Bradyrhizobium/genetics
- Bradyrhizobium/physiology
- CRISPR-Cas Systems
- Gene Expression Regulation, Plant
- Host Microbial Interactions/genetics
- Nitrogen Fixation
- Nucleic Acid Conformation
- Plant Proteins/genetics
- Plant Root Nodulation/genetics
- Plant Roots/metabolism
- Plant Roots/microbiology
- RNA Interference
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/physiology
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/physiology
- Glycine max/genetics
- Glycine max/metabolism
- Glycine max/microbiology
Collapse
Affiliation(s)
- Bo Ren
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
44
|
Wong GR, Mazumdar P, Lau SE, Harikrishna JA. Ectopic expression of a Musa acuminata root hair defective 3 (MaRHD3) in Arabidopsis enhances drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:219-233. [PMID: 30292098 DOI: 10.1016/j.jplph.2018.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 09/20/2018] [Indexed: 05/24/2023]
Abstract
Genetic improvement is an important approach for crop improvement towards yield stability in stress-prone areas. Functional analysis of candidate stress response genes can provide key information to allow the selection and modification of improved crop varieties. In this study, the constitutive expression of a banana cDNA, MaRHD3 in Arabidopsis improved the ability of transgenic lines to adapt to drought conditions. Transgenic Arabidopsis plants expressing MaRHD3 had roots with enhanced branching and more root hairs when challenged with drought stress. The MaRHD3 plants had higher biomass accumulation, higher relative water content, higher chlorophyll content and an increase in activity of reactive oxygen species (ROS) scavenging enzymes; SOD, CAT, GR, POD and APX with reduced water loss rates compared to control plants. The analysis of oxidative damage indicated lower cell membrane damage in transgenic lines compared to control plants. These findings, together with data from higher expression of ABF-3 and higher ABA content of drought-stressed transgenic MaRHD3 expressing plants, support the involvement of the ABA signal pathway and ROS scavenging enzyme systems in MaRHD3 mediated drought tolerance.
Collapse
Affiliation(s)
- Gwo Rong Wong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Winsor J, Machi U, Han Q, Hackney DD, Lee TH. GTP hydrolysis promotes disassembly of the atlastin crossover dimer during ER fusion. J Cell Biol 2018; 217:4184-4198. [PMID: 30249723 PMCID: PMC6279388 DOI: 10.1083/jcb.201805039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/15/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
The GTPase atlastin mediates homotypic ER fusion through trans-crossover dimerization, but how dimerization is coupled to the GTPase cycle has remained unclear. Winsor et al. show that GTP binding causes crossover dimerization for fusion, whereas GTP hydrolysis promotes disassembly of the crossover dimer for subunit recycling. Membrane fusion of the ER is catalyzed when atlastin GTPases anchored in opposing membranes dimerize and undergo a crossed over conformational rearrangement that draws the bilayers together. Previous studies have suggested that GTP hydrolysis triggers crossover dimerization, thus directly driving fusion. In this study, we make the surprising observations that WT atlastin undergoes crossover dimerization before hydrolyzing GTP and that nucleotide hydrolysis and Pi release coincide more closely with dimer disassembly. These findings suggest that GTP binding, rather than its hydrolysis, triggers crossover dimerization for fusion. In support, a new hydrolysis-deficient atlastin variant undergoes rapid GTP-dependent crossover dimerization and catalyzes fusion at an initial rate similar to WT atlastin. However, the variant cannot sustain fusion activity over time, implying a defect in subunit recycling. We suggest that GTP binding induces an atlastin conformational change that favors crossover dimerization for fusion and that the input of energy from nucleotide hydrolysis promotes complex disassembly for subunit recycling.
Collapse
Affiliation(s)
- James Winsor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ursula Machi
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Qixiu Han
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - David D Hackney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Tina H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
46
|
Kriechbaumer V, Breeze E, Pain C, Tolmie F, Frigerio L, Hawes C. Arabidopsis Lunapark proteins are involved in ER cisternae formation. THE NEW PHYTOLOGIST 2018; 219:990-1004. [PMID: 29797722 PMCID: PMC6055799 DOI: 10.1111/nph.15228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 05/04/2023]
Abstract
The plant endoplasmic reticulum (ER) is crucial to the maintenance of cellular homeostasis. The ER consists of a dynamic and continuously remodelling network of tubules and cisternae. Several conserved membrane proteins have been implicated in formation and maintenance of the ER network in plants, such as RHD3 and the reticulon proteins. Despite the recent work in mammalian and yeast cells, the detailed molecular mechanisms of ER network organization in plants remain largely unknown. Recently, novel ER network-shaping proteins called Lunapark (LNP) have been identified in yeast and mammalian cells. Here we identify two Arabidopsis LNP homologues and investigate their subcellular localization via confocal microscopy and potential function in shaping the ER network using protein-protein interaction assays and mutant analysis. We show that AtLNP1 overexpression in tobacco leaf epidermal cells mainly labels cisternae in the ER network, whereas AtLNP2 labels the whole ER. Overexpression of LNP proteins results in an increased abundance of ER cisternae and lnp1 and lnp1lnp2 amiRNA lines display a reduction in cisternae and larger polygonal areas. Thus, we hypothesize that AtLNP1 and AtLNP2 are involved in determining the network morphology of the plant ER, possibly by regulating the formation of ER cisternae.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - Emily Breeze
- School of Life SciencesUniversity of WarwickGibbet HillCoventryCV4 7ALUK
| | - Charlotte Pain
- Plant Cell Biology, Biological and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - Frances Tolmie
- Plant Cell Biology, Biological and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - Lorenzo Frigerio
- School of Life SciencesUniversity of WarwickGibbet HillCoventryCV4 7ALUK
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| |
Collapse
|
47
|
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2018; 19:ijms19020638. [PMID: 29495267 PMCID: PMC5855860 DOI: 10.3390/ijms19020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022] Open
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.
Collapse
|
48
|
Brandizzi F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin Cell Dev Biol 2017; 80:94-105. [PMID: 28688928 DOI: 10.1016/j.semcdb.2017.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The biogenesis of about one third of the cellular proteome is initiated in the endoplasmic reticulum (ER), which exports proteins to the Golgi apparatus for sorting to their final destination. Notwithstanding the close proximity of the ER with other secretory membranes (e.g., endosomes, plasma membrane), the ER is also important for the homeostasis of non-secretory organelles such as mitochondria, peroxisomes, and chloroplasts. While how the plant ER interacts with most of the non-secretory membranes is largely unknown, the knowledge on the mechanisms for ER-to-Golgi transport is relatively more advanced. Indeed, over the last fifteen years or so, a large number of exciting results have contributed to draw parallels with non-plant species but also to highlight the complexity of the plant ER-Golgi interface, which bears unique features. This review reports and discusses results on plant ER-to-Golgi traffic, focusing mainly on research on COPII-mediated transport in the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
49
|
Wang P, Hussey PJ. NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1441-1450. [PMID: 28369569 PMCID: PMC5441911 DOI: 10.1093/jxb/erx047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants movement of the endoplasmic reticulum (ER) is dependent on the actin cytoskeleton. However little is known about proteins that link the ER membrane and the actin cytoskeleton. Here we identified a novel protein, NETWORKED 3B (NET3B), which is associated with the ER and actin cytoskeleton in vivo. NET3B belongs to a superfamily of plant specific actin binding proteins, the NETWORKED family. NET3B associates with the actin cytoskeleton in vivo through an N-terminal NET actin binding (NAB) domain, which has been well-characterized in other members of the NET family. A three amino acid insertion, Val-Glu-Asp, in the NAB domain of NET3B appears to lower its ability to localize to the actin cytoskeleton compared with NET1A, the founding member of the NET family. The C-terminal domain of NET3B links the protein to the ER. Overexpression of NET3B enhanced the association between the ER and the actin cytoskeleton, and the extent of this association was dependent on the amount of NET3B available. Another effect of NET3B overexpression was a reduction in ER membrane diffusion. In conclusion, our results revealed that NET3B modulates ER and actin cytoskeleton interactions in higher plants.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE, UK
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE,UK
| |
Collapse
|
50
|
Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res 2016; 349:32-44. [DOI: 10.1016/j.yexcr.2016.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
|