1
|
Brown AL, Koskella B, Boots M. How host-microbiome/holobiont evolution depends on whether the microbiome affects host lifespan or fecundity. J Evol Biol 2024:voae127. [PMID: 39513573 DOI: 10.1093/jeb/voae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
There is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts. Here, we use adaptive dynamics to investigate how host and symbiont evolution depend on whether symbionts increase host lifespan or host reproduction in a simple model of host and symbiont dynamics. In addition, we investigate 2 ways hosts release (and transmit) symbionts: by releasing symbionts steadily during their lifetime or by releasing them at reproduction, potentially increasing symbionts' chances of infecting the host's offspring. The former is strict horizontal transmission, whereas the latter is also a form of indirect or "pseudovertical" transmission. Our first key result is that the evolution of symbionts that benefit host fecundity requires pseudovertical transmission, while the evolution of symbionts that benefit host lifespan does not. Furthermore, our second key result is that when investing in host benefits is costly to the free-living symbiont stage, intermediate levels of pseudovertical transmission are needed for selection to favour beneficial symbionts. This is true regardless of fitness effects because release at reproduction increases the free-living symbiont population, which increases competition for hosts. Consequently, hosts could evolve away from traits that favour beneficial symbionts. Generally, our work emphasizes the importance of different forms of vertical transmission and fitness benefits in host, microbiome, and holobiont evolution as highlighted by our prediction that the evolution of fecundity-increasing symbionts requires parent-to-offspring transmission.
Collapse
Affiliation(s)
- Alexandra L Brown
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Department of Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
2
|
Li JD, Gao YY, Stevens EJ, King KC. Dual stressors of infection and warming can destabilize host microbiomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230069. [PMID: 38497264 PMCID: PMC10945407 DOI: 10.1098/rstb.2023.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024] Open
Abstract
Climate change is causing extreme heating events and intensifying infectious disease outbreaks. Animals harbour microbial communities, which are vital for their survival and fitness under stressful conditions. Understanding how microbiome structures change in response to infection and warming may be important for forecasting host performance under global change. Here, we evaluated alterations in the microbiomes of several wild Caenorhabditis elegans isolates spanning a range of latitudes, upon warming temperatures and infection by the parasite Leucobacter musarum. Using 16S rRNA sequencing, we found that microbiome diversity decreased, and dispersion increased over time, with the former being more prominent in uninfected adults and the latter aggravated by infection. Infection reduced dominance of specific microbial taxa, and increased microbiome dispersion, indicating destabilizing effects on host microbial communities. Exposing infected hosts to warming did not have an additive destabilizing effect on their microbiomes. Moreover, warming during pre-adult development alleviated the destabilizing effects of infection on host microbiomes. These results revealed an opposing interaction between biotic and abiotic factors on microbiome structure. Lastly, we showed that increased microbiome dispersion might be associated with decreased variability in microbial species interaction strength. Overall, these findings improve our understanding of animal microbiome dynamics amidst concurrent climate change and epidemics. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- J. D. Li
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - Y. Y. Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
- School of Ecology and Nature Conservation, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, People's Republic of China
| | - E. J. Stevens
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - K. C. King
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
3
|
Li J, Guo A, Huang S, Azam F, Sun X, Zhang J, Long L, Zhang S. Outer membrane vesicles produced by coral-associated Vibrio coralliilyticus inhibit bacteriophage infection and its ecological implications. Microbiol Res 2024; 281:127607. [PMID: 38228019 DOI: 10.1016/j.micres.2024.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
The potential to produce and release outer membrane vesicles (OMVs) is evolutionarily conserved among bacteria, facilitating interactions between microbes. OMV release and its ecological significance have rarely been reported in coral holobionts. Here, via transmission electron microscopy (TEM), we discovered that the coral-associated strain Vibrio coralliilyticus DSM 19607 produced OMVs in culture. OMVs purified from V. coralliilyticus DSM 19607 inhibited the bacteriophage (phage) SBM1 infection of the V. coralliilyticus host, which was impaired by elevated temperature. Observation via TEM showed that sequestrating phages was a potential approach for V. coralliilyticus OMVs protection against phage infection. Furthermore, detection in coral mucus showed that interactions between membrane vesicles and phages potentially occurred in the natural environment. These results imply that OMVs regulate the coral microbiome and may have important implications for our mechanistic understanding of coral health and disease in the face of climate change.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Anjie Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Xinyuanyuan Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Perry WB, Ahmadian R, Munday M, Jones O, Ormerod SJ, Durance I. Addressing the challenges of combined sewer overflows. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123225. [PMID: 38151091 DOI: 10.1016/j.envpol.2023.123225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Europe's ageing wastewater system often combines domestic sewage with surface runoff and industrial wastewaters. To reduce the associated risk of overloading wastewater treatment works during storms, and to prevent wastewater backing-up into properties, Combined Sewer Overflows (CSOs) are designed into wastewater networks to release excess discharge into rivers or coastal waters without treatment. In view of growing regulatory scrutiny and increasing public concern about their excessive discharge frequencies and potential impacts on environments and people, there is a need to better understand these impacts to allow prioritisation of cost-effective solutions.We review: i) the chemical, physical and biological composition of CSOs discharges; ii) spatio-temporal variations in the quantity, quality and load of overflows spilling into receiving waters; iii) the potential impacts on people, ecosystems and economies. Despite investigations illustrating the discharge frequency of CSOs, data on spill composition and loading of pollutants are too few to reach representative conclusions, particularly for emerging contaminants. Studies appraising impacts are also scarce, especially in contexts where there are multiple stressors affecting receiving waters. Given the costs of addressing CSOs problems, but also the likely long-term gains (e.g. economic stimulation as well as improvements to biodiversity, ecosystem services, public health and wellbeing), we highlight here the need to bolster these evidence gaps. We also advocate no-regrets options to alleviate CSO problems taking into consideration economic costs, carbon neutrality, ecosystem benefit and community well-being. Besides pragmatic, risk-based investment by utilities and local authorities to modernise wastewater systems, these include i) more systemic thinking, linking policy makers, consumers, utilities and regulators, to shift from local CSO issues to integrated catchment solutions with the aim of reducing contributions to wastewater from surface drainage and water consumption; ii) broader societal responsibilities for CSOs, for example through improved regulation, behavioural changes in water consumption and disposal of waste into wastewater networks, and iii) greater cost-sharing of wastewater use.
Collapse
Affiliation(s)
- William Bernard Perry
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Reza Ahmadian
- School of Engineering, Cardiff University, Cardiff, CF10 3AX, UK
| | - Max Munday
- Cardiff Business School, Cardiff University, Cardiff, CF10 3AX, UK
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff, CF10 3AX, UK
| | - Steve J Ormerod
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Isabelle Durance
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
5
|
Bhattarai SK, Du M, Zeamer AL, Morzfeld BM, Kellogg TD, Firat K, Benjamin A, Bean JM, Zimmerman M, Mardi G, Vilbrun SC, Walsh KF, Fitzgerald DW, Glickman MS, Bucci V. Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption. Sci Transl Med 2024; 16:eadi9711. [PMID: 38232140 PMCID: PMC11017772 DOI: 10.1126/scitranslmed.adi9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.
Collapse
Affiliation(s)
- Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Muxue Du
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Benedikt M Morzfeld
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tasia D Kellogg
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kaya Firat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Anna Benjamin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Bean
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Gertrude Mardi
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Stalz Charles Vilbrun
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Kathleen F Walsh
- Center for Global Health, Weill Cornell Medicine, New York, NY 10065, USA
- Division of General Internal Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Irudayarajan L, Ravindran C, Raveendran HP. Antimicrobial activity of coral-associated beneficial bacteria against coral disease-causing microbial pathogens. J Basic Microbiol 2024; 64:81-93. [PMID: 37726211 DOI: 10.1002/jobm.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Microbial infection of immune-compromised corals influences disease severity, resulting in coral mortality. However, coral-associated beneficial bacteria are known to produce antimicrobial compounds that prevent the growth of potential pathogens and invading microbes. Hence, beneficial bacteria associated with coral Porites lutea were isolated and antimicrobial protein and bioactive secondary metabolites were extracted and tested for their antimicrobial activity against putative prokaryotic and eukaryotic coral pathogens. Bioactive secondary metabolites exhibited remarkable antagonism against various coral pathogens such as Serratia marcescens, Vibrio species, and Aspergillus sydowii. Besides, the metabolites of Cobetia marina, Cobetia amphilecti, Pseudoalteromonas neustonica, and Virgibacillus halodenitrificans manifested notable inhibition against the protozoan ciliates (Uronema marinum, Holosticha diademata, Cohnilembus verminus, and Euplotes vannus) and zooplankton that are known to be involved in the secondary pathogenesis in coral diseased lesion progression. Thus, the present study may benefit in understanding coral-associated beneficial bacteria for their antagonistic interactions with microbial pathogens, as well as their potential involvement in reducing coral disease severity.
Collapse
Affiliation(s)
- Lawrance Irudayarajan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chinnarajan Ravindran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Haritha P Raveendran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
| |
Collapse
|
7
|
Alsharif SM, Waznah MS, Ismaeil M, El-Sayed WS. 16S rDNA-based diversity analysis of bacterial communities associated with soft corals of the Red Sea, Al Rayyis, White Head, KSA. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2156762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Sultan M. Alsharif
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Moayad S. Waznah
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mohamed Ismaeil
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wael S. El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Cheng K, Tong M, Cai Z, Jong MC, Zhou J, Xiao B. Prokaryotic and eukaryotic microbial communities associated with coral species have high host specificity in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161185. [PMID: 36581277 DOI: 10.1016/j.scitotenv.2022.161185] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mui Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
9
|
Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment. Sci Rep 2023; 13:3617. [PMID: 36869057 PMCID: PMC9984465 DOI: 10.1038/s41598-023-30615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Chronically high levels of inorganic nutrients have been documented in Florida's coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coral Acropora cervicornis are rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genus Aquarickettsia was identified as a significant indicator of disease susceptibility in A. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances of Aquarickettsia. We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistant A. cervicornis may be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.
Collapse
Affiliation(s)
- J Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA.
| | - Shalvi H Patel
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - William C Duke
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Borbee EM, Ayu IP, Carvalho P, Gelis ERE, Setiawan F, Subhan B, Humphries AT, Madduppa H, Lane CE. Rubble fields shape planktonic protist communities in Indonesia at a local scale. J Eukaryot Microbiol 2023; 70:e12954. [PMID: 36401815 DOI: 10.1111/jeu.12954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
The Coral Triangle encompasses nearly 30% of the world's coral reefs and is widely considered the epicenter of marine biodiversity. Destructive fishing practices and natural disturbances common to this region damage reefs leaving behind fields of coral rubble. While the impacts of disturbances in these ecosystems are well documented on metazoans, we have a poor understanding of their impact on microbial communities at the base of the food web. We use metabarcoding to characterize protist community composition in sites of varying fisheries management schemes and benthic profiles across the island of Lombok, Indonesia. Our study shows that rubble coverage and net primary productivity are the strongest explainers of variation in protist communities across Lombok. More specifically, rubble fields are characterized by increases in small heterotrophic protists, including ciliates and cercozoans. In addition to shifts in heterotrophic protist communities, we also observed increases in diatom relative abundance in rubble fields, which corresponded to sites with higher net primary productivity. These results are the first to characterize protist communities in tropical marine rubble fields and provide insight on environmental factors potentially driving these shifts on a local scale.
Collapse
Affiliation(s)
- Erin M Borbee
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Inna Puspa Ayu
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Paul Carvalho
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ester Restiana Endang Gelis
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
- Department of Fisheries, University of Jambi, Jambi, Indonesia
| | - Fahkrizal Setiawan
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Beginer Subhan
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Austin T Humphries
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hawis Madduppa
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
11
|
Sun X, Li Y, Yang Q, Zhang H, Xu N, Tang Z, Wu S, Jiang Y, Mohamed HF, Ou D, Zheng X. Identification of quorum sensing-regulated Vibrio fortis as potential pathogenic bacteria for coral bleaching and the effects on the microbial shift. Front Microbiol 2023; 14:1116737. [PMID: 36819038 PMCID: PMC9935839 DOI: 10.3389/fmicb.2023.1116737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Coastal pollution, global warming, ocean acidification, and other reasons lead to the imbalance of the coral reef ecosystem, resulting in the increasingly serious problem of coral degradation. Coral bleaching is often accompanied by structural abnormalities of coral symbiotic microbiota, among which Vibrio is highly concerned. In this study, Vibrio fortis S10-1 (MCCC 1H00104), isolated from sea cucumber, was used for the bacterial infection on coral Seriatopora guttatus and Pocillopora damicornis. The infection of S10-1 led to coral bleaching and a significant reduction of photosynthetic function in coral holobiont, and the pathogenicity of V. fortis was regulated by quorum sensing. Meanwhile, Vibrio infection also caused a shift of coral symbiotic microbial community, with significantly increased abundant Proteobacteria and Actinobacteria and significantly reduced abundant Firmicutes; on genus level, the abundance of Bacillus decreased significantly and the abundance of Rhodococcus, Ralstonia, and Burkholderia-Caballeronia-Paraburkholderia increased significantly; S10-1 infection also significantly impacted the water quality in the micro-ecosystem. In contrast, S10-1 infection showed less effect on the microbial community of the live stone, which reflected that the microbes in the epiphytic environment of the live stone might have a stronger ability of self-regulation; the algal symbionts mainly consisted of Cladocopium sp. and showed no significant effect by the Vibrio infection. This study verified that V. fortis is the primary pathogenic bacterium causing coral bleaching, revealed changes in the microbial community caused by its infection, provided strong evidence for the "bacterial bleaching" hypothesis, and provided an experimental experience for the exploration of the interaction mechanism among microbial communities, especially coral-associated Vibrio in the coral ecosystem, and potential probiotic strategy or QS regulation on further coral disease control.
Collapse
Affiliation(s)
- Xiaohui Sun
- College of Chemical Engineering, Huaqiao University, Xiamen, China,*Correspondence: Xiaohui Sun,
| | - Yan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Han Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nuo Xu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Zheng Tang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Shishi Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yusheng Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Hala F. Mohamed
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Botany and Microbiology Department (Girls Branch), Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China,Danyun Ou,
| | - Xinqing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China,Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Xiamen, China,Xinqing Zheng,
| |
Collapse
|
12
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
13
|
Williams SD, Klinges JG, Zinman S, Clark AS, Bartels E, Villoch Diaz Maurino M, Muller EM. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida's Coral Reef. PeerJ 2022; 10:e13574. [PMID: 35729906 PMCID: PMC9206844 DOI: 10.7717/peerj.13574] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.
Collapse
Affiliation(s)
| | - J. Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Samara Zinman
- Nova Southeastern University, Dania Beach, FL, United States of America
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America,The College of the Florida Keys, Key West, FL, United States of America
| | - Erich Bartels
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Marina Villoch Diaz Maurino
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
14
|
Zhu W, Liu X, Zhu M, Li X, Yin H, Huang J, Wang A, Li X. Responses of Symbiodiniaceae Shuffling and Microbial Community Assembly in Thermally Stressed Acropora hyacinthus. Front Microbiol 2022; 13:832081. [PMID: 35432258 PMCID: PMC9010789 DOI: 10.3389/fmicb.2022.832081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Although the importance of coral holobionts is widely accepted, the relationship between the flexibility of the microbial structure and the coral host is very complicated. Particularly, the community dynamics of holobionts and the stability of host–microbe interactions under different thermal stresses remain largely unknown. In the present study, we holistically explored the physiology and growth of Acropora hyacinthus in response to increased temperatures (from 26 to 33°C). We observed that bleaching corals with loss of algal symbionts reduced lipids and proteins to maintain their survival, leading to decreased tissue biomass and retarded growth. The diversity of Symbiodiniaceae and symbiont shuffling in the community structure was mainly caused by alterations in the relative abundance of the thermally sensitive but dominant clade C symbionts and low abundance of “background types.” Bacterial diversity showed a decreasing trend with increasing temperature, whereas no significant shifts were observed in the bacterial community structure. This finding might be attributed to the local adjustment of specific microbial community members that did not affect the overall metabolic state of the coral holobiont, and there was no increase in the proportion of sequences identified as typically pathogenic or opportunistic taxa. The Sloan neutral community model showed that neutral processes could explain 42.37–58.43% of bacterial community variation. The Stegen null model analysis indicates that the stochastic processes explain a significantly higher proportion of community assembly than deterministic processes when the temperature was elevated. The weak effect of temperature on the bacterial community structure and assembly might be related to an increase in stochastic dominance. The interaction of bacterial communities exhibits a fluctuating and simplistic trend with increasing temperature. Moreover, temperature increases were sufficient to establish the high stability of bacterial networks, and a non-linear response was found between the complexity and stability of the networks. Our findings collectively provide new insights into successive changes in the scleractinian coral host and holobionts in response to elevated seawater temperatures, especially the contribution of the community assembly process and species coexistence patterns to the maintenance of the coral-associated bacterial community.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Ming Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xinke Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Hongyang Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Jianzhong Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
- *Correspondence: Xiubao Li,
| |
Collapse
|
15
|
Hartman LM, Blackall LL, van Oppen MJH. Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiol 2022; 4:000314. [PMID: 35252752 PMCID: PMC8895603 DOI: 10.1099/acmi.0.000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Coral reefs are declining due to anthropogenic disturbances, including climate change. Therefore, improving our understanding of coral ecosystems is vital, and the influence of bacteria on coral health has attracted particular interest. However, a gnotobiotic coral model that could enhance studies of coral–bacteria interactions is absent. To address this gap, we tested the ability of treatment with seven antibiotics for 3 weeks to deplete bacteria in Exaiptasia diaphana, a sea anemone widely used as a coral model. Digital droplet PCR (ddPCR) targeting anemone Ef1-α and bacterial 16S rRNA genes was used to quantify bacterial load, which was found to decrease six-fold. However, metabarcoding of bacterial 16S rRNA genes showed that alpha and beta diversity of the anemone-associated bacterial communities increased significantly. Therefore, gnotobiotic E. diaphana with simplified, uniform bacterial communities were not generated, with biofilm formation in the culture vessels most likely impeding efforts to eliminate bacteria. Despite this outcome, our work will inform future efforts to create a much needed gnotobiotic coral model.
Collapse
Affiliation(s)
- Leon M. Hartman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Swinburne University of Technology, Hawthorn, VIC, Australia
- Monash University, Clayton, VIC, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Influence of temperature changes on symbiotic Symbiodiniaceae and bacterial communities’ structure: an experimental study on soft coral Sarcophyton trocheliophorum (Anthozoa: Alcyoniidae). JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractIt is well concluded that microbial composition and diversity of coral species can be affected under temperature alterations. However, the interaction of environmental accumulation of corals and temperature stress on symbiotic Symbiodiniaceae and bacterial communities are rarely studied. In this study, two groups of soft coral Sarcophyton trocheliophorum were cultured under constant (26 °C) and inconstant (22 °C to 26 °C) temperature conditions for 30 days as control treatments. After that, water was cooled rapidly to decrease to 20 °C in 24 h. The results of diversity analysis showed that symbiotic Symbiodiniaceae and bacterial communities had a significant difference between the two accumulated groups. The principal coordinate analyses confirmed that symbiotic Symbiodiniaceae and bacterial communities of both control treatments were clustered into two groups. Our results evidenced that rapid cooling stress could not change symbiotic Symbiodiniaceae and bacterial communities’ composition. On the other hand, cooling stress could alter only bacterial communities in constant group. In conclusion, our study represents a clear relationship between environmental accumulation and the impact of short-term cooling stress in which microbial composition structure can be affected by early adaptation conditions.
Collapse
|
17
|
Dunphy CM, Vollmer SV, Gouhier TC. Host-microbial systems as glass cannons: Explaining microbiome stability in corals exposed to extrinsic perturbations. J Anim Ecol 2021; 90:1044-1057. [PMID: 33666231 DOI: 10.1111/1365-2656.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023]
Abstract
Although stability is relatively well understood in macro-organisms, much less is known about its drivers in host-microbial systems where processes operating at multiple levels of biological organisation jointly regulate the microbiome. We conducted an experiment to examine the microbiome stability of three Caribbean corals (Acropora cervicornis, Pseudodiploria strigosa and Porites astreoides) by placing them in aquaria and exposing them to a pulse perturbation consisting of a large dose of broad-spectrum antibiotics before transplanting them into the field. We found that coral hosts harboured persistent, species-specific microbiomes. Stability was generally high but variable across coral species, with A. cervicornis microbiomes displaying the lowest community turnover in both the non-perturbed and the perturbed field transplants. Interestingly, the microbiome of P. astreoides was stable in the non-perturbed field transplants, but unstable in the perturbed field transplants. A mathematical model of host-microbial dynamics helped resolve this paradox by showing that when microbiome regulation is driven by host sanctioning, both resistance and resilience to invasion are low and can lead to instability despite the high direct costs bourne by corals. Conversely, when microbiome regulation is mainly associated with microbial processes, both resistance and resilience to invasion are high and promote stability at no direct cost to corals. We suggest that corals that are mainly regulated by microbial processes can be likened to 'glass cannons' because the high stability they exhibit in the field is due to their microbiome's potent suppression of invasive microbes. However, these corals are susceptible to destabilisation when exposed to perturbations that target the vulnerable members of their microbiomes who are responsible for mounting such powerful attacks against invasive microbes. The differential patterns of stability exhibited by P. astreoides across perturbed and non-perturbed field transplants suggest it is a 'glass cannon' whose microbiome is regulated by microbial processes, whereas A. cervicornis' consistent patterns of stability suggest that its microbiome is mainly regulated by host-level processes. Our results show that understanding how processes that operate at multiple levels of biological organisation interact to regulate microbiomes is critical for predicting the effects of environmental perturbations on host-microbial systems.
Collapse
Affiliation(s)
| | | | - Tarik C Gouhier
- Marine Science Center, Northeastern University, Nahant, MA, USA
| |
Collapse
|
18
|
Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N. Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont. Microorganisms 2020; 8:microorganisms8111682. [PMID: 33138319 PMCID: PMC7692791 DOI: 10.3390/microorganisms8111682] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Coral microbiomes are critical to holobiont health and functioning, but the stability of host–microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced breakdown of the symbiosis between the host and its dinoflagellate algae (that is, “bleaching”), is one of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in some coral species. This review provides an overview of the holobiont’s diversity, explores coral thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate bleaching, and suggests new research avenues. More specifically, we define coral bleaching as the succession of three holobiont stages, where the microbiota can (i) maintain essential functions for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii) environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners leading to coral death.
Collapse
Affiliation(s)
- Aurélie Boilard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Caroline E. Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA;
- Correspondence: (C.E.D.); (N.D.)
| | - Cécile Gruet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Alexandre Mercière
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan CEDEX, France;
- Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea, French Polynesia
| | | | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: (C.E.D.); (N.D.)
| |
Collapse
|
19
|
Klinges G, Maher RL, Vega Thurber RL, Muller EM. Parasitic 'Candidatus Aquarickettsia rohweri' is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ Microbiol 2020; 22:5341-5355. [PMID: 32975356 PMCID: PMC7820986 DOI: 10.1111/1462-2920.15245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Holobiont phenotype results from a combination of host and symbiont genotypes as well as from prevailing environmental conditions that alter the relationships among symbiotic members. Corals exemplify this concept, where shifts in the algal symbiont community can lead to some corals becoming more or less thermally tolerant. Despite linkage between coral bleaching and disease, the roles of symbiotic bacteria in holobiont resistance and susceptibility to disease remains less well understood. This study thus characterizes the microbiome of disease-resistant and -susceptible Acropora cervicornis coral genotypes (hereafter referred to simply as 'genotypes') before and after high temperature-mediated bleaching. We found that the intracellular bacterial parasite 'Ca. Aquarickettsia rohweri' was strikingly abundant in disease-susceptible genotypes. Disease-resistant genotypes, however, had notably more diverse and even communities, with correspondingly low abundances of 'Ca. Aquarickettsia'. Bleaching caused a dramatic reduction of 'Ca. Aquarickettsia' within disease-susceptible corals and led to an increase in bacterial community dispersion, as well as the proliferation of opportunists. Our data support the hypothesis that 'Ca. Aquarickettsia' species increase coral disease risk through two mechanisms: (i) the creation of host nutritional deficiencies leading to a compromised host-symbiont state and (ii) the opening of niche space for potential pathogens during thermal stress.
Collapse
Affiliation(s)
- Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Rebecca L Maher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| |
Collapse
|
20
|
Roach TNF, Little M, Arts MGI, Huckeba J, Haas AF, George EE, Quinn RA, Cobián-Güemes AG, Naliboff DS, Silveira CB, Vermeij MJA, Kelly LW, Dorrestein PC, Rohwer F. A multiomic analysis of in situ coral-turf algal interactions. Proc Natl Acad Sci U S A 2020; 117:13588-13595. [PMID: 32482859 PMCID: PMC7306781 DOI: 10.1073/pnas.1915455117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.
Collapse
Affiliation(s)
- Ty N F Roach
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744;
- Biosphere 2, University of Arizona, Oracle, AZ 85739
- Department of Biology, San Diego State University, San Diego, CA 92182
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Mark Little
- Department of Biology, San Diego State University, San Diego, CA 92182
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Milou G I Arts
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, 1790 AB, Den Burg, Texel, The Netherlands
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T1Z4
| | - Joel Huckeba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, 1790 AB, Den Burg, Texel, The Netherlands
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T1Z4
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823
| | | | | | - Cynthia B Silveira
- Department of Biology, San Diego State University, San Diego, CA 92182
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Mark J A Vermeij
- Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, 1790 AB, Den Burg, Texel, The Netherlands
- Caribbean Research and Management of Biodiversity (CARMABI), Willemstad, Curaçao
| | | | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182;
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| |
Collapse
|
21
|
Zhou J, Lin ZJ, Cai ZH, Zeng YH, Zhu JM, Du XP. Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environ Microbiol 2020; 22:1944-1962. [PMID: 32249540 DOI: 10.1111/1462-2920.15009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zi-Jun Lin
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,Department of Earth System Science, Tsinghua University of Education Key Laboratory for Earth System Modeling, Beijing, 100084, People's Republic of China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
22
|
McKnight DT, Zenger KR, Alford RA, Huerlimann R. Microbiome diversity and composition varies across body areas in a freshwater turtle. MICROBIOLOGY-SGM 2020; 166:440-452. [PMID: 32213245 DOI: 10.1099/mic.0.000904] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increasing recognition that microbiomes are important for host health and ecology, and understanding host microbiomes is important for planning appropriate conservation strategies. However, microbiome data are lacking for many taxa, including turtles. To further our understanding of the interactions between aquatic microbiomes and their hosts, we used next generation sequencing technology to examine the microbiomes of the Krefft's river turtle (Emydura macquarii krefftii). We examined the microbiomes of the buccal (oral) cavity, skin on the head, parts of the shell with macroalgae and parts of the shell without macroalgae. Bacteria in the phyla Proteobacteria and Bacteroidetes were the most common in most samples (particularly buccal samples), but Cyanobacteria, Deinococcus-thermus and Chloroflexi were also common (particularly in external microbiomes). We found significant differences in community composition among each body area, as well as significant differences among individuals. The buccal cavity had lower bacterial richness and evenness than any of the external microbiomes, and it had many amplicon sequence variants (ASVs) with a low relative abundance compared to other body areas. Nevertheless, the buccal cavity also had the most unique ASVs. Parts of the shell with and without algae also had different microbiomes, with particularly obvious differences in the relative abundances of the families Methylomonaceae, Saprospiraceae and Nostocaceae. This study provides novel, baseline information about the external microbiomes of turtles and is a first step in understanding their ecological roles.
Collapse
Affiliation(s)
- Donald T McKnight
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.,Present address: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Kyall R Zenger
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Roger Huerlimann
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
23
|
Gintert BE, Precht WF, Fura R, Rogers K, Rice M, Precht LL, D'Alessandro M, Croop J, Vilmar C, Robbart ML. Regional coral disease outbreak overwhelms impacts from a local dredge project. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:630. [PMID: 31520148 DOI: 10.1007/s10661-019-7767-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/15/2019] [Indexed: 05/28/2023]
Abstract
A repeated-measures coral monitoring program established as part of the PortMiami expansion program provided an unparalleled opportunity to quantify the levels of coral mortality that resulted from both local dredging stress and as a result of climate-related bleaching stress and the subsequent outbreak of a white-plague-like disease (WPD) epizootic. By comparing measured rates of coral mortality at 30 sites throughout Miami-Dade County to predicted mortality levels from three different coral mortality scenarios, we were able to evaluate the most likely source of coral mortality at both the local and regional levels during the 2014-2016 coral bleaching and WPD event. These include scenarios that assume (1) local dredging increases coral disease mortality, (2) regional climate-related stress is the proximal driver of coral disease mortality, and (3) local and regional stressors are both responsible for coral disease mortality. Our results show that species-specific susceptibility to disease is the determining factor in 93.3% of coral mortality evaluated throughout Miami-Dade County, whereas local dredging stress only accurately predicted coral mortality levels 6.7% of the time. None of the monitoring locations adjacent to the PortMiami expansion had levels of coral mortality that exceeded predictions when coral community composition was taken into account. The novel result of this analysis is that climate-mediated coral disease mortality was more than an order of magnitude (14x) more deadly than even the largest marine construction project performed in the USA, and that until climate change is addressed, it is likely that local attempts to manage coral resilience will continue to fail.
Collapse
Affiliation(s)
- Brooke E Gintert
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- Ransom Everglades School, 3575 Main Hwy, Miami, FL, 33133, USA
- Division of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - William F Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA.
| | - Ryan Fura
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Kristian Rogers
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Mike Rice
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Lindsey L Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- Coastal Resources Section, Division of Environmental Resources Management, Miami-Dade County, Department of Regulatory and Economic Resources, 701 NW 1st Court, Miami, FL, 33128, USA
| | - Martine D'Alessandro
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Jason Croop
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Christina Vilmar
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Martha L Robbart
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- GHD, 3380 Fairlane Farms Road, Suite 12, Wellington, FL, 33414, USA
| |
Collapse
|
24
|
Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun 2019; 10:3092. [PMID: 31300639 PMCID: PMC6626051 DOI: 10.1038/s41467-019-10969-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The global decline of coral reefs heightens the need to understand how corals respond to changing environmental conditions. Corals are metaorganisms, so-called holobionts, and restructuring of the associated bacterial community has been suggested as a means of holobiont adaptation. However, the potential for restructuring of bacterial communities across coral species in different environments has not been systematically investigated. Here we show that bacterial community structure responds in a coral host-specific manner upon cross-transplantation between reef sites with differing levels of anthropogenic impact. The coral Acropora hemprichii harbors a highly flexible microbiome that differs between each level of anthropogenic impact to which the corals had been transplanted. In contrast, the microbiome of the coral Pocillopora verrucosa remains remarkably stable. Interestingly, upon cross-transplantation to unaffected sites, we find that microbiomes become indistinguishable from back-transplanted controls, suggesting the ability of microbiomes to recover. It remains unclear whether differences to associate with bacteria flexibly reflects different holobiont adaptation mechanisms to respond to environmental change. The flexibility of corals to associate with different bacteria in different environments has not been systematically investigated. Here, the authors study bacterial community dynamics for two coral species and show that bacterial community structure responds to environmental changes in a host-specific manner.
Collapse
|
25
|
Ahmed HI, Herrera M, Liew YJ, Aranda M. Long-Term Temperature Stress in the Coral Model Aiptasia Supports the "Anna Karenina Principle" for Bacterial Microbiomes. Front Microbiol 2019; 10:975. [PMID: 31139158 PMCID: PMC6517863 DOI: 10.3389/fmicb.2019.00975] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
The understanding of host-microbial partnerships has become a hot topic during the last decade as it has been shown that associated microbiota play critical roles in the host physiological functions and susceptibility to diseases. Moreover, the microbiome may contribute to host resilience to environmental stressors. The sea anemone Aiptasia is a good laboratory model system to study corals and their microbial symbiosis. In this regard, studying its bacterial microbiota provides a better understanding of cnidarian metaorganisms as a whole. Here, we investigated the bacterial communities of different Aiptasia host-symbiont combinations under long-term heat stress in laboratory conditions. Following a 16S rRNA gene sequencing approach we were able to detect significant differences in the bacterial composition and structure of Aiptasia reared at different temperatures. A higher number of taxa (i.e., species richness), and consequently increased α-diversity and β-dispersion, were observed in the microbiomes of heat-stressed individuals across all host strains and experimental batches. Our findings are in line with the recently proposed Anna Karenina principle (AKP) for animal microbiomes, which states that dysbiotic or stressed organisms have a more variable and unstable microbiome than healthy ones. Microbial interactions affect the fitness and survival of their hosts, thus exploring the AKP effect on animal microbiomes is important to understand host resilience. Our data contributes to the current knowledge of the Aiptasia holobiont and to the growing field of study of host-associated microbiomes.
Collapse
Affiliation(s)
| | | | | | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Kosakowski J, Verma P, Sengupta S, Higgs PG. The evolution of antibiotic production rate in a spatial model of bacterial competition. PLoS One 2018; 13:e0205202. [PMID: 30379843 PMCID: PMC6209167 DOI: 10.1371/journal.pone.0205202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 11/18/2022] Open
Abstract
We consider competition between antibiotic producing bacteria, non-producers (or cheaters), and sensitive cells in a two-dimensional lattice model. Previous work has shown that these three cell types can survive in spatial models due to the presence of spatial patterns, whereas coexistence is not possible in a well-mixed system. We extend this to consider the evolution of the antibiotic production rate, assuming that the cost of antibiotic production leads to a reduction in growth rate of the producers. We find that coexistence occurs for an intermediate range of antibiotic production rate. If production rate is too high or too low, only sensitive cells survive. When evolution of production rate is allowed, a mixture of cell types arises in which there is a dominant producer strain that produces sufficient to limit the growth of sensitive cells and which is able to withstand the presence of cheaters in its own species. The mixture includes a range of low-rate producers and non-producers, none of which could survive without the presence of the dominant producer strain. We also consider the case of evolution of antibiotic resistance within the sensitive species. In order for the resistant cells to survive, they must grow faster than both the non-producers and the producers. However, if the resistant cells grow too rapidly, the producing species is eliminated, after which the resistance mutation is no longer useful, and sensitive cells take over the system. We show that there is a range of growth rates of the resistant cells where the two species coexist, and where the production mechanism is maintained as a polymorphism in the producing species and the resistance mechanism is maintained as a polymorphism in the sensitive species.
Collapse
Affiliation(s)
- Jakub Kosakowski
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Prateek Verma
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Dohi M, Mougi A. A coexistence theory in microbial communities. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180476. [PMID: 30839701 PMCID: PMC6170546 DOI: 10.1098/rsos.180476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/21/2018] [Indexed: 06/05/2023]
Abstract
Microbes are widespread in natural ecosystems where they create complex communities. Understanding the functions and dynamics of such microbial communities is a very important theme not only for ecology but also for humankind because microbes can play major roles in our health. Yet, it remains unclear how such complex ecosystems are maintained. Here, we present a simple theory on the dynamics of a microbial community. Bacteria preferring a particular pH in their environment indirectly inhibit the growth of the other types of bacteria by changing the pH to their optimum value. This pH-driven interaction always causes a state of bistability involving different types of bacteria that can be more or less abundant. Furthermore, a moderate abundance ratio of different types of bacteria can confer enhanced resilience to a specific equilibrium state, particularly when a trade-off relationship exists between growth and the ability of bacteria to change the pH of their environment. These results suggest that the balance of the composition of microbiota plays a critical role in maintaining microbial communities.
Collapse
|
28
|
Stabili L, Parisi MG, Parrinello D, Cammarata M. Cnidarian Interaction with Microbial Communities: From Aid to Animal's Health to Rejection Responses. Mar Drugs 2018; 16:E296. [PMID: 30142922 PMCID: PMC6164757 DOI: 10.3390/md16090296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The phylum Cnidaria is an ancient branch in the tree of metazoans. Several species exert a remarkable longevity, suggesting the existence of a developed and consistent defense mechanism of the innate immunity capable to overcome the potential repeated exposure to microbial pathogenic agents. Increasing evidence indicates that the innate immune system in Cnidarians is not only involved in the disruption of harmful microorganisms, but also is crucial in structuring tissue-associated microbial communities that are essential components of the Cnidarian holobiont and useful to the animal's health for several functions, including metabolism, immune defense, development, and behavior. Sometimes, the shifts in the normal microbiota may be used as "early" bio-indicators of both environmental changes and/or animal disease. Here the Cnidarians relationships with microbial communities and the potential biotechnological applications are summarized and discussed.
Collapse
Affiliation(s)
- Loredana Stabili
- Istituto per l'Ambiente Marino Costiero, U.O.S. di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Maria Giovanna Parisi
- Laboratory of Marine Immunobiology, Dipartimento delle Scienze della Terra e del Mare, Università di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| | - Daniela Parrinello
- Laboratory of Marine Immunobiology, Dipartimento delle Scienze della Terra e del Mare, Università di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| | - Matteo Cammarata
- Laboratory of Marine Immunobiology, Dipartimento delle Scienze della Terra e del Mare, Università di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| |
Collapse
|
29
|
Bell SC, Garland S, Alford RA. Increased Numbers of Culturable Inhibitory Bacterial Taxa May Mitigate the Effects of Batrachochytrium dendrobatidis in Australian Wet Tropics Frogs. Front Microbiol 2018; 9:1604. [PMID: 30072970 PMCID: PMC6058028 DOI: 10.3389/fmicb.2018.01604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/27/2018] [Indexed: 11/20/2022] Open
Abstract
Symbiotic bacterial communities resident on amphibian skin can benefit their hosts. For example, antibiotic production by community members can control the pathogen Batrachochytrium dendrobatidis (Bd) and it is possible for these community members to be used as probiotics to reduce infection levels. In the early 1990s, the emergence of Bd caused declines and disappearances of frogs in the Australian Wet Tropics; the severity of its effects varied among species and sites. Some species have since recolonized despite enzootic Bd within their populations. This variation in history among species and sites provided an opportunity to investigate the role of anti-fungal cutaneous bacteria in protecting frogs against Bd infection. We collected cutaneous swab samples from three species of frogs at two upland and two lowland sites in the Wet Tropics, and used in vitro challenge assays to identify culturable Bd-inhibitory bacterial isolates for further analysis. We sequenced DNA from cultured inhibitory isolates to identify taxa, resulting in the classification of 16 Bd-inhibitory OTUs, and determined whether inhibitory taxa were associated with frog species, site, or intensity of infection. We present preliminary results showing that the upper limit of Bd infection intensity was negatively correlated with number of inhibitory OTUs present per frog indicating that increased numbers of Bd-inhibiting taxa may play a role in reducing the intensity of Bd infections, facilitating frog coexistence with enzootic Bd. One upland site had a significantly lower prevalence of Bd infection, a significantly higher proportion of frogs with one or more culturable Bd-inhibitory OTUs, a greater number of inhibitory bacterial genera present per frog, and statistically significant clustering of individual frogs with similar Bd-inhibitory signatures when compared to all other sites. This suggests that Bd-inhibitory taxa are likely to be particularly important to frogs at this site and may have played a role in their ability to recolonize following population declines. Our findings suggest that the use of multi-taxon Bd-inhibitory probiotics to support at-risk amphibian populations may be more effective than single-taxon alternatives.
Collapse
Affiliation(s)
- Sara C. Bell
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Stephen Garland
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ross A. Alford
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
30
|
Guarnieri MC, de Albuquerque Modesto JC, Pérez CD, Ottaiano TF, Ferreira RDS, Batista FP, de Brito MV, Campos IHMP, Oliva MLV. Zoanthid mucus as new source of useful biologically active proteins. Toxicon 2018; 143:96-107. [PMID: 29360533 DOI: 10.1016/j.toxicon.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A2), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A2, low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O+, B+, and A+ erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching process in zoanthids. Hence, the use of mucus as an indicator of this process should be evaluated in the future.
Collapse
Affiliation(s)
- Míriam Camargo Guarnieri
- Department of Zoology, Federal University of Pernambuco, Av. Prof Moraes Rego 1235, CEP 50670-901, Cidade Universitária, Recife, PE, Brazil; Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Jeanne Claíne de Albuquerque Modesto
- Vitória Academic Center, Federal University of Pernambuco, Rua Alto do Reservatório, s/n, CEP 55608-680, Bela Vista, Vitória de Santo Antão, PE, Brazil.
| | - Carlos Daniel Pérez
- Vitória Academic Center, Federal University of Pernambuco, Rua Alto do Reservatório, s/n, CEP 55608-680, Bela Vista, Vitória de Santo Antão, PE, Brazil.
| | - Tatiana Fontes Ottaiano
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Rodrigo da Silva Ferreira
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Fabrício Pereira Batista
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Marlon Vilela de Brito
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Ikaro Henrique Mendes Pinto Campos
- Department of Zoology, Federal University of Pernambuco, Av. Prof Moraes Rego 1235, CEP 50670-901, Cidade Universitária, Recife, PE, Brazil.
| | - Maria Luiza Vilela Oliva
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
How Does the Coral Microbiome Cause, Respond to, or Modulate the Bleaching Process? ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Marchetto KM, Power AG. Coinfection Timing Drives Host Population Dynamics through Changes in Virulence. Am Nat 2017; 191:173-183. [PMID: 29351014 DOI: 10.1086/695316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Infections of one host by multiple parasites are common, and several studies have found that the order of parasite invasion can affect both within-host competition and disease severity. However, it is unclear to what extent coinfection timing might be important to consider when modeling parasite impacts on host populations. Using a model system of two viruses infecting barley, we found that simultaneous infections of the two viruses were significantly more damaging to hosts than sequential coinfections. While priority effects were evident in within-host concentrations of sequential coinfections, priority did not influence any parameters (such as virulence or transmission rate) that affect host population dynamics. We built a susceptible-infected model to examine whether the observed difference in coinfection virulence could impact host population dynamics under a range of scenarios. We found that coinfection timing can have an important but context-dependent effect on projected host population dynamics. Studies that examine only simultaneous coinfections could inflate disease impact predictions.
Collapse
|
33
|
Pagaling E, Vassileva K, Mills CG, Bush T, Blythe RA, Schwarz-Linek J, Strathdee F, Allen RJ, Free A. Assembly of microbial communities in replicate nutrient-cycling model ecosystems follows divergent trajectories, leading to alternate stable states. Environ Microbiol 2017; 19:3374-3386. [PMID: 28677203 DOI: 10.1111/1462-2920.13849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
We studied in detail the reproducibility of community development in replicate nutrient-cycling microbial microcosms that were set up identically and allowed to develop under the same environmental conditions. Multiple replicate closed microcosms were constructed using pond sediment and water, enriched with cellulose and sulphate, and allowed to develop over several months under constant environmental conditions, after which their microbial communities were characterized using 16S rRNA gene sequencing. Our results show that initially similar microbial communities can follow alternative - yet stable - trajectories, diverging in time in a system size-dependent manner. The divergence between replicate communities increased in time and decreased with larger system size. In particular, notable differences emerged in the heterotrophic degrader communities in our microcosms; one group of steady state communities was enriched with Firmicutes, while the other was enriched with Bacteroidetes. The communities dominated by these two phyla also contained distinct populations of sulphate-reducing bacteria. This biomodality in community composition appeared to arise during recovery from a low-diversity state that followed initial cellulose degradation and sulphate reduction.
Collapse
Affiliation(s)
- Eulyn Pagaling
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Kristin Vassileva
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Catherine G Mills
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Timothy Bush
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard A Blythe
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Fiona Strathdee
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Andrew Free
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, Pan Z, Yao Q, Wang W, Wu Z. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress. Front Microbiol 2017. [PMID: 28642738 PMCID: PMC5462945 DOI: 10.3389/fmicb.2017.00979] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Ziliang Pan
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Qiucui Yao
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Wenhuan Wang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Zhengchao Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
35
|
Troussellier M, Escalas A, Bouvier T, Mouillot D. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity. Front Microbiol 2017; 8:947. [PMID: 28611749 PMCID: PMC5447324 DOI: 10.3389/fmicb.2017.00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Collapse
Affiliation(s)
- Marc Troussellier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - Arthur Escalas
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Thierry Bouvier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
36
|
Morrow KM, Bromhall K, Motti CA, Munn CB, Bourne DG. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance. Appl Environ Microbiol 2017; 83:e02391-16. [PMID: 27795310 PMCID: PMC5165121 DOI: 10.1128/aem.02391-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml-1) than calculated natural concentrations (4.4 mg · ml-1). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. IMPORTANCE Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure.
Collapse
Affiliation(s)
| | - Katrina Bromhall
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
| | - Cherie A Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Colin B Munn
- School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
37
|
Balmonte JP, Arnosti C, Underwood S, McKee BA, Teske A. Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia. Front Microbiol 2016; 7:1441. [PMID: 27695444 PMCID: PMC5023673 DOI: 10.3389/fmicb.2016.01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa vs. land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2011, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- vs. post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in structuring bacterial communities, and illustrate the response of temperate riverine bacteria on fine taxonomic scales to a disturbance.
Collapse
Affiliation(s)
- John Paul Balmonte
- Department of Marine Sciences, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Carol Arnosti
- Department of Marine Sciences, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Sarah Underwood
- Department of Marine Sciences, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Brent A McKee
- Department of Marine Sciences, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Andreas Teske
- Department of Marine Sciences, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
38
|
Murray AE, Rack FR, Zook R, Williams MJM, Higham ML, Broe M, Kaufmann RS, Daly M. Microbiome Composition and Diversity of the Ice-Dwelling Sea Anemone,Edwardsiella andrillae. Integr Comp Biol 2016; 56:542-55. [DOI: 10.1093/icb/icw095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Kumar V, Zozaya-Valdes E, Kjelleberg S, Thomas T, Egan S. Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environ Microbiol 2016; 18:3962-3975. [PMID: 27337296 DOI: 10.1111/1462-2920.13403] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While macroalgae (or seaweeds) are increasingly recognized to suffer from disease, in most cases the causative agents are unknown. The model macroalga Delisea pulchra is susceptible to a bleaching disease and previous work has identified two epiphytic bacteria, belonging to the Roseobacter clade, that cause bleaching under laboratory conditions. However, recent environmental surveys have shown that these in vitro pathogens are not abundant in naturally bleached D. pulchra, suggesting the presence of other pathogens capable of causing this algal disease. To test this hypothesis, we cultured bacteria that were abundant on bleached tissue across multiple disease events and assessed their ability to cause bleaching disease. We identified the new pathogens Alteromonas sp. BL110, Aquimarina sp. AD1 and BL5 and Agarivorans sp BL7 that are phylogenetically diverse, distinct from the previous two pathogens and can also be found in low abundance in healthy individuals. Moreover, we found that bacterial communities of diseased individuals that were infected with these pathogens were less diverse and more divergent from each other than those of healthy algae. This study demonstrates that multiple and opportunistic pathogens can cause the same disease outcome for D. pulchra and we postulate that such pathogens are more common in marine systems than previously anticipated.
Collapse
Affiliation(s)
- Vipra Kumar
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Enrique Zozaya-Valdes
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Torsten Thomas
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
40
|
Li J, Azam F, Zhang S. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogenVibrio shiloniiAK1. Environ Microbiol 2016; 18:3850-3866. [DOI: 10.1111/1462-2920.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego; La Jolla CA USA
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| |
Collapse
|
41
|
Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 2016; 7:11833. [PMID: 27270557 PMCID: PMC4899628 DOI: 10.1038/ncomms11833] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. Overfishing and nutrient pollution can damage coral reefs in part by increasing coral-algal competition. Here the authors simulate these stressors in a three year field experiment, and show that they interact to enhance sensitivity to temperature, predation and bacterial opportunism.
Collapse
|
42
|
Denikina NN, Dzyuba EV, Bel’kova NL, Khanaev IV, Feranchuk SI, Makarov MM, Granin NG, Belikov SI. The first case of disease of the sponge Lubomirskia baicalensis: Investigation of its microbiome. BIOL BULL+ 2016; 43:263-270. [DOI: 10.1134/s106235901603002x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
43
|
Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. MARINE POLLUTION BULLETIN 2016; 105:629-40. [PMID: 26763316 DOI: 10.1016/j.marpolbul.2015.12.045] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.
Collapse
Affiliation(s)
- Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Adam Porter
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Khalid Zubier
- Faculty of Marine Science, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia
| | - Mohammed S Mudarris
- Faculty of Marine Science, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia
| | - Rupert Ormond
- Faculty of Marine Science, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia; Centre for Marine Biotechnology and Biodiversity, School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
44
|
Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert J, Serrão EA, De Clerck O, Payri CE. Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata. Front Microbiol 2016; 7:316. [PMID: 27047453 PMCID: PMC4800410 DOI: 10.3389/fmicb.2016.00316] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.
Collapse
Affiliation(s)
- Christophe Vieira
- IFD, Sorbonne Universités, UPMC Univ Paris 06Paris, France; UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le DéveloppementNouméa, New Caledonia; Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent UniversityGhent, Belgium
| | | | - Linda Guentas
- Laboratoire MAPIEM EA 4323, Université de ToulonLa Garde, France; Laboratoire LIVE, Université de Nouvelle-CalédonieNouméa, New Caledonia
| | - Tânia Aires
- Centre of Marine Sciences, University of the Algarve Portugal
| | - Fanny Houlbreque
- UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia
| | - Julie Gaubert
- UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia
| | - Ester A Serrão
- Centre of Marine Sciences, University of the Algarve Portugal
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University Ghent, Belgium
| | - Claude E Payri
- UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia
| |
Collapse
|
45
|
The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME JOURNAL 2016; 10:2280-92. [PMID: 26953605 PMCID: PMC4989324 DOI: 10.1038/ismej.2016.9] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/16/2015] [Accepted: 12/24/2015] [Indexed: 01/07/2023]
Abstract
Microbes are well-recognized members of the coral holobiont. However, little is known about the short-term dynamics of mucus-associated microbial communities under natural conditions and after disturbances, and how these dynamics relate to the host's health. Here we examined the natural variability of prokaryotic communities (based on 16S ribosomal RNA gene amplicon sequencing) associating with the surface mucus layer (SML) of Porites astreoides, a species exhibiting cyclical mucus aging and shedding. Shifts in the prokaryotic community composition during mucus aging led to the prevalence of opportunistic and potentially pathogenic bacteria (Verrucomicrobiaceae and Vibrionaceae) in aged mucus and to a twofold increase in prokaryotic abundance. After the release of aged mucus sheets, the community reverted to its original state, dominated by Endozoicimonaceae and Oxalobacteraceae. Furthermore, we followed the fate of the coral holobiont upon depletion of its natural mucus microbiome through antibiotics treatment. After re-introduction to the reef, healthy-looking microbe-depleted corals started exhibiting clear signs of bleaching and necrosis. Recovery versus mortality of the P. astreoides holobiont was related to the degree of change in abundance distribution of the mucus microbiome. We conclude that the natural prokaryotic community inhabiting the coral SML contributes to coral health and that cyclical mucus shedding has a key role in coral microbiome dynamics.
Collapse
|
46
|
Wear SL, Thurber RV. Sewage pollution: mitigation is key for coral reef stewardship. Ann N Y Acad Sci 2015; 1355:15-30. [PMID: 25959987 PMCID: PMC4690507 DOI: 10.1111/nyas.12785] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/21/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023]
Abstract
Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage–based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef–focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution.
Collapse
Affiliation(s)
- Stephanie L Wear
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina.,The Nature Conservancy, Beaufort, North Carolina
| | | |
Collapse
|
47
|
Fernando SC, Wang J, Sparling K, Garcia GD, Francini-Filho RB, de Moura RL, Paranhos R, Thompson FL, Thompson JR. Microbiota of the major South Atlantic reef building coral Mussismilia. MICROBIAL ECOLOGY 2015; 69:267-280. [PMID: 25213651 DOI: 10.1007/s00248-014-0474-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The Brazilian endemic scleractinian corals, genus Mussismilia, are among the main reef builders of the South Atlantic and are threatened by accelerating rates of disease. To better understand how holobiont microbial populations interact with corals during health and disease and to evaluate whether selective pressures in the holobiont or neutral assembly shape microbial composition, we have examined the microbiota structure of Mussismilia corals according to coral lineage, environment, and disease/health status. Microbiota of three Mussismilia species (Mussismilia harttii, Mussismilia hispida, and Mussismilia braziliensis) was compared using 16S rRNA pyrosequencing and clone library analysis of coral fragments. Analysis of biological triplicates per Mussismilia species and reef site allowed assessment of variability among Mussismilia species and between sites for M. braziliensis. From 173,487 V6 sequences, 6,733 coral- and 1,052 water-associated operational taxonomic units (OTUs) were observed. M. braziliensis microbiota was more similar across reefs than to other Mussismilia species microbiota from the same reef. Highly prevalent OTUs were more significantly structured by coral lineage and were enriched in Alpha- and Gammaproteobacteria. Bacterial OTUs from healthy corals were recovered from a M. braziliensis skeleton sample at twice the frequency of recovery from water or a diseased coral suggesting the skeleton is a significant habitat for microbial populations in the holobiont. Diseased corals were enriched with pathogens and opportunists (Vibrios, Bacteroidetes, Thalassomonas, and SRB). Our study examines for the first time intra- and inter-specific variability of microbiota across the genus Mussismilia. Changes in microbiota may be useful indicators of coral health and thus be a valuable tool for coral reef management and conservation.
Collapse
Affiliation(s)
- Samodha C Fernando
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Room 48-331, 15 Vassar Street, Cambridge, MA, 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32:904-36. [DOI: 10.1039/c5np00010f] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organisms team up with symbiotic microbes for defense against predators, parasites, parasitoids, or pathogens. Here we review the known defensive symbioses in animals and the microbial secondary metabolites responsible for providing protection to the host.
Collapse
Affiliation(s)
- Laura V. Flórez
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Peter H. W. Biedermann
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| |
Collapse
|
49
|
Wahl M, Al Sofyani A, Saha M, Kruse I, Lenz M, Sawall Y. Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea. PLoS One 2014; 9:e106573. [PMID: 25485603 PMCID: PMC4259301 DOI: 10.1371/journal.pone.0106573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022] Open
Abstract
Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.
Collapse
Affiliation(s)
- Martin Wahl
- Department of Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Mahasweta Saha
- Department of Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Inken Kruse
- Department of Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Mark Lenz
- Department of Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Yvonne Sawall
- Department of Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
50
|
Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons. Sci Rep 2014; 4:7320. [PMID: 25475855 PMCID: PMC4256709 DOI: 10.1038/srep07320] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Investigation of the response of coral microbial communities to seasonal ecological environment at the microscale will advance our understanding of the relationship between coral-associated bacteria community and coral health. In this study, we examined bacteria community composition from mucus, tissue and skeleton of Porites lutea and surrounding seawater every three months for 1 year on Luhuitou fringing reef. The bacterial communities were analyzed using pyrosequencing of the V1-V2 region of the 16S rRNA gene, which demonstrated diverse bacterial consortium profiles in corals. The bacterial communities in all three coral compartments studied were significantly different from the surrounding seawater. Moreover, they had a much more dynamic seasonal response compared to the seawater communities. The bacterial communities in all three coral compartments collected in each seasonal sample tended to cluster together. Analysis of the relationship between bacterial assemblages and the environmental parameters showed that the bacterial community correlated to dissolved oxygen and rainfall significantly at our study site. This study highlights a dynamic relationship between the high complexity of coral associated bacterial community and seasonally varying ecosystem parameters.
Collapse
|