1
|
Zaabaar E, Shing E, Zhang XJ, Wang Y, Kam KW, Zhang Y, Yip WWK, Young AL, Tam POS, Tham CC, Pang CP, Yam JC, Chen LJ. Associations of genetic variants for refractive error and axial length in adults with ocular endophenotypes in children: a cross-sectional and longitudinal study. Br J Ophthalmol 2024:bjo-2024-325606. [PMID: 39326895 DOI: 10.1136/bjo-2024-325606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
AIMS To investigate the associations of genetic variants previously linked to axial length (AL) and spherical equivalent refraction (SE) in adults with refractive error and related endophenotypes in children, at baseline and 3-year follow-up. METHODS 15 candidate single-nucleotide polymorphisms (SNPs), selected from previous Genome-Wide Association Studies and meta-analyses, were genotyped in 2819 Chinese children, who had undergone baseline and 3-year follow-up cycloplegic refraction, ocular biometry and ocular health examinations. Linear regression analyses were conducted to assess the associations of the SNPs with baseline measurements and longitudinal changes in SE, spherical power (SPH), AL, corneal radius of curvature (CR) and AL/CR ratio. RESULTS SNPs ZMAT4 rs7829127, ZMAT4 rs16890057, TOX rs7837791, GRIA4 rs11601239 and RDH5 rs3138142 were associated with SE (β=0.233, p=4.21×10-4; β=0.221, p=7.87×10-4; β=0.106, p=0.0076; β=0.084, p=0.041; β=0.14, p=0.013, respectively) and SPH (β=0.24, p=2.3×10-4; β=0.232, p=3.8×10-4; β=0.088, p=0.025; β=0.086, p=0.034; β=0.14, p=0.012, respectively). Among them, ZMAT4 rs7829127 and rs16890057, were also associated with AL (β=-0.128, p=5.6×10-4; β=-0.128, p=5.21×10-4) and AL/CR ratio (β=-0.014, p=0.0028; β=-0.014, p=0.0034), whereas TOX rs7837791 was associated with AL (β=-0.062, p=0.0058) and GRIA4 11 601 239 with AL/CR ratio (β=-0.0058, p=0.049). Additionally, CD55 rs1652333 and RDH5 rs3138142 were associated with 3-year longitudinal changes in AL (β=0.062, p=0.018; β=-0.079, p=0.029) and CR (β=0.014, p=0.027; β=-0.018, p=0.035). CONCLUSION Among SNPs previously associated with AL and SE in adults, variants in ZMAT4, TOX and GRIA4 were associated with AL, SE, SPH, and/or AL/CR ratio, while variants in RDH5 and CD55 showed associations with AL and CR changes in children.
Collapse
Affiliation(s)
- Ebenezer Zaabaar
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Erica Shing
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuyao Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson W K Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Cheong KX, Li H, Tham YC, Teo KYC, Tan ACS, Schmetterer L, Wong TY, Cheung CMG, Cheng CY, Fan Q. Relationship Between Retinal Layer Thickness and Genetic Susceptibility to Age-Related Macular Degeneration in Asian Populations. OPHTHALMOLOGY SCIENCE 2023; 3:100396. [PMID: 38025159 PMCID: PMC10630670 DOI: 10.1016/j.xops.2023.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023]
Abstract
Purpose For OCT retinal thickness measurements to be used as a prodromal age-related macular degeneration (AMD) risk marker, the 3-dimensional (3D) topographic variation of the relationship between genetic susceptibility to AMD and retinal thickness needs to be assessed. We aimed to evaluate individual retinal layer thickness changes and topography at the macula that are associated with AMD genetic susceptibility. Design Genetic association study. Participants A total of 1579 healthy participants (782 Chinese, 353 Malays, and 444 Indians) from the multiethnic Singapore Epidemiology of Eye Diseases study were included. Methods Spectral-domain OCT and automatic segmentation of individual retinal layers were performed to produce 10 retinal layer thickness measurements at each ETDRS subfield, producing 3D topographic information. Age-related macular degeneration genetic susceptibility was represented via single nucleotide polymorphisms (SNPs) and aggregated via whole genome (overall) and pathway-specific age-related macular degeneration polygenic risk score (PRSAMD). Main Outcome Measures Associations of individual SNPs, overall PRSAMD, and pathway-specific PRSAMD with retinal thickness were analyzed by individual retinal layer and ETDRS subfield. Results CFH rs10922109, ARMS2-HTRA1 rs3750846, and LIPC rs2043085 were the top AMD susceptibility SNPs associated with retinal thickness of individual layers (P < 1.67 × 10-3), all at the central subfield. The overall PRSAMD was most associated with thinner L9 (outer segment photoreceptor/retinal pigment epithelium complex) thickness at the central subfield (β = -0.63 μm; P = 5.45 × 10-9). Pathway-specific PRSAMD for the complement cascade (β = -0.53 μm; P = 9.42 × 10-7) and lipoprotein metabolism (β = -0.05 μm; P = 0.0061) were associated with thinner photoreceptor layers (L9 and L7 [photoreceptor inner/outer segments], respectively) at the central subfield. The mean PRSAMD score was larger among Indians compared with that of the Chinese and had the thinnest thickness at the L9 central subfield (β = -1.00 μm; P = 2.91 × 10-7; R2 = 5.5%). Associations at other retinal layers and ETDRS regions were more heterogeneous. Conclusions Overall genetic susceptibility to AMD and the aggregate effects of the complement cascade and lipoprotein metabolism pathway are associated most significantly with L7 and L9 photoreceptor thinning at the central macula in healthy individuals. Photoreceptor thinning has potential to be a prodromal AMD risk marker, and topographic variation should be considered. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kai Xiong Cheong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Anna Cheng Sim Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Tien Yin Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiao Fan
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Yang L, Xu Y, Zhou P, Wan G. The SNTB1 and ZFHX1B gene have susceptibility in northern Han Chinese populations with high myopia. Exp Eye Res 2023; 237:109694. [PMID: 37890754 DOI: 10.1016/j.exer.2023.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The aim of this study was to explore the association between SNTB1 and ZFHX1B polymorphisms and high myopia (HM) in a Northern Han Chinese population. This case-control study included 457 HM and 860 healthy subjects from the Northern Han Chinese population. Four single nucleotide polymorphisms (SNPs) (rs7839488, rs4395927, rs4455882, and rs6469937) in SNTB1 and one SNP in ZFHX1B (rs13382811)were selected based on two previous genome-wide association study (GWAS) studies. The allele and genotype distributions of SNPs in SNTB1 and ZFHX1B were compared between the two groups using the chi-square test. The allele results were adjusted for age and sex using Plink software (Plink 1.9). Pairwise linkage disequilibrium (LD) and haplotype analyses were performed using SHEsis software. For HM subjects, the mean age was 44.80 ± 17.11 years, and for the control subjects, it was 44.41 ± 14.26 years. For rs7839488 of the SNTB1 gene, the A allele is a risk allele and the G allele is a wild allele. The A allele had no statistical significance with the HM cases and controls (OR = 0.90, 95% CI = 0.74-1.09, aP = 0.273, Pc = NS). There was a LD in SNTB1 (rs7839488, rs4395927, rs4455882, and rs6469937). The G-C-A-G haplotype frequency was higher in HM subjects than that of the controls (OR = 1.31, 95% CI = 1.07-1.60, P = 0.008). Meanwhile, the A-T-G-A haplotype frequency was slightly lower in the HM group (OR = 0.81, 95% CI = 0.66-0.99, P = 0.048). In the ZFHX1B gene, the frequency of the minor T allele of rs13382811 was significant higher in the HM group than in the control group (OR = 1.34, 95% CI = 1.11-1.61, aP = 0.001, Pc = 0.009). Furthermore, compared to the CC genotype, there were significant differences in the CT genotype (OR = 1.57, 95% CI = 1.23-2.00, aP < 0.001, Pc = 0.002). In conclusion, G-C-A-G is a risk haplotype from the SNTB1 gene in high myopia patients. The minor T-allele of ZFHX1B rs13382811 is a risk factor for high myopia. SNTB1 and ZFHX1B are both risk genes associated with increased susceptibility to high myopia in the Northern Han Chinese population.
Collapse
Affiliation(s)
- Lin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Youmei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Pengyi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
4
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Jiang C, Melles RB, Yin J, Fan Q, Guo X, Cheng CY, He M, Mackey DA, Guggenheim JA, Klaver C, Nair KS, Jorgenson E, Choquet H. A multiethnic genome-wide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. Front Genet 2023; 14:1113058. [PMID: 37351342 PMCID: PMC10282939 DOI: 10.3389/fgene.2023.1113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Long axial length (AL) is a risk factor for myopia. Although family studies indicate that AL has an important genetic component with heritability estimates up to 0.94, there have been few reports of AL-associated loci. Methods: Here, we conducted a multiethnic genome-wide association study (GWAS) of AL in 19,420 adults of European, Latino, Asian, and African ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, with replication in a subset of the Consortium for Refractive Error and Myopia (CREAM) cohorts of European or Asian ancestry. We further examined the effect of the identified loci on the mean spherical equivalent (MSE) within the GERA cohort. We also performed genome-wide genetic correlation analyses to quantify the genetic overlap between AL and MSE or myopia risk in the GERA European ancestry sample. Results: Our multiethnic GWA analysis of AL identified a total of 16 genomic loci, of which 5 are novel. We found that all AL-associated loci were significantly associated with MSE after Bonferroni correction. We also found that AL was genetically correlated with MSE (rg = -0.83; SE, 0.04; p = 1.95 × 10-89) and myopia (rg = 0.80; SE, 0.05; p = 2.84 × 10-55). Finally, we estimated the array heritability for AL in the GERA European ancestry sample using LD score regression, and found an overall heritability estimate of 0.37 (s.e. = 0.04). Discussion: In this large and multiethnic study, we identified novel loci, associated with AL at a genome-wide significance level, increasing substantially our understanding of the etiology of AL variation. Our results also demonstrate an association between AL-associated loci and MSE and a shared genetic basis between AL and myopia risk.
Collapse
Affiliation(s)
- Chen Jiang
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| | - Ronald B. Melles
- KPNC, Department of Ophthalmology, Redwood City, CA, United States
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
- Southern China Center for Statistical Science, Sun Yat-Sen University, Guangzhou, China
| | - Ching-Yu Cheng
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Centre for Eye Research Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, WA, Australia
| | - David A. Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Caroline Klaver
- Department Ophthalmology, Department Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - K. Saidas Nair
- Department of Ophthalmology and Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| |
Collapse
|
6
|
Lu Q, Du Y, Zhang Y, Chen Y, Li H, He W, Tang Y, Zhao Z, Zhang Y, Wu J, Zhu X, Lu Y. A Genome-Wide Association Study for Susceptibility to Axial Length in Highly Myopic Eyes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:255-267. [PMID: 37325711 PMCID: PMC10260730 DOI: 10.1007/s43657-022-00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution. To identify novel susceptibility genes for axial length (AL) in highly myopic eyes, a genome-wide association study (GWAS) was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients. Top single nucleotide polymorphisms (SNPs) were functionally annotated. Immunofluorescence staining, quantitative polymerase chain reaction, and western blot were performed using neural retina of form-deprived myopic mice. Enrichment analyses were further performed. We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16 (ADAMTS16) and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z (PIGZ) had the potential of clinical significance. Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice, especially in the ganglion cell layer. The messenger RNA (mRNA) levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes (p = 0.005 and 0.007 respectively), and both proteins showed significantly upregulated expression in the neural retina of deprived eyes (p = 0.004 and 0.042, respectively). Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL, and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed. In conclusion, the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes. Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00082-x.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yu Du
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Ye Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yuxi Chen
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Hao Li
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Wenwen He
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yating Tang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Zhennan Zhao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yinglei Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| |
Collapse
|
7
|
Wu PL, Ling XC, Kang EYC, Chen KJ, Wang NK, Liu L, Chen YP, Hwang YS, Lai CC, Yang SF, Wu WC. Effects of TIMP-2 Polymorphisms on Retinopathy of Prematurity Risk, Severity, Recurrence, and Treatment Response. Int J Mol Sci 2022; 23:14199. [PMID: 36430677 PMCID: PMC9694036 DOI: 10.3390/ijms232214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) play a crucial role in endogenous angiogenesis besides the regulation of matrix metalloproteinase (MMP) activity. Associations between TIMP-2 gene polymorphisms and the risk of retinopathy of prematurity (ROP) were examined. Premature infants born between 2009 and 2018 were included. Five single-nucleotide polymorphisms (SNPs) of TIMP-2 were analyzed with real-time polymerase chain reaction (PCR). Multivariate logistic regression was applied to model associations between TIMP-2 polymorphisms and ROP susceptibility and severity. The GA+AA genotype in individuals with the TIMP-2 polymorphism of rs12600817 was associated with a higher risk of ROP (odds ratio [OR]: 1.518, 95% confidence interval [CI]: 1.028-2.242) compared with their wild-type genotypes. The AA genotype (OR: 1.962, 95% CI: 1.023-3.762) and the AA+GA genotype (OR: 1.686, 95% CI: 1.030-2.762) in individuals with the rs12600817 polymorphism had higher risks of severe, treatment-requiring ROP relative to their wild-type counterparts. In patients with treatment-requiring ROP, the AG+GG genotypes in the TIMP-2 polymorphism of rs2889529 were correlated with the treatment response (p = 0.035). The TIMP-2 polymorphism of rs12600817 help in predicting ROP risks in preterm infants, while the polymorphism of rs2889529 can serve as a genetic marker in evaluating the ROP treatment response.
Collapse
Affiliation(s)
- Pei-Liang Wu
- Department of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Xiao Chun Ling
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Laura Liu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yen-Po Chen
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Tucheng, New Taipei City 236, Taiwan
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
A multi-omics longitudinal study of the murine retinal response to chronic low-dose irradiation and simulated microgravity. Sci Rep 2022; 12:16825. [PMID: 36207342 PMCID: PMC9547011 DOI: 10.1038/s41598-022-19360-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
The space environment includes unique hazards like radiation and microgravity which can adversely affect biological systems. We assessed a multi-omics NASA GeneLab dataset where mice were hindlimb unloaded and/or gamma irradiated for 21 days followed by retinal analysis at 7 days, 1 month or 4 months post-exposure. We compared time-matched epigenomic and transcriptomic retinal profiles resulting in a total of 4178 differentially methylated loci or regions, and 457 differentially expressed genes. Highest correlation in methylation difference was seen across different conditions at the same time point. Nucleotide metabolism biological processes were enriched in all groups with activation at 1 month and suppression at 7 days and 4 months. Genes and processes related to Notch and Wnt signaling showed alterations 4 months post-exposure. A total of 23 genes showed significant changes in methylation and expression compared to unexposed controls, including genes involved in retinal function and inflammatory response. This multi-omics analysis interrogates the epigenomic and transcriptomic impacts of radiation and hindlimb unloading on the retina in isolation and in combination and highlights important molecular mechanisms at different post-exposure stages.
Collapse
|
9
|
Moledina M, Charteris DG, Chandra A. The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment. Genes (Basel) 2022; 13:genes13091675. [PMID: 36140841 PMCID: PMC9498391 DOI: 10.3390/genes13091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment (RD), affecting 1 in 10,000 patients per year. The condition has significant ocular morbidity, with a sizeable proportion of patients obtaining poor visual outcomes. Despite this, the genetics underpinning Idiopathic Retinal Detachment (IRD) remain poorly understood; this is likely due to small sample sizes in relevant studies. The majority of research pertains to the well-characterised Mende lian syndromes, such as Sticklers and Wagners, associated with RRD. Nevertheless, in recent years, there has been an increasing body of literature identifying the common genetic mutations and mechanisms associated with IRD. Several recent Genomic Wide Association Studies (GWAS) studies have identified a number of genetic loci related to the development of IRD. Our review aims to provide an up-to-date summary of the significant genetic mechanisms and associations of Idiopathic RRD.
Collapse
Affiliation(s)
- Malik Moledina
- Department of Ophthalmology, Southend University Hospital, Mid & South Essex NHS Foundation Trust, Southend-on-Sea SS0 0RY, UK
| | - David G. Charteris
- Institute of Ophthalmology, University College, London EC1V 9EL, UK
- Vitreoretinal Unit, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Mid & South Essex NHS Foundation Trust, Southend-on-Sea SS0 0RY, UK
- School of Medicine, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
- Correspondence: ; Tel.: +44-7914-817445
| |
Collapse
|
10
|
Zhang C, Zhao J, Zhu Z, Li Y, Li K, Wang Y, Zheng Y. Applications of Artificial Intelligence in Myopia: Current and Future Directions. Front Med (Lausanne) 2022; 9:840498. [PMID: 35360739 PMCID: PMC8962670 DOI: 10.3389/fmed.2022.840498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
With the continuous development of computer technology, big data acquisition and imaging methods, the application of artificial intelligence (AI) in medical fields is expanding. The use of machine learning and deep learning in the diagnosis and treatment of ophthalmic diseases is becoming more widespread. As one of the main causes of visual impairment, myopia has a high global prevalence. Early screening or diagnosis of myopia, combined with other effective therapeutic interventions, is very important to maintain a patient's visual function and quality of life. Through the training of fundus photography, optical coherence tomography, and slit lamp images and through platforms provided by telemedicine, AI shows great application potential in the detection, diagnosis, progression prediction and treatment of myopia. In addition, AI models and wearable devices based on other forms of data also perform well in the behavioral intervention of myopia patients. Admittedly, there are still some challenges in the practical application of AI in myopia, such as the standardization of datasets; acceptance attitudes of users; and ethical, legal and regulatory issues. This paper reviews the clinical application status, potential challenges and future directions of AI in myopia and proposes that the establishment of an AI-integrated telemedicine platform will be a new direction for myopia management in the post-COVID-19 period.
Collapse
|
11
|
Myopia Genetics and Heredity. CHILDREN 2022; 9:children9030382. [PMID: 35327754 PMCID: PMC8947159 DOI: 10.3390/children9030382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.
Collapse
|
12
|
Fuse N, Sakurai M, Motoike IN, Kojima K, Takai-Igarashi T, Nakaya N, Tsuchiya N, Nakamura T, Ishikuro M, Obara T, Miyazawa A, Homma K, Ido K, Taira M, Kobayashi T, Shimizu R, Uruno A, Kodama EN, Suzuki K, Hamanaka Y, Tomita H, Sugawara J, Suzuki Y, Nagami F, Ogishima S, Katsuoka F, Minegishi N, Hozawa A, Kuriyama S, Yaegashi N, Kure S, Kinoshita K, Yamamoto M. Genome-wide Association Study of Axial Length in Population-based Cohorts in Japan. OPHTHALMOLOGY SCIENCE 2022; 2:100113. [PMID: 36246171 PMCID: PMC9559092 DOI: 10.1016/j.xops.2022.100113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Purpose To elucidate the differences in ocular biometric parameters by generation and gender and to identify axial length (AL)-associated genetic variants in Japanese individuals, we analyzed Tohoku Medical Megabank Organization (ToMMo) Eye Study data. Design We designed the ToMMo Eye Study, examined AL variations, and conducted genome-wide association studies (GWASs). Participants In total, 33 483 participants aged > 18 years who were recruited into the community-based cohort (CommCohort) and the birth and three-generation cohort (BirThree Cohort) of the ToMMo Eye Study were examined. Methods Each participant was screened with an interview, ophthalmic examinations, and a microarray analysis. The GWASs were performed in 22 379 participants in the CommCohort (discovery stage) and 11 104 participants in the BirThree Cohort (replication stage). We evaluated the associations of single nucleotide polymorphisms (SNPs) with AL using a genome-wide significance threshold (5 × 10-8) in each stage of the study and in the subsequent meta-analysis. Main Outcome Measures We identified the association of SNPs with AL and distributions of AL in right and left eyes and individuals of different sexes and ages. Results In the discovery stage, the mean AL of the right eye (23.99 mm) was significantly greater than that of the left eye (23.95 mm). This difference was reproducible across sexes and ages. The GWASs revealed 703 and 215 AL-associated SNPs with genome-wide significance in the discovery and validation stages, respectively, and many of the SNPs in the discovery stage were replicated in the validation stage. Validated SNPs and their associated loci were meta-analyzed for statistical significance (P < 5 × 10-8). This study identified 1478 SNPs spread over 31 loci. Of the 31 loci, 5 are known AL loci, 15 are known refractive-error loci, 4 are known corneal-curvature loci, and 7 loci are newly identified loci that are not known to be associated with AL. Of note, some of them shared functional relationships with previously identified loci. Conclusions Our large-scale GWASs exploiting ToMMo Eye Study data identified 31 loci linked to variations in AL, 7 of which are newly reported in this article. The results revealed genetic heterogeneity and similarity in SNPs related to ethnic variations in AL.
Collapse
|
13
|
Zhao F, Chen W, Zhou H, Reinach PS, Wang Y, Juo SHH, Yang Z, Xue A, Shi Y, Liang CL, Zeng C, Qu J, Zhou X. PDE4B Proposed as a High Myopia Susceptibility Gene in Chinese Population. Front Genet 2022; 12:775797. [PMID: 35116054 PMCID: PMC8804583 DOI: 10.3389/fgene.2021.775797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myopia is the most common cause of refractive error worldwide. High myopia is a severe type of myopia, which usually accompanies pathological changes in the fundus. To identify high myopia susceptibility genes, DNA-pooling based genome-wide association analysis was used to search for a correlation between single nucleotide polymorphisms and high myopia in a Han Chinese cohort (cases vs. controls in discovery stage: 507 vs. 294; replication stage 1: 991 vs. 1,025; replication stage 2: 1,021 vs. 52,708). Three variants (rs10889602T/G, rs2193015T/C, rs9676191A/C) were identified as being significantly associated with high myopia in the discovery, and replication stage. rs10889602T/G is located at the third intron of phosphodiesterase 4B (PDE4B), whose functional assays were performed by comparing the effects of rs10889602T/T deletion of this risk allele on PDE4B and COL1A1 gene and protein expression levels in the rs10889602T/Tdel/del, rs10889602T/Tdel/wt, and normal control A549 cell lines. The declines in the PDE4B and COL1A1 gene expression levels were larger in the rs10889602T/T deleted A549 cells than in the normal control A549 cells (one-way ANOVA, p < 0.001). The knockdown of PDE4B by siRNA in human scleral fibroblasts led to downregulation of COL1A1. This correspondence between the declines in rs10889602 of the PDE4B gene, PDE4B knockdown, and COL1A1 protein expression levels suggest that PDE4B may be a novel high myopia susceptibility gene, which regulates myopia progression through controlling scleral collagen I expression levels. More studies are needed to determine if there is a correlation between PDE4B and high myopia in other larger sample sized cohorts.
Collapse
Affiliation(s)
- Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hui Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Peter S Reinach
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Yuhan Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Suh-Hang H Juo
- Center for Myopia and Eye Disease, Department of Medical Research, China Medical University Hospital, Taichung, China
| | - Zhenglin Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Anquan Xue
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Shi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chung-Ling Liang
- Center for Myopia and Eye Disease, China Medical University Hospital, Taichung, China
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, Beijing, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| |
Collapse
|
14
|
Plotnikov D, Cui J, Clark R, Wedenoja J, Pärssinen O, Tideman JWL, Jonas JB, Wang Y, Rudan I, Young TL, Mackey DA, Terry L, Williams C, Guggenheim JA. Genetic Variants Associated With Human Eye Size Are Distinct From Those Conferring Susceptibility to Myopia. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34698770 PMCID: PMC8556552 DOI: 10.1167/iovs.62.13.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Emmetropization requires coordinated scaling of the major ocular components, corneal curvature and axial length. This coordination is achieved in part through a shared set of genetic variants that regulate eye size. Poorly coordinated scaling of corneal curvature and axial length results in refractive error. We tested the hypothesis that genetic variants regulating eye size in emmetropic eyes are distinct from those conferring susceptibility to refractive error. Methods A genome-wide association study (GWAS) for corneal curvature in 22,180 adult emmetropic individuals was performed as a proxy for a GWAS for eye size. A polygenic score created using lead GWAS variants was tested for association with corneal curvature and axial length in an independent sample: 437 classified as emmetropic and 637 as ametropic. The genetic correlation between eye size and refractive error was calculated using linkage disequilibrium score regression for approximately 1 million genetic variants. Results The GWAS for corneal curvature in emmetropes identified 32 independent genetic variants (P < 5.0e-08). A polygenic score created using these 32 genetic markers explained 3.5% (P < 0.001) and 2.0% (P = 0.001) of the variance in corneal curvature and axial length, respectively, in the independent sample of emmetropic individuals but was not predictive of these traits in ametropic individuals. The genetic correlation between eye size and refractive error was close to zero (rg = 0.00; SE = 0.06; P = 0.95). Conclusions These results support the hypothesis that genetic variants regulating eye size in emmetropic eyes do not overlap with those conferring susceptibility to myopia. This suggests that distinct biological pathways regulate normal eye growth and myopia development.
Collapse
Affiliation(s)
- Denis Plotnikov
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.,Central Research Laboratory, Kazan State Medical University, Kazan, Russia
| | - Jiangtian Cui
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rosie Clark
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Olavi Pärssinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - J Willem L Tideman
- Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Yaxing Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Igor Rudan
- Centre for Global Health and WHO Collaborating Centre, University of Edinburgh, United Kingdom
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jeremy A Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
15
|
Liu Y, Zhang JJ, Piao SY, Shen RJ, Ma Y, Xue ZQ, Zhang W, Liu J, Jin ZB, Zhuang WJ. Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Front Cell Dev Biol 2021; 9:645501. [PMID: 34222226 PMCID: PMC8250434 DOI: 10.3389/fcell.2021.645501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment worldwide. In order to expand the myopia gene spectrum in the Chinese population, we investigated genetic mutations in a cohort of 27 families with HM from Northwest China by using whole-exome sequencing (WES). Genetic variations were filtered using bioinformatics tools and cosegregation analysis. A total of 201 candidate mutations were detected, and 139 were cosegregated with the disease in the families. Multistep analysis revealed four missense variants in four unrelated families, including c.904C>T (p.R302C) in CSMD1, c.860G>A (p.R287H) in PARP8, c.G848A (p.G283D) in ADAMTSL1, and c.686A>G (p.H229R) in FNDC3B. These mutations were rare or absent in the Exome Aggregation Consortium (ExAC), 1000 Genomes Project, and Genome Aggregation Database (gnomAD), indicating that they are new candidate disease-causing genes. Our findings not only expand the myopia gene spectrum but also provide reference information for further genetic study of heritable HM.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Jin-Jin Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shun-Yu Piao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zhong-Qi Xue
- Department of Ophthalmology, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Wen Zhang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
16
|
Liu J, Zhang R, Sun L, Zheng Y, Chen S, Chen SL, Xu Y, Pang CP, Zhang M, Ng TK. Genotype-phenotype correlation and interaction of 4q25, 15q14 and MIPEP variants with myopia in southern Chinese population. Br J Ophthalmol 2021; 105:869-877. [PMID: 31604699 DOI: 10.1136/bjophthalmol-2019-314782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS To determine the association and interaction of genome-wide association study-reported variants for Asian populations with myopia and ocular biometric parameters in southern Chinese population. METHODS Totally, 1462 unrelated Han Chinese subjects were recruited with complete ophthalmic examinations, including 1196 myopia and 266 control subjects. A total of nine variants were selected for TaqMan genotyping. The genetic association, joint additive effect and genotype-phenotype correlation were investigated. RESULTS The 4q25 variant rs10034228 (p=0.002, OR=0.56) and MIPEP variant rs9318086 (p=0.004, OR=1.62) were found to be significantly associated with myopia as well as different severity of myopia. Moreover, 15q14 variant rs524952 (p=0.015, OR=1.49) also showed mild association with myopia and high myopia. However, there was no significant association of CTNND2, vasoactive intestinal peptide receptor 2 and syntrophin beta 1 variants with myopia. Joint additive analysis revealed that the subjects carrying 6 risk alleles of the 3 associated variants were 10-fold higher risk predisposed to high myopia. Genotype-phenotype correlation analysis revealed that high myopia subjects carrying 4q25 rs10034228 T allele showed thicker central corneal thickness, whereas high myopia subjects carrying 15q14 rs524952 A allele were associated with longer axial length and larger curvature ratio. CONCLUSION This study revealed significant association of 4q25, 15q14 and MIPEP variants with myopia and different severity of myopia in southern Chinese population, joint additively enhancing 10-fold of risk predisposing to high myopia. The correlation of these associated variants with axial length and corneal parameters suggests their contribution to the refractive status in high myopia subjects.
Collapse
Affiliation(s)
- Junbin Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Lixia Sun
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqian Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi-Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
17
|
Chen LJ, Li FF, Lu SY, Zhang XJ, Kam KW, Tang SM, Tam PO, Yip WW, Young AL, Tham CC, Pang CP, Yam JC. Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children. Br J Ophthalmol 2021; 105:1751-1757. [PMID: 33811038 DOI: 10.1136/bjophthalmol-2020-318708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
AIMS To assess the association of single-nucleotide polymorphisms (SNPs) with myopia progression for polygenic risk prediction in children. METHODS Six SNPs (ZC3H11B rs4373767, ZFHX1B rs13382811, KCNQ5 rs7744813, MET rs2073560, SNTB1 rs7839488 and GJD2 rs524952) were analysed in 1043 school children, who completed 3-year follow-up, using TaqMan genotyping assays. SNP associations with progression in spherical equivalent (SE) were analysed by logistic regression. Polygenic risk scores (PRS) were applied for computing the sum of the risk alleles of multiple SNPs corresponding to myopia progression, weighted by the effect sizes of corresponding SNPs. RESULTS GJD2 rs524952 showed significant association with fast progression (OR=1.32, 95% CI 1.10 to 1.59; p=0.003) and KCNQ5 rs7744813 had nominal association (OR=1.32, 95% CI 1.04 to 1.67; p=0.02). In quantitative traits locus analysis, GJD2 rs524952 and KCNQ5 rs7744813 were associated with progression in SE (β=-0.038 D/year, p=0.008 and β=-0.042 D/year, p=0.02) and axial elongation (β=0.016 mm/year, p=0.01 and β=0.017 mm/year, p=0.027). ZFHX1B rs13382811 also showed nominal association with faster progression in SE (β=-0.041 D/year, p=0.02). PRS analysis showed that children with the highest PRS defined by rs13382811, rs7744813 and rs524952 had a 2.26-fold of increased risk of fast myopia progression (p=4.61×10-5). PRS was also significantly associated with SE progression (R2=1.6%, p=3.15×10-5) and axial elongation (R2=1.2%, p=2.6×10-4). CONCLUSIONS In this study, multi-tiered evidence suggested SNPs in ZFHX1B, KCNQ5 and GJD2 as risk factors for myopia progression in children. Additional attention and appropriate interventions should be given for myopic children with high-risk PRS as defined by GJD2 rs524952, KCNQ5 rs7744813 and ZFHX1B rs13382811.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Fen Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Xiamen, China
| | - Pancy Os Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson Wk Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| |
Collapse
|
18
|
A Bibliometric and Citation Network Analysis of Myopia Genetics. Genes (Basel) 2021; 12:genes12030447. [PMID: 33801043 PMCID: PMC8003911 DOI: 10.3390/genes12030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To aim of the study was describe the growth of publications on genetic myopia and understand the current research landscape through the analysis of citation networks, as well as determining the different research areas and the most cited publications. METHODS The Web of Science database was used to perform the publication search, looking for the terms "genetic*" AND "myopia" within the period between 2009 and October 2020. The CitNetExplorer and CiteSpace software were then used to conduct the publication analysis. To obtain the graphics, the VOSviewer software was used. RESULTS A total of 721 publications were found with 2999 citations generated within the network. The year 2019 was singled out as a "key year", taking into account the number of publications that emerged in that year and given that in 2019, 200 loci associated with refractive errors and myopia were found, which is considered to be great progress. The most widely cited publication was "Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia", an article by Verhoeven et al., which was published in 2013. By using the clustering function, we were able to establish three groups that encompassed the different research areas within this field: heritability rate of myopia and its possible association with environmental factors, retinal syndromes associated with myopia and the genetic factors that control and influence axial growth of the eye. CONCLUSIONS The citation network offers a comprehensive and objective analysis of the main papers that address genetic myopia.
Collapse
|
19
|
RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia. Sci Rep 2021; 11:5280. [PMID: 33674625 PMCID: PMC7935918 DOI: 10.1038/s41598-021-84338-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently there is no consensus regarding the aetiology of the excessive ocular volume that characterizes high myopia. Thus, we aimed to test whether the gene pathways identified by gene set enrichment analysis of RNA-seq transcriptomics refutes the predictions of the Retinal Ion Driven Efflux (RIDE) hypothesis when applied to the induction of form-deprivation myopia (FDM) and subsequent recovery (post-occluder removal). We found that the induction of profound FDM led to significant suppression in the ligand-gated chloride ion channel transport pathway via suppression of glycine, GABAA and GABAC ionotropic receptors. Post-occluder removal for short term recovery from FDM of 6 h and 24 h, induced significant upregulation of the gene families linked to cone receptor phototransduction, mitochondrial energy, and complement pathways. These findings support a model of form deprivation myopia as a Cl− ion driven adaptive fluid response to the modulation of the visual signal cascade by form deprivation that in turn affects the resultant ionic environment of the outer and inner retinal tissues, axial and vitreal elongation as predicted by the RIDE model. Occluder removal and return to normal light conditions led to return to more normal upregulation of phototransduction, slowed growth rate, refractive recovery and apparent return towards physiological homeostasis.
Collapse
|
20
|
Lu SY, Tang SM, Li FF, Kam KW, Tam POS, Yip WWK, Young AL, Tham CC, Pang CP, Yam JC, Chen LJ. Association of WNT7B and RSPO1 with Axial Length in School Children. Invest Ophthalmol Vis Sci 2021; 61:11. [PMID: 32761137 PMCID: PMC7441295 DOI: 10.1167/iovs.61.10.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To evaluate the association between single-nucleotide polymorphisms (SNPs) in the ZC3H11B, RSPO1, C3orf26, GJD2, ZNRF3, and WNT7B genes and myopia endophenotypes in children. Methods Seven SNPs identified in previous genome-wide association studies of axial length (AL) were genotyped in 2883 Southern Han Chinese children. Multiple linear regression analyses were conducted to evaluate the genotype association with AL, spherical equivalent (SE), corneal curvature (CC), and central corneal thickness (CCT). Results Two SNPs-namely, rs12144790 in RSPO1 (allele T, P = 0.0066, β = 0.062) and rs10453441 in WNT7B (allele A, P = 8.03 × 10-6, β = 0.103)-were significantly associated with AL. The association of rs4373767 in ZC3H11B (allele C, P = 0.030, β = -0.053) could not withstand the correction for multiple testing. WNT7B rs10453441 showed a strong association with CC (P = 1.17 × 10-14, β = 0.053) and with CCT (P = 0.0026, β = 2.65). None of the tested SNPs was significantly associated with SE. The C allele of SNP rs12321 in ZNRF3 was associated with CC (P = 0.0060, β = -0.018). Conclusions This study revealed that the RSPO1 SNP rs12144790 was associated with AL, whereas WNT7B rs10453441 was associated with AL, CC, and CCT in children. A novel association between ZNRF3 rs12321 and CC was discovered. Our data suggest that the RSPO1 and WNT7B genes might exert their effects on multiple aspects of eye growth during childhood. Potential differences in the genetic profiles of AL between children and adults should be explored in larger cohorts.
Collapse
Affiliation(s)
- Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Fen Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson W K Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
21
|
Li FF, Lu SY, Tang SM, Kam KW, Pancy O S T, Yip WWK, Young AL, Tham CC, Pang CP, Yam JC, Chen LJ. Genetic associations of myopia severities and endophenotypes in children. Br J Ophthalmol 2020; 105:1178-1183. [PMID: 32816751 DOI: 10.1136/bjophthalmol-2020-316728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the associations of multiple single-nucleotide polymorphisms (SNPs) with the severities and endophenotypes of myopia in children. METHODS A total of 3300 children aged 5-10 years were recruited: 137 moderate and high myopia (SE≤-3.0D), 670 mild myopia (-3.0D<SE≤-0.5D) and 2493 controls (SE>-0.5D). 13 SNPs in 13 genes/loci were selected for genotyping in all subjects using TaqMan assays. Associations between each SNP with myopia severities and ocular traits (spherical equivalent (SE), axial length (AL) and corneal radius (CR)) were analysed. RESULTS When compared with controls, SNPs ZC3H11B rs4373767 (OR=1.15, p=0.038), BICC1 rs7084402 (OR=1.18, p=0.005) and GJD2 rs524952 (OR=1.14, p=0.025) showed nominal associations with overall myopia. ZC3H11B rs4373767 and BICC1 rs7084402 showed stronger associations with moderate and high myopia (rs4373767: OR=1.42, p=0.018; rs7084402: OR=1.33, p=0.025), while GJD2 rs524952 had a stronger association with mild myopia (OR=1.14, p=0.025). GJD2 rs524952 also showed a difference between emmetropia and hyperopia (p=0.018). In quantitative trait locus analysis, ZC3H11B rs4373767, KCNQ5 rs7744813 and GJD2 rs524952 were correlated with both myopic SE (β=-0.09, p=0.03; β=-0.12, p=0.007; β=-0.13, p=0.0006, respectively) and AL (β=0.07, p=0.002; β=0.09, p=0.0008; β=0.07, p=0.0003, respectively). SNTB1 rs7839488 was correlated with both AL (β=0.07, p=0.005) and CR (β=0.02, p=0.006). Moreover, ZC3H11B rs4373767-T (β=0.006; p=0.018), KCNQ5 rs7744813-A (β=0.007; p=0.015) and GJD2 rs524952-T (β=0.009; p=0.0006) were correlated with AL-CR ratio. CONCLUSIONS AND RELEVANCE ZC3H11B and BICC1 are genetic risk factors for moderate and high myopia, while ZC3H11B, KCNQ5, SNTB1 and GJD2 confer risk to excessive AL in children.
Collapse
Affiliation(s)
- Fen Fen Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Tam Pancy O S
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson W K Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
22
|
Meguro A, Yamane T, Takeuchi M, Miyake M, Fan Q, Zhao W, Wang IJ, Mizuki Y, Yamada N, Nomura N, Tsujikawa A, Matsuda F, Hosoda Y, Saw SM, Cheng CY, Tsai TH, Yoshida M, Iijima Y, Teshigawara T, Okada E, Ota M, Inoko H, Mizuki N. Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis. Ophthalmology 2020; 127:1612-1624. [PMID: 32428537 DOI: 10.1016/j.ophtha.2020.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To identify novel susceptibility loci for high myopia. DESIGN Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS A total of 14 096 samples from East and Southeast Asian populations (2549 patients with high myopia and 11 547 healthy controls). METHODS We performed a GWAS in 3269 Japanese individuals (1668 with high myopia and 1601 control participants), followed by replication analysis in a total of 10 827 additional samples (881 with high myopia and 9946 control participants) from Japan, Singapore, and Taiwan. To confirm the biological role of the identified loci in the pathogenesis of high myopia, we performed functional annotation and Gene Ontology (GO) analyses. MAIN OUTCOME MEASURES We evaluated the association of single nucleotide polymorphisms with high myopia and GO terms enriched among genes identified in the current study. RESULTS We identified 9 loci with genome-wide significance (P < 5.0 × 10-8). Three loci were previously reported myopia-related loci (ZC3H11B on 1q41, GJD2 on 15q14, and RASGRF1 on 15q25.1), and the other 6 were novel (HIVEP3 on 1p34.2, NFASC/CNTN2 on 1q32.1, CNTN4/CNTN6 on 3p26.3, FRMD4B on 3p14.1, LINC02418 on 12q24.33, and AKAP13 on 15q25.3). The GO analysis revealed a significant role of the nervous system related to synaptic signaling, neuronal development, and Ras/Rho signaling in the pathogenesis of high myopia. CONCLUSIONS The current study identified 6 novel loci associated with high myopia and demonstrated an important role of the nervous system in the disease pathogenesis. Our findings give new insight into the genetic factors underlying myopia, including high myopia, by connecting previous findings and allowing for a clarified interpretation of the cause and pathophysiologic features of myopia at the molecular level.
Collapse
Affiliation(s)
- Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Wanting Zhao
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuki Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norihiro Yamada
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoko Nomura
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshikatsu Hosoda
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Masao Yoshida
- Department of Public Health, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasuhito Iijima
- Department of Ophthalmology, Aoto Eye Clinic, Yokohama, Japan
| | - Takeshi Teshigawara
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Ophthalmology, Yokosuka Chuoh Eye Clinic, Yokosuka, Japan; Department of Ophthalmology, Tsurumi Chuoh Eye Clinic, Yokohama, Japan
| | - Eiichi Okada
- Department of Ophthalmology, Okada Eye Clinic, Yokohama, Japan
| | - Masao Ota
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
23
|
Lin Y, Ding Y, Jiang D, Li C, Huang X, Liu L, Xiao H, Vasudevan B, Chen Y. Genome-Wide Association of Genetic Variants With Refraction, Axial Length, and Corneal Curvature: A Longitudinal Study of Chinese Schoolchildren. Front Genet 2020; 11:276. [PMID: 32269590 PMCID: PMC7109285 DOI: 10.3389/fgene.2020.00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background Myopia is a common eye disorder that is approaching epidemic proportions worldwide. A genome-wide association study identified AREG (rs12511037), GABRR1 (rs13215566), and PDE10A (rs12206610) as being associated with refractive error in Asian populations. The present study investigated the associations between these three genetic variants and the occurrence and development of myopia, spherical equivalent refraction (SER), axial length (AL), and corneal curvature (CC) in a cohort of southeastern Chinese schoolchildren. Methods We examined and followed 550 children in grade 1 enrolled in the Wenzhou Epidemiology of Refractive Error (WERE) project. During the 4-year follow-up, non-cycloplegic refraction was evaluated twice each year, and the AL and CC were measured once every year. Age, sex, and the amounts of time spent on near work and outdoors were documented with a questionnaire. Sanger DNA sequencing was used to genotype single nucleotide polymorphisms (SNPs). SNPtest software was used to identify potential genetic variants associated with myopia, SER, AL, and CC. Ten thousand permutations were used to correct for multiple testing. Results In total, 469 children, including 249 (53.1%) boys and 220 (46.9%) girls, were included in analyses. The mean age of all the children was 6.33 ± 0.48 years. After adjusting for age, sex, time spent on near work and time spent outdoors, neither the genotypes nor the allele frequencies of the three SNPs were significantly associated with myopic shift, incident myopia or the change in SER. After adjusting for age, sex, near-work time and outdoor time with 10,000 permutations, the genotype AREG (rs12511037) was associated with an increase in AL (P′-values for the dominant, recessive, additive and general models were 0.0032, 0.0275, 0.0045, and 0.0099, respectively); the genotype PDE10A (rs12206610) was associated with a change in CC in the additive (P′ = 0.0096), dominant (P′ = 0.0096), and heterozygous models (P′ = 0.0096). Conclusion These findings preliminarily indicate that AREG SNP rs12511037 and PDE10A SNP rs12206610 are etiologically relevant for ocular traits, providing a basis for further exploration of the development of myopia and its molecular mechanism. However, elucidating the role of AREG and PDE10A in the pathogenesis of myopia requires further animal model and human genetic epidemiology studies. This trial is registered as ChiCTR1900020584 at www.Chictr.org.cn.
Collapse
Affiliation(s)
- Yaoyao Lin
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yu Ding
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Jiang
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chunchun Li
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqiong Huang
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linjie Liu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Haishao Xiao
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | - Yanyan Chen
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Pugazhendhi S, Ambati B, Hunter AA. Pathogenesis and Prevention of Worsening Axial Elongation in Pathological Myopia. Clin Ophthalmol 2020; 14:853-873. [PMID: 32256044 PMCID: PMC7092688 DOI: 10.2147/opth.s241435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This review discusses the etiology and pathogenesis of myopia, prevention of disease progression and worsening axial elongation, and emerging myopia treatment modalities. INTRODUCTION Pediatric myopia is a public health concern that impacts young children worldwide and is associated with numerous future ocular diseases such as cataract, glaucoma, retinal detachment and other chorioretinal abnormalities. While the exact mechanism of myopia of the human eye remains obscure, several studies have reported on the role of environmental and genetic factors in the disease development. METHODS A review of literature was conducted. PubMed and Medline were searched for combinations and derivatives of the keywords including, but not limited to, "pediatric myopia", "axial elongation", "scleral remodeling" or "atropine." The PubMed and Medline database search were performed for randomized control trials, systematic reviews and meta-analyses using the same keyword combinations. RESULTS Studies have reported that detection of genetic correlations and modification of environmental influences may have a significant impact in myopia progression, axial elongation and future myopic ocular complications. The conventional pharmacotherapy of pediatric myopia addresses the improvement in visual acuity and prevention of amblyopia but does not affect axial elongation or myopia progression. Several studies have published varying treatments, including optical, pharmacological and surgical management, which show great promise for a more precise control of myopia and preservation of ocular health. DISCUSSION Understanding the role of factors influencing the onset and progression of pediatric myopia will facilitate the development of successful treatments, reduction of disease burden, arrest of progression and improvement in future of the management of myopia.
Collapse
|
25
|
Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res 2019; 188:107778. [DOI: 10.1016/j.exer.2019.107778] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
|
26
|
Yao L, Qi LS, Wang XF, Tian Q, Yang QH, Wu TY, Chang YM, Zou ZK. Refractive Change and Incidence of Myopia Among A Group of Highly Selected Senior High School Students in China: A Prospective Study in An Aviation Cadet Prerecruitment Class. Invest Ophthalmol Vis Sci 2019; 60:1344-1352. [PMID: 30933262 DOI: 10.1167/iovs.17-23506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the incidence rate of myopia, refractive change, and the effects of influencing factors on a group of highly selected senior high school students in an Aviation Cadet prerecruitment class in China. Methods A total of 800 nonmyopic, male, Grade 9 students aged 14- to 16-years old with cycloplegic refraction of -0.25 or greater diopters (D) to 1.75 D or less in both eyes were enrolled in May 2016. During their senior high school studies, students had one 20-minute physical training period a day, and they were encouraged to participate in outdoor activities during class recess without any time limits. The first follow-up was 8 months after enrollment when they were in Grade 10, and the second follow-up was 1 year after the first follow-up when they were in Grade 11. Comprehensive ocular examinations and a detailed questionnaire, which included questions about outdoor activity time, parental myopia, and near work, were completed at each follow-up. Results The average spherical equivalent refraction (SER) of the right eyes was 0.39 ± 0.44 D at baseline, 0.16 ± 0.41 D at the first follow-up, and -0.10 ± 0.38 D at the second follow-up. The cumulative refractive change was -0.50 D (95% confidence interval [CI], -0.53 to -0.47). The cumulative incidence rate of myopia was 15.5% (124/800). Incident myopia was significantly associated with outdoor activity for more than 1 versus less than 0.5 hr/d (odds ratio [OR] = 0.272, 95% CI, 0.132-0.560), baseline refraction (OR = 0.079, 95% CI, 0.041-0.153), maternal myopia (OR = 2.251, 95% CI, 1.160-4.368), longer class time (OR =3.215, 95% CI, 1.088-9.499), frequent, continuous, and long time reading/writing (OR = 1.620, 95% CI, 1.022-2.570), and shorter reading/writing distance (OR = 1.828, 95% CI, 1.065-3.140). In multiple linear regression model, having outdoor activity for more than 1 hr/d was protective from cumulative SER decrease. A higher baseline refraction together with longer reading/writing time, frequent, continuous, and longtime reading/writing, and shorter reading/writing distance were risk factors for SER decrease. Conclusions In this cohort of highly selected, nonmyopic students, longer outdoor activity time was a protective factor for both incident myopia and refractive change of myopic shift. The risk factors for incident myopia included lower hyperopic baseline refraction, more near work, and maternal myopia. The risk factors for refractive change of myopic shift included more hyperopic baseline refraction and more near work.
Collapse
Affiliation(s)
- Lu Yao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Lin-Song Qi
- Department of Aviation Physical Examination, Air Force General Hospital, Beijing, China
| | - Xue-Feng Wang
- Department of Physical Examination, Cadet Bureau of PLA Air Force, Beijing, China
| | - Qing Tian
- Department of Aviation Physical Examination, Air Force General Hospital, Beijing, China
| | - Qing-Hong Yang
- Department of Aviation Physical Examination, Air Force General Hospital, Beijing, China
| | - Teng-Yun Wu
- Department of Aviation Physical Examination, Air Force General Hospital, Beijing, China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Zhi-Kang Zou
- Department of Aviation Physical Examination, Air Force General Hospital, Beijing, China
| |
Collapse
|
27
|
Wong YL, Hysi P, Cheung G, Tedja M, Hoang QV, Tompson SWJ, Whisenhunt KN, Verhoeven V, Zhao W, Hess M, Wong CW, Kifley A, Hosoda Y, Haarman AEG, Hopf S, Laspas P, Sensaki S, Sim X, Miyake M, Tsujikawa A, Lamoureux E, Ohno-Matsui K, Nickels S, Mitchell P, Wong TY, Wang JJ, Hammond CJ, Barathi VA, Cheng CY, Yamashiro K, Young TL, Klaver CCW, Saw SM. Genetic variants linked to myopic macular degeneration in persons with high myopia: CREAM Consortium. PLoS One 2019; 14:e0220143. [PMID: 31415580 PMCID: PMC6695159 DOI: 10.1371/journal.pone.0220143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the roles of known myopia-associated genetic variants for development of myopic macular degeneration (MMD) in individuals with high myopia (HM), using case-control studies from the Consortium of Refractive Error and Myopia (CREAM). Methods A candidate gene approach tested 50 myopia-associated loci for association with HM and MMD, using meta-analyses of case-control studies comprising subjects of European and Asian ancestry aged 30 to 80 years from 10 studies. Fifty loci with the strongest associations with myopia were chosen from a previous published GWAS study. Highly myopic (spherical equivalent [SE] ≤ -5.0 diopters [D]) cases with MMD (N = 348), and two sets of controls were enrolled: (1) the first set included 16,275 emmetropes (SE ≤ -0.5 D); and (2) second set included 898 highly myopic subjects (SE ≤ -5.0 D) without MMD. MMD was classified based on the International photographic classification for pathologic myopia (META-PM). Results In the first analysis, comprising highly myopic cases with MMD (N = 348) versus emmetropic controls without MMD (N = 16,275), two SNPs were significantly associated with high myopia in adults with HM and MMD: (1) rs10824518 (P = 6.20E-07) in KCNMA1, which is highly expressed in human retinal and scleral tissues; and (2) rs524952 (P = 2.32E-16) near GJD2. In the second analysis, comprising highly myopic cases with MMD (N = 348) versus highly myopic controls without MMD (N = 898), none of the SNPs studied reached Bonferroni-corrected significance. Conclusions Of the 50 myopia-associated loci, we did not find any variant specifically associated with MMD, but the KCNMA1 and GJD2 loci were significantly associated with HM in highly myopic subjects with MMD, compared to emmetropes.
Collapse
Affiliation(s)
- Yee-Ling Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- R&D Vision Sciences AMERA, Essilor International, Singapore, Singapore
| | - Pirro Hysi
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Milly Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Quan V. Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, United States of America
| | - Stuart W. J. Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI, United States of America
| | - Kristina N. Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI, United States of America
| | - Virginie Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Moritz Hess
- Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg—University Mainz, Mainz, Germany
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Chee-Wai Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Annette Kifley
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yoshikatsu Hosoda
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Susanne Hopf
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg—University Mainz, Mainz, Germany
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg—University Mainz, Mainz, Germany
| | - Sonoko Sensaki
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan
| | - Ecosse Lamoureux
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Stefan Nickels
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg—University Mainz, Mainz, Germany
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Veluchamy A. Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan
- Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, Japan
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI, United States of America
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- * E-mail:
| | | |
Collapse
|
28
|
Saw SM, Matsumura S, Hoang QV. Prevention and Management of Myopia and Myopic Pathology. Invest Ophthalmol Vis Sci 2019; 60:488-499. [PMID: 30707221 DOI: 10.1167/iovs.18-25221] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myopia is fast becoming a global public health burden with its increasing prevalence, particularly in developed countries. Globally, the prevalence of myopia and high myopia (HM) is 28.3% and 4.0%, respectively, and these numbers are estimated to increase to 49.8% for myopia and 9.8% for HM by 2050 (myopia defined as -0.50 diopter [D] or less, and HM defined as -5.00 D or less). The burden of myopia is tremendous, as adults with HM are more likely to develop pathologic myopia (PM) changes that can lead to blindness. Accordingly, preventive measures are necessary for each step of myopia progression toward vision loss. Approaches to prevent myopia-related blindness should therefore attempt to prevent or delay the onset of myopia among children by increased outdoor time; retard progression from low/mild myopia to HM, through optical (e.g., defocus incorporated soft contact lens, orthokeratology, and progressive-additional lenses) and pharmacological (e.g., low dose of atropine) interventions; and/or retard progression from HM to PM through medical/surgical treatments (e.g., anti-VEGF therapies, macula buckling, and scleral crosslinking). Recent clinical trials aiming for retarding myopia progression have shown encouraging results. In this article, we highlight recent findings on preventive and early interventional measures to retard myopia, and current and novel treatments for PM.
Collapse
Affiliation(s)
- Seang-Mei Saw
- Singapore Eye Research Insitute, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | | | - Quan V Hoang
- Singapore Eye Research Insitute, Singapore.,Duke-NUS Medical School, Singapore.,Singapore National Eye Centre, Singapore.,Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| |
Collapse
|
29
|
Tang SM, Li FF, Lu SY, Kam KW, Tam POS, Tham CC, Pang CP, Yam JCS, Chen LJ. Association of the ZC3H11B, ZFHX1B and SNTB1 genes with myopia of different severities. Br J Ophthalmol 2019; 104:1472-1476. [PMID: 31300455 DOI: 10.1136/bjophthalmol-2019-314203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the associations of single-nucleotide polymorphisms (SNPs) in the ZC3H11B, ZFHX1B, VIPR2, SNTB1 and MIPEP genes with severities of myopia in Chinese populations. METHODS Based on previous myopia genome-wide association studies, five SNPs (ZC3H11B rs4373767, ZFHX1B rs13382811, VIPR2 rs2730260, SNTB1 rs7839488 and MIPEP rs9318086) were selected for genotyping in a Chinese cohort of 2079 subjects: 252 extreme myopia, 277 high myopia, 393 moderate myopia, 366 mild myopia and 791 non-myopic controls. Genotyping was performed by TaqMan assays. Allelic frequencies of the SNPs were compared with myopia severities and ophthalmic biometric measurements. RESULTS The risk allele T of ZC3H11B SNP rs4373767 was significantly associated with high myopia (OR=1.39, p=0.007) and extreme myopia (OR=1.34, p=0.013) when compared with controls, whereas ZFHX1B rs13382811 (allele T, OR=1.33, p=0.018) and SNTB1 rs7839488 (allele G, OR=1.71, p=8.44E-05) were significantly associated with extreme myopia only. In contrast, there was no significant association of these SNPs with moderate or mild myopia. When compared with mild myopia, subjects carrying T allele of rs4373767 had a risk of progressing to high myopia (spherical equivalent ≤-6 dioptres) (OR=1.29, p=0.017). Similarly, the T allele of rs13382811 also imposed a significant risk to high myopia (OR=1.36, p=0.007). In quantitative traits analysis, SNPs rs4373767, rs13382811 and rs7839488 were correlated with axial length and refractive errors. CONCLUSIONS We confirmed ZC3H11B as a susceptibility gene for high and extreme myopia, and ZFHX1B and SNTB for extreme myopia in Chinese populations. Instead of myopia onset, these three genes were more likely to impose risks of progressing to high and extreme myopia.
Collapse
Affiliation(s)
- Shu Min Tang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, New Territories, Hong Kong.,Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fen Fen Li
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, New Territories, Hong Kong
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Jason C S Yam
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, New Territories, Hong Kong .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, New Territories, Hong Kong
| |
Collapse
|
30
|
Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, Hammond CJ, Verhoeven VJM, Klaver CCW. IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci 2019; 60:M89-M105. [PMID: 30817828 PMCID: PMC6892384 DOI: 10.1167/iovs.18-25965] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth.
Collapse
Affiliation(s)
- Milly S. Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - for the CREAM Consortium
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
31
|
Vergara C, Bomotti SM, Valencia C, Klein BE, Lee KE, Klein R, Klein AP, Duggal P. Association analysis of exome variants and refraction, axial length, and corneal curvature in a European-American population. Hum Mutat 2018; 39:1973-1979. [PMID: 30157304 PMCID: PMC6497529 DOI: 10.1002/humu.23628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022]
Abstract
Refractive errors, myopia, and hyperopia are common visual disorders greatly affecting older individuals. Refraction is determined by genetic factors but only a small percentage of its variation has been explained. We performed a genetic association analysis with three ocular phenotypes: spherical equivalent (a continous measure of refraction), axial length, and corneal curvature in 1,871 European-Americans from the Beaver Dam Eye Study. Individuals were genotyped on the Illumina exome array and imputed to the Haplotype Reference Consortium reference panel. After increasing the number of analyzed variants in targeted protein-coding regions 10-fold via imputation, we confirmed associations for two previously known loci with corneal curvature (chr4q12, rs2114039; g.55092626T > C, β = -0.03 (95% confidence interval [CI]): -0.06, -0.01, P value = 0.01) and spherical equivalent (chr15q14, rs634990; g.35006073T > C, β = -0.27, 95% CI: -0.45, -0.09, P value = 3.79 × 10-3 ). Despite increased single nucleotide polymorphism (SNP) density, we did not detect any novel significant variants after correction for multiple comparisons. In summary, we confirmed two previous loci associated with corneal curvature and spherical equivalent in a European-American population highlighting the potential biological role of those regions in these traits.
Collapse
Affiliation(s)
- Candelaria Vergara
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samantha M. Bomotti
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cristian Valencia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Barbara E.K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kristine E. Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alison P. Klein
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Hum Genet 2018; 137:881-896. [PMID: 30306274 PMCID: PMC6267700 DOI: 10.1007/s00439-018-1942-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Previous studies have suggested that naturally occurring genetic variation contributes to the risk of astigmatism. The purpose of this investigation was to identify genetic markers associated with corneal and refractive astigmatism in a large-scale European ancestry cohort (UK Biobank) who underwent keratometry and autorefraction at an assessment centre. Genome-wide association studies for corneal and refractive astigmatism were performed in individuals of European ancestry (N = 86,335 and 88,005 respectively), with the mean corneal astigmatism or refractive astigmatism in fellow eyes analysed as a quantitative trait (dependent variable). Genetic correlation between the two traits was calculated using LD Score regression. Gene-based and gene-set tests were carried out using MAGMA. Single marker-based association tests for corneal astigmatism identified four genome-wide significant loci (P < 5 × 10-8) near the genes ZC3H11B (1q41), LINC00340 (6p22.3), HERC2/OCA2 (15q13.1) and NPLOC4/TSPAN10 (17q25.3). Three of these loci also demonstrated genome-wide significant association with refractive astigmatism: LINC00340, HERC2/OCA2 and NPLOC4/TSPAN10. The genetic correlation between corneal and refractive astigmatism was 0.85 (standard error = 0.068, P = 1.37 × 10-35). Here, we have undertaken the largest genome-wide association studies for corneal and refractive astigmatism to date and identified four novel loci for corneal astigmatism, two of which were also novel loci for refractive astigmatism. These loci have previously demonstrated association with axial length (ZC3H11B), myopia (NPLOC4), spherical equivalent refractive error (LINC00340) and eye colour (HERC2). The shared role of these novel candidate genes for astigmatism lends further support to the shared genetic susceptibility of myopia and astigmatism.
Collapse
|
33
|
Tang SM, Lau T, Rong SS, Yazar S, Chen LJ, Mackey DA, Lucas RM, Pang CP, Yam JC. Vitamin D and its pathway genes in myopia: systematic review and meta-analysis. Br J Ophthalmol 2018; 103:8-17. [PMID: 30018147 DOI: 10.1136/bjophthalmol-2018-312159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of the association of blood vitamin D (25-hydroxyvitamin D, 25(OH)D) concentration and vitamin D pathway genes with myopia. METHODS We searched the MEDLINE and EMBASE databases for studies published up to 29 January 2018. Cross-sectional or cohort studies which evaluated the blood 25(OH)D concentration, blood 25(OH)D3 concentration or vitamin D pathway genes, in relation to risk of myopia or refractive errors were included. Standard mean difference (SMD) of blood 25(OH)D concentrations between the myopia and non-myopia groups was calculated. The associations of blood 25(OH)D concentrations and polymorphisms in vitamin D pathway genes with myopia using summary ORs were evaluated. RESULTS We summarised seven studies involving 25 008 individuals in the meta-analysis. The myopia group had lower 25(OH)D concentration than the non-myopia group (SMD=-0.27 nmol/L, p=0.001). In the full analysis, the risk of myopia was inversely associated with blood 25(OH)D concentration after adjusting for sunlight exposure or time spent outdoors (adjusted odds ratio (AOR)=0.92 per 10 nmol/L, p<0.0001). However, the association was not statistically significant for the <18 years subgroup (AOR=0.91 per 10 nmol/L, p=0.13) and was significant only for 25(OH)D3 (likely to be mainly sunlight derived), but not total 25(OH)D (AOR=0.93 per 10 nmol/L, p=0.00007; AOR=0.91 per 10 nmol/L, p=0.15). We analysed four single nucleotide polymorphisms in the VDR gene from two studies; there was no significant association with myopia. CONCLUSIONS Lower 25(OH)D is associated with increased risk of myopia; the lack of a genetic association suggests that 25(OH)D level may be acting as a proxy for time outdoors.
Collapse
Affiliation(s)
- Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tiffany Lau
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Song Rong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Seyhan Yazar
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Western Australia, Australia
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - David A Mackey
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Western Australia, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJ, Iglesias AI, Meester-Smoor MA, Tompson SW, Fan Q, Khawaja AP, Cheng CY, Höhn R, Yamashiro K, Wenocur A, Grazal C, Haller T, Metspalu A, Wedenoja J, Jonas JB, Wang YX, Xie J, Mitchell P, Foster PJ, Klein BE, Klein R, Paterson AD, Hosseini SM, Shah RL, Williams C, Teo YY, Tham YC, Gupta P, Zhao W, Shi Y, Saw WY, Tai ES, Sim XL, Huffman JE, Polašek O, Hayward C, Bencic G, Rudan I, Wilson JF, Joshi PK, Tsujikawa A, Matsuda F, Whisenhunt KN, Zeller T, van der Spek PJ, Haak R, Meijers-Heijboer H, van Leeuwen EM, Iyengar SK, Lass JH, Hofman A, Rivadeneira F, Uitterlinden AG, Vingerling JR, Lehtimäki T, Raitakari OT, Biino G, Concas MP, Schwantes-An TH, Igo RP, Cuellar-Partida G, Martin NG, Craig JE, Gharahkhani P, Williams KM, Nag A, Rahi JS, Cumberland PM, Delcourt C, Bellenguez C, Ried JS, Bergen AA, Meitinger T, Gieger C, Wong TY, Hewitt AW, Mackey DA, Simpson CL, Pfeiffer N, Pärssinen O, Baird PN, Vitart V, Amin N, van Duijn CM, Bailey-Wilson JE, Young TL, Saw SM, Stambolian D, MacGregor S, Guggenheim JA, Tung JY, Hammond CJ, Klaver CC. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet 2018; 50:834-848. [PMID: 29808027 PMCID: PMC5980758 DOI: 10.1038/s41588-018-0127-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and replication in 95,505 participants increased the number of established independent signals from 37 to 161 and showed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and comprehensive in silico analyses identified retinal cell physiology and light processing as prominent mechanisms, and also identified functional contributions to refractive-error development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly identified genes implicate novel mechanisms such as rod-and-cone bipolar synaptic neurotransmission, anterior-segment morphology and angiogenesis. Thirty-one loci resided in or near regions transcribing small RNAs, thus suggesting a role for post-transcriptional regulation. Our results support the notion that refractive errors are caused by a light-dependent retina-to-sclera signaling cascade and delineate potential pathobiological molecular drivers.
Collapse
Affiliation(s)
- Milly S. Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Wojciechowski
- Department of Epidemiology and Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Pirro G. Hysi
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | | | | | - Virginie J.M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stuart W. Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Qiao Fan
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
| | - Anthony P. Khawaja
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - René Höhn
- Department of Ophthalmology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Adam Wenocur
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clare Grazal
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jost B. Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Xie
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Barbara E.K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Rupal L. Shah
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, UK
| | - Cathy Williams
- Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Yik Ying Teo
- Department of Statistics and Applied Probability, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Yih Chung Tham
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Preeti Gupta
- Department of Health Service Research, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Wanting Zhao
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
- Statistics Support Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yuan Shi
- Statistics Support Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Woei-Yuh Saw
- Life Sciences Institute, National University of Singapore, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Xue Ling Sim
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Jennifer E. Huffman
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Goran Bencic
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kristina N. Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | | | - Roxanna Haak
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth M. van Leeuwen
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sudha K. Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jonathan H. Lass
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.HChan School of Public Health, Boston, Massachusetts, USA
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Sassari, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Tae-Hwi Schwantes-An
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katie M. Williams
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Jugnoo S. Rahi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Ulverscroft Vision Research Group, University College London, London, UK
| | | | - Cécile Delcourt
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F-33000 Bordeaux, France
| | - Céline Bellenguez
- Institut Pasteur de Lille, Lille, France
- Inserm, U1167, RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
- Université de Lille, U1167 - Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
- The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Tien Yin Wong
- Academic Medicine Research Institute, Singapore
- Retino Center, Singapore National Eye Centre, Singapore, Singapore
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Claire L. Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tenessee
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Paul N. Baird
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
- Myopia Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Shimada N, Zhao W, Oishi A, Nakanishi H, Hata M, Akagi T, Ooto S, Nagaoka N, Fang Y, Ohno-Matsui K, Cheng CY, Saw SM, Yamada R, Matsuda F, Tsujikawa A, Yamashiro K. CCDC102B confers risk of low vision and blindness in high myopia. Nat Commun 2018; 9:1782. [PMID: 29725004 PMCID: PMC5934384 DOI: 10.1038/s41467-018-03649-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/02/2018] [Indexed: 11/28/2022] Open
Abstract
The incidence of high myopia is increasing worldwide with myopic maculopathy, a complication of myopia, often progressing to blindness. Our two-stage genome-wide association study of myopic maculopathy identifies a susceptibility locus at rs11873439 in an intron of CCDC102B (P = 1.77 × 10−12 and Pcorr = 1.61 × 10−10). In contrast, this SNP is not significantly associated with myopia itself. The association between rs11873439 and myopic maculopathy is further confirmed in 2317 highly myopic patients (P = 2.40 × 10−6 and Pcorr = 1.72 × 10−4). CCDC102B is strongly expressed in the retinal pigment epithelium and choroids, where atrophic changes initially occur in myopic maculopathy. The development of myopic maculopathy thus likely exhibits a unique background apart from the development of myopia itself; elucidation of the roles of CCDC102B in myopic maculopathy development may thus provide insights into preventive methods for blindness in patients with high myopia. Myopic maculopathy is a complication of myopia that often progresses to blindness. Here, in a genome-wide association study, Hosoda et al. find that rs11873439 intronic to CCDC102B is associated with myopic maculopathy, but not with myopia, thus representing a risk factor independent of myopia.
Collapse
Affiliation(s)
- Yoshikatsu Hosoda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Munemitsu Yoshikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Noriaki Shimada
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Hideo Nakanishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Masayuki Hata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Tadamichi Akagi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Sotaro Ooto
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Natsuko Nagaoka
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Yuxin Fang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | | | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 199228, Singapore
| | - Seang Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 199228, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan. .,Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, 5208511, Japan.
| |
Collapse
|
36
|
Abstract
PURPOSE The prevalence of myopia has increased dramatically worldwide within the last three decades. Recent studies have shown that refractive development is influenced by environmental, behavioral, and inherited factors. This review aims to analyze recent progress in the genetics of refractive error and myopia. METHODS A comprehensive literature search of PubMed and OMIM was conducted to identify relevant articles in the genetics of refractive error. RESULTS Genome-wide association and sequencing studies have increased our understanding of the genetics involved in refractive error. These studies have identified interesting candidate genes. All genetic loci discovered to date indicate that refractive development is a heterogeneous process mediated by a number of overlapping biological processes. The exact mechanisms by which these biological networks regulate eye growth are poorly understood. Although several individual genes and/or molecular pathways have been investigated in animal models, a systematic network-based approach in modeling human refractive development is necessary to understand the complex interplay between genes and environment in refractive error. CONCLUSION New biomedical technologies and better-designed studies will continue to refine our understanding of the genetics and molecular pathways of refractive error, and may lead to preventative and therapeutic measures to combat the myopia epidemic.
Collapse
|
37
|
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23:1048-1080. [PMID: 29386878 PMCID: PMC5757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Dorajoo R, Ong RTH, Sim X, Wang L, Liu W, Tai ES, Liu J, Saw SM. The contribution of recently identified adult BMI risk loci to paediatric obesity in a Singaporean Chinese childhood dataset. Pediatr Obes 2017; 12:e46-e50. [PMID: 27780307 DOI: 10.1111/ijpo.12175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/01/2016] [Accepted: 07/18/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Recent genome-wide association studies have identified 103 adult obesity risk loci; however, it is unclear if these findings are relevant to East-Asian childhood body mass index (BMI) levels. METHODS AND RESULTS We evaluated for paediatric obesity associations at these risk loci utilizing genome-wide data from Chinese childhood subjects in the Singapore Cohort study Of the Risk factors for Myopia study (N = 1006). A weighted gene-risk score of all adult obesity risk loci in the Singapore Cohort study Of the Risk factors for Myopia study showed strong associations with BMI at age 9 (p-value = 3.40 × 10-12 ) and 4-year average BMI (age 9 to 12, p-value = 6.67 × 10-8 ). Directionally consistent nominal associations for 15 index single nucleotide polymorphisms (SNPs) (p-value < 0.05) were observed. Pathway analysis with genes from these 15 replicating loci revealed over-representation for the G-protein-coupled receptor (GPCR)-mediated integration of entero-endocrine signalling pathway exemplified by L-cell (adjusted p-value = 0.018). Evaluations of birth weight to modify the effects of BMI risk SNPs in paediatric obesity did not reveal significant interactions, and these SNPs were generally not associated with birth weight. CONCLUSIONS At least some common adult BMI risk variants predispose to paediatric obesity risk in East-Asians.
Collapse
Affiliation(s)
- R Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - R T-H Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - X Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - L Wang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - W Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - E S Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - J Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - S-M Saw
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
39
|
Genetic Association Study of KCNQ5 Polymorphisms with High Myopia. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3024156. [PMID: 28884119 PMCID: PMC5572591 DOI: 10.1155/2017/3024156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/10/2017] [Accepted: 07/17/2017] [Indexed: 02/05/2023]
Abstract
Identification of genetic variations related to high myopia may advance our knowledge of the etiopathogenesis of refractive error. This study investigated the role of potassium channel gene (KCNQ5) polymorphisms in high myopia. We performed a case-control study of 1563 unrelated Han Chinese subjects (809 cases of high myopia and 754 emmetropic controls). Five tag single-nucleotide polymorphisms (SNPs) of KCNQ5 were genotyped, and association testing with high myopia was conducted using logistic regression analysis adjusted for sex and age to give Pasym values, and multiple comparisons were corrected by permutation test to give Pemp values. All five noncoding SNPs were associated with high myopia. The SNP rs7744813, previously shown to be associated with refractive error and myopia in two GWAS, showed an odds ratio of 0.75 (95% CI 0.63-0.90; Pemp = 0.0058) for the minor allele. The top SNP rs9342979 showed an odds ratio of 0.75 (95% CI 0.64-0.89; Pemp = 0.0045) for the minor allele. Both SNPs are located within enhancer histone marks and DNase-hypersensitive sites. Our data support the involvement of KCNQ5 gene polymorphisms in the genetic susceptibility to high myopia and further exploration of KCNQ5 as a risk factor for high myopia.
Collapse
|
40
|
Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proc Natl Acad Sci U S A 2017; 114:4219-4224. [PMID: 28373534 DOI: 10.1073/pnas.1615970114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The etiology of the highly myopic condition has been unclear for decades. We investigated the genetic contributions to early-onset high myopia (EOHM), which is defined as having a refraction of less than or equal to -6 diopters before the age of 6, when children are less likely to be exposed to high educational pressures. Trios (two nonmyopic parents and one child) were examined to uncover pathogenic mutations using whole-exome sequencing. We identified parent-transmitted biallelic mutations or de novo mutations in as-yet-unknown or reported genes in 16 probands. Interestingly, an increased rate of de novo mutations was identified in the EOHM patients. Among the newly identified candidate genes, a BSG mutation was identified in one EOHM proband. Expanded screening of 1,040 patients found an additional four mutations in the same gene. Then, we generated Bsg mutant mice to further elucidate the functional impact of this gene and observed typical myopic phenotypes, including an elongated axial length. Using a trio-based exonic screening study in EOHM, we deciphered a prominent role for de novo mutations in EOHM patients without myopic parents. The discovery of a disease gene, BSG, provides insights into myopic development and its etiology, which expands our current understanding of high myopia and might be useful for future treatment and prevention.
Collapse
|
41
|
Type 2 Diabetes Genetic Variants and Risk of Diabetic Retinopathy. Ophthalmology 2016; 124:336-342. [PMID: 28038984 DOI: 10.1016/j.ophtha.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Genetic association studies to date have not identified any robust risk loci for diabetic retinopathy (DR). We hypothesized that individuals with more diabetes genetic risk alleles have a higher risk of developing DR. DESIGN Case-control genetic association study. PARTICIPANTS We evaluated the aggregate effects of multiple type 2 diabetes-associated genetic variants on the risk of DR among 1528 participants with diabetes from the Singapore Epidemiology of Eye Diseases Study, of whom 547 (35.8%) had DR. METHODS Participants underwent a comprehensive ocular examination, including dilated fundus photography. Retinal photographs were graded using the modified Airlie House classification system to assess the presence and severity of DR following a standardized protocol. We identified 76 previously discovered type 2 diabetes-associated single nucleotide polymorphisms (SNPs) and constructed multilocus genetic risk scores (GRSs) for each individual by summing the number of risk alleles for each SNP weighted by the respective effect estimates on DR. Two GRSs were generated: an overall GRS that included all 76 discovered type 2 diabetes-associated SNPs, and an Asian-specific GRS that included a subset of 55 SNPs previously found to be associated with type 2 diabetes in East and/or South Asian ancestry populations. Associations between the GRSs with DR were determined using logistic regression analyses. Discriminating ability of the GRSs was determined by the area under the receiver operating characteristic curve (AUC). MAIN OUTCOME MEASURES Odds ratios on DR. RESULTS Participants in the top tertile of the overall GRS were 2.56-fold more likely to have DR compared with participants in the lowest tertile. Participants in the top tertile of the Asian-specific GRS were 2.00-fold more likely to have DR compared with participants in the bottom tertile. Both GRSs were associated with higher DR severity levels. However, addition of the GRSs to traditional risk factors improved the AUC only modestly by 3% to 4%. CONCLUSIONS Type 2 diabetes-associated genetic loci were significantly associated with higher risks of DR, independent of traditional risk factors. Our findings may provide new insights to further our understanding of the genetic pathogenesis of DR.
Collapse
|
42
|
Okui S, Meguro A, Takeuchi M, Yamane T, Okada E, Iijima Y, Mizuki N. Analysis of the association between the LUM rs3759223 variant and high myopia in a Japanese population. Clin Ophthalmol 2016; 10:2157-2163. [PMID: 27826181 PMCID: PMC5096747 DOI: 10.2147/opth.s104761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Many studies have investigated the relationship of the lumican gene (LUM) rs3759223 variant with the risk of high myopia, but the results have been inconsistent and inconclusive. In this study, we investigated whether LUM rs3759223 is associated with high myopia in a Japanese population. Methods We recruited 1,585 Japanese patients with high myopia (spherical equivalent [SE] <−9.00 diopters [D]) and 1,011 Japanese healthy controls (SE ≥−1.00 D). The rs3759223 variant was genotyped using the TaqMan assay, and the allelic and genotypic diversity among cases and controls was analyzed according to the SE level. Results In the allelic tests, the odds ratio (OR) for the T allele of rs3759223 tended to increase with the progression of SE, and the highest OR (1.56) was found in patients with SE <−15 D in both eyes. The OR of the T allele tended to increase with the progression of SE in the additive, dominant, and recessive inheritance models. However, we found no significant associations for any of the alleles or genotype models. Conclusion These data support the possibility that the LUM rs3759223 T allele accelerates the progression of SE in the Japanese population, although no significant associations were observed in this study. Additional genetic studies with larger samples that take into account the degree of SE are needed to clarify the contribution of rs3759223 to the risk of high myopia.
Collapse
Affiliation(s)
- Shintaro Okui
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
43
|
X-linked heterozygous mutations in ARR3 cause female-limited early onset high myopia. Mol Vis 2016; 22:1257-1266. [PMID: 27829781 PMCID: PMC5082638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/24/2016] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To identify genetic mutations in three families with early onset high myopia (eoHM) limited to female members. METHODS Genomic DNA was collected from participating members of families XF1, XF2, and XF3. Genome-wide linkage scans were performed on the largest family (XF1). Whole exome sequencing was performed on seven samples, including five samples (four affected and one unaffected) from family XF1, as well as the two probands from family XF2 and XF3. Variants were analyzed with multistep bioinformatics analyses. Sanger-dideoxy sequencing was used to verify candidate variations in families and controls. RESULTS The genome-wide linkage scans performed on family XF1 detected a candidate locus on chromosome Xp11.1-Xq13.3 with a maximum logarithm of the odds (LOD) score of 2.48 and 3.01 for markers DXS991 and DXS986, respectively. Parallel whole exome sequencing identified a novel c.893C>A (p.Ala298Asp) mutation in ARR3 located on Xq13.1 in family XF1, which was shared by all four affected individuals but not the unaffected individual. Two other novel mutations in ARR3, c.298C>T (p.Arg100*) and c.239T>C (p.Leu80Pro), were detected in families XF2 and XF3, respectively. These mutations were predicted to be damaging and were not present in the normal controls and existing databases. All three mutations cosegregated with eoHM in each of the three families, in which all heterozygous female members are affected whereas all hemizygous male family members are not affected. Transmission of the mutations and eoHM in the three families demonstrates an unusual pattern of X-linked female-limited inheritance. CONCLUSIONS These data suggest that heterozygous mutations in ARR3 might be responsible for X-linked female-limited eoHM in the three families, a pattern contrary to the standard X-linked recessive trait. To our knowledge, eoHM is the first human disease associated with mutations in ARR3 and the second X-linked female-limited disease identified thus far. Identification of ARR3 associated with X-linked female-limited trait provides not only additional evidence of this unusual hereditary pattern but also an additional model for investigating the molecular mechanism responsible for female-limited phenotypes.
Collapse
|
44
|
Chen F, Duggal P, Klein BEK, Lee KE, Truitt B, Klein R, Iyengar SK, Klein AP. Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Mol Vis 2016; 22:783-96. [PMID: 27440996 DOI: pmid/27440996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Ocular refraction is measured in spherical equivalent as the power of the external lens required to focus images on the retina. Myopia (nearsightedness) and hyperopia (farsightedness) are the most common refractive errors, and the leading causes of visual impairment and blindness in the world. The goal of this study is to identify rare and low-frequency variants that influence spherical equivalent. METHODS We conducted variant-level and gene-level quantitative trait association analyses for mean spherical equivalent, using data from 1,560 individuals in the Beaver Dam Eye Study. Genotyping was conducted using the Illumina exome array. We analyzed 34,976 single nucleotide variants and 11,571 autosomal genes across the genome, using single-variant tests as well as gene-based tests. RESULTS Spherical equivalent was significantly associated with five genes in gene-based analysis: PTCHD2 at 1p36.22 (p = 3.6 × 10(-7)), CRISP3 at 6p12.3 (p = 4.3 × 10(-6)), NAP1L4 at 11p15.5 (p = 3.6 × 10(-6)), FSCB at 14q21.2 (p = 1.5 × 10(-7)), and AP3B2 at 15q25.2 (p = 1.6 × 10(-7)). The variant-based tests identified evidence suggestive of association with two novel variants in linkage disequilibrium (pairwise r(2) = 0.80) in the TCTE1 gene region at 6p21.1 (rs2297336, minor allele frequency (MAF) = 14.1%, β = -0.62 p = 3.7 × 10(-6); rs324146, MAF = 16.9%, β = -0.55, p = 1.4 × 10(-5)). In addition to these novel findings, we successfully replicated a previously reported association with rs634990 near GJD2 at 15q14 (MAF = 47%, β = -0.29, p=1.8 × 10(-3)). We also found evidence of association with spherical equivalent on 2q37.1 in PRSS56 at rs1550094 (MAF = 31%, β = -0.33, p = 1.7 × 10(-3)), a region previously associated with myopia. CONCLUSIONS We identified several novel candidate genes that may play a role in the control of spherical equivalent. However, further studies are needed to replicate these findings. In addition, our results contribute to the increasing evidence that variation in the GJD2 and PRSS56 genes influence the development of refractive errors. Identifying that variation in these genes is associated with spherical equivalent may provide further insight into the etiology of myopia and consequent vision loss.
Collapse
Affiliation(s)
- Fei Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristine E Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Barbara Truitt
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Alison P Klein
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
45
|
Abstract
Myopia is a major cause of visual impairment worldwide. In particular, high myopia is associated with serious blinding complications, including retinal detachment, chorioretinal degeneration, and choroidal neovascularization. Myopia is multifactorial in etiology, resulting from the interaction of environmental and genetic risk factors. During the past 2 decades, a large number of gene loci and variants have been identified for myopia. There are more than 20 myopia-associated loci spanning all chromosomes. Earlier findings were obtained mainly from family linkage analyses and candidate gene studies, and more recent results are principally from genome-wide association studies and exome sequencing. Some genetic associations have been successfully validated and replicated in populations of different geographic localities and ethnicities, but some have not. Compared with Whites, Asian populations-in particular Japanese, Korean, and Chinese-have a much higher prevalence of myopia, especially high myopia. Both genetic and environmental factors contribute to such ethnic variations. This review attempts to summarize and compare the allelic frequencies of gene variants known to be associated with myopia in different ethnic groups, especially in the Asia-Pacific region.
Collapse
Affiliation(s)
- Shi Song Rong
- From the *Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong; and †Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
46
|
Severe ocular phenotypes in Rbp4-deficient mice in the C57BL/6 genetic background. J Transl Med 2016; 96:680-91. [PMID: 26974396 DOI: 10.1038/labinvest.2016.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Retinol-binding protein 4 (RBP4) is a specific carrier for retinol in the blood. In hepatocytes, newly synthesized RBP4 associates with retinol and transthyretin and is secreted into the blood. The ternary transthyretin-RBP4-retinol complex transports retinol in the circulation and delivers it to target tissues. Rbp4-deficient mice in a mixed genetic background (129xC57BL/6J) have decreased sensitivity to light in the b-wave amplitude on electroretinogram. Sensitivity progressively improves and approaches that of wild-type mice at 24 weeks of age. In the present study, we produced Rbp4-deficient mice in the C57BL/6 genetic background. These mice displayed more severe phenotypes. They had decreased a- and b-wave amplitudes on electroretinograms. In accordance with these abnormalities, we found structural changes in these mice, such as loss of the peripheral choroid and photoreceptor layer in the peripheral retinas. In the central retinas, the distance between the inner limiting membrane and the outer plexiform layer was much shorter with fewer ganglion cells and fewer synapses in the inner plexiform layer. Furthermore, ocular developmental defects of retinal depigmentation, optic disc abnormality, and persistent hyaloid artery were also observed. All these abnormalities had not recovered even at 40 weeks of age. Our Rbp4-deficient mice accumulated retinol in the liver but it was undetectable in the serum, indicating an inverse relation between serum and liver retinol levels. Our results suggest that RBP4 is critical for the mobilization of retinol from hepatic storage pools, and that such mobilization is necessary for ocular development and visual function.
Collapse
|
47
|
Williams KM, Hammond CJ. GWAS in myopia: insights into disease and implications for the clinic. EXPERT REVIEW OF OPHTHALMOLOGY 2016. [DOI: 10.1586/17469899.2016.1164597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Kanemaki N, Meguro A, Yamane T, Takeuchi M, Okada E, Iijima Y, Mizuki N. Study of association of PAX6 polymorphisms with susceptibility to high myopia in a Japanese population. Clin Ophthalmol 2015; 9:2005-11. [PMID: 26604670 PMCID: PMC4629984 DOI: 10.2147/opth.s95167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Many studies have investigated the relationship of paired box 6 (PAX6) gene polymorphisms with the risk of high myopia, but the results across studies remain inconsistent and ambiguous. In the present work, we investigated whether PAX6 polymorphisms are associated with high myopia in a Japanese population. METHODS A total of 1,585 Japanese patients with high myopia (spherical equivalent [SE] <-9.00 diopters [D]) and 1,011 Japanese healthy controls (SE≥-1.00 D) were recruited. To compare genotype frequencies between cases and controls, we genotyped five single nucleotide polymorphisms in the PAX6 gene that are reportedly associated with high/extreme myopia: rs662702, rs3026393, rs644242, rs3026390, and rs667773. RESULTS For rs662702, rs644242, and rs667773, odds ratios (ORs) for their risk alleles tended to increase with the progression of SE and axial length in the additive and recessive models. Of these, rs644242 had the highest OR (2.56) in patients with SE<-15 D in both eyes in the recessive model. On the other hand, for rs3026393 and rs3026390, the ORs for their risk alleles tended to increase according to the progression of SE and axial length in the dominant model. Of the two, rs3026393 had the highest OR (2.32) in patients with SE<-15 D in both eyes in the dominant model. However, no significant associations were identified in this study. CONCLUSION We found that these PAX6 single nucleotide polymorphisms were associated with an increased risk of extreme myopia. Although the results, which are in agreement with some previous studies, did not reach statistical significance, PAX6 single nucleotide polymorphisms may be important risk factors for the development of extreme myopia. Further genetic studies with larger sample sizes and taking into account the degree of myopia are needed to clarify the contribution of PAX6 variants in myopia development.
Collapse
Affiliation(s)
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan ; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
49
|
Chen T, Shan G, Ma J, Zhong Y. Polymorphism in the RASGRF1 gene with high myopia: A meta-analysis. Mol Vis 2015; 21:1272-80. [PMID: 26644762 PMCID: PMC4645451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/11/2015] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To evaluate the association between polymorphisms of RASGRF1 rs8027411 and high myopia in Chinese and Japanese populations. METHODS All eligible studies investigating the association between the RASGRF1 gene and high myopia listed in PubMed, EMBASE, the Cochrane Library, Web of Science, and the China Biologic Medical Database were retrieved. The effects were assessed with the pooled odds ratio (OR) and 95% confidence interval (CI). Heterogeneity between studies was evaluated with the Q-statistic test. Publication bias was tested with Begg's and Egger's linear regression tests. Subgroup analysis and sensitivity analysis were performed to identify the sources of heterogeneity. RESULTS In the present meta-analysis, 2,529 individuals with high myopia and 3,127 controls from four studies were included and divided into seven groups. The results indicated that RASGRF1 rs8027411 was significantly associated with high myopia in Chinese and Japanese populations. Carriers of the rs8027411 G allele had a lower risk of high myopia compared to carriers with the T allele (G versus T, OR=0.83, 95% CI=0.77-0.89; p<0.001). Low but not significant heterogeneity was found in a recessive model. No heterogeneity was found in other genetic models. The subgroup analysis indicated that the protective effect of rs8027411 variants was more prominent in Chinese populations (G versus T, OR=0.80 in Chinese and OR=0.86 in Japanese; GG versus TT, OR=0.65 in Chinese and OR=0.77 in Japanese; GT versus TT, OR=0.76 in Chinese and OR=0.81 in Japanese; (GG+GT) versus TT, OR=0.73 in Chinese and OR=0.80 in Japanese; and GG versus (GT+TT), OR=0.77 in Chinese and OR=0.87 in Japanese). Sensitivity analysis indicated that the study results were stable in allelic, homozygote, heterozygote, and dominant models but were not stable in the recessive model. No evidence of publication bias was found. CONCLUSIONS Carriers of the rs8027411 G allele in the RASGRF1 gene may be at a lower risk of high myopia in Chinese and Japanese populations. The RASGRF1 gene may play a role in the development of high myopia, especially in Asians. Additional studies are required to validate these results.
Collapse
Affiliation(s)
- Ting Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Ma
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Li YT, Xie MK, Wu J. Association between Ocular Axial Length-Related Genes and High Myopia in a Han Chinese Population. Ophthalmologica 2015; 235:57-60. [PMID: 26485405 DOI: 10.1159/000439446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
Abstract
AIMS A previous genome-wide association study of high myopia identified five genome-wide loci for ocular axial length (C3orf26, ZC3H11B, RSPO1, GJD2, and ZNRF3). The aim of our study was to investigate the association between high myopia and genetic variants in the five loci in Han Chinese subjects. METHODS Five single nucleotide polymorphisms were genotyped in 296 unrelated high-myopia subjects and 300 matched emmetropic controls by the SNaPshot method. The distribution of genotypes in the cases and controls was compared in codominant, dominant, and recessive genetic models by using SNPStats online software. RESULTS Significant associations between rs994767 near ZC3H11B (p = 0.001), rs4074961 in RSPO1 (p < 0.001), and rs11073058 in GJD2 (p = 0.029) and high myopia were observed. Odds ratios (95% confidence intervals) were 1.532 (1.200-1.955), 1.603 (1.267-2.029), and 1.290 (1.027-1.621) for the rs994767 T allele, rs4074961 T allele, and rs11073058 T allele, respectively. But rs9811920 in C3orf26 and rs12321 in ZNRF3 were not associated with high myopia. CONCLUSION Our findings suggested that genetic variants in ZC3H11B, RSPO1, and GJD2 are associated with susceptibility to the development of high myopia in a Han Chinese population. Functional roles of ZC3H11B, RSPO1, and GJD2 in the pathology of high myopia need to be further investigated.
Collapse
Affiliation(s)
- Ya-Ting Li
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, PR China
| | | | | |
Collapse
|