1
|
Atwood D, He Z, Miyazaki M, Hailu F, Klawitter J, Edelstein CL. Early treatment with 2-deoxy-d-glucose reduces proliferative proteins in the kidney and slows cyst growth in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease (PKD). Cell Signal 2024; 123:111351. [PMID: 39159908 DOI: 10.1016/j.cellsig.2024.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) there is cyst growth in the kidneys that leads to chronic kidney disease often requiring dialysis or kidney transplantation. There is enhanced aerobic glycolysis (Warburg effect) in the cyst lining epithelial cells that contributes to cyst growth. The glucose mimetic, 2-Deoxy-d-glucose (2-DG) inhibits glycolysis. The effect of early and late administration of 2-DG on cyst growth and kidney function was determined in Pkd1RC/RC mice, a hypomorphic PKD model orthologous to human disease. Early administration of 2-DG resulted in decreased kidney weight, cyst index, cyst number and cyst size, but no change in kidney function. 2-DG decreased proliferation. a major mediator of cyst growth, of cells lining the cyst. Late administration of 2-DG did not have an effect on cyst growth or kidney function. To determine mechanisms of decreased proliferation, an array of mTOR and autophagy proteins was measured in the kidney. 2-DG suppressed autophagic flux in Pkd1RC/RC kidneys and decreased autophagy proteins, ATG3, ATG5 and ATG12-5. 2-DG had no effect on p-mTOR or p-S6 (mTORC1) and decreased p-AMPK. 2-DG decreased p-4E-BP1, p-c-Myc and p-ERK that are known to promote proliferation and cyst growth in PKD. 2-DG decreased p-AKTS473, a marker of mTORC2. So the role of mTORC2 in cyst growth was determined. Knockout of Rictor (mTORC2) in Pkd1 knockout mice did not change the PKD phenotype. In summary, 2-DG decreases proliferation in cells lining the cyst and decreases cyst growth by decreasing proteins that are known to promote proliferation. In conclusion, the present study reinforces the therapeutic potential of 2-DG for use in patients with ADPKD.
Collapse
Affiliation(s)
- Daniel Atwood
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA
| | - Zhibin He
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA
| | - Makoto Miyazaki
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA
| | - Frehiwet Hailu
- University of Colorado Anschutz Medical Campus, Division of Cardiology, Aurora, CO, USA
| | - Jelena Klawitter
- University of Colorado Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA
| | - Charles L Edelstein
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA.
| |
Collapse
|
2
|
Mandic M, Paunovic V, Vucicevic L, Kosic M, Mijatovic S, Trajkovic V, Harhaji-Trajkovic L. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. J Cell Physiol 2024; 239:e31366. [PMID: 38958520 DOI: 10.1002/jcp.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Jaiyesimi O, Kuppuswamy S, Zhang G, Batan S, Zhi W, Ganta VC. Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia. Arterioscler Thromb Vasc Biol 2024; 44:1764-1783. [PMID: 38934117 PMCID: PMC11323258 DOI: 10.1161/atvbaha.124.320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in an increased perfusion recovery and higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 expression/levels in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-knock-down ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.
Collapse
Affiliation(s)
- Olukemi Jaiyesimi
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Sivaraman Kuppuswamy
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Guangwei Zhang
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Sonia Batan
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Center for Biotechnology and Genomic Medicine (W.Z.), Augusta University, GA
| | - Vijay C Ganta
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| |
Collapse
|
4
|
Xu S, Liao J, Liu B, Zhang C, Xu X. Aerobic glycolysis of vascular endothelial cells: a novel perspective in cancer therapy. Mol Biol Rep 2024; 51:717. [PMID: 38824197 PMCID: PMC11144152 DOI: 10.1007/s11033-024-09588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/03/2024]
Abstract
Vascular endothelial cells (ECs) are monolayers of cells arranged in the inner walls of blood vessels. Under normal physiological conditions, ECs play an essential role in angiogenesis, homeostasis and immune response. Emerging evidence suggests that abnormalities in EC metabolism, especially aerobic glycolysis, are associated with the initiation and progression of various diseases, including multiple cancers. In this review, we discuss the differences in aerobic glycolysis of vascular ECs under normal and pathological conditions, focusing on the recent research progress of aerobic glycolysis in tumor vascular ECs and potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Shenhao Xu
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiahao Liao
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Bing Liu
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Cheng Zhang
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Xin Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
5
|
Wells AE, Wilson JJ, Heuer SE, Sears JD, Wei J, Pandey R, Costa MW, Kaczorowski CC, Roopenian DC, Chang CH, Carter GW. Transcriptome analysis reveals organ-specific effects of 2-deoxyglucose treatment in healthy mice. PLoS One 2024; 19:e0299595. [PMID: 38451972 PMCID: PMC10919611 DOI: 10.1371/journal.pone.0299595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.
Collapse
Affiliation(s)
- Ann E. Wells
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - John J. Wilson
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
| | - John D. Sears
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Jian Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Raghav Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Mauro W. Costa
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Catherine C. Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| |
Collapse
|
6
|
Shimura T, Sunaga K, Yamazaki M, Honoka N, Sasatani M, Kamiya K, Ushiyama A. Nuclear DNA damage-triggered ATM-dependent AMPK activation regulates the mitochondrial radiation response. Int J Radiat Biol 2024; 100:584-594. [PMID: 38166485 DOI: 10.1080/09553002.2023.2295297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and is essential for controlling mitochondrial homeostasis. Here, we investigated the regulatory mechanisms involved in AMPK activation to elucidate how networks of intracellular signaling pathways respond to stress conditions. MATERIALS AND METHODS Inhibitors of ATM, DNA-PK, and AKT were tested in normal TIG-3 and MRC-5 human fibroblasts to determine which upstream kinases are responsible for AMPK activation. SV40 transformed-human ATM-deficient fibroblasts (AT5BIVA) and their ATM-complemented cells (i.e., AT5BIVA/ATMwt) were also used. Protein expression associated with AMPK signaling was examined by immunostaining and/or Western blotting. RESULTS Radiation-induced nuclear DNA damage activates ATM-dependent AMPK signaling pathways that regulate mitochondrial quality control. In contrast, hypoxia and glucose starvation caused ATP depletion and activated AMPK via a pathway independent of ATM. DNA-PK and AKT are not involved in AMPK-mediated mitochondrial signaling pathways. CONCLUSION Activation of the AMPK signaling pathway differs depending on the stimulus. Radiation activates AMPK through two pathways: depletion of ATP-mediated LKB1 signaling and nuclear DNA damage-induced ATM signaling. Nuclear DNA damage signaling to mitochondria therefore plays a pivotal role in determining the cell fates of irradiated cells.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| | - Kenta Sunaga
- Faculty of Pharmaceutical Sciences Student, Meiji Pharmaceutical University, Kiyose, Japan
| | - Mayu Yamazaki
- Faculty of Pharmaceutical Sciences Student, Meiji Pharmaceutical University, Kiyose, Japan
| | - Nara Honoka
- Faculty of Pharmaceutical Sciences Student, Meiji Pharmaceutical University, Kiyose, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| |
Collapse
|
7
|
Lee S, Kim H, Kim BS, Chae S, Jung S, Lee JS, Yu J, Son K, Chung M, Kim JK, Hwang D, Baek SH, Jeon NL. Angiogenesis-on-a-chip coupled with single-cell RNA sequencing reveals spatially differential activations of autophagy along angiogenic sprouts. Nat Commun 2024; 15:230. [PMID: 38172108 PMCID: PMC10764361 DOI: 10.1038/s41467-023-44427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Several functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints. We perform single-cell RNA sequencing of sprouting endothelial cells from our chip to reveal high activation of autophagy in two endothelial cell populations- proliferating endothelial cells in sprout basements and stalk-like endothelial cells near sprout endpoints- and further the reciprocal expression pattern of autophagy-related genes between stalk- and tip-like endothelial cells near sprout endpoints, implying an association of autophagy with tip-stalk cell specification. Our results suggest a model describing spatially differential roles of autophagy: quality control of proliferating endothelial cells in sprout basements for sprout elongation and tip-stalk cell specification near sprout endpoints, which may change strategies for developing autophagy-based anti-angiogenic therapeutics.
Collapse
Affiliation(s)
- Somin Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, South Korea
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Bum Suk Kim
- Department of New Biology, DGIST, Daegu, South Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sangmin Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jung Seub Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Kyungmin Son
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Minhwan Chung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Noo Li Jeon
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul, South Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
- Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
8
|
Mireault M, Xiao Y, Barbeau B, Jumarie C. Cadmium affects autophagy in the human intestinal cells Caco-2 through ROS-mediated ERK activation. Cell Biol Toxicol 2023; 39:945-966. [PMID: 34580807 PMCID: PMC10406703 DOI: 10.1007/s10565-021-09655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Cadmium is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium has the capacity to accumulate high levels of this metal. We have previously shown that Cd induces ERK1/2 activation in differentiated but not proliferative human enterocytic-like Caco-2 cells. As autophagy is a dynamic process that plays a critical role in intestinal mucosa, we aimed the present study 1) to investigate the role of p-ERK1/2 in constitutive autophagy in proliferative Caco-2 cells and 2) to investigate whether Cd-induced activation of ERK1/2 modifies autophagic activity in postconfluent Caco-2 cell monolayers. Western blot analyses of ERK1/2 and autophagic markers (LC3, SQSTM1), and cellular staining with acridine orange showed that ERK1/2 and autophagic activities both decreased with time in culture. GFP-LC3 fluorescence was also associated with proliferative cells and the presence of a constitutive ERK1/2-dependent autophagic flux was demonstrated in proliferative but not in postconfluent cells. In the latter condition, serum and glucose deprivation triggered autophagy via a transient phosphorylation of ERK1/2, whereas Cd-modified autophagy via a ROS-dependent sustained activation of ERK1/2. Basal autophagy flux in proliferative cells and Cd-induced increases in autophagic markers in postconfluent cells both involved p-ERK1/2. Whether Cd blocks autophagic flux in older cell cultures remains to be clarified but our data suggest dual effects. Our results prompt further studies investigating the consequences that Cd-induced ERK1/2 activation and the related effect on autophagy may have on the intestinal cells, which may accumulate and trap high levels of Cd under some nutritional conditions.
Collapse
Affiliation(s)
- Myriam Mireault
- Département des Sciences Biologiques, Groupe TOXEN, Université du Québec à Montréal, C.P. 8888, succ Centre ville, Montréal, Québec, H3C 3P8, Canada
- Département des Sciences Biologiques, centre CERMO-FC, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Yong Xiao
- Département des Sciences Biologiques, centre CERMO-FC, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Benoît Barbeau
- Département des Sciences Biologiques, centre CERMO-FC, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, Groupe TOXEN, Université du Québec à Montréal, C.P. 8888, succ Centre ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
9
|
Wells AE, Wilson JJ, Sears JD, Wei J, Heuer S, Pandey R, Costa MW, Kaczorowski CC, Roopenian DC, Chang CH, Carter GW. Transcriptome Analysis Reveals Organ-Specific Effects of 2-Deoxyglucose Treatment in Healthy Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537717. [PMID: 37162857 PMCID: PMC10168223 DOI: 10.1101/2023.04.24.537717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.
Collapse
|
10
|
Gao D, Ma T, Gao L, Zhang J, Zhang H, Zhang L, Dong H, Li Y, Zhao L, Liu W, Zhao H, Li D, Zhou D, Wang A, Jin Y, Chen H. Autophagy activation attenuates the circadian clock oscillators in U2OS cells via the ATG5 pathway. Cell Signal 2023; 101:110502. [PMID: 36280090 DOI: 10.1016/j.cellsig.2022.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
Abstract
The circadian clock and autophagy are essential biological mechanisms involved in regulating many physiological processes. Accumulating evidence has revealed that autophagic activity is regulated by the circadian clock system. However, whether autophagy regulates the circadian clock system remains unclear. In this study, rapamycin and AICAR, two classical activators of autophagy, were used to create autophagy activation models in BMAL1-dLuc U2OS cell line. The results showed that the mRNA expression of MAP1LC3B and ATG5 were significantly upregulated after autophagy activation, whereas the mRNA expression of circadian clock genes (BMAL1, PER2, REV-ERBα, and DBP) were significantly decreased. Consistent with these data, the relative ratio of LC3-II/LC3-I and the protein level of ATG5 were increased after rapamycin or AICAR treatment. In contrast, BMAL1 and REV-ERBα levels were decreased. Notably, the mRNA expression of circadian clock genes (BMAL1, PER2, REV-ERBα, and DBP) and autophagy-related genes (MAP1LC3B and ATG5) showed rhythmic expression patterns in both untreated and rapamycin/AICAR-treated U2OS cells. Moreover, the autophagy inhibitor 3-methyladenine partially reversed the inhibitory effects of autophagy on circadian clock genes expression and BMAL1-Luc oscillations. Another critical finding was that ATG5 knockout alleviates the inhibitory effect of rapamycin-mediated autophagy activation on the circadian clock oscillators in U2OS cells. Collectively, our data indicate that autophagy activation attenuates the circadian clock oscillators in U2OS cells via the ATG5 pathway.
Collapse
Affiliation(s)
- Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Agriculture and Animal Husbandry, Qing Hai University, Xining, Qinghai, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Gupta P, Strange K, Telange R, Guo A, Hatch H, Sobh A, Elie J, Carter AM, Totenhagen J, Tan C, Sonawane YA, Neuzil J, Natarajan A, Ovens AJ, Oakhill JS, Wiederhold T, Pacak K, Ghayee HK, Meijer L, Reddy S, Bibb JA. Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer. Cell Rep 2022; 40:111218. [PMID: 35977518 DOI: 10.1016/j.celrep.2022.111218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.
Collapse
Affiliation(s)
- Priyanka Gupta
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Keehn Strange
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Rahul Telange
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Heather Hatch
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Amin Sobh
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32608, USA
| | - Jonathan Elie
- Perha Pharmaceuticals, Hôtel de Recherche, Perharidy Peninsula, 29680 Roscoff, France
| | - Angela M Carter
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- UT Health Science Center at Houston, Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic; School of Pharmacy Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashley J Ovens
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hans K Ghayee
- Department of Internal Medicine, Division of Endocrinology, University of Florida College of Medicine and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
| | - Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Perharidy Peninsula, 29680 Roscoff, France
| | - Sushanth Reddy
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - James A Bibb
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center and the Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA.
| |
Collapse
|
12
|
The combination of hydroxychloroquine and 2-deoxyglucose enhances apoptosis in breast cancer cells by blocking protective autophagy and sustaining endoplasmic reticulum stress. Cell Death Dis 2022; 8:286. [PMID: 35690609 PMCID: PMC9188615 DOI: 10.1038/s41420-022-01074-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
2-Deoxyglucose (2-DG) can be used in antitumour research by inhibiting glycolysis and promoting the endoplasmic reticulum stress (ERS) pathway, but its clinical application is restricted due to dose-limiting side effects and survival chance for cancer cells by protective autophagy. Therefore, our research explored whether the combination of hydroxychloroquine (HCQ), an FDA-approved autophagy inhibiting drug, and 2-DG is a promising therapeutic strategy. Here, we report that HCQ combined with 2-DG can further inhibit the viability and migration and induce apoptosis of breast tumour cells compared with other individual drugs. The combination of 2-DG and HCQ can significantly reduce transplanted tumour size and tumour cell metastasis of the lung and liver in vivo. At the cellular level, HCQ suppressed autolysosome formation and terminated the autophagy process induced by 2-DG-mediated ERS, resulting in the continuous accumulation of misfolded proteins in the endoplasmic reticulum, which generated sustained ERS through the PERK-eIF2α-ATF-4-CHOP axis and triggered the transformation from a survival process to cell death. Our research reinforced the research interest of metabolic disruptors in triple-negative breast cancer and emphasized the potential of the combination of 2-DG and HCQ as an anticancerous treatment.
Collapse
|
13
|
Chang R, Sun X, Jia H, Xu Q, Dong Z, Tang Y, Luo S, Jiang Q, Loor JJ, Xu C. Inhibiting nuclear factor erythroid 2 related factor 2-mediated autophagy in bovine mammary epithelial cells induces oxidative stress in response to exogenous fatty acids. J Anim Sci Biotechnol 2022; 13:48. [PMID: 35397612 PMCID: PMC8994900 DOI: 10.1186/s40104-022-00695-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
In early lactation, bovine mammary epithelial cells undergo serious metabolic challenges and oxidative stress both of which could be alleviated by activation of autophagy. Nuclear factor erythroid 2 related factor 2 (NFE2L2), a master regulator of cellular redox homeostasis, plays an important role in the regulation of autophagy and oxidative stress. Thus, the objective of this study was to investigate the role of NFE2L2-mediated autophagy on oxidative stress of bovine mammary epithelial cells in response to exogenous free fatty acids (FFA).
Results
Exogenous FFA induced linear and quadratic decreases in activities of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and increases in the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Protein abundance of LC3-phosphatidylethanolamine conjugate (LC3-II) and the number of autophagosomes and autolysosomes decreased in a dose-dependent manner, while protein abundance of p62 increased in cells challenged with FFA. Activation of autophagy via pre-treatment with Rap attenuated the FFA-induced ROS accumulation. Importantly, FFA inhibited protein abundance of NFE2L2 and the translocation of NFE2L2 into the nucleus. Knockdown of NFE2L2 by siRNA decreased protein abundance of LC3-II, while it increased protein abundance of p62. Furthermore, sulforaphane (SFN) pre-treatment attenuated the FFA-induced oxidative stress by activating NFE2L2-mediated autophagy.
Conclusions
The data suggested that NFE2L2-mediated autophagy is an important antioxidant mechanism in bovine mammary epithelial cells experiencing increased FFA loads.
Collapse
|
14
|
Föh B, Buhre JS, Lunding HB, Moreno-Fernandez ME, König P, Sina C, Divanovic S, Ehlers M. Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS One 2022; 17:e0266071. [PMID: 35333906 PMCID: PMC8956175 DOI: 10.1371/journal.pone.0266071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The microbially-derived short-chain fatty acid butyrate is a central inhibitor of inflammatory innate and adaptive immune responses. Emerging evidence suggests that butyrate induces differentiation of IL-10-producing (IL-10+) regulatory B cells. However, the underlying mechanisms of butyrate-driven modulation of B cell differentiation are not fully defined. Given the dominant role of regulatory plasma cells (PCs) as the main source of anti-inflammatory cytokines including IL-10 and the observation that butyrate also induces the differentiation of PCs, we here investigated the effect of the microbial metabolite butyrate on the induction of regulatory IL-10+ PCs and underlying mechanisms. Here we show that butyrate induces the differentiation of IL-10+IgM+ PCs. Ex vivo, butyrate, but hardly propionate, another microbially-derived short-chain fatty acid, induced the differentiation of IL-10+IgM+ CD138high PCs from isolated splenic murine B cells. In vivo, administration of butyrate via drinking water or by daily intraperitoneal injection increased the number of IL-10+IgM+ CD138high PCs in the spleens of Ovalbumin (Ova)/complete Freund’s adjuvant-immunized mice. The induction of these regulatory PCs was associated with an increase of anti-Ova IgM, but a reduction of anti-Ova class-switched pathogenic IgG2b serum antibodies. Based on the knowledge that butyrate inhibits histone deacetylases (HDACs) thereby increasing histone acetylation, we identified here that HDAC3 inhibition was sufficient to induce PC differentiation and IL-10+ expression. Furthermore, reduced mitochondrial superoxide levels following butyrate treatment and HDAC3 inhibition were necessary for PC differentiation, but not IL-10 expression. In summary, the microbial metabolite butyrate promotes the differentiation of IgM+ PCs and their expression of IL-10. HDAC3 inhibition may be involved as an underlying pathway for both PC differentiation and IL-10 expression, while reduced mitochondrial superoxide levels are crucial only for PC differentiation. The induction of regulatory IL-10+IgM+ PCs and the inhibition of class switching to antigen-specific pathogenic IgG subclasses might represent important pathways of butyrate to limit inflammation.
Collapse
Affiliation(s)
- Bandik Föh
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jana Sophia Buhre
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Hanna B. Lunding
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maria E. Moreno-Fernandez
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North, University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
- * E-mail:
| |
Collapse
|
15
|
Ripszky Totan A, Greabu M, Stanescu-Spinu II, Imre M, Spinu TC, Miricescu D, Ilinca R, Coculescu EC, Badoiu SC, Coculescu BI, Albu C. The Yin and Yang dualistic features of autophagy in thermal burn wound healing. Int J Immunopathol Pharmacol 2022; 36:3946320221125090. [PMID: 36121435 PMCID: PMC9490459 DOI: 10.1177/03946320221125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Burn healing should be regarded as a dynamic process consisting of two main, interrelated phases: (a) the inflammatory phase when neutrophils and monocytes infiltrate the injury site, through localized vasodilation and fluid extravasation, and (b) the proliferative-remodeling phase, which represents a key event in wound healing. In the skin, both canonical autophagy (induced by starvation, oxidative stress, and environmental aggressions) and non-canonical or selective autophagy have evolved to play a discrete, but, essential, “housekeeping” role, for homeostasis, immune tolerance, and survival. Experimental data supporting the pro-survival roles of autophagy, highlighting its Yang, luminous and positive feature of this complex but insufficient explored molecular pathway, have been reported. Autophagic cell death describes an “excessive” degradation of important cellular components that are necessary for normal cell function. This deadly molecular mechanism brings to light the darker, concealed, Yin feature of autophagy. Autophagy seems to perform dual, conflicting roles in the angiogenesis context, revealing once again, its Yin–Yang features. Autophagy with its Yin–Yang features remains the shadow player, able to decide quietly whether the cell survives or dies.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Maria Greabu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Marina Imre
- Department of Complete Denture, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Tudor-Claudiu Spinu
- Department of Fixed Prosthodontics and Occlusology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Daniela Miricescu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Radu Ilinca
- Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Elena Claudia Coculescu
- Department of Oral Pathology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Crenguta Albu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Bucharest, Romania
| |
Collapse
|
16
|
Obaid QA, Khudair KK, Al-Shammari AM. 2-Deoxyglucose Glycolysis Inhibitor Augment Oncolytic Virotherapy to Induce Oxidative Stress and Apoptosis in Breast Cancer (Part Ⅲ). THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i2.1257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the "hallmarks of cancer" is altered energy metabolism, which is increased glycolysis in cancer cells, the primary source of energy that uses this metabolic pathway to generate ATP. Oncolytic virotherapy with aerobic glycolysis inhibitor smart therapeutic approach to induce apoptosis in cancer cells. The current study aimed to use the 2-Deoxyglucose (2DG), a specific glycolysis inhibitor, to enhance the Newcastle disease virus (NDV). In this study, a mouse model of breast cancer allograft with mammary adenocarcinoma tumor cells (AN3) was used and treated with 2DG, NDV, and a combination of both. Anti-tumor efficacy and glycolysis analysis (hexokinase -1 (HK-1), pyruvate, and ATP) were determined. The induction of oxidative stress was investigated by reactive oxygen species (ROS) and total glutathione assay examination. Apoptosis induction was investigated using immunohistochemistry (cleaved Caspase-3) and histopathology. The result showed that combination therapy enhances anti-tumor efficacy (decrease in relative tumor volume and increase in tumor growth inhibition) of NDV against breast cancer. This effect was accompanied by a reduction in HK-1 concentration, pyruvate, and ATP (glycolysis products). Moreover, NDV+2DG therapy induces oxidative stress (decreases total glutathione and increases ROS). Immunohistochemistry and histopathological examination showed the apoptotic area in tumor tissues in treated groups. In conclusion, the present study found that the combination therapy could be considered as an effective cancer therapy through induction of glycolysis inhibition, oxidative stress, and apoptosis selectively in cancer cells.
Collapse
|
17
|
Basehore SE, Bohlman S, Weber C, Swaminathan S, Zhang Y, Jang C, Arany Z, Clyne AM. Laminar Flow on Endothelial Cells Suppresses eNOS O-GlcNAcylation to Promote eNOS Activity. Circ Res 2021; 129:1054-1066. [PMID: 34605247 DOI: 10.1161/circresaha.121.318982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah E Basehore
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA (S.E.B., S.S.).,Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| | - Samantha Bohlman
- Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| | - Callie Weber
- Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| | - Swathi Swaminathan
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA (S.E.B., S.S.)
| | - Yuji Zhang
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Cholsoon Jang
- Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine (C.J.)
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Z.A.)
| | - Alisa Morss Clyne
- Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| |
Collapse
|
18
|
Jayatunga DPW, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, Fernando B, Garg ML, Verdile G, Martins RN. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer's Disease. Nutrients 2021; 13:nu13113744. [PMID: 34836000 PMCID: PMC8617978 DOI: 10.3390/nu13113744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction including deficits of mitophagy is seen in aging and neurodegenerative disorders including Alzheimer’s disease (AD). Apart from traditionally targeting amyloid beta (Aβ), the main culprit in AD brains, other approaches include investigating impaired mitochondrial pathways for potential therapeutic benefits against AD. Thus, a future therapy for AD may focus on novel candidates that enhance optimal mitochondrial integrity and turnover. Bioactive food components, known as nutraceuticals, may serve as such agents to combat AD. Urolithin A is an intestinal microbe-derived metabolite of a class of polyphenols, ellagitannins (ETs). Urolithin A is known to exert many health benefits. Its antioxidant, anti-inflammatory, anti-atherogenic, anti-Aβ, and pro-mitophagy properties are increasingly recognized. However, the underlying mechanisms of urolithin A in inducing mitophagy is poorly understood. This review discusses the mitophagy deficits in AD and examines potential molecular mechanisms of its activation. Moreover, the current knowledge of urolithin A is discussed, focusing on its neuroprotective properties and its potential to induce mitophagy. Specifically, this review proposes potential mechanisms by which urolithin A may activate and promote mitophagy.
Collapse
Affiliation(s)
- Dona Pamoda W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Cooperative Research Centre for Mental Health, Carlton, VIC 3053, Australia
| | - Harjot Khaira
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Taciana Lunelli
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- St. Vincent’s Centre for Applied Medical Research, Sydney, NSW 2011, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Manohar L. Garg
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street., Nedlands, WA 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence: ; Tel.: +61-8-9347-4200
| |
Collapse
|
19
|
Bu S, Singh KK. Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. Int J Mol Sci 2021; 22:ijms22126544. [PMID: 34207151 PMCID: PMC8235464 DOI: 10.3390/ijms22126544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the number one cause of debilitation and mortality worldwide, with a need for cost-effective therapeutics. Autophagy is a highly conserved catabolic recycling pathway triggered by various intra- or extracellular stimuli to play an essential role in development and pathologies, including CVDs. Accordingly, there is great interest in identifying mechanisms that govern autophagic regulation. Autophagic regulation is very complex and multifactorial that includes epigenetic pathways, such as histone modifications to regulate autophagy-related gene expression, decapping-associated mRNA degradation, microRNAs, and long non-coding RNAs; pathways are also known to play roles in CVDs. Molecular understanding of epigenetic-based pathways involved in autophagy and CVDs not only will enhance the understanding of CVDs, but may also provide novel therapeutic targets and biomarkers for CVDs.
Collapse
Affiliation(s)
| | - Krishna K. Singh
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 80542) (Office) or (ext. 85683) (Lab)
| |
Collapse
|
20
|
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. Structural and functional remodeling of mitochondria as an adaptive response to energy deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148393. [PMID: 33549532 DOI: 10.1016/j.bbabio.2021.148393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
Cancer cells bioenergetics is more dependent on glycolysis than mitochondrial oxidative phosphorylation, a phenomenon known as the Warburg Effect. It has been proposed that inhibition of glycolysis may selectively affect cancer cells. However, the effects of glycolysis inhibition on mitochondrial function and structure in cancer cells are not completely understood. Here, we investigated the comparative effects of 2-deoxy-d-glucose (2-DG, a glucose analogue, which suppresses cellular glycolysis) on cellular bioenergetics in human colon cancer DLD-1 cells, smooth muscle cells, human umbilical vein endothelial cells and HL-1 cardiomyocytes. In all cells, 2-DG treatment resulted in significant ATP depletion, however, the cell viability remained unchanged. Also, we did not observe the synergistic effects of 2-DG with anticancer drugs doxorubicin and 5-fluorouracil. Instead, after 2-DG treatment and ATP depletion, mitochondrial respiration and membrane potential were significantly enhanced and mitochondrial morphology changed in the direction of more network organization. Analysis of protein expression demonstrated that 2-DG treatment induced an activation of AMPK (elevated pAMPK/AMPK ratio), increased mitochondrial fusion (mitofusins 1 and 2) and decreased fission (Drp1) proteins. In conclusion, this study suggests a strong link between respiratory function and structural organization of mitochondria in the cell. We propose that the functionality of the mitochondrial network is enhanced compared to disconnected mitochondria.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria; Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
21
|
Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021; 49:313-325. [PMID: 33522573 DOI: 10.1042/bst20200611] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Collapse
|
22
|
The Intratumoral Heterogeneity of Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:149-160. [PMID: 34014541 DOI: 10.1007/978-3-030-65768-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world, causing over half a million deaths a year in the USA alone. Despite recent advances made in the field of cancer biology and the therapies that have been developed [1, 2], it is clear that more advances are necessary for us to classify cancer as curable. The logical question that arises is simple: Why, despite all the technologies and medical innovations of our time, has a complete cure eluded us? This chapter sheds light on one of cancer's most impactful attributes: its heterogeneity and, more specifically, the intratumoral heterogeneity of cancer metabolism. Simply put, what makes cancer one of the deadliest diseases is its ability to change and adapt. Cancer cells' rapid evolution, coupled with their irrepressible ability to divide, gives most of them the advantage over our immune systems. In this chapter, we delve into the complexities of this adaptability and the vital role that metabolism plays in the rise and progression of this heterogeneity.
Collapse
|
23
|
Alhayaza R, Haque E, Karbasiafshar C, Sellke FW, Abid MR. The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Front Chem 2020; 8:592688. [PMID: 33330380 PMCID: PMC7732658 DOI: 10.3389/fchem.2020.592688] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) has been the leading cause of death for many decades, highlighting the importance of new research and treatments in the field. The role of hypoxia and subsequent free radical production [reactive oxygen species (ROS)] have become an area of particular interest in CVD. Interestingly, our laboratory and other laboratories have recently reported positive roles of subcellular ROS in modulating endothelial cell (EC) metabolism, proliferation, and angiogenesis. This bidirectional relationship between ROS and EC metabolism, as well as functional changes, continues to be an area of active research. Interestingly, ECs have been shown to rely on anaerobic processes for ATP generation, despite their direct access to oxygen. This paradox has proven to be beneficial as the major reliance on glycolysis produces ATP faster, preserves oxygen, and results in reduced ROS levels in contrast to oxidative phosphorylation. This review will address the relationship between ROS and carbohydrate, lipid, and nitrogen metabolism in ECs, and their effects on EC phenotype such as sprouting angiogenesis.
Collapse
Affiliation(s)
- Raid Alhayaza
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Emaan Haque
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
24
|
Lee YR, Wu SY, Chen RY, Lin YS, Yeh TM, Liu HS. Regulation of autophagy, glucose uptake, and glycolysis under dengue virus infection. Kaohsiung J Med Sci 2020; 36:911-919. [PMID: 32783363 DOI: 10.1002/kjm2.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
We previously reported that dengue virus (DENV)-induced autophagy plays a promoting role in viral replication and pathogenesis both in vitro and in vivo. Although it is known that DENV infection increases glycolysis, which promotes viral replication, the role of glucose metabolism together with autophagic activity in DENV replication remains unclear. In this study, we reveal that DENV2 infection increased autophagic activity, glucose uptake, protein levels of glucose transporter-1 (GLUT1), and glycolysis rate-limiting enzyme hexokinase-2 (HK2) in cells. Furthermore, the protein levels of LC3-II and HK2 were increased in the brain tissues of the DENV2-infected suckling mice. However, DENV2 infection decreased ATP level and showed no effect on mRNA expression of HK2 and phosphofructokinase, as well as lactate production, indicating that DENV2-regulated glycolytic flux occurs at the post-transcriptional level and is lactate pathway-independent. Moreover, amiodarone-induced autophagic activity, glucose uptake, HK2 level, and viral titer were reversed by the autophagy inhibitor spautin-1 or silencing of Atg5 gene expression. Intriguingly, blocking of glycolysis, HK2 protein level, and viral titer were accordingly decreased, but autophagic activity was increased, suggesting the existence of another regulation mechanism that influences the relationship between glycolysis and autophagy. This is the first report to reveal that DENV2-induced autophagy positively regulates glycolysis and viral replication in vitro and in vivo. Our findings open a new avenue wherein metabolic modulation could be used as a target for the treatment of DENV infection.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Yi Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory, Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Increased mTOR and suppressed autophagic flux in the heart of a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Cell Signal 2020; 74:109730. [PMID: 32730856 DOI: 10.1016/j.cellsig.2020.109730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/22/2023]
Abstract
Cardiac hypertrophy is common in autosomal dominant polycystic kidney disease (ADPKD) patients. We found increased heart weight in Pkd1RC/RC and Pkd2WS25/+ mouse models of ADPKD. As there is a link between increased heart weight and mammalian target of rapamycin (mTOR), the aim of the study was to determine mTOR complex 1 and 2 signaling proteins in the heart in the Pkd1RC/RC mouse model of PKD. In 70 day old Pkd1RC/RC hearts, on immunoblot analysis, there was a large increase in p-AMPKThr172, a known autophagy inducer, and an increase in p-AktSer473 and p-AktThr308, but no increase in other mTORC1/2 proteins (p-S6Ser240/244, p-mTORSer2448). In 150 day old Pkd1RC/RC hearts, there was an increase in mTORC1 (p-S6Ser240/244) and mTOR-related proteins (p-AktThr308, p-GSK3βSer9, p-AMPKThr172). As the mTOR pathway is the master regulator of autophagy, autophagy proteins were measured. There was an increase in p-Beclin-1 (BECN1), an autophagy regulator and activating molecule in Beclin-1-regulated autophagy (AMBRA1), a regulator of Beclin that play a role in autophagosome formation, an early stage of autophagy. There was a defect in the later stage of autophagy, the fusion of the autophagosome with the lysosome, known as autophagic flux, as evidenced by the lack of an increase in LC3-II, a marker of autophagosomes, with the lysosomal inhibitor bafilomycin, in both 70 day old and 150 day old hearts. To determine the role of autophagy in causing increased heart weight, Pkd1RC/RC were treated with 2-deoxyglucose (2-DG) or Tat-Beclin1 peptide, agents known to induce autophagy. 2-DG treatment from 150 to 350 days of age, a time period when increased heart weight developed, did not reduce the increased heart weight. Unexpectedly, Tat-Beclin 1 peptide treatment from 70 to 120 days of age resulted in increased heart weight. In summary, there is suppressed autophagic flux in the heart at an early age in Pkd1RC/RC mice. Increased mTOR signaling in older mice is associated suppressed autophagic flux. There was a large increase in p-AMPKThr172, a known autophagy inducer, in both young and old mice. 2-DG treatment did not impact increased heart weight and Tat-Beclin1 peptide increased heart weight.
Collapse
|
26
|
Zhu J, Cheng M, Zhao X. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy. Life Sci 2020; 257:118125. [PMID: 32702444 DOI: 10.1016/j.lfs.2020.118125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
AIM Nonalcoholic fatty liver disease (NAFLD) is a growing health problem worldwide. Impaired autophagy has been linked to NAFLD pathogenesis. Whether transfer RNA (tRNA)-derived fragments (tRFs) regulate the progression of NAFLD via autophagy is not clear. Here, we aimed to identify autophagy- or adipogenesis-related tRFs and investigate their roles in NAFLD. METHODS Small RNA sequencing was performed on NAFLD and control mice, and candidate tRFs were validated using quantitative reverse transcription PCR (qRT-PCR). The role of a key tRF was investigated using Oil red O staining, western blotting, qRT-PCR and a luciferase reporter assay. KEY FINDINGS In NAFLD mice, the expression of p62 was increased and the ratio of LC3B-II/LC3-I was decreased compared to control mice. We identified nine differentially expressed tRFs, among which tRF-3001b was found to be significantly upregulated in NAFLD mice compared to the control liver tissues. Autophagy was decreased in FA (fatty acids)-induced LO2 cells, while silencing of tRF-3001b significantly abrogated the decrease in autophagy and increase in lipid formation. Moreover, chloroquine (CQ) dramatically abrogated the effect of tRF-3001b inhibition on lipid formation. Mechanistically, tRF-3001b targeted and inhibited the expression of the autophagy-related gene Prkaa1. In vivo, tRF-3001b silencing significantly improved pathology and decreased the levels of triglycerides and cholesterol in NAFLD mice, while CQ dramatically abrogated the effect of tRF-3001b deficiency. SIGNIFICANCE tRF-3001b may aggravate the development of NAFLD by inhibiting autophagy via targeting Prkaa1.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of infectious disease, The Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang 550001, Guizhou, China
| | - Mingliang Cheng
- Department of infectious disease, The Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang 550001, Guizhou, China.
| | - Xueke Zhao
- Department of infectious disease, The Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang 550001, Guizhou, China
| |
Collapse
|
27
|
Cannabidiol Promotes Endothelial Cell Survival by Heme Oxygenase-1-Mediated Autophagy. Cells 2020; 9:cells9071703. [PMID: 32708634 PMCID: PMC7407143 DOI: 10.3390/cells9071703] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabidiol (CBD), a non-psychoactive cannabinoid, has been reported to mediate antioxidant, anti-inflammatory, and anti-angiogenic effects in endothelial cells. This study investigated the influence of CBD on the expression of heme oxygenase-1 (HO-1) and its functional role in regulating metabolic, autophagic, and apoptotic processes of human umbilical vein endothelial cells (HUVEC). Concentrations up to 10 µM CBD showed a concentration-dependent increase of HO-1 mRNA and protein and an increase of the HO-1-regulating transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). CBD-induced HO-1 expression was not decreased by antagonists of cannabinoid-activated receptors (CB1, CB2, transient receptor potential vanilloid 1), but by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). The incubation of HUVEC with 6 µM CBD resulted in increased metabolic activity, while 10 µM CBD caused decreased metabolic activity and an induction of apoptosis, as demonstrated by enhanced caspase-3 cleavage. In addition, CBD triggered a concentration-dependent increase of the autophagy marker LC3A/B-II. Both CBD-induced LC3A/B-II levels and caspase-3 cleavage were reduced by NAC. The inhibition of autophagy by bafilomycin A1 led to apoptosis induction by 6 µM CBD and a further increase of the proapoptotic effect of 10 µM CBD. On the other hand, the inhibition of HO-1 activity with tin protoporphyrin IX (SnPPIX) or knockdown of HO-1 expression by Nrf2 siRNA was associated with a decrease in CBD-mediated autophagy and apoptosis. In summary, our data show for the first time ROS-mediated HO-1 expression in endothelial cells as a mechanism by which CBD mediates protective autophagy, which at higher CBD concentrations, however, can no longer prevent cell death inducing apoptosis.
Collapse
|
28
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
29
|
Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, Zhu Y, Zhang J, Luo P, Gu L. Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis. Drug Des Devel Ther 2020; 14:2091-2100. [PMID: 32546972 PMCID: PMC7261662 DOI: 10.2147/dddt.s248872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leukemia threatens so many lives around the world. Dihydroartemisinin (DHA), as a typical derivative of artemisinin (ART), can efficiently inhibit leukemia, but the controversial mechanisms are still controversial. Many reports showed that tumor cells acquire energy through the glycolysis pathway, pyruvate kinase M2 (PKM2) plays a crucial role in regulating glycolysis. However, it is unclear whether PKM2 or other key molecules are involved in DHA induced cytotoxicity in leukemia cells. Thus, this paper systematically investigated the anticancer effect and mechanism of DHA on human chronic myeloid leukemia K562 cells. METHODS In vitro, cytotoxicity was detected with CCK-8. Glucose uptake, lactate production and pyruvate kinase activity were investigated to evaluate the effect of DHA on K562 cells. To elucidate the cellular metabolism alterations induced by DHA, the extracellular acidification rate was assessed using Seahorse XF96 extracellular flux analyzer. Immunofluorescence, real-time PCR, and Western blotting were used to investigate the molecular mechanism. RESULTS We found that DHA prevented cell proliferation in K562 cells through inhibiting aerobic glycolysis. Lactate product and glucose uptake were inhibited after DHA treatment. Results showed that DHA modulates glucose uptake through downregulating glucose transporter 1 (GLUT1) in both gene and protein levels. The cytotoxicity of DHA on K562 cells was significantly reversed by PKM2 agonist DASA-58. Pyruvate kinase activity was significantly reduced after DHA treatment, decreased expression of PKM2 was confirmed in situ. CONCLUSION The present study implicated that DHA inhibits leukemia cell proliferation by regulating glycolysis and metabolism, which mediated by downregulating PKM2 and GLUT1 expression. Our finding might enrich the artemisinins' antitumor mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Xiaodong Li
- Institute of Chinese Materia Medica, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou730050, People’s Republic of China
| | - Dandan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yuqing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yanqing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yongping Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Junzhe Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Piao Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| |
Collapse
|
30
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
31
|
VEGF Triggers Transient Induction of Autophagy in Endothelial Cells via AMPKα1. Cells 2020; 9:cells9030687. [PMID: 32168879 PMCID: PMC7140637 DOI: 10.3390/cells9030687] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.
Collapse
|
32
|
The Exacerbation of Aging and Oxidative Stress in the Epididymis of Sod1 Null Mice. Antioxidants (Basel) 2020; 9:antiox9020151. [PMID: 32054065 PMCID: PMC7071042 DOI: 10.3390/antiox9020151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing evidence that the quality of spermatozoa decreases with age and that children of older fathers have a higher incidence of birth defects and genetic mutations. The free radical theory of aging proposes that changes with aging are due to the accumulation of damage induced by exposure to excess reactive oxygen species. We showed previously that absence of the superoxide dismutase 1 (Sod1) antioxidant gene results in impaired mechanisms of repairing DNA damage in the testis in young Sod1−/− mice. In this study, we examined the effects of aging and the Sod−/− mutation on mice epididymal histology and the expression of markers of oxidative damage. We found that both oxidative nucleic acid damage (via 8-hydroxyguanosine) and lipid peroxidation (via 4-hydroxynonenal) increased with age and in Sod1−/− mice. These findings indicate that lack of SOD1 results in an exacerbation of the oxidative damage accumulation-related aging phenotype.
Collapse
|
33
|
De Munck DG, De Meyer GR, Martinet W. Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opin Ther Targets 2020; 24:131-145. [PMID: 31985292 DOI: 10.1080/14728222.2020.1723079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The incidence of age-related vascular diseases such as arterial stiffness, hypertension and atherosclerosis, is rising dramatically and is substantially impacting healthcare systems. Mounting evidence suggests that there is an important role for autophagy in maintaining (cardio)vascular health. Impaired vascular autophagy has been linked to arterial aging and the initiation of vascular disease.Areas covered: The function and implications of autophagy in vascular smooth muscle cells and endothelial cells are discussed in healthy blood vessels and arterial disease. Furthermore, we discuss current treatment options for vascular disease and their links with autophagy. A literature search was conducted in PubMed up to October 2019.Expert opinion: Although the therapeutic potential of inducing autophagy in age-related vascular pathologies is considerable, several issues should be addressed before autophagy induction can be clinically used to treat vascular disease. These issues include uncertainty regarding the most effective drug target as well as the lack of potency and selectivity of autophagy inducing drugs. Moreover, drug tolerance or autophagy mediated cell death have been reported as possible adverse effects. Special attention is required for determining the cause of autophagy deficiency to optimize the treatment strategy.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido Ry De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
34
|
Hydrogen-Rich Saline Inhibits Lipopolysaccharide-Induced Acute Lung Injury and Endothelial Dysfunction by Regulating Autophagy through mTOR/TFEB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9121894. [PMID: 32071922 PMCID: PMC7011387 DOI: 10.1155/2020/9121894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Background Hydrogen-rich saline (HRS) has strong anti-inflammatory, antioxidative stress, and antiapoptotic properties. The study focused on the protection of HRS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rat models and the relationship with autophagic regulation and mTOR/TFEB signaling pathway. Material and Methods. The LPS-induced ALI rats' model was established. Pathohistological change in lung tissue was detected by hematoxylin-eosin staining. The inflammatory cytokines were examined by enzyme-linked immunosorbent assay (ELISA). The key apoptosis proteins and autophagy-relevant proteins were analyzed by western blotting. In vitro, HPMEC models of ALI were treated with LPS. The inflammatory cytokines were detected. Apoptosis rate was determined by flow cytometry. The autophagy and mTOR/TFEB signaling pathway-related proteins were detected by western blot and immunohistochemical staining. Results HRS attenuated LPS-induced ALI and apoptosis both in vivo and in vitro. HRS attenuated inflammatory response, inhibited apoptosis, induced and activated autophagy in LPS-induced ALI model, and downregulated mTOR/TFEB signaling pathway. The protection of HRS can be blocked by autophagy inhibitor. Moreover, mTOR activator reversed HRS protection and mTOR inhibitor enhanced HRS protection in LPS-induced model and HRS activated autophagy via mTOR/TFEB signaling pathway. Conclusion The results confirmed the protection of HRS in LPS-induced ALI by regulating apoptosis through inhibiting the mTOR/TFEB signaling pathway.
Collapse
|
35
|
2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int J Mol Sci 2019; 21:ijms21010234. [PMID: 31905745 PMCID: PMC6982256 DOI: 10.3390/ijms21010234] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/23/2022] Open
Abstract
The ability of 2-deoxy-d-glucose (2-DG) to interfere with d-glucose metabolism demonstrates that nutrient and energy deprivation is an efficient tool to suppress cancer cell growth and survival. Acting as a d-glucose mimic, 2-DG inhibits glycolysis due to formation and intracellular accumulation of 2-deoxy-d-glucose-6-phosphate (2-DG6P), inhibiting the function of hexokinase and glucose-6-phosphate isomerase, and inducing cell death. In addition to glycolysis inhibition, other molecular processes are also affected by 2-DG. Attempts to improve 2-DG’s drug-like properties, its role as a potential adjuvant for other chemotherapeutics, and novel 2-DG analogs as promising new anticancer agents are discussed in this review.
Collapse
|
36
|
Bianchi M, D'Oria V, Braghini MR, Petrini S, Manco M. Liraglutide Treatment Ameliorates Neurotoxicity Induced by Stable Silencing of Pin1. Int J Mol Sci 2019; 20:ijms20205064. [PMID: 31614723 PMCID: PMC6829573 DOI: 10.3390/ijms20205064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Post-translational modulation of peptidylprolyl isomerase Pin1 might link impaired glucose metabolism and neurodegeneration, being Pin1 effectors target for the glucagon-Like-Peptide1 analog liraglutide. We tested the hypotheses in Pin1 silenced cells (SH-SY5Y) treated with 2-deoxy-d-glucose (2DG) and methylglyoxal (MG), stressors causing altered glucose trafficking, glucotoxicity and protein glycation. Rescue by liraglutide was investigated. Pin1 silencing caused increased levels of reactive oxygen species, upregulated energy metabolism as suggested by raised levels of total ATP content and mRNA of SIRT1, PGC1α, NRF1; enhanced mitochondrial fission events as supported by raised protein expression of FIS1 and DRP1. 2DG and MG reduced significantly cell viability in all the cell lines. In Pin1 KD clones, 2DG exacerbated altered mitochondrial dynamics causing higher rate of fission events. Liraglutide influenced insulin signaling pathway (GSK3b/Akt); improved cell viability also in cells treated with 2DG; but it did not revert mitochondrial dysfunction in Pin1 KD model. In cells treated with MG, liraglutide enhanced cell viability, reduced ROS levels and cell death (AnnexinV/PI); and trended to reduce anti-apoptotic signals (BAX, BCL2, CASP3). Pin1 silencing mimics neuronal metabolic impairment of patients with impaired glucose metabolism and neurodegeneration. Liraglutide rescues to some extent cellular dysfunctions induced by Pin1 silencing.
Collapse
Affiliation(s)
- Marzia Bianchi
- Research Area for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesu' Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Maria Rita Braghini
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesu' Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Melania Manco
- Research Area for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
37
|
Kardideh B, Samimi Z, Norooznezhad F, Kiani S, Mansouri K. Autophagy, cancer and angiogenesis: where is the link? Cell Biosci 2019; 9:65. [PMID: 31428311 PMCID: PMC6693242 DOI: 10.1186/s13578-019-0327-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/04/2019] [Indexed: 01/12/2023] Open
Abstract
Background Autophagy is a catabolic process for degradation of intracellular components. Damaged proteins and organelles are engulfed in double-membrane vesicles ultimately fused with lysosomes. These vesicles, known as phagophores, develop to form autophagosomes. Encapsulated components are degraded after autophagosomes and lysosomes are fused. Autophagy clears denatured proteins and damaged organelles to produce macromolecules further reused by cells. This process is vital to cell homeostasis under both physiologic and pathologic conditions. Main body While the role of autophagy in cancer is quite controversial, the majority of studies introduce it as an anti-tumorigenesis mechanism. There are evidences confirming this role of autophagy in cancer. Mutations and monoallelic deletions have been demonstrated in autophagy-related genes correlating with cancer promotion. Another pathway through which autophagy suppresses tumorigenesis is cell cycle. On the other hand, under hypoxia and starvation condition, tumors use angiogenesis to provide nutrients. Also, autophagy flux is highlighted in vessel cell biology and vasoactive substances secretion from endothelial cells. The matrix proteoglycans such as Decorin and Perlecan could also interfere with angiogenesis and autophagy signaling pathway in endothelial cells (ECs). It seems that the connection between autophagy and angiogenesis in the tumor microenvironment is very important in determining the fate of cancer cells. Conclusion Matrix glycoproteins can regulate autophagy and angiogenesis linkage in tumor microenvironment. Also, finding details of how autophagy and angiogenesis correlate in cancer will help adopt more effective therapeutic approaches.
Collapse
Affiliation(s)
- Bahareh Kardideh
- 1Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Zahra Samimi
- 1Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Norooznezhad
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Sarah Kiani
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Kamran Mansouri
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran.,3Molecular Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Costa D, Scognamiglio M, Fiorito C, Benincasa G, Napoli C. Genetic background, epigenetic factors and dietary interventions which influence human longevity. Biogerontology 2019; 20:605-626. [PMID: 31309340 DOI: 10.1007/s10522-019-09824-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Longevity is mainly conditioned by genetic, epigenetic and environmental factors. Different genetic modifications seem to be positively associated to longevity, including SNPs in SIRT1, APOE, FOXO3A, ACE, ATM, NOS1 and NOS2 gene. Epigenetic changes as DNA hyper- and hypo-methylation influence significantly human longevity by activating/deactivating different genes involved in physiological mechanisms. Several studies have confirmed that centenarians have a lower DNA methylation content compared to young subjects, which showed more homogeneously methylated DNA region. Also the up-regulation of miR-21 seems to be more associated with longevity in different populations of long-lived subjects, suggesting its role as potential epigenetic biomarkers. A non-pharmacological treatment that seems to contrast age-related diseases and promote longevity is represented by dietary intervention. It has been evaluated the effects of dietary restriction of both single nutrients or total calories to extend lifespan. However, in daily practice it is very difficult to guarantee adherence/compliance of the subjects to dietary restriction and at the same time avoid dangerous nutritional deficiencies. As consequence, the attention has focused on a variety of substances both drugs and natural compounds able to mime the beneficial effects of caloric restriction, including resveratrol, quercetin, rapamycin, metformin and 2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Dario Costa
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Michele Scognamiglio
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Carmela Fiorito
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Holzer T, Probst K, Etich J, Auler M, Georgieva VS, Bluhm B, Frie C, Heilig J, Niehoff A, Nüchel J, Plomann M, Seeger JM, Kashkar H, Baris OR, Wiesner RJ, Brachvogel B. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J Cell Biol 2019; 218:1853-1870. [PMID: 31085560 PMCID: PMC6548139 DOI: 10.1083/jcb.201809056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Children with mitochondrial diseases often present with slow growth and short stature, but the underlying mechanism remains unclear. In this study, Holzer et al. provide in vivo evidence that mitochondrial respiratory chain dysfunction induces cartilage degeneration coincident with altered metabolism, impaired extracellular matrix formation, and cell death at the cartilage–bone junction. In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage–bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.
Collapse
Affiliation(s)
- Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Auler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veronika S Georgieva
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Frie
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Julian Nüchel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jens M Seeger
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany .,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Lopes-da-Silva M, McCormack JJ, Burden JJ, Harrison-Lavoie KJ, Ferraro F, Cutler DF. A GBF1-Dependent Mechanism for Environmentally Responsive Regulation of ER-Golgi Transport. Dev Cell 2019; 49:786-801.e6. [PMID: 31056345 PMCID: PMC6764485 DOI: 10.1016/j.devcel.2019.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/19/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
How can anterograde membrane trafficking be modulated by physiological cues? A screen of Golgi-associated proteins revealed that the ARF-GEF GBF1 can selectively modulate the ER-Golgi trafficking of prohaemostatic von Willebrand factor (VWF) and extracellular matrix (ECM) proteins in human endothelial cells and in mouse fibroblasts. The relationship between levels of GBF1 and the trafficking of VWF into forming secretory granules confirmed GBF1 is a limiting factor in this process. Further, GBF1 activation by AMPK couples its control of anterograde trafficking to physiological cues; levels of glucose control GBF1 activation in turn modulating VWF trafficking into secretory granules. GBF1 modulates both ER and TGN exit, the latter dramatically affecting the size of the VWF storage organelles, thereby influencing the hemostatic capacity of the endothelium. The role of AMPK as a central integrating element of cellular pathways with intra- and extra-cellular cues can now be extended to modulation of the anterograde secretory pathway. The Arf-GEF GBF1 modulates anterograde trafficking of VWF and ECM proteins Loss of GBF1 slows ER and TGN exit, producing swollen ER and giant WPBs Activation of GBF1 via AMPK reduces endothelial WPB size and secretion Metabolic change alters anterograde trafficking and cargo secretion via AMPK-GBF1
Collapse
Affiliation(s)
- Mafalda Lopes-da-Silva
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Jessica J McCormack
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jemima J Burden
- Electron Microscopy Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Kimberly J Harrison-Lavoie
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Francesco Ferraro
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Daniel F Cutler
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
41
|
Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:163-196. [PMID: 28875490 DOI: 10.1007/978-94-024-1170-6_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor microenvironment (TME) is composed of tumor cells, immune cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis and development. Cancer cells and immune cells show metabolic reprogramming in the TME, which intimately links immune cell functions and edits tumor immunology. Recent findings in immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer. This chapter introduces the updated understandings of metabolic reprogramming of immune cells in the TME and suggests new directions in manipulation of immune responses for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
42
|
Autophagy in Crotonaldehyde-Induced Endothelial Toxicity. Molecules 2019; 24:molecules24061137. [PMID: 30901980 PMCID: PMC6471975 DOI: 10.3390/molecules24061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/16/2022] Open
Abstract
Crotonaldehyde is an extremely toxic α,β-unsaturated aldehyde found in cigarette smoke, and it causes inflammation and vascular dysfunction. Autophagy has been reported to play a key role in the pathogenesis of vascular diseases. However, the precise mechanism underlying the role of acute exposure crotonaldehyde in vascular disease development remains unclear. In the present study, we aimed to investigate the effect of crotonaldehyde-induced autophagy in endothelial cells. Acute exposure to crotonaldehyde decreased cell viability and induced autophagy followed by cell death. In addition, inhibiting the autophagic flux markedly promoted the viability of endothelial cells exposed to high concentrations of crotonaldehyde. Crotonaldehyde activated the AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) pathways, and pretreatment with inhibitors specific to these kinases showed autophagy inhibition and partial improvement in cell viability. These data show that acute exposure to high concentrations of crotonaldehyde induces autophagy-mediated cell death. These results might be helpful to elucidate the mechanisms underlying crotonaldehyde toxicity in the vascular system and contribute to environmental risk assessment.
Collapse
|
43
|
Abstract
Viruses depend on the host cells they infect to provide the machinery and substrates for replication. Host cells are highly dynamic systems that can alter their intracellular environment and metabolic behavior, which may be helpful or inhibitory for an infecting virus. In this study, we show that macrophages, a target cell of murine norovirus (MNV), increase glycolysis upon viral infection, which is important for early steps in MNV infection. Human noroviruses (hNoV) are a major cause of gastroenteritis globally, causing enormous morbidity and economic burden. Currently, no effective antivirals or vaccines exist for hNoV, mainly due to the lack of high-efficiency in vitro culture models for their study. Thus, insights gained from the MNV model may reveal aspects of host cell metabolism that can be targeted for improving hNoV cell culture systems and for developing effective antiviral therapies. The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems.
Collapse
|
44
|
The Biguanides Metformin and Buformin in Combination with 2-Deoxy-glucose or WZB-117 Inhibit the Viability of Highly Resistant Human Lung Cancer Cells. Stem Cells Int 2019; 2019:6254269. [PMID: 30918522 PMCID: PMC6409035 DOI: 10.1155/2019/6254269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
The biguanides metformin (MET) and to a lesser extent buformin (BUF) have recently been shown to exert anticancer effects. In particular, MET targets cancer stem cells (CSCs) in a variety of cancer types but these compounds have not been extensively tested for combination therapy. In this study, we investigated in vitro the anticancer activity of MET and BUF alone or in combination with 2-deoxy-D-glucose (2-DG) and WZB-117 (WZB), which are a glycolysis and a GLUT-1 inhibitor, respectively, in H460 human lung cancer cells growing under three different culture conditions with varying degrees of stemness: (1) routine culture conditions (RCCs), (2) floating lung tumorspheres (LTSs) that are enriched for stem-like cancer cells, and (3) adherent cells under prolonged periods (8-12 days) of serum starvation (PPSS). These cells are highly resistant to conventional anticancer drugs such as paclitaxel, hydroxyurea, and colchicine and display an increased level of stemness markers. As single agents, MET, BUF, 2-DG, and WZB-117 potently inhibited the viability of cells growing under RCCs. Both MET and BUF showed a strong synergistic effect when used in combination with 2-DG. A weak potentiation was observed when used with WZB-117. Under RCCs, H460 cells were more sensitive to MET and BUF and WZB-117 compared to nontumorigenic Beas-2B cells. While LTSs were less sensitive to each single drug, both MET and BUF in combination with 2-DG showed a strong synergistic effect and reduced cell viability to similar levels compared to the parental H460 cells. Adherent cells growing under PPSS were also less sensitive to each single drug, and MET and BUF showed a strong synergistic effect on cell viability in combination with 2-DG. Overall, our data demonstrates that the combination of BGs with either 2-DG or WZB-117 has “broad-spectrum” anticancer activities targeting cells growing under a variety of cell culture conditions with varying degrees of stemness. These properties may be useful to overcome the chemoresistance due to intratumoral heterogeneity found in lung cancer.
Collapse
|
45
|
A Rise in ATP, ROS, and Mitochondrial Content upon Glucose Withdrawal Correlates with a Dysregulated Mitochondria Turnover Mediated by the Activation of the Protein Deacetylase SIRT1. Cells 2018; 8:cells8010011. [PMID: 30591661 PMCID: PMC6356350 DOI: 10.3390/cells8010011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022] Open
Abstract
Glucose withdrawal has been used as a model for the study of homeostatic defense mechanisms, especially for how cells cope with a shortage of nutrient supply by enhancing catabolism. However, detailed cellular responses to glucose withdrawal have been poorly studied, and are controversial. In this study, we determined how glucose withdrawal affects mitochondrial activity, and the quantity and the role of SIRT1 in these changes. The results of our study indicate a substantial increase in ATP production from mitochondria, through an elevation of mitochondrial biogenesis, mediated by SIRT1 activation that is driven by increased NAD⁺/NADH ratio. Moreover, mitochondria persisted in the cells as elongated forms, and apparently evaded mitophagic removal. This led to a steady increase in mitochondria content and the reactive oxygen species (ROS) generated from them, indicating failure in ATP and ROS homeostasis, due to a misbalance in SIRT1-mediated mitochondria turnover in conditions of glucose withdrawal. Our results suggest that SIRT1 activation alone cannot properly manage energy homeostasis under certain metabolic crisis conditions.
Collapse
|
46
|
Autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells. Cell Death Dis 2018; 9:1152. [PMID: 30455420 PMCID: PMC6242874 DOI: 10.1038/s41419-018-1194-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Our previous study demonstrated that angiogenesis increased during the recovery of heat-denatured endothelial cells. However, the mechanism is still unclear. This study aimed to investigate the relation of autophagy and angiogenesis during the recovery of heat-denatured endothelial cells. A rat deep partial-thickness burn model and heat-denatured human umbilical vein endothelial cells (HUVECs) model (52 °C for 35 s) were used. Autophagy increased significantly in the dermis and HUVECs in a time-dependent manner after heat denaturation and recovery for 2-5 days. Rapamycin-mediated autophagy enhanced the pro-angiogenic effect, evidenced by increased proliferation and migration of HUVECs, and formation of tube-like structures. Autophagy inhibition by 3-Methyladenine (3-MA) abolished the angiogenesis in heat-denatured HUVECs after recovery for 3-5 days. Moreover, heat denaturation augmented the phosphorylation of AMP-activated protein kinase (AMPK) but reduced the phosphorylation of Akt and mTOR in HUVECs. Furthermore, autophagy inhibition by antioxidant NAC, compound C or AMPK siRNA impaired cell proliferation, migration and tube formation heat-denatured HUVECs. At last, the in vivo experiments also showed that inhibition of autophagy by bafilomycin A1 could suppress angiogenesis and recovery of heat-denatured dermis.Taken together, we firstly revealed that autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells and may provide a potential therapeutic target for the recovery of heat-denatured dermis.
Collapse
|
47
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
48
|
Jeong AJ, Kim YJ, Lim MH, Lee H, Noh K, Kim BH, Chung JW, Cho CH, Kim S, Ye SK. Microgravity induces autophagy via mitochondrial dysfunction in human Hodgkin's lymphoma cells. Sci Rep 2018; 8:14646. [PMID: 30279524 PMCID: PMC6168562 DOI: 10.1038/s41598-018-32965-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Gravitational forces can impose physical stresses on the human body as it functions to maintain homeostasis. It has been reported that astronauts exposed to microgravity experience altered biological functions and many subsequent studies on the effects of microgravity have therefore been conducted. However, the anticancer mechanisms of simulated microgravity remain unclear. We previously showed that the proliferation of human Hodgkin's lymphoma (HL) cells was inhibited when these cells were cultured in time-averaged simulated microgravity (taSMG). In the present study, we investigated whether taSMG produced an anticancer effect. Exposure of human HL cells to taSMG for 2 days increased their reactive oxygen species (ROS) production and NADPH oxidase family gene expression, while mitochondrial mass, ATPase, ATP synthase, and intracellular ATP levels were decreased. Furthermore, human HL cells exposed to taSMG underwent autophagy via AMPK/Akt/mTOR and MAPK pathway modulation; such autophagy was inhibited by the ROS scavenger N-acetylcysteine (NAC). These results suggest an innovative therapeutic approach to HL that is markedly different from conventional chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yoon Jae Kim
- Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Min Hyuk Lim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kumhee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byung-Hak Kim
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, and Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, and Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
49
|
Shintani T, Kosuge Y, Ashida H. Glucosamine Extends the Lifespan of Caenorhabditis elegans via Autophagy Induction. J Appl Glycosci (1999) 2018; 65:37-43. [PMID: 34354511 PMCID: PMC8056925 DOI: 10.5458/jag.jag.jag-2018_002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.
Collapse
Affiliation(s)
- Tomoya Shintani
- 1 Graduate School of Biostudies, Kyoto University.,2 United Graduate School of Agriculture, Ehime University
| | - Yuhei Kosuge
- 1 Graduate School of Biostudies, Kyoto University
| | - Hisashi Ashida
- 3 Faculty of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
50
|
Paul M, Hemshekhar M, Kemparaju K, Girish KS. Aggregation is impaired in starved platelets due to enhanced autophagy and cellular energy depletion. Platelets 2018; 30:487-497. [PMID: 29799304 DOI: 10.1080/09537104.2018.1475630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Platelet hyperactivity is the hallmark of thrombosis and hemostasis disorders including atherosclerosis, diabetes, stroke, arthritis, and cancer causing significant mortality and morbidity. Therefore, regulating platelet hyperactivity is an ever growing interest. Very recently, basal autophagic process has been demonstrated to be essential for normal functioning of platelets. However, autophagy can be elevated above basal level under conditions like starvation, and how platelets respond in these settings remains to be elucidative. Therefore, in this study we demonstrate a substantial autophagy induction (above basal level) by starvation, which decreases platelet aggregation responses to various agonists. The decreased aggregation in starved platelets was restored in combination with autophagy inhibitors (3-methyladenine and NH4Cl) and acetate supplementation. Starved platelets also showed decreased calcium mobilization, granule release, and adhesive properties. Furthermore, ex vivo platelets obtained from starved rats showed increased autophagy markers and decreased aggregation responses to various agonists. Our results distinctly explain that enhanced autophagy and cellular energy depletion are the cause for decreased platelet activation and aggregation. The study emphasizes the cardinal role of starvation and autophagy in the management of diseases and disorders associated with platelet hyperactivity.
Collapse
Affiliation(s)
- Manoj Paul
- a DOS in Biochemistry , University of Mysore , Mysuru , India
| | - Mahadevappa Hemshekhar
- b Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology , University of Manitoba , Winnipeg , Canada
| | | | - Kesturu S Girish
- a DOS in Biochemistry , University of Mysore , Mysuru , India.,c Department of Studies and Research in Biochemistry , Tumkur University , Tumakuru , India
| |
Collapse
|