1
|
Ardini M, Aboagye SY, Petukhova VZ, Kastrati I, Ippoliti R, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. The "Doorstop Pocket" In Thioredoxin Reductases─An Unexpected Druggable Regulator of the Catalytic Machinery. J Med Chem 2024; 67:15947-15967. [PMID: 39250602 DOI: 10.1021/acs.jmedchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, 60153 Maywood, Illinois 60153, United States
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Wulansari D, Jeelani G, Yazaki E, Nozaki T. Identification and characterization of archaeal-type FAD synthase as a novel tractable drug target from the parasitic protozoa Entamoeba histolytica. mSphere 2024; 9:e0034724. [PMID: 39189775 PMCID: PMC11423594 DOI: 10.1128/msphere.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Flavin adenine dinucleotide (FAD) is an essential cofactor for numerous flavoenzymes present in all living organisms. The biosynthesis of FAD from riboflavin involves two sequential reactions catalyzed by riboflavin kinase and flavin adenine dinucleotide synthase (FADS). Entamoeba histolytica, the protozoan parasite responsible for amebiasis, apparently lacks a gene encoding FADS that share similarity with bacterial and eukaryotic canonical FADS, yet it can synthesize FAD. In this study, we have identified the gene responsible for FADS and thoroughly characterized physiological and biochemical properties of FADS from E. histolytica. Phylogenetic analysis revealed that the gene was likely laterally transferred from archaea. The kinetic properties of recombinant EhFADS were consistent with the notion that EhFADS is of archaeal origin, exhibiting KM and kcat values similar to those of the arachaeal enzyme while significantly differing from the human counterpart. Repression of gene expression of EhFADS by epigenetic gene silencing caused substantial reduction in FAD levels and parasite growth, underscoring the importance of EhFADS for the parasite. Furthermore, we demonstrated that EhFADS gene silencing reduced thioredoxin reductase activity, which requires FAD as a cofactor and makes the ameba more susceptible to metronidazole. In summary, this study unveils unique evolutionary and biochemical features of EhFADS and underscores its significance as a promising drug target in combating human amebiasis.IMPORTANCEFAD is important for all forms of life, yet its role and metabolism are still poorly studied in E. histolytica, the protozoan parasite causing human amebiasis. Our study uncovers the evolutionary unique key enzyme, archaeal-type FADS for FAD biosynthesis from E. histolytica for the first time. Additionally, we showed the essentiality of this enzyme for parasite survival, highlighting its potential as target for drug development against E. histolytica infections.
Collapse
Affiliation(s)
- Dewi Wulansari
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
4
|
Koner D, Nag N, Kalita P, Padhi AK, Tripathi T, Saha N. Functional expression, localization, and biochemical characterization of thioredoxin glutathione reductase from air-breathing magur catfish, Clarias magur. Int J Biol Macromol 2023; 230:123126. [PMID: 36603726 DOI: 10.1016/j.ijbiomac.2022.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
The glutathione (GSH) and thioredoxin (Trx) systems regulate cellular redox homeostasis and maintain antioxidant defense in most eukaryotes. We earlier reported the absence of gene coding for the glutathione reductase (GR) enzyme of the GSH system in the facultative air-breathing catfish, Clarias magur. Here, we identified three thioredoxin reductase (TrxR) genes, one of which was later confirmed as a thioredoxin glutathione reductase (TGR). We then characterized the novel recombinant TGR enzyme of C. magur (CmTGR). The tissue-specific expression of the txnrd genes and the tissue-specific activity of the TrxR enzyme were analyzed. The recombinant CmTGR is a dimer of ~133 kDa. The protein showed TrxR activity with 5,5'-diothiobis (2-nitrobenzoic acid) reduction assay with a Km of 304.40 μM and GR activity with a Km of 58.91 μM. Phylogenetic analysis showed that the CmTGR was related to the TrxRs of fishes and distantly related to the TGRs of platyhelminth parasites. The structural analysis revealed the conserved glutaredoxin active site and FAD- and NADPH-binding sites. To our knowledge, this is the first report of the presence of a TGR in any fish. This unusual presence of TGR in C. magur is crucial as it helps maintain redox homeostasis under environmental stressors-induced oxidative stress.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
5
|
Huang Z, Zhang Y, Ma X, Feng Y, Zong X, Jordan JD, Zhang Q. Photobiomodulation attenuates oligodendrocyte dysfunction and prevents adverse neurological consequences in a rat model of early life adversity. Theranostics 2023; 13:913-930. [PMID: 36793860 PMCID: PMC9925323 DOI: 10.7150/thno.78777] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Adverse experiences in early life including abuse, trauma and neglect, have been linked to poor physical and mental health outcomes. Emerging evidence implies that those who experienced early life adversity (ELA) are more likely to develop cognitive dysfunction and depressive-like symptoms in adulthood. The molecular mechanisms responsible for the negative consequences of ELA, however, remain unclear. In the absence of effective management options, anticipatory guidance is the mainstay of ELA prevention. Furthermore, there is no available treatment that prevents or alleviates the neurologic sequelae of ELA, especially traumatic stress. Hence, the present study aims to investigate the mechanisms for these associations and evaluate whether photobiomodulation (PBM), a non-invasive therapeutic procedure, can prevent the negative cognitive and behavioral manifestations of ELA in later life. Methods: ELA was induced by repeated inescapable electric foot shock of rats from postnatal day 21 to 26. On the day immediately following the last foot shock, 2-min daily PBM treatment was applied transcranially for 7 consecutive days. Cognitive dysfunction and depression-like behaviors were measured by a battery of behavioral tests in adulthood. Subsequently, oligodendrocyte progenitor cells (OPCs) differentiation, the proliferation and apoptosis of oligodendrocyte lineage cells (OLs), mature oligodendrocyte, myelinating oligodendrocyte, the level of oxidative damage, reactive oxygen species (ROS) and total antioxidant capacity were measured and analyzed using immunofluorescence staining, capillary-based immunoassay (ProteinSimple®) and antioxidant assay kit. Results: The rats exposed to ELA exhibited obvious oligodendrocyte dysfunction, including a reduction in OPCs differentiation, diminished generation and survival of OLs, decreased OLs, and decreased matured oligodendrocyte. Furthermore, a deficit in myelinating oligodendrocytes was observed, in conjunction with an imbalance in redox homeostasis and accumulated oxidative damage. These alternations were concomitant with cognitive dysfunction and depression-like behaviors. Importantly, we found that early PBM treatment largely prevented these pathologies and reversed the neurologic sequelae resulting from ELA. Conclusions: Collectively, these findings provide new insights into the mechanism by which ELA affects neurological outcomes. Moreover, our findings support that PBM may be a promising strategy to prevent ELA-induced neurologic sequelae that develops later in life.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
6
|
Zhang H, Kong Z, Wang Z, Chen Y, Zhang S, Luo C. Molecularly engineering a dual-drug nanoassembly for self-sensitized photodynamic therapy via thioredoxin impairment and glutathione depletion. Drug Deliv 2022; 29:3281-3290. [PMID: 36350255 PMCID: PMC9662020 DOI: 10.1080/10717544.2022.2141920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Photodynamic therapy (PDT) has been extensively investigated as a spatiotemporally noninvasive and controllable modality for cancer treatment. However, the intracellular antioxidant systems mainly consisting of thioredoxin (Trx) and glutathione (GSH) significantly counteract and prevent reactive oxygen species (ROS) accumulation, resulting in a serious loss of PDT efficiency. To address this challenge, we propose that PDT can be improved by precisely blocking antioxidant systems. After molecular engineering and synergistic cytotoxic optimization, a DSPE-PEG2K-modified dual-drug nanoassembly (PPa@GA/DSPE-PEG2K NPs) of pyropheophorbide a (PPa) and gambogic acid (GA) is successfully constructed. Interestingly, GA can effectively destroy intracellular antioxidant systems by simultaneously inhibiting Trx and GSH. Under laser irradiation, the cell-killing effects of PPa is significantly enhanced by GA-induced inhibition of the antioxidant systems. As expected, PPa@GA/DSPE-PEG2K nanoparticles demonstrate potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Such a carrier-free self-sensitized nanotherapeutic offers a novel co-delivery strategy for effective PDT.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
7
|
Martínez-González JDJ, Ríos-Morales SL, Guevara-Flores A, Ramos-Godinez MDP, López-Saavedra A, Rendón JL, Del Arenal Mena IP. Evaluating the effect of curcumin on the metacestode of Taenia crassiceps. Exp Parasitol 2022; 239:108319. [PMID: 35777452 DOI: 10.1016/j.exppara.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 μM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.
Collapse
Affiliation(s)
- José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Sandra Lizeth Ríos-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - María Del Pilar Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Irene Patricia Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
9
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
10
|
Dziduch K, Greniuk D, Wujec M. The Current Directions of Searching for Antiparasitic Drugs. Molecules 2022; 27:1534. [PMID: 35268635 PMCID: PMC8912034 DOI: 10.3390/molecules27051534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parasitic diseases are still a huge problem for mankind. They are becoming the main cause of chronic diseases in the world. Migration of the population, pollution of the natural environment, and climate changes cause the rapid spread of diseases. Additionally, a growing resistance of parasites to drugs is observed. Many research groups are looking for effective antiparasitic drugs with low side effects. In this work, we present the current trends in the search for antiparasitic drugs. We report known drugs used in other disease entities with proven antiparasitic activity and research on new chemical structures that may be potential drugs in parasitic diseases. The described investigations of antiparasitic compounds can be helpful for further drug development.
Collapse
Affiliation(s)
| | | | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (K.D.); (D.G.)
| |
Collapse
|
11
|
Synthesis of New Thiadiazole-2-Oxides as Potential Antischistosomal Agents. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Cheuka PM. Drug Discovery and Target Identification against Schistosomiasis: a Reality Check on Progress and Future Prospects. Curr Top Med Chem 2021; 22:1595-1610. [PMID: 34565320 DOI: 10.2174/1568026621666210924101805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Schistosomiasis ranks among the most important infectious diseases, with over 200 million people currently being infected and > 280,000 deaths reported annually. Chemotherapeutic treatment has relied on one drug, praziquantel, for four decades, while other drugs, such as oxamniquine and metrifonate, are no longer preferred for clinical use due to their narrow spectrum of activity - these are only active against S. mansoni and S. haematobium, respectively. Despite being cheap, safe, and effective against all schistosome species, praziquantel is ineffective against immature worms, which may lead to reinfections and treatment failure in endemic areas; a situation that necessitates repeated administration besides other limitations. Therefore, novel drugs are urgently needed to overcome this situation. In this paper, an up to date review of drug targets identified and validated against schistosomiasis while also encompassing promising clinical and preclinical candidate drugs is presented. While there are considerable efforts aimed at identifying and validating drug targets, the pipeline for new antischistosomals is dry. Moreover, the majority of compounds evaluated preclinically are not really advanced because most of them were evaluated in very small preclinical species such as mice alone. Overall, it appears that although a lot of research is going on at discovery phases, unfortunately, it does not translate to advanced preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, Lusaka. Zambia
| |
Collapse
|
13
|
Abstract
Gold compounds have been employed throughout history to treat various types of disease, from ancient times to the present day. In the year 1985, auranofin, a gold-containing compound, was approved by U.S. Food and Drug Administration (FDA) as a therapeutic agent to target rheumatoid arthritis that would facilitate easy oral drug administration as opposed to conventional intramuscular injection used in treatments. Furthermore, auranofin demonstrates promising results for the treatment of various diseases beyond rheumatoid arthritis, including cancer, neurodegenerative diseases, acquired immune deficiency syndrome, and bacterial and parasitic infections. Various potential novel applications for auranofin have been proposed for treating human diseases. Auranofin has previously been demonstrated to inhibit thioredoxin reductase (TrxR) involved within the thioredoxin (Trx) system that comprises one of the critical cellular redox systems within the body. TrxR comprises the sole known enzyme that catalyzes Trx reduction. With cancers in particular, TrxR inhibition facilitates an increase in cellular oxidative stress and suppresses tumor growth. In this review, we describe the potential of auranofin to serve as an anticancer agent and further drug repurposing to utilize this as a strategy for further appropriate drug developments.
Collapse
Affiliation(s)
- Isao Momose
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| | - Takefumi Onodera
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| |
Collapse
|
14
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
15
|
Li G, Guo Q, Feng C, Chen H, Zhao W, Li S, Hong Y, Sun D. Synthesis of oxadiazole-2-oxide derivatives as potential drug candidates for schistosomiasis targeting SjTGR. Parasit Vectors 2021; 14:225. [PMID: 33902686 PMCID: PMC8074465 DOI: 10.1186/s13071-021-04634-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Schistosomiasis is a chronic parasitic disease that affects millions of people's health worldwide. Because of the increasing drug resistance to praziquantel (PZQ), which is the primary drug for schistosomiasis, developing new drugs to treat schistosomiasis is crucial. Oxadiazole-2-oxides have been identified as potential anti-schistosomiasis reagents targeting thioredoxin glutathione reductase (TGR). METHODS In this work, one of the oxadiazole-2-oxides derivatives furoxan was used as the lead compound to exploit a series of novel furoxan derivatives for studying inhibitory activity against both recombinant Schistosoma japonicum TGR containing selenium (rSjTGR-Sec) and soluble worm antigen protein (SWAP) containing wild-type Schistosoma japonicum TGR (wtSjTGR), in order to develop a new leading compound for schistosomiasis. Thirty-nine novel derivatives were prepared to test their activity toward both enzymes. The docking method was used to detect the binding site between the active molecule and SjTGR. The structure-activity relationship (SAR) of these novel furoxan derivatives was preliminarily analyzed. RESULTS It was found that several new derivatives, including compounds 6a-6d, 9ab, 9bd and 9be, demonstrated greater activity toward rSjTGR-Sec or SWAP containing wtSjTGR than did furoxan. Interestingly, all intermediates bearing hydroxy (6a-6d) showed excellent inhibitory activity against both enzymes. In particular, compound 6d with trifluoromethyl on a pyridine ring was found to have much higher inhibition toward both rSjTGR-Sec (half-maximal inhibitory concentration, IC50,7.5nM) and SWAP containing wtSjTGR (IC50 55.8nM) than furoxan. Additionally, the docking method identified the possible matching sites between 6d and Schistosoma japonicum TGR (SjTGR), which theoretically lends support to the inhibitory activity of 6d. CONCLUSION The data obtained herein showed that 6d with trifluoromethyl on a pyridine ring could be a valuable leading compound for further study.
Collapse
Affiliation(s)
- Gongming Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 China
- Marine College, Shandong University (Weihai), Weihai, 264209 China
| | - Qingqing Guo
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
- Marine College, Shandong University (Weihai), Weihai, 264209 China
| | - Chao Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 China
- Marine College, Shandong University (Weihai), Weihai, 264209 China
| | - Huan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 China
| | - Wenjiao Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 China
- Marine College, Shandong University (Weihai), Weihai, 264209 China
| | - Shu Li
- Marine College, Shandong University (Weihai), Weihai, 264209 China
| | - Yang Hong
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Dequn Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 China
| |
Collapse
|
16
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
17
|
Prum S, Plumworasawat S, Chaiyadet S, Saichua P, Thanan R, Laha T, Laohaviroj M, Sripa B, Suttiprapa S. Characterization and in vitro functional analysis of thioredoxin glutathione reductase from the liver fluke Opisthorchis viverrini. Acta Trop 2020; 210:105621. [PMID: 32659283 DOI: 10.1016/j.actatropica.2020.105621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/20/2022]
Abstract
The carcinogenic liver fluke Opisthorchis viverrini causes several hepatobiliary diseases including a bile duct cancer-cholangiocarcinoma (CCA), which is a major public health problem in many countries in the Greater Mekong Sub-region. Praziquantel is the main drug against this parasite, however, reduced drug efficacy has been observed in some endemic areas. Therefore, alternative drugs are needed to prepare for praziquantel resistance in the future. The selenoprotein thioredoxin glutathione reductase (TGR) enzyme, which plays a crucial role in cellular redox balance of parasitic flatworms, has been shown as a potential drug target against these parasites. Hence, this study aimed to investigate the TGR of O. viverrini and assess its potential as a drug target. An open reading frame (ORF) that encodes O. viverrini TGR (Ov-TGR) was cloned from an O. viverrini cDNA library and the nucleotide were sequenced. The 1,812 nucleotides of the Ov-TGR full ORF encoded a polypeptide of 603 amino acid residues with a predicted molecular mass of 66 kDa. The putative amino acid sequence shared 55-96.8% similarities with TGRs from other helminths and mammals. Phylogenetic analysis revealed a close relationship of Ov-TGR with that of other trematodes. The ORF of Ov-TGR was inserted into pABC2 plasmid and transformed into Escherichia coli strain C321.ΔA to facilitate selenocysteine incorporation. The recombinant Ov-TGR (rOv-TGR-SEC) was expressed as a soluble protein and detected as a dimer form in the non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its thioredoxin reductase (TrxR) and glutathione reductase (GR) activities were detected using DTNB, Trx and GSSG substrates with the Michaelis constant (Km) of 292.6 ± 52.3 µM, 8.09 ± 1.91 µM and 13.74 ± 1.2 µM, respectively. The TGR enzyme activities were effectively inhibited by a well-known inhibitor, auranofin in a dose-dependent manner. Moreover, auranofin expressed a lethal toxic effect on both newly excysted juveniles (NEJs) and adult worms of O. viverrini in vitro. Taken together, these results indicated that Ov-TGR is crucial for O. viverrini survival and maybe a potential target for the development of novel agents against opisthorschiasis.
Collapse
Affiliation(s)
- Satya Prum
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prasert Saichua
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Pathology Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
18
|
Tripathi T, Chetri PB. Potent Inhibitors of Thioredoxin Glutathione Reductase: Grail of Anti-Schistosome Drug within Reach? ACS Infect Dis 2020; 6:893-895. [PMID: 32159329 DOI: 10.1021/acsinfecdis.0c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Species of the blood fluke Schistosoma are responsible for schistosomiasis, the second most common parasitic disease, which is prevalent particularly in poor communities. Under redox pressure, schistosomes survive in mammalian hosts with the help of thioredoxin glutathione reductase, which is an essential selenoenzyme. A recent study identified compounds with extremely potent antischistosome activity. Most importantly, certain compounds were active against all major schistosomes across different life cycle stages, where even praziquantel, the drug of choice, fails. The data offer compounds that exceed WHO standards for leads for schistosomiasis therapy activity. The work may serve as the basis for the development of new antischistosome compounds.
Collapse
Affiliation(s)
- Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong 793022, Meghalaya, India
| | - Purna B Chetri
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong 793022, Meghalaya, India
| |
Collapse
|
19
|
Sebastian-Perez V, García-Rubia A, Seif El-Din SH, Sabra ANA, El-Lakkany NM, William S, Blundell TL, Maes L, Martinez A, Campillo NE, Botros SS, Gil C. Deciphering the enzymatic target of a new family of antischistosomal agents bearing a quinazoline scaffold using complementary computational tools. J Enzyme Inhib Med Chem 2020; 35:511-523. [PMID: 31939312 PMCID: PMC7717570 DOI: 10.1080/14756366.2020.1712595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A previous phenotypic screening campaign led to the identification of a quinazoline derivative with promising in vitro activity against Schistosoma mansoni. Follow-up studies of the antischistosomal potential of this candidate are presented here. The in vivo studies in a S. mansoni mouse model show a significant reduction of total worms and a complete disappearance of immature eggs when administered concomitantly with praziquantel in comparison with the administration of praziquantel alone. This fact is of utmost importance because eggs are responsible for the pathology and transmission of the disease. Subsequently, the chemical optimisation of the structure in order to improve the metabolic stability of the parent compound was carried out leading to derivatives with improved drug-like properties. Additionally, the putative target of this new class of antischistosomal compounds was envisaged by using computational tools and the binding mode to the target enzyme, aldose reductase, was proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Ana Martinez
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Sanaa S Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Reamtong O, Simanon N, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, Anuntakarun S, Payungporn S, Phuphisut O, Adisakwattana P. Proteomic analysis of adult Schistosoma mekongi somatic and excretory-secretory proteins. Acta Trop 2020; 202:105247. [PMID: 31672487 DOI: 10.1016/j.actatropica.2019.105247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Abstract
Schistosoma mekongi is a causative agent of human schistosomiasis. There is limited knowledge of the molecular biology of S. mekongi and very few studies have examined drug targets, vaccine candidates and diagnostic biomarkers for S. mekongi. To explore the biology of S. mekongi, computational as well as experimental approaches were performed on S. mekongi males and females to identify excretory-secretory (ES) proteins and proteins that are differentially expressed between genders. According to bioinformatic prediction, the S. mekongi ES product was approximately 4.7% of total annotated transcriptome sequences. The classical secretory pathway was the main process to secrete proteins. Mass spectrometry-based quantification of male and female adult S. mekongi proteins was performed. We identified 174 and 156 differential expression of proteins in male and female worms, respectively. The dominant male-biased proteins were involved in actin filament-based processes, microtubule-based processes, biosynthetic processes and homeostatic processes. The major female-biased proteins were related to biosynthetic processes, organelle organization and signal transduction. An experimental approach identified 88 proteins in the S. mekongi secretome. The S. mekongi ES proteins mainly contributed to nutrient uptake, essential substance supply and host immune evasion. This research identifies proteins in the S. mekongi secretome and provides information on ES proteins that are differentially expressed between S. mekongi genders. These findings will contribute to S. mekongi drug and vaccine development. In addition, the study enhances our understanding of basic S. mekongi biology.
Collapse
|
21
|
Limpanont Y, Phuphisut O, Reamtong O, Adisakwattana P. Recent advances in Schistosoma mekongi ecology, transcriptomics and proteomics of relevance to snail control. Acta Trop 2020; 202:105244. [PMID: 31669533 DOI: 10.1016/j.actatropica.2019.105244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Mekong schistosomiasis caused by Schistosoma mekongi is a public health problem that occurs along the border between southern Laos and northern Cambodia. Given its restricted distribution and low prevalence, eventual eradication via an effective control program can be expected to be successful. To achieve this goal detailed knowledge of its basic biology, molecular biology, biochemistry, and pathology is urgently required. In this regard, recent studies on transcriptome analysis of adult male and female S. mekongi worms, and proteome analysis of developmental stages have been reported and are discussed here. The biology, habitat, and distribution of the snail intermediate host Neotricula aperta, which are factors in disease transmission, are discussed in this review. These have initiated renewed interest in S. mekongi research and contributed promising data that will be utilized in the generation of effective control and prevention strategies.
Collapse
|
22
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
23
|
Vairoletti F, Medeiros A, Fontán P, Meléndrez J, Tabárez C, Salinas G, Franco J, Comini MA, Saldaña J, Jancik V, Mahler G, Saiz C. Synthesis of bicyclic 1,4-thiazepines as novel anti- Trypanosoma brucei brucei agents. MEDCHEMCOMM 2019; 10:1481-1487. [PMID: 31673311 DOI: 10.1039/c9md00064j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/09/2019] [Indexed: 11/21/2022]
Abstract
1,4-Thiazepines derivatives are pharmacologically important heterocycles with different applications in medicinal chemistry. In the present work, we describe the preparation of new bicyclic thiazolidinyl-1,4-thiazepines 3 by reaction between azadithiane compounds and Michael acceptors. The reaction scope was explored and the yields were optimized. The activity of the new compounds was evaluated against Nippostrongylus brasiliensis and Caenorhabditis elegans as anthelmintic models and Trypanosoma brucei brucei. The most active compound was 3l, showing an EC50 = 2.8 ± 0.7 μM against T. b. brucei and a selectivity index >71.
Collapse
Affiliation(s)
- Franco Vairoletti
- Laboratorio de Química Farmacéutica , Departamento de Química Orgánica , Facultad de Química , Universidad de la República , Montevideo , Uruguay . ;
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes , Institut Pasteur de Montevideo , Montevideo , Uruguay.,Departamento de Bioquímica , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Pablo Fontán
- Laboratorio de Química Farmacéutica , Departamento de Química Orgánica , Facultad de Química , Universidad de la República , Montevideo , Uruguay . ;
| | - Jennifer Meléndrez
- Laboratorio de Química Farmacéutica , Departamento de Química Orgánica , Facultad de Química , Universidad de la República , Montevideo , Uruguay . ;
| | - Carlos Tabárez
- Laboratorio de Química Farmacéutica , Departamento de Química Orgánica , Facultad de Química , Universidad de la República , Montevideo , Uruguay . ;
| | - Gustavo Salinas
- Worm Biology Laboratory , Unidad Mixta Institut Pasteur de Montevideo-Facultad de Química , UdelaR , Montevideo , Uruguay
| | - Jaime Franco
- Group Redox Biology of Trypanosomes , Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes , Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Jenny Saldaña
- Laboratorio de Experimentación Animal , Depto de Ciencias Farmacéuticas , Facultad de Química , Universidad de la República , Montevideo , Uruguay
| | - Vojtech Jancik
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Toluca , Mexico
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica , Departamento de Química Orgánica , Facultad de Química , Universidad de la República , Montevideo , Uruguay . ;
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica , Departamento de Química Orgánica , Facultad de Química , Universidad de la República , Montevideo , Uruguay . ;
| |
Collapse
|
24
|
Pasche V, Laleu B, Keiser J. Early Antischistosomal Leads Identified from in Vitro and in Vivo Screening of the Medicines for Malaria Venture Pathogen Box. ACS Infect Dis 2019; 5:102-110. [PMID: 30398059 DOI: 10.1021/acsinfecdis.8b00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As part of the control and elimination strategy of human schistosomiasis, preventive chemotherapy relies on a single drug, praziquantel. Facing an almost dry drug development pipeline, screening the Pathogen Box from the Medicines for Malaria Venture (MMV), provides a unique opportunity to possibly expand the pool of potent molecules against schistosomiasis. The activity of 400 compounds from this open-access library was first screened in vitro on the larval stage of Schistosoma mansoni. The hits were then tested on adult worms. Eleven leads were identified and tested for albumin-binding and activity on adult S. haematobium. In parallel, a rudimental structure-activity relationship analysis was performed on the 112 available analogues of three leads, yielding another 30 molecules active against both larval and adult stages of S. mansoni. Seven leads, selected on druglikeness, pharmacokinetic properties, and availability, plus auranofin were tested in mice harboring a chronic S. mansoni infection. MMV022029 and MMV022478 revealed the highest worm burden reductions of 67.8 and 70.7%, respectively. This study provided a series of new potent scaffolds and pharmacophores that could be used to design and develop suitable alternative(s) to praziquantel.
Collapse
Affiliation(s)
- Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Mäder P, Rennar GA, Ventura AMP, Grevelding CG, Schlitzer M. Chemotherapy for Fighting Schistosomiasis: Past, Present and Future. ChemMedChem 2018; 13:2374-2389. [DOI: 10.1002/cmdc.201800572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Patrick Mäder
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Georg A. Rennar
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Alejandra M. Peter Ventura
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS; Justus-Liebig-Universität Gießen; Schubertstraße 81 35392 Gießen Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| |
Collapse
|
26
|
Eweas AF, Allam G. Targeting thioredoxin glutathione reductase as a potential antischistosomal drug target. Mol Biochem Parasitol 2018; 225:94-102. [DOI: 10.1016/j.molbiopara.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 11/30/2022]
|
27
|
Phuphisut O, Ajawatanawong P, Limpanont Y, Reamtong O, Nuamtanong S, Ampawong S, Chaimon S, Dekumyoy P, Watthanakulpanich D, Swierczewski BE, Adisakwattana P. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit Vectors 2018; 11:504. [PMID: 30201055 PMCID: PMC6131826 DOI: 10.1186/s13071-018-3086-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background Schistosoma mekongi is one of five major causative agents of human schistosomiasis and is endemic to communities along the Mekong River in southern Lao People’s Democratic Republic (Laos) and northern Cambodia. Sporadic cases of schistosomiasis have been reported in travelers and immigrants who have visited endemic areas. Schistosoma mekongi biology and molecular biology is poorly understood, and few S. mekongi gene and transcript sequences are available in public databases. Results Transcriptome sequencing (RNA-Seq) of male and female S. mekongi adult worms (a total of three biological replicates for each sex) were analyzed and the results demonstrated that approximately 304.9 and 363.3 million high-quality clean reads with quality Q30 (> 90%) were obtained from male and female adult worms, respectively. A total of 119,604 contigs were assembled with an average length of 1273 nt and an N50 of 2017 nt. From the contigs, 20,798 annotated protein sequences and 48,256 annotated transcript sequences were obtained using BLASTP and BLASTX searches against the UniProt Trematoda database. A total of 4658 and 3509 transcripts were predominantly expressed in male and female worms, respectively. Male-biased transcripts were mostly involved in structural organization while female-biased transcripts were typically involved in cell differentiation and egg production. Interestingly, pathway enrichment analysis suggested that genes involved in the phosphatidylinositol signaling pathway may play important roles in the cellular processes and reproductive systems of S. mekongi worms. Conclusions We present comparative transcriptomic analyses of male and female S. mekongi adult worms, which provide a global view of the S. mekongi transcriptome as well as insights into differentially-expressed genes associated with each sex. This work provides valuable information and sequence resources for future studies of gene function and for ongoing whole genome sequencing efforts in S. mekongi. Electronic supplementary material The online version of this article (10.1186/s13071-018-3086-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brett E Swierczewski
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
28
|
Kalita P, Shukla H, Gadhave K, Giri R, Tripathi T. Role of the glutaredoxin domain and FAD in the stabilization of thioredoxin glutathione reductase. Arch Biochem Biophys 2018; 656:38-45. [PMID: 30205085 DOI: 10.1016/j.abb.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Thioredoxin glutathione reductase (TGRsec) is a multi-domain flavoprotein that plays a principal role in redox homeostasis maintenance. We have previously demonstrated the role of selenocysteine in maintaining TGRsec structure-function, but the role of the glutaredoxin (Grx) domain and FAD is still unclear. In the present study, the urea-induced unfolding of recombinant Fasciola gigantica TGRsec (FgTGRsec) and its N-terminal truncated variant (ΔNTD-FgTGRsec) were examined to understand the role of the Grx domain and FAD in the stabilization of FgTGRsec and ΔNTD-FgTGRsec. Our results showed that both proteins underwent unfolding in a three state manner. First, the protein undergoes a conformational transition rendering a near-native state with no FAD bound, and then full unfolding of the apo-dimer occurs without dissociation. The Grx domain stabilized the global FgTGRsec structure and positively regulated FgTGRsec activity, and alteration in the FAD microenvironment was directly proportional to the loss of thioredoxin reductase (TrxR) and glutathione reductase activities. Based on these results, we concluded that the Grx domain stabilizes the full-length FgTGRsec protein for efficient catalysis. Thus, we suggest that in platyhelminth parasites, during evolution, the Grx domain merged with the TrxR domain to confer higher catalytic activity and provide additional structural stability to the full-length TGR.
Collapse
Affiliation(s)
- Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong- 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong- 793022, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong- 793022, India.
| |
Collapse
|
29
|
Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR). Enzyme Res 2018; 2018:3215462. [PMID: 30254758 PMCID: PMC6145155 DOI: 10.1155/2018/3215462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 07/29/2018] [Indexed: 11/29/2022] Open
Abstract
A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substrates and products are bound in rapid equilibrium fashion. The substrate GSSG exerts inhibition at moderate or high concentrations, which is concomitant with the observation of hysteretic-like progress curves. The effect of NADPH on the apparent hysteretic behavior of TGR was also studied. At low concentrations of NADPH in the presence of moderate concentrations of GSSG, atypical time progress curves were observed, consisting of an initial burst-like stage, followed by a lag whose amplitude and duration depended on the concentration of both NADPH and GSSG. Based on all the kinetic and structural evidence available on TGR, a mechanism-based model was developed. The model assumes a noncompetitive mode of inhibition by GSSG in which the disulfide behaves as an affinity label-like reagent through its binding and reduction at an alternative site, leading the enzyme into an inactive state. The critical points of the model are the persistence of residual GSSG reductase activity in the inhibited GSSG-enzyme complexes and the regeneration of the active form of the enzyme by GSH. Hence, the hysteretic-like progress curves of GSSG reduction by TGR are the result of a continuous competition between GSH and GSSG for driving the enzyme into active or inactive states, respectively. By using an arbitrary but consistent set of rate constants, the experimental full progress curves were successfully reproduced in silico.
Collapse
|
30
|
Identification of Peptide Antagonists to Thioredoxin Glutathione Reductase of Schistosoma japonicum. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9483928. [PMID: 29967790 PMCID: PMC6008883 DOI: 10.1155/2018/9483928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Abstract
Schistosomiasis is one of the world's major public health problems. Praziquantel is currently the only effective drug against schistosomiasis. As resistance of praziquantel has emerged in some endemic areas, development of new antischistosomal agents should be a high priority. In this study, a phage display peptide library was used for screening for peptide antagonists of thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR), which has been identified as an alternative drug target. Three rounds of panning produced four different fusion phages. ELISA proved that all four phages could bind to SjTGR. One peptide, JIPDys1 (aa, WPHNWWPHFKVK), reduced enzyme activity of SjTGR by more than 50%. 2 μM of the synthesized peptide of JIPDys1 inhibited the activity of TrxR, GR, and Grx of SjTGR by 32.5%, 100%, and 100%, respectively. The IC50 values of the synthetic peptide JIPDys1 for TrxR, GR, and Grx were 3.67 μM, 0.11 μM, and 0.97 μM, respectively. Based on computer simulation, it appeared that JIPDys1 binds to the substrate binding sites of glutathione reductase (GR) and glutaredoxin (Grx). Our data show that the peptide, JIPDys1 (aa, WPHNWWPHFKVK), is a promising candidate to develop novel drugs against S. japonicum which acts by binding with SjTGR and reduces enzyme activity of SjTGR.
Collapse
|
31
|
Brandstaedter C, Fritz‐Wolf K, Weder S, Fischer M, Hecker B, Rahlfs S, Becker K. Kinetic characterization of wild‐type and mutant human thioredoxin glutathione reductase defines its reaction and regulatory mechanisms. FEBS J 2017; 285:542-558. [DOI: 10.1111/febs.14357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Christina Brandstaedter
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
| | - Karin Fritz‐Wolf
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
- Max‐Planck Institute for Medical Research Heidelberg Germany
| | - Stine Weder
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
| | - Marina Fischer
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
| | - Beate Hecker
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
| | - Katja Becker
- Biochemistry and Molecular Biology Interdisciplinary Research Center Justus Liebig University Giessen Germany
| |
Collapse
|
32
|
Salinas G, Gao W, Wang Y, Bonilla M, Yu L, Novikov A, Virginio VG, Ferreira HB, Vieites M, Gladyshev VN, Gambino D, Dai S. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I). Antioxid Redox Signal 2017; 27:1491-1504. [PMID: 28463568 PMCID: PMC5678357 DOI: 10.1089/ars.2016.6816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/04/2023]
Abstract
AIMS New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. RESULTS AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. INNOVATION The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. CONCLUSIONS The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.
Collapse
Affiliation(s)
- Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Wei Gao
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
- School of Science, Beijing Forestry University, Beijing, China
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Mariana Bonilla
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay
| | - Long Yu
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Andrey Novikov
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Veridiana G. Virginio
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique B. Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marisol Vieites
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Vadim N. Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
33
|
Guevara-Flores A, Herrera-Juárez ÁM, Martínez-González JDJ, del Arenal Mena IP, Flores-Herrera Ó, Rendón JL. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala). PLoS One 2017; 12:e0182499. [PMID: 28787021 PMCID: PMC5546602 DOI: 10.1371/journal.pone.0182499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR), thioredoxin-glutathione reductase (TGR), and a putative thioredoxin reductase (TrxR) was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.
Collapse
Affiliation(s)
- Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado, D.F. México, México
| | - Álvaro Miguel Herrera-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado, D.F. México, México
| | | | - Irene Patricia del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado, D.F. México, México
| | - Óscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado, D.F. México, México
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado, D.F. México, México
- * E-mail:
| |
Collapse
|
34
|
Kapadia GJ, Soares IAO, Rao GS, Badoco FR, Furtado RA, Correa MB, Tavares DC, Cunha WR, Magalhães LG. Antiparasitic activity of menadione (vitamin K 3) against Schistosoma mansoni in BABL/c mice. Acta Trop 2017; 167:163-173. [PMID: 28017859 DOI: 10.1016/j.actatropica.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Schistosomiasis is one of the neglected tropical diseases affecting nearly quarter of a billion people in economically challenged tropical and subtropical countries of the world. Praziquantel (PZQ) is the only drug currently available to treat this parasitic disease in spite being ineffective against juvenile worms and concerns about developing resistance to treat reinfections. Our earlier in vitro viability studies demonstrated significant antiparasitic activity of menadione (MEN) (vitamin K3) against Schistosoma mansoni adult worms. To gain insight into plausible mechanism of antischistosomal activity of MEN, its effect on superoxide anion levels in adult worms were studied in vitro which showed significant increases in both female and male worms. Further confirmation of the deleterious morphological changes in their teguments and organelles were obtained by ultrastructural analysis. Genotoxic and cytotoxic studies in male Swiss mice indicated that MEN was well tolerated at the oral dose of 500mg/kg using the criteria of MNPCE frequency and PCE/RBC ratio in the bone marrow of infected animals. The in vivo antiparasitic activity of MEN was conducted in female BALB/c mice infected with S. mansoni and significant reductions (P<0.001) in total worm burden were observed at single oral doses of 40 and 400mg/kg (48.57 and 61.90%, respectively). Additionally, MEN significantly reduced (P<0.001) the number of eggs in the liver of infected mice by 53.57 and 58.76%, respectively. Similarly, histological analysis of the livers showed a significant reduction (P<0.001) in the diameter of the granulomas. Since MEN is already in use globally as an over-the-counter drug for a variety of common ailments and a dietary supplement with a safety record in par with similar products when used in recommended doses, the above antiparasitic results which compare reasonably well with PZQ, make a compelling case for considering MEN to treat S. mansoni infection in humans.
Collapse
Affiliation(s)
- Govind J Kapadia
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Ingrid A O Soares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - G Subba Rao
- Global Biotechnology Resource Center, 145 Rosewood Drive, Streamwood, IL 60107, USA
| | - Fernanda R Badoco
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Ricardo A Furtado
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Mariana B Correa
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Denise C Tavares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Wilson R Cunha
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil.
| |
Collapse
|
35
|
Eissa MM, Mossallam SF, Amer EI, Younis LK, Rashed HA. Repositioning of chlorambucil as a potential anti-schistosomal agent. Acta Trop 2017; 166:58-66. [PMID: 27836498 DOI: 10.1016/j.actatropica.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
As parasites and cancer cells share many lifestyle and behavioral resemblances, repositioning of anti-cancerous agents as anti-parasitic is quite trendy, especially those sharing the same therapeutic targets. Therefore, the current study investigated the in vitro efficacy of ascending concentrations of chlorambucil (0.5-20μg/ml) against adult Schistosoma mansoni worms, over 72h. Additionally, its in vivo effects against the different developmental stages of the worm were assessed, after an oral dose of 2.5mg/kg/day for five successive days, through evaluating the worm load reduction and worms' morphological alterations and oogram changes. In addition to tissue egg count, a histopathological study of the liver was conducted. In vitro, chlorambucil demonstrated noticeable anti-schistosomal effects in the form of progressive reductions of the worms' viability in a dose dependent manner. Complete worm death was achieved at 72h incubation with 5μg/ml drug concentration. In vivo, chlorambucil induced a significant reduction in the total worm load against all developmental stages. Its highest impact was evident against the juvenile stage, where it induced 75.8% total worm load reduction, and 89.2% and 86.7% intestinal and hepatic egg counts reduction, respectively, along with ogram alterations. Besides, it induced significant shortening of both male and female worms and promoted an amelioration of hepatic histopathology. Results show that chlorambucil possesses favorable in vitro and in vivo anti-schistosomal activity. The highest in vivo efficacy was against the juvenile stage of S. mansoni, significantly superior to praziquantel, with extended potency to the adult stage. Further studies are recommended for chlorambucil target verification and to enhance its therapeutic efficacy.
Collapse
|
36
|
de Paula Aguiar D, Brunetto Moreira Moscardini M, Rezende Morais E, Graciano de Paula R, Ferreira PM, Afonso A, Belo S, Tomie Ouchida A, Curti C, Cunha WR, Rodrigues V, Magalhães LG. Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms. PLoS One 2016; 11:e0167135. [PMID: 27875592 PMCID: PMC5119855 DOI: 10.1371/journal.pone.0167135] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR), a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD) increased, whereas the activity of Glutathione-S-Transferase (GST), Glutathione reductase (GR), and Glutathione peroxidase (GPX) decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them.
Collapse
Affiliation(s)
- Daniela de Paula Aguiar
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | | | - Enyara Rezende Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | | | - Pedro Manuel Ferreira
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Ana Afonso
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Silvana Belo
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Amanda Tomie Ouchida
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Curti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilson Roberto Cunha
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lizandra Guidi Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
- * E-mail:
| |
Collapse
|
37
|
Neves BJ, Dantas RF, Senger MR, Melo-Filho CC, Valente WCG, de Almeida ACM, Rezende-Neto JM, Lima EFC, Paveley R, Furnham N, Muratov E, Kamentsky L, Carpenter AE, Braga RC, Silva-Junior FP, Andrade CH. Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. J Med Chem 2016; 59:7075-88. [PMID: 27396732 PMCID: PMC5844225 DOI: 10.1021/acs.jmedchem.5b02038] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening (HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models for inhibition of SmTGR were developed and validated using the Organization for Economic Co-operation and Development (OECD) guidance. Using these models, we prioritized 29 compounds for further testing in two HCS platforms based on image analysis of assay plates. Among them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds representing new chemical scaffolds have activity against schistosomula and adult worms at low micromolar concentrations and therefore represent promising antischistosomal hits for further hit-to-lead optimization.
Collapse
Affiliation(s)
- Bruno J. Neves
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| | - Rafael F. Dantas
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Mario R. Senger
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Cleber C. Melo-Filho
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| | - Walter C. G. Valente
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Ana C. M. de Almeida
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - João M. Rezende-Neto
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Elid F. C. Lima
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Ross Paveley
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Nicholas Furnham
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill North Carolina 27955-7568, United States
| | - Lee Kamentsky
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, United States
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, United States
| | - Rodolpho C. Braga
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| |
Collapse
|
38
|
Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling. Int J Biol Macromol 2016; 89:152-60. [DOI: 10.1016/j.ijbiomac.2016.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
|
39
|
Bais S, Greenberg RM. TRP channels in schistosomes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:335-342. [PMID: 27496302 PMCID: PMC5196486 DOI: 10.1016/j.ijpddr.2016.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/22/2022]
Abstract
Praziquantel (PZQ) is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP) channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV) that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA) has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting. We provide an overview of transient receptor potential (TRP) channels in schistosomes and other parasitic helminths. TRP channels are important for sensory signaling, ion homeostasis, organellar trafficking, and a host of other functions. Very little work has been done on TRP channels in parasitic helminths. TRPV channels, found throughout the Metazoa, appear not to be present in parasitic platyhelminths. TRP channels in schistosomes appear to have atypical pharmacology, perhaps an entrée for therapeutic targeting.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Melo-Filho CC, Dantas RF, Braga RC, Neves BJ, Senger MR, Valente WCG, Rezende-Neto JM, Chaves WT, Muratov EN, Paveley RA, Furnham N, Kamentsky L, Carpenter AE, Silva-Junior FP, Andrade CH. QSAR-Driven Discovery of Novel Chemical Scaffolds Active against Schistosoma mansoni. J Chem Inf Model 2016; 56:1357-72. [PMID: 27253773 DOI: 10.1021/acs.jcim.6b00055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.
Collapse
Affiliation(s)
- Cleber C Melo-Filho
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| | - Rafael F Dantas
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Rodolpho C Braga
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| | - Bruno J Neves
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| | - Mario R Senger
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Walter C G Valente
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - João M Rezende-Neto
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Willian T Chaves
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Department of Chemical Technology, Odessa National Polytechnic University , 1. Shevchenko Ave., Odessa, 65000, Ukraine
| | - Ross A Paveley
- Department of Pathogen Molecular Biology & Department of Infection and Immunity, London School of Hygiene and Tropical Medicine , London WC1E 7HT, United Kingdom
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology & Department of Infection and Immunity, London School of Hygiene and Tropical Medicine , London WC1E 7HT, United Kingdom
| | - Lee Kamentsky
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, Massachusetts 02142, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, Massachusetts 02142, United States
| | - Floriano P Silva-Junior
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Carolina H Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| |
Collapse
|
41
|
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jennifer Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
42
|
Identification of a thioredoxin reductase from Babesia microti during mammalian infection. Parasitol Res 2016; 115:3219-27. [PMID: 27164832 DOI: 10.1007/s00436-016-5084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Babesia microti is the primary causative agent of human babesiosis worldwide and associated with increased human health risks and the safety of blood supply. The parasite replicates in the host's red blood cells, thus, in order to counteract the oxidative stress and toxic effects, parasites employ a thioredoxin (Trx) system to maintain a redox balance. Since thioredoxin reductase (TrxR) plays a critical role in the system, in this study, we report the cloning, expression, and functional characterization of a novel TrxR from B. microti (BmiTrxR). The complete gene BmiTrxR was obtained by amplifying the 5' and 3' regions of messenger RNA (mRNA) by RACE. The full-length complementary DNA (cDNA) of BmiTrxR was 1766 bp and contained an intact open reading frame with 1662 bp that encoded a polypeptide with 553 amino acids. Molecular weight of the predicted protein was 58.4 kDa with an isoelectric point of 6.95, similar to high molecular weight TrxR. The recombinant protein of BmiTrxR was expressed in a His-fused soluble form in Escherichia coli. The native protein BmiTrxR was identified with the mouse anti-BmiTrxR polyclonal serum by western blotting and IFAT. Moreover, the enzyme showed a disulfide reductase activity using DTNB as substrate and catalyzed the NADPH-dependent reduction of Trx. Auranofin, a known inhibitor of TrxR, completely abrogated the activity of the recombinant enzyme in vitro. These results not only contribute to the understanding of redox pathway in this parasite but also suggest that BmiTrxR could be a potential target for the development of novel strategies to control B. microti thus reducing the incidence of babesiosis.
Collapse
|
43
|
Parsonage D, Sheng F, Hirata K, Debnath A, McKerrow JH, Reed SL, Abagyan R, Poole LB, Podust LM. X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. J Struct Biol 2016; 194:180-90. [PMID: 26876147 PMCID: PMC5003402 DOI: 10.1016/j.jsb.2016.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/29/2022]
Abstract
The anti-arthritic gold-containing drug Auranofin is lethal to the protozoan intestinal parasite Entamoeba histolytica, the causative agent of human amebiasis, in both culture and animal models of the disease. A putative mechanism of Auranofin action proposes that monovalent gold, Au(I), released from the drug, can bind to the redox-active dithiol group of thioredoxin reductase (TrxR). Au(I) binding in the active site is expected to prevent electron transfer to the downstream substrate thioredoxin (Trx), thus interfering with redox homeostasis in the parasite. To clarify the molecular mechanism of Auranofin action in more detail, we determined a series of atomic resolution X-ray structures for E. histolytica thioredoxin (EhTrx) and thioredoxin reductase (EhTrxR), the latter with and without Auranofin. Only the disulfide-bonded form of the active site dithiol (Cys(140)-Cys(143)) was invariably observed in crystals of EhTrxR in spite of the addition of reductants in various crystallization trials, and no gold was found associated with these cysteines. Non-catalytic Cys(286) was identified as the only site of modification, but further mutagenesis studies using the C286Q mutant demonstrated that this site was not responsible for inhibition of EhTrxR by Auranofin. Interestingly, we obtained both of the catalytically-relevant conformations of this bacterial-like, low molecular weight TrxR in crystals without requiring an engineered disulfide linkage between Cys mutants of TrxR and Trx (as was originally done with Escherichia coli TrxR and Trx). We note that the -CXXC- catalytic motif, even if reduced, would likely not provide space sufficient to bind Au(I) by both cysteines of the dithiol group.
Collapse
Affiliation(s)
- Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang Sheng
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ken Hirata
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sharon L Reed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Larissa M Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Song LJ, Luo H, Fan WH, Wang GP, Yin XR, Shen S, Wang J, Jin Y, Zhang W, Gao H, Liu Q, Wang WL, Feng B, Yu CX. Oxadiazole-2-oxides may have other functional targets, in addition to SjTGR, through which they cause mortality in Schistosoma japonicum. Parasit Vectors 2016; 9:26. [PMID: 26791563 PMCID: PMC4721062 DOI: 10.1186/s13071-016-1301-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the world's major public health problems. Besides praziquantel (PZQ), there is currently no other effective treatment against schistosomiasis. The development of new antischistosomal agents to curb the emergence of PZQ resistance should be a high priority. Oxadiazole-2-oxides have been identified as potential antischistosomal reagents, with thioredoxin glutathione reductase (TGR) being one of their molecular targets. METHODS To develop novel treatment reagents against Schistosoma japonicum, 30 novel oxadiazole-2-oxides were synthesised and their antischistosomal activities on juvenile and adult S. japonicum were evaluated in vitro and in vivo. Their inhibitory activities against S. japonicum thioredoxin glutathione reductase (SjTGR) were also analysed. RESULTS Most of the oxadiazole-2-oxides showed good juvenile and adult S. japonica killing activities in vitro. However, the antischistosomal effects of these compounds were not positively correlated with either their inhibition of SjTGR, or with nitric oxide (NO) release. Compounds 4a, 4b, 7c, 13, 16 and 20 resulted in 87.7%, 83.1%, 87.1%, 84.6%, 90.8% and 69.5%, respectively, mortality in the adult worms, when used to treat infected mice at schistosomula stage. These mortality rates were similar to or higher than that of artemisinin. Furthermore, compounds 4a and 16 resulted in 66.7% and 69.4% reductions in the worm burdens, respectively, when infected mice were treated at the adult worm stage. These treatment effects were similar to PZQ. No differences in activity of the oxadiazole-2-oxides against female and male adult worms were observed. The toxicity of the oxadiazole-2-oxides on mammalian cells appeared to be similar to, or less than, that of PZQ. CONCLUSIONS The antischistosomal activity of the oxadiazole-2-oxides does not depend on NO production or the inhibition of SjTGR activity. There may be other functional targets of the oxadiazole-2-oxides in S. japonicum. Several of the novel oxadiazole-2-oxides synthesised in this study could be used to develop novel antischistosomal drugs and explore potential molecular targets.
Collapse
Affiliation(s)
- Li-Jun Song
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Huan Luo
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
| | - Wen-Hua Fan
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
| | - Gu-Ping Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
| | - Xu-Ren Yin
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Shuang Shen
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Jie Wang
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Yi Jin
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Wei Zhang
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Hong Gao
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Qian Liu
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
| | - Wen-Long Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
| | - Chuan-Xin Yu
- Key Laboratory on Technology for Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
- Public Health Research Center, Jiangnan University, Wuxi, 214122, China.
- Medical College, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
45
|
Gamberi T, Fiaschi T, Modesti A, Massai L, Messori L, Balzi M, Magherini F. Evidence that the antiproliferative effects of auranofin in Saccharomyces cerevisiae arise from inhibition of mitochondrial respiration. Int J Biochem Cell Biol 2015; 65:61-71. [DOI: 10.1016/j.biocel.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/17/2015] [Accepted: 05/15/2015] [Indexed: 02/04/2023]
|
46
|
Huang J, Hua W, Li J, Hua Z. Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase. Mol Med Rep 2015; 12:5787-95. [PMID: 26239395 PMCID: PMC4581810 DOI: 10.3892/mmr.2015.4119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/22/2015] [Indexed: 12/15/2022] Open
Abstract
Praziquantel (PZQ) is the treatment of choice for schistosomiasis, one of the most important but neglected tropical diseases. Recently, however, Schistosoma have exhibited reduced susceptibility to PZQ, and an urgent need to develop new drugs to treat schistosomiasis has emerged. Thioredoxin glutathione reductase (TGR) plays a crucial role in the redox balance of the parasite, combining glutaredoxin (Grx), glutathione reductase and thioredoxin reductase (TR) activities. Several compounds, including oxadiazole 2-oxides, phosphinic acid amides, isoxazolones and phosphoramidites, have been identified as agents that inhibit TGR from Schistosoma mansoni (smTGR) and exhibit anti-schistosomal activity. 4-Phenyl-1,2,5-oxadiazole-3-carbonitrile-2-oxide has also been shown to be active against TGR from Schistosoma japonicum (sjTGR). The binding sites of these inhibitors, however, remain unclear. To explore the binding interactions of these compounds, we selected six compounds to dock into the NADPH binding site, the active site of the TR domain and the Grx active site of both smTGR and sjTGR using AutoDock 4.2.5.1. The results suggested that the most favoured binding site for all compounds in either sjTGR or smTGR was the oxidised glutathione-binding pocket of the TR domain. Although all of the compounds could fit into the sjTGR site, the inhibition efficiency of these compounds towards sjTGR was marginally lower than it was towards smTGR, suggesting that it would be necessary to design specific inhibitors of TGR for different Schistosoma species. The docking results showed that all compounds docking in smTGR and sjTGR adopted similar binding modes in the TR domain. Two peptide fragments from another subunit, Phe505′–Leu508′ and Pro572′–Thr577′, played a critical role in the interactions with the inhibitors. In conclusion, the present study has revealed binding mechanisms for potential inhibitors of Schistosoma TGRs and could lead to structure-based ligand design and the development of new anti-schistosomiasis drugs.
Collapse
Affiliation(s)
- Jingwei Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Weijuan Hua
- Department of Biology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, P.R. China
| | - Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
47
|
Inhibition of Tapeworm Thioredoxin and Glutathione Pathways by an Oxadiazole N-Oxide Leads to Reduced Mesocestoides vogae Infection Burden in Mice. Molecules 2015; 20:11793-807. [PMID: 26132905 PMCID: PMC6332120 DOI: 10.3390/molecules200711793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/14/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022] Open
Abstract
Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR) is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti). This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole N2-oxide (VL16E), an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.
Collapse
|
48
|
Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase. Parasitol Res 2015; 114:2119-27. [DOI: 10.1007/s00436-015-4400-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
|
49
|
Bulman CA, Bidlow CM, Lustigman S, Cho-Ngwa F, Williams D, Rascón, Jr AA, Tricoche N, Samje M, Bell A, Suzuki B, Lim KC, Supakorndej N, Supakorndej P, Wolfe AR, Knudsen GM, Chen S, Wilson C, Ang KH, Arkin M, Gut J, Franklin C, Marcellino C, McKerrow JH, Debnath A, Sakanari JA. Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis. PLoS Negl Trop Dis 2015; 9:e0003534. [PMID: 25700363 PMCID: PMC4336141 DOI: 10.1371/journal.pntd.0003534] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/12/2015] [Indexed: 02/03/2023] Open
Abstract
Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC), and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae) can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s) of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode. Onchocerciasis or river blindness, and lymphatic filariasis, which can lead to disfiguring elephantiasis, are two neglected tropical diseases that affect millions of people, primarily in developing countries. Both diseases are caused by filariid nematodes; onchocerciasis is caused by Onchocerca volvulus and lymphatic filariasis is caused by Brugia malayi, B. timori, and Wuchereria bancrofti. Currently, there are no drugs available that are highly efficacious against adult worms; existing drugs mainly kill the first-stage larvae (microfilariae). While these drugs can reduce the transmission of infections in a population, the adult filariids (macrofilariae) can continue to produce microfilariae and perpetuate the cycle of infection. Finding a drug that could kill the adult worms would be an important tool in eliminating onchocerciasis and lymphatic filariasis. To identify potential macrofilaricidal drugs, we developed a high throughput screening method to test FDA-approved drugs on adult Brugia spp., which serves as a model for O. volvulus. Using this screening method, we identified a drug called auranofin that kills adult Onchocerca and adult Brugia spp. in vitro, inhibits the molting of O. volvulus L3s, and reduces the worm burden in an in vivo gerbil-B. pahangi model system. Auranofin is known to inhibit a critical enzyme called thioredoxin reductase in some parasite species, and subsequent testing of the effects of auranofin on the thioredoxin reductase of Brugia indicates that this may be auranofin’s mode of action in this nematode as well.
Collapse
Affiliation(s)
- Christina A. Bulman
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Chelsea M. Bidlow
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Fidelis Cho-Ngwa
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, SW Region, Cameroon
| | - David Williams
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Alberto A. Rascón, Jr
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Chemistry, San Jose State University, San Jose, California, United States of America
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Moses Samje
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, SW Region, Cameroon
| | - Aaron Bell
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Brian Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - K. C. Lim
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | | | - Prasit Supakorndej
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Alan R. Wolfe
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Giselle M. Knudsen
- UCSF Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Steven Chen
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Wilson
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Kean-Hooi Ang
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Michelle Arkin
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jiri Gut
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Franklin
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Marcellino
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of America
| | - Anjan Debnath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of America
| | - Judy A. Sakanari
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci. Exp Parasitol 2015; 149:65-73. [DOI: 10.1016/j.exppara.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|