1
|
Bou Malhab F, Hosri J, Zaytoun G, Hadi U. Trigeminal cervical complex: A neural network affecting the head and neck. Eur Ann Otorhinolaryngol Head Neck Dis 2024:S1879-7296(24)00130-3. [PMID: 39395902 DOI: 10.1016/j.anorl.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVES To introduce the trigeminal cervical complex (TCC) as a comprehensive framework for understanding the anatomical and functional scope of the afferences and efferences of the trigeminal nerve and explaining common otolaryngologic symptoms, including head and neck myofascial pain syndrome. Additionally, it explores how the bidirectional transmission of neurotransmitters contributes to the sensitization of the TCC and motor nuclei. METHODS The study was conducted as a narrative review. The authors performed a comprehensive search of multiple databases, including Medline/OVID, Embase, Scopus, and PubMed, covering publications from inception until August 2023. Both keywords and medical subject headings related to the TCC were utilized in the search. Information from 66 studies was extracted based on predetermined inclusion and exclusion criteria. RESULTS This review discusses the multiple afferent connections from cranial nerves, specifically VII, IX, X, and XI, to the TCC, and their respective efferent pathways. These connections may explain various clinical manifestations in the head and neck that cannot be attributed to other medical conditions. Additionally, the review highlights the dual sensory and motor nature of cranial nerves, emphasizing the bidirectional transmission of neurotransmitters in head and neck areas, which leads to the sensitization of both the TCC and motor nuclei innervating the cervicofacial muscles. CONCLUSION The authors hypothesize that the central and peripheral sensitization and the intricate connections of the TCC can elucidate the pathophysiology of conditions such as otalgia, tinnitus, hearing loss, vertigo, headache, cervicogenic dizziness, bruxism, and other symptoms affecting the head and neck.
Collapse
Affiliation(s)
- F Bou Malhab
- Department of Otolaryngology-Head & Neck Surgery, Saint Joseph Hospital, Beirut, Lebanon
| | - J Hosri
- Department of Otolaryngology-Head & Neck Surgery, American University of Beirut Medical Center, 11-0236, Riad El Solh 1107 2020, Beirut, Lebanon
| | - G Zaytoun
- Department of Otolaryngology-Head & Neck Surgery, American University of Beirut Medical Center, 11-0236, Riad El Solh 1107 2020, Beirut, Lebanon
| | - U Hadi
- Department of Otolaryngology-Head & Neck Surgery, American University of Beirut Medical Center, 11-0236, Riad El Solh 1107 2020, Beirut, Lebanon.
| |
Collapse
|
2
|
MacIver CL, Jones D, Green K, Szewczyk-Krolikowski K, Doring A, Tax CMW, Peall KJ. White Matter Microstructural Changes Using Ultra-Strong Diffusion Gradient MRI in Adult-Onset Idiopathic Focal Cervical Dystonia. Neurology 2024; 103:e209695. [PMID: 39110927 PMCID: PMC11319067 DOI: 10.1212/wnl.0000000000209695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Adult-onset idiopathic focal cervical dystonia (AOIFCD) involves abnormal posturing of the cervical musculature and, in some individuals, an associated head tremor. Existing neuroimaging studies have implicated key motor networks. However, measures used to date lack specificity toward underlying pathophysiologic differences. We aim to assess white matter motor pathways for localized, microstructural differences, which may aid in understanding underlying mechanisms. METHODS Individuals diagnosed with AOIFCD and an age- and sex-matched control group were prospectively recruited through the Welsh Movement Disorders Research Network. All participants underwent in-depth clinical phenotyping and MRI (structural and diffusion sequences) using ultra-strong diffusion gradients. Tractography (whole-tract median values) and tractometry (along tract profiling) were performed for key white matter motor pathways assessing diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and standard model parameters. Groups were compared using linear model analysis with Bonferroni multiple comparison correction. RESULTS Fifty participants with AOIFCD and 30 healthy control participants were recruited, with 46 with AOIFCD and 30 healthy controls included for analysis (33 without head tremor, 13 with head tremor). Significant differences were observed in the anterior thalamic radiations (lower mid-tract fractional anisotropy [estimate = -0.046, p = 3.07 × 10-3], radial kurtosis [estimate = -0.165, p = 1.42 × 10-4], f-intra-axonal signal fraction [estimate = -0.044, p = 2.78 × 10-3], p2 orientation coherence [estimate = -0.043, p = 1.64 × 10-3], higher Orientation Dispersion Index [ODI, estimate = 0.023, p = 2.22 × 10-3]) and thalamopremotor tracts (higher mid-tract mean kurtosis [estimate = 0.064, p = 7.56 × 10-4], lower Neurite Density Index [estimate = 0.062, p = 2.1 × 10-3], higher distal tract ODI [estimate = 0.062, p = 3.1 × 10-3], lower f [estimate = -0.1, p = 2.3 × 10-3], and striatopremotor tracts [proximal lower f: estimate = -0.075, p = 1.06 × 10-3]). These measures correlated with clinical measures: dystonia duration (right thalamopremotor distal ODI: r = -0.9, p = 1.29 × 10-14), psychiatric symptoms (obsessive compulsive symptoms: left anterior thalamic radiation p2 r = 0.92, p = 2.797 × 10-11), sleep quality (Sleep Disorders Questionnaire Score: left anterior thalamic radiation ODI: r = -0.84, p = 4.84 × 10-11), pain (left anterior thalamic radiation ODI: r = -0.89, p = 1.4 × 10-13), and cognitive functioning (paired associated learning task p2, r = 0.94, p = 6.68 × 10-20). DISCUSSION Overall, localized microstructural differences were identified within tracts linking the prefrontal and premotor cortices with thalamic and basal ganglia regions, suggesting pathophysiologic processes involve microstructural aberrances of motor system modulatory pathways, particularly involving intra-axonal and fiber orientation dispersion measures.
Collapse
Affiliation(s)
- Claire L MacIver
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| | - Derek Jones
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| | - Katy Green
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| | - Konrad Szewczyk-Krolikowski
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| | - Andre Doring
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| | - Chantal M W Tax
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| | - Kathryn J Peall
- From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands
| |
Collapse
|
3
|
Zhang J, Luo Y, Zhong L, Liu H, Yang Z, Weng A, Zhang Y, Zhang W, Yan Z, Xu J, Liu G, Peng K, Ou Z. Topological alterations in white matter anatomical networks in cervical dystonia. BMC Neurol 2024; 24:179. [PMID: 38802755 PMCID: PMC11129473 DOI: 10.1186/s12883-024-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Accumulating neuroimaging evidence indicates that patients with cervical dystonia (CD) have changes in the cortico-subcortical white matter (WM) bundle. However, whether these patients' WM structural networks undergo reorganization remains largely unclear. We aimed to investigate topological changes in large-scale WM structural networks in patients with CD compared to healthy controls (HCs), and explore the network changes associated with clinical manifestations. METHODS Diffusion tensor imaging (DTI) was conducted in 30 patients with CD and 30 HCs, and WM network construction was based on the BNA-246 atlas and deterministic tractography. Based on the graph theoretical analysis, global and local topological properties were calculated and compared between patients with CD and HCs. Then, the AAL-90 atlas was used for the reproducibility analyses. In addition, the relationship between abnormal topological properties and clinical characteristics was analyzed. RESULTS Compared with HCs, patients with CD showed changes in network segregation and resilience, characterized by increased local efficiency and assortativity, respectively. In addition, a significant decrease of network strength was also found in patients with CD relative to HCs. Validation analyses using the AAL-90 atlas similarly showed increased assortativity and network strength in patients with CD. No significant correlations were found between altered network properties and clinical characteristics in patients with CD. CONCLUSION Our findings show that reorganization of the large-scale WM structural network exists in patients with CD. However, this reorganization is attributed to dystonia-specific abnormalities or hyperkinetic movements that need further identification.
Collapse
Affiliation(s)
- Jiana Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Linchang Zhong
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huiming Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhengkun Yang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ai Weng
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Loução R, Burkhardt J, Wirths J, Kabbasch C, Dembek TA, Heiden P, Cirak S, Al-Fatly B, Treuer H, Visser-Vandewalle V, Hoevels M, Koy A. Diffusion tensor imaging in pediatric patients with dystonia. Neuroimage 2024; 287:120507. [PMID: 38244876 DOI: 10.1016/j.neuroimage.2024.120507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Childhood-onset dystonia is often progressive and severely impairs a child´s life. The pathophysiology is very heterogeneous and treatment responses vary in patients with dystonia. Factors influencing treatment effects remain to be elucidated. We hypothesize that differences in brain connectivity and fiber coherence contribute to the heterogeneity in treatment response among pediatric patients with inherited and acquired dystonia. METHODS Twenty patients with childhood-onset dystonia were retrospectively recruited including twelve patients with inherited or idiopathic, and eight patients with acquired dystonia (mean age 10 years; 8 female/12 male). Fiber density between the internal part of the globus pallidus and selective target regions, as well as the diffusion measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed and compared between different etiologies. RESULTS Patients with acquired dystonia presented higher fiber density to the premotor cortex and putamen and lower FA values in the thalamus compared to patients with inherited/idiopathic dystonia. MD in the premotor cortex was higher in patients with acquired dystonia, while it was lower in the thalamus. CONCLUSION Diffusion MRI reveals microstructural and network alterations in patients with dystonia of different etiologies.
Collapse
Affiliation(s)
- Ricardo Loução
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany; Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Julia Burkhardt
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Christoph Kabbasch
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany; Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bassam Al-Fatly
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Anne Koy
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Joshi P, Usova S, Jinnah HA, Sedov A, Gamaleya A, Shaikh AG, Semenova U, Tomskiy A. Effects of neck proprioceptive modulation on pallidal network connectivity in dystonia. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10.1109/NER52421.2023.10123779. [PMID: 39507348 PMCID: PMC11539203 DOI: 10.1109/ner52421.2023.10123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cervical dystonia (CD) is the third most common movement disorder affecting 1 million people worldwide. Proprioceptive modulation is the hallmark of contemporary therapies for dystonia, but the mechanism for this intervention is unclear. We studied proprioceptive influence on CD by measuring the spontaneous single-neuron responses and local field potentials (LFP) from the globus pallidus interna (GPi) in 17 CD patients (9 isolated CD and 8 with CD as a feature of generalized dystonia). The goal was to examine how high-frequency neck vibration, a putative modulator of neck proprioception changes pallidal physiology. We found that the neck vibration instantaneously alters the pallidal single neuron activity. We also found that neck vibration modulates pallido-cerebellar connectivity by changing alpha band in LFP recordings. The effects were more robust in those with isolated CD. The vibration also affects pallido-hippocampal connectivity by modulating theta-band power. These effects were more robust in CD with generalized dystonia. Vibration changed LFP only in select pallidal regions. Regions where LFP power was substantially modulated had a prominent proportion of burst subtypes of neurons, compared to pause or tonic subtypes. Such disparity in subtype was absent in regions where the LFP power was not modulated or subtly reduced with neck vibration. When changes in the theta, alpha and beta bands of the LFP recordings were compared against each other in response to vibration, high correlation was observed.
Collapse
Affiliation(s)
- Prajakta Joshi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Svetlana Usova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Hyder A Jinnah
- Department of Neurology, Pediatrics, and Genetics, Emory University,Atlanta, GA, USA
| | - Alexey Sedov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Anna Gamaleya
- Burdenko National Scientific and Practical Center for Neurosurgery Moscow, Russia
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Ulia Semenova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Tomskiy
- Burdenko National Scientific and Practical Center for Neurosurgery line Moscow, Russia
| |
Collapse
|
6
|
Ruigrok TJH, Wang X, Sabel-Goedknegt E, Coulon P, Gao Z. A disynaptic basal ganglia connection to the inferior olive: potential for basal ganglia influence on cerebellar learning. Front Syst Neurosci 2023; 17:1176126. [PMID: 37215357 PMCID: PMC10196041 DOI: 10.3389/fnsys.2023.1176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
Collapse
Affiliation(s)
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Patrice Coulon
- Institute de Neurosciences de la Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
7
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Cortico-Subcortical White Matter Bundle Changes in Cervical Dystonia and Blepharospasm. Biomedicines 2023; 11:biomedicines11030753. [PMID: 36979732 PMCID: PMC10044819 DOI: 10.3390/biomedicines11030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Dystonia is thought to be a network disorder due to abnormalities in the basal ganglia-thalamo-cortical circuit. We aimed to investigate the white matter (WM) microstructural damage of bundles connecting pre-defined subcortical and cortical regions in cervical dystonia (CD) and blepharospasm (BSP). Thirty-five patients (17 with CD and 18 with BSP) and 17 healthy subjects underwent MRI, including diffusion tensor imaging (DTI). Probabilistic tractography (BedpostX) was performed to reconstruct WM tracts connecting the globus pallidus, putamen and thalamus with the primary motor, primary sensory and supplementary motor cortices. WM tract integrity was evaluated by deriving their DTI metrics. Significant differences in mean, radial and axial diffusivity between CD and HS and between BSP and HS were found in the majority of the reconstructed WM tracts, while no differences were found between the two groups of patients. The observation of abnormalities in DTI metrics of specific WM tracts suggests a diffuse and extensive loss of WM integrity as a common feature of CD and BSP, aligning with the increasing evidence of microstructural damage of several brain regions belonging to specific circuits, such as the basal ganglia-thalamo-cortical circuit, which likely reflects a common pathophysiological mechanism of focal dystonia.
Collapse
|
9
|
MacIver CL, Tax CMW, Jones DK, Peall KJ. Structural magnetic resonance imaging in dystonia: A systematic review of methodological approaches and findings. Eur J Neurol 2022; 29:3418-3448. [PMID: 35785410 PMCID: PMC9796340 DOI: 10.1111/ene.15483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Structural magnetic resonance techniques have been widely applied in neurological disorders to better understand tissue changes, probing characteristics such as volume, iron deposition and diffusion. Dystonia is a hyperkinetic movement disorder, resulting in abnormal postures and pain. Its pathophysiology is poorly understood, with normal routine clinical imaging in idiopathic forms. More advanced tools provide an opportunity to identify smaller scale structural changes which may underpin pathophysiology. This review aims to provide an overview of methodological approaches undertaken in structural brain imaging of dystonia cohorts, and to identify commonly identified pathways, networks or regions that are implicated in pathogenesis. METHODS Structural magnetic resonance imaging studies of idiopathic and genetic forms of dystonia were systematically reviewed. Adhering to strict inclusion and exclusion criteria, PubMed and Embase databases were searched up to January 2022, with studies reviewed for methodological quality and key findings. RESULTS Seventy-seven studies were included, involving 1945 participants. The majority of studies employed diffusion tensor imaging (DTI) (n = 45) or volumetric analyses (n = 37), with frequently implicated areas of abnormality in the brainstem, cerebellum, basal ganglia and sensorimotor cortex and their interconnecting white matter pathways. Genotypic and motor phenotypic variation emerged, for example fewer cerebello-thalamic tractography streamlines in genetic forms than idiopathic and higher grey matter volumes in task-specific than non-task-specific dystonias. DISCUSSION Work to date suggests microstructural brain changes in those diagnosed with dystonia, although the underlying nature of these changes remains undetermined. Employment of techniques such as multiple diffusion weightings or multi-exponential relaxometry has the potential to enhance understanding of these differences.
Collapse
Affiliation(s)
- Claire L. MacIver
- Neuroscience and Mental Health Research InstituteDivision of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK,Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Chantal M. W. Tax
- Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK,Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Derek K. Jones
- Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research InstituteDivision of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK
| |
Collapse
|
10
|
Cerebral and cerebellar white matter tract alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN). Parkinsonism Relat Disord 2022; 98:1-6. [PMID: 35395584 DOI: 10.1016/j.parkreldis.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND To examine structural connectivity of white matter tracts in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN) dystonia and identify those ones which correlate negatively to severity of symptoms. METHODS In a group of 41 patients suffering from PKAN dystonia and an age- and gender-matched control group, white matter tractography was carried out, based on diffusion tensor imaging magnetic resonance data. Postprocessing included assessment of Quantitative Anisotropy (QA) using q-space diffeomorphic reconstruction in order to reduce influence of iron accumulation in globus pallidus of patients. RESULTS Whole brain tractography presented significantly reduced QA values in patients (0.282 ± 0.056, as compared to controls (0.325 ± 0.046, p < 0.001). 9 fiber clusters of tracts correlated negatively to the dystonia score of patients: the middle cerebellar peduncle and the tracts of both cerebellar hemispheres as well as corpus callosum, forceps minor, the superior cortico-striate tracts and the superior thalamic radiations of both cerebral hemispheres (False Discovery Rate FDR = 0.041). CONCLUSION The finding of a reduced global structural connectivity within the white matter and of negative correlation of motor system-related tracts, mainly those between the basal ganglia, cortical areas and the cerebellum, fits well to the concept of a general functional disturbance of the motor system in PKAN.
Collapse
|
11
|
Zhang Z, Cisneros E, Lee HY, Vu JP, Chen Q, Benadof CN, Whitehill J, Rouzbehani R, Sy DT, Huang JS, Sejnowski TJ, Jankovic J, Factor S, Goetz CG, Barbano RL, Perlmutter JS, Jinnah HA, Berman BD, Richardson SP, Stebbins GT, Comella CL, Peterson DA. Hold that pose: capturing cervical dystonia's head deviation severity from video. Ann Clin Transl Neurol 2022; 9:684-694. [PMID: 35333449 PMCID: PMC9082391 DOI: 10.1002/acn3.51549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Deviated head posture is a defining characteristic of cervical dystonia (CD). Head posture severity is typically quantified with clinical rating scales such as the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Because clinical rating scales are inherently subjective, they are susceptible to variability that reduces their sensitivity as outcome measures. The variability could be circumvented with methods to measure CD head posture objectively. However, previously used objective methods require specialized equipment and have been limited to studies with a small number of cases. The objective of this study was to evaluate a novel software system—the Computational Motor Objective Rater (CMOR)—to quantify multi‐axis directionality and severity of head posture in CD using only conventional video camera recordings. Methods CMOR is based on computer vision and machine learning technology that captures 3D head angle from video. We used CMOR to quantify the axial patterns and severity of predominant head posture in a retrospective, cross‐sectional study of 185 patients with isolated CD recruited from 10 sites in the Dystonia Coalition. Results The predominant head posture involved more than one axis in 80.5% of patients and all three axes in 44.4%. CMOR's metrics for head posture severity correlated with severity ratings from movement disorders neurologists using both the TWSTRS‐2 and an adapted version of the Global Dystonia Rating Scale (rho = 0.59–0.68, all p <0.001). Conclusions CMOR's convergent validity with clinical rating scales and reliance upon only conventional video recordings supports its future potential for large scale multisite clinical trials.
Collapse
Affiliation(s)
- Zheng Zhang
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth Cisneros
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Ha Yeon Lee
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Jeanne P Vu
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Qiyu Chen
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Casey N Benadof
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Jacob Whitehill
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Ryin Rouzbehani
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Dominique T Sy
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA
| | - Jeannie S Huang
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Stewart Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard L Barbano
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.,Departments of Radiology, Neuroscience, Physical Therapy, and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hyder A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.,Departments of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian D Berman
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Neurology Service, New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Cynthia L Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Peterson
- Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA.,Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
12
|
Waugh JL, Hassan A, Kuster JK, Levenstein JM, Warfield SK, Makris N, Brüggemann N, Sharma N, Breiter HC, Blood AJ. An MRI method for parcellating the human striatum into matrix and striosome compartments in vivo. Neuroimage 2021; 246:118714. [PMID: 34800665 PMCID: PMC9142299 DOI: 10.1016/j.neuroimage.2021.118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian striatum is comprised of intermingled tissue compartments, matrix and striosome. Though indistinguishable by routine histological techniques, matrix and striosome have distinct embryologic origins, afferent/efferent connections, surface protein expression, intra-striatal location, susceptibilities to injury, and functional roles in a range of animal behaviors. Distinguishing the compartments previously required post-mortem tissue and/or genetic manipulation; we aimed to identify matrix/striosome non-invasively in living humans. We used diffusion MRI (probabilistic tractography) to identify human striatal voxels with connectivity biased towards matrix-favoring or striosome-favoring regions (determined by prior animal tract-tracing studies). Segmented striatal compartments replicated the topological segregation and somatotopic organization identified in animal matrix/striosome studies. Of brain regions mapped in prior studies, our human brain data confirmed 93% of the compartment-selective structural connectivity demonstrated in animals. Test-retest assessment on repeat scans found a voxel classification error rate of 0.14%. Fractional anisotropy was significantly higher in matrix-like voxels, while mean diffusivity did not differ between the compartments. As mapped by the Talairach human brain atlas, 460 regions were significantly biased towards either matrix or striosome. Our method allows the study of striatal compartments in human health and disease, in vivo, for the first time.
Collapse
Affiliation(s)
- J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States; Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - Aao Hassan
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - J K Kuster
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Rheumatology, Allergy and Immunology Section, Massachusetts General Hospital, Boston, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Yale School of Medicine, New Haven, CN, United States; Wellcome Centre for Integrative Neuroimaging, National Institutes of Health, Bethesda, MD, United States.
| | - S K Warfield
- Department of Radiology, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - N Makris
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| | - N Brüggemann
- Department of Neurology, University of Oxford, Oxford, United Kingdom; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - N Sharma
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - H C Breiter
- Laboratory of Neuroimaging and Genetics, United States; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| |
Collapse
|
13
|
Sondergaard RE, Rockel CP, Cortese F, Jasaui Y, Pringsheim TM, Sarna JR, Monchi O, Sadikot AF, Pike BG, Martino D. Microstructural Abnormalities of the Dentatorubrothalamic Tract in Cervical Dystonia. Mov Disord 2021; 36:2192-2198. [PMID: 34050556 DOI: 10.1002/mds.28649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The dentatorubrothalamic tract (DRTT) remains understudied in idiopathic cervical dystonia (CD), despite evidence that the pathway is relevant in the pathophysiology of the disorder. OBJECTIVE The aim of this study was to examine the DRTT in patients with CD using diffusion tensor imaging (DTI)-based tractography. METHODS Magnetic resonance imaging scans from 67 participants were collected to calculate diffusion tractography metrics using a binary tractography-based DRTT template. Fractional anisotropy and diffusivity measures of left and right DRTT were computed and compared between 32 subjects with CD and 35 age-matched healthy volunteers. RESULTS Fractional anisotropy of right DRTT and mean and axial diffusivity of left DRTT were significantly reduced in patients with CD. Similar abnormalities were observed in patients with focal CD and patients with CD without tremor. DTI metrics did not correlate with disease duration or severity. CONCLUSIONS Significant reductions in DTI measures suggest microstructural abnormalities within the DRTT in CD, characterized by a tractography pattern consistent with decreased axonal integrity. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rachel E Sondergaard
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Conrad P Rockel
- Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Neuroimaging Research Unit, Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Yamile Jasaui
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Continuing Medical Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamara M Pringsheim
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Justyna R Sarna
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Abbas F Sadikot
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bruce G Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
14
|
van der Heijden ME, Kizek DJ, Perez R, Ruff EK, Ehrlich ME, Sillitoe RV. Abnormal cerebellar function and tremor in a mouse model for non-manifesting partially penetrant dystonia type 6. J Physiol 2021; 599:2037-2054. [PMID: 33369735 PMCID: PMC8559601 DOI: 10.1113/jp280978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in the Thap1 gene cause partially penetrant dystonia type 6 (DYT6). Some non-manifesting DYT6 mutation carriers have tremor and abnormal cerebello-thalamo-cortical signalling. We show that Thap1 heterozygote mice have action tremor, a reduction in cerebellar neuron number, and abnormal electrophysiological signals in the remaining neurons. These results underscore the importance of Thap1 levels for cerebellar function. These results uncover how cerebellar abnormalities contribute to different dystonia-associated motor symptoms. ABSTRACT Loss-of-function mutations in the Thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene cause partially penetrant autosomal dominant dystonia type 6 (DYT6). However, the neural abnormalities that promote the resultant motor dysfunctions remain elusive. Studies in humans show that some non-manifesting DYT6 carriers have altered cerebello-thalamo-cortical function with subtle but reproducible tremor. Here, we uncover that Thap1 heterozygote mice have action tremor that rises above normal baseline values even though they do not exhibit overt dystonia-like twisting behaviour. At the neural circuit level, we show using in vivo recordings in awake Thap1+/- mice that Purkinje cells have abnormal firing patterns and that cerebellar nuclei neurons, which connect the cerebellum to the thalamus, fire at a lower frequency. Although the Thap1+/- mice have fewer Purkinje cells and cerebellar nuclei neurons, the number of long-range excitatory outflow projection neurons is unaltered. The preservation of interregional connectivity suggests that abnormal neural function rather than neuron loss instigates the network dysfunction and the tremor in Thap1+/- mice. Accordingly, we report an inverse correlation between the average firing rate of cerebellar nuclei neurons and tremor power. Our data show that cerebellar circuitry is vulnerable to Thap1 mutations and that cerebellar dysfunction may be a primary cause of tremor in non-manifesting DYT6 carriers and a trigger for the abnormal postures in manifesting patients.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Dominic J. Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Elena K. Ruff
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Michelle E. Ehrlich
- Department of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
15
|
Contemporary functional neuroanatomy and pathophysiology of dystonia. J Neural Transm (Vienna) 2021; 128:499-508. [PMID: 33486625 PMCID: PMC8099808 DOI: 10.1007/s00702-021-02299-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022]
Abstract
Dystonia is a disabling movement disorder characterized by abnormal postures or patterned and repetitive movements due to co-contraction of muscles in proximity to muscles desired for a certain movement. Important and well-established pathophysiological concepts are the impairment of sensorimotor integration, a loss of inhibitory control on several levels of the central nervous system and changes in synaptic plasticity. These mechanisms collectively contribute to an impairment of the gating function of the basal ganglia which results in an insufficient suppression of noisy activity and an excessive activation of cortical areas. In addition to this traditional view, a plethora of animal, genetic, imaging and electrophysiological studies highlight the role of the (1) cerebellum, (2) the cerebello-thalamic connection and (3) the functional interplay between basal ganglia and the cerebellum in the pathophysiology of dystonia. Another emerging topic is the better understanding of the microarchitecture of the striatum and its implications for dystonia. The striosomes are of particular interest as they likely control the dopamine release via inhibitory striato-nigral projections. Striosomal dysfunction has been implicated in hyperkinetic movement disorders including dystonia. This review will provide a comprehensive overview about the current understanding of the functional neuroanatomy and pathophysiology of dystonia and aims to move the traditional view of a ‘basal ganglia disorder’ to a network perspective with a dynamic interplay between cortex, basal ganglia, thalamus, brainstem and cerebellum.
Collapse
|
16
|
Saenz A, Grijalba M, Mengide JP, Argañaraz R, Ford F, Mantese B. Baclofen pump with pre-brainstem catheter tip placement: technical note and case series. Childs Nerv Syst 2021; 37:203-210. [PMID: 32504173 DOI: 10.1007/s00381-020-04679-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aims to describe a new baclofen pump implantation technique with pre-brainstem catheter placement and to demonstrate the benefits that this procedure has in treating spasticity and dystonia. METHODS We described a new technique to place a baclofen pump catheter anterior to the brainstem. To illustrate the technique, we presented five patients with both spasticity and dystonia in whom conventional treatment was not effective. They each received a baclofen pump with a pre-brainstem catheter. We evaluated the results using the Ashworth scale for spasticity, the Barry-Albright scale for dystonia, and the PedsQL for quality of life assessment. Each patient was evaluated before a surgery and after 6 months of follow-up. RESULTS There were statistically significant differences in all the physical examination evaluated areas using the Barry-Albright and modified Ashworth scales between the preoperative and the postoperative period. The same applies to the results of the PedsQL quality of life scale. CONCLUSION We presented an innovative baclofen pump implantation technique with pre-brainstem catheter placement that could be a therapeutic alternative in patients with dystonia and spastic quadriparesis for whom conventional therapy is not effective.
Collapse
Affiliation(s)
- Amparo Saenz
- Division of Pediatric Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, ZC, Argentina.
| | - Miguel Grijalba
- Division of Pediatric Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, ZC, Argentina
| | - Juan Pablo Mengide
- Division of Pediatric Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, ZC, Argentina
| | - Romina Argañaraz
- Division of Pediatric Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, ZC, Argentina
| | - Fernando Ford
- Division of Kinesiology, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Beatriz Mantese
- Division of Pediatric Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, ZC, Argentina
| |
Collapse
|
17
|
Asan F, Gündüz A, E Kızıltan M. Prepulse inhibition and recovery of trigemino-cervical reflex in patients with cervical dystonia. Neurophysiol Clin 2020; 50:361-366. [PMID: 33036866 DOI: 10.1016/j.neucli.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We aimed to analyze the prepulse inhibition (PPI) and recovery rate (R) of the trigeminocervical reflex (TCR) in patients with cervical dystonia (CD). METHODS We enrolled 15 patients with CD and 16 healthy subjects. TCR was recorded over splenius capitis after infraorbital nerve stimulation. For TCR-PPI, we applied a prepulse stimulus to the left second finger 100 ms prior to the test stimulus and the percentage of change of response to test stimulus was calculated. For TCR-R, we applied paired infraorbital stimuli at interstimulus interval (ISIs) of 300 ms and the percentage of change of the second compared to the first response was calculated. RESULTS TCR-PPI and TCR-R values were higher (less inhibition and greater recovery) on both sides in the patient group compared to healthy subjects. There was high correlation between TCR-PPI and TCR-R on both sides in patients with dystonia (p < 0.005). We did not find any significant relationship between TCR-R or TCR-PPI and side of dystonic posture. CONCLUSIONS We showed disturbed modulation of TCR in CD patients. In CD, a general inhibition of the inhibitory pathways and facilitation of the excitatory pathways occur. Although TCR was recorded directly on the affected muscles in CD, symmetric abnormal TCR findings in CD suggest that these findings are probably secondary to altered function of higher order centers rather than being directly related to the pathophysiological process.
Collapse
Affiliation(s)
- Furkan Asan
- Istanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, Department of Neurology, Turkey.
| | - Ayşegül Gündüz
- Istanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, Department of Neurology, Turkey
| | - Meral E Kızıltan
- Istanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, Department of Neurology, Turkey
| |
Collapse
|
18
|
Rushmore RJ, Wilson-Braun P, Papadimitriou G, Ng I, Rathi Y, Zhang F, O’Donnell LJ, Kubicki M, Bouix S, Yeterian E, Lemaire JJ, Calabrese E, Johnson GA, Kikinis R, Makris N. 3D Exploration of the Brainstem in 50-Micron Resolution MRI. Front Neuroanat 2020; 14:40. [PMID: 33071761 PMCID: PMC7538715 DOI: 10.3389/fnana.2020.00040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
The brainstem, a structure of vital importance in mammals, is currently becoming a principal focus in cognitive, affective, and clinical neuroscience. Midbrain, pontine and medullary structures serve as the conduit for signals between the forebrain and spinal cord, are the epicenter of cranial nerve-circuits and systems, and subserve such integrative functions as consciousness, emotional processing, pain, and motivation. In this study, we parcellated the nuclear masses and the principal fiber pathways that were visible in a high-resolution T2-weighted MRI dataset of 50-micron isotropic voxels of a postmortem human brainstem. Based on this analysis, we generated a detailed map of the human brainstem. To assess the validity of our maps, we compared our observations with histological maps of traditional human brainstem atlases. Given the unique capability of MRI-based morphometric analysis in generating and preserving the morphology of 3D objects from individual 2D sections, we reconstructed the motor, sensory and integrative neural systems of the brainstem and rendered them in 3D representations. We anticipate the utilization of these maps by the neuroimaging community for applications in basic neuroscience as well as in neurology, psychiatry, and neurosurgery, due to their versatile computational nature in 2D and 3D representations in a publicly available capacity.
Collapse
Affiliation(s)
- Richard Jarrett Rushmore
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Peter Wilson-Braun
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Isaac Ng
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Yogesh Rathi
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Mathematics and Imaging, Brigham and Women’s Hospital, Boston, MA, United States
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lauren Jean O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Mathematics and Imaging, Brigham and Women’s Hospital, Boston, MA, United States
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Marek Kubicki
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward Yeterian
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Jean-Jacques Lemaire
- Service de Neurochirurgie, CHU Clermont-Ferrand, Universite Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand, France
| | - Evan Calabrese
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States
| | - G. Allan Johnson
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
- Computer Science Department, University of Bremen, Institutsleiter, Fraunhofer MEVIS, Bremen, Germany
| | - Nikos Makris
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Duggan O, Narasimham S, Govern EM, Killian O, O'Riordan S, Hutchinson M, Reilly RB. A Study of the Midbrain Network for Covert Attentional Orienting in Cervical Dystonia Patients using Dynamic Causal Modelling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3519-3522. [PMID: 31946637 DOI: 10.1109/embc.2019.8857152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding the neuronal network dynamics underlying the third most common movement disorder, cervical dystonia, can be achieved using dynamic causal modelling. Current literature establishes structures of the midbrain network for covert attentional orienting as dysfunctional in patients with cervical dystonia. One of these structures is the superior colliculus, for which it is hypothesised that deficient GABAergic activity therein causes cervical dystonia. To understand the role that this node plays in cervical dystonia, various connectivity models of the midbrain network were compared under the influence of a loom-recede visual stimulus fMRI paradigm. These models included the thalamus and striatum, crucial nodes in the direct/indirect pathways for motor movement and inhibition. The parametric empirical Bayes approach was used to quantify the difference in connection strengths across the winning models between patients and controls. Our findings demonstrated greater modulation by a looming stimulus event on the strength of connection from the striatum to the superior colliculus in patients. These results offer new means to understanding the pathophysiology of cervical dystonia.
Collapse
|
20
|
Pain in cervical dystonia: Evidence of abnormal inhibitory control. Parkinsonism Relat Disord 2019; 65:252-255. [DOI: 10.1016/j.parkreldis.2019.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 06/09/2019] [Indexed: 02/05/2023]
|
21
|
The role of pallidum in the neural integrator model of cervical dystonia. Neurobiol Dis 2019; 125:45-54. [PMID: 30677494 DOI: 10.1016/j.nbd.2019.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 01/17/2023] Open
Abstract
Dystonia is the third most common movement disorder affecting three million people worldwide. Cervical dystonia is the most common form of dystonia. Despite common prevalence the pathophysiology of cervical dystonia is unclear. Traditional view is that basal ganglia is involved in pathophysiology of cervical dystonia, while contemporary theories suggested the role of cerebellum and proprioception in the pathophysiology of cervical dystonia. It was recently proposed that the cervical dystonia is due to malfunctioning of the head neural integrator - the neuron network that normally converts head velocity to position. Most importantly the neural integrator model was inclusive of traditional proposal emphasizing the role of basal ganglia while also accommodating the contemporary view suggesting the involvement of cerebellum and proprioception. It was hypothesized that the head neural integrator malfunction is the result of impairment in cerebellar, basal ganglia, or proprioceptive feedback that converge onto the integrator. The concept of converging input from the basal ganglia, cerebellum, and proprioception to the network participating in head neural integrator explains that abnormality originating anywhere in the network can lead to the identical motor deficits - drifts followed by rapid corrective movements - a signature of neural integrator dysfunction. We tested this hypothesis in an experiment examining simultaneously recorded globus pallidal single-unit activity, synchronized neural activity (local field potential), and electromyography (EMG) measured from the neck muscles during the standard-of-care deep brain stimulation surgery in 12 cervical dystonia patients (24 hemispheres). Physiological data were collected spontaneously or during voluntary shoulder shrug activating the contralateral trapezius muscle. The activity of pallidal neurons during shoulder shrug exponentially decayed with time constants that were comparable to one measured from the pretectal neural integrator and the trapezius electromyography. These results show that evidence of abnormal neural integration is also seen in globus pallidum, and that latter is connected with the neural integrator. Pretectal single neuron responses consistently preceded the muscle activity; while the globus pallidum internus response always lagged behind the muscle activity. Globus pallidum externa had equal proportion of lag and lead neurons. These results suggest globus pallidum receive feedback from the muscles or the efference copy from the integrator or the other source of the feedback. There was bi-hemispheric asymmetry in the pallidal single-unit activity and local field potentials. The asymmetry correlated with degree of lateral head turning in cervical dystonia patients. These results suggest that bihemispheric asymmetry in the feedback leads to asymmetric dysfunction in the neural integrator causing head turning.
Collapse
|
22
|
Waugh JL, Kuster JK, Makhlouf ML, Levenstein JM, Multhaupt-Buell TJ, Warfield SK, Sharma N, Blood AJ. A registration method for improving quantitative assessment in probabilistic diffusion tractography. Neuroimage 2019; 189:288-306. [PMID: 30611874 DOI: 10.1016/j.neuroimage.2018.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/07/2023] Open
Abstract
Diffusion MRI-based probabilistic tractography is a powerful tool for non-invasively investigating normal brain architecture and alterations in structural connectivity associated with disease states. Both voxelwise and region-of-interest methods of analysis are capable of integrating population differences in tract amplitude (streamline count or density), given proper alignment of the tracts of interest. However, quantification of tract differences (between groups, or longitudinally within individuals) has been hampered by two related features of white matter. First, it is unknown to what extent healthy individuals differ in the precise location of white matter tracts, and to what extent experimental factors influence perceived tract location. Second, white matter lacks the gross neuroanatomical features (e.g., gyri, histological subtyping) that make parcellation of grey matter plausible - determining where tracts "should" lie within larger white matter structures is difficult. Accurately quantifying tractographic connectivity between individuals is thus inherently linked to the difficulty of identifying and aligning precise tract location. Tractography is often utilized to study neurological diseases in which the precise structural and connectivity abnormalities are unknown, underscoring the importance of accounting for individual differences in tract location when evaluating the strength of structural connectivity. We set out to quantify spatial variance in tracts aligned through a standard, whole-brain registration method, and to assess the impact of location mismatch on groupwise assessments of tract amplitude. We then developed a method for tract alignment that enhances the existing standard whole brain registration, and then tested whether this method improved the reliability of groupwise contrasts. Specifically, we conducted seed-based probabilistic diffusion tractography from primary motor, supplementary motor, and visual cortices, projecting through the corpus callosum. Streamline counts decreased rapidly with movement from the tract center (-35% per millimeter); tract misalignment of a few millimeters caused substantial compromise of amplitude comparisons. Alignment of tracts "peak-to-peak" is essential for accurate amplitude comparisons. However, for all transcallosal tracts registered through the whole-brain method, the mean separation distance between an individual subject's tract and the average tract (3.2 mm) precluded accurate comparison: at this separation, tract amplitudes were reduced by 74% from peak value. In contrast, alignment of subcortical tracts (thalamo-putaminal, pallido-rubral) was substantially better than alignment for cortical tracts; whole-brain registration was sufficient for these subcortical tracts. We demonstrated that location mismatches in cortical tractography were sufficient to produce false positive and false negative amplitude estimates in both groupwise and longitudinal comparisons. We then showed that our new tract alignment method substantially reduced location mismatch and improved both reliability and statistical power of subsequent quantitative comparisons.
Collapse
Affiliation(s)
- J L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States; Division of Child Neurology, Boston Children's Hospital, United States; Harvard Medical School, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - J K Kuster
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - M L Makhlouf
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Harvard-MIT HST Program, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - T J Multhaupt-Buell
- Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| | - S K Warfield
- Department of Radiology, Boston Children's Hospital, United States; Harvard Medical School, Boston, MA, United States.
| | - N Sharma
- Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| |
Collapse
|
23
|
Georgescu EL, Georgescu IA, Zahiu CDM, Şteopoaie AR, Morozan VP, Pană AŞ, Zăgrean AM, Popa D. Oscillatory Cortical Activity in an Animal Model of Dystonia Caused by Cerebellar Dysfunction. Front Cell Neurosci 2018; 12:390. [PMID: 30459559 PMCID: PMC6232371 DOI: 10.3389/fncel.2018.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
The synchronization of neuronal activity in the sensorimotor cortices is crucial for motor control and learning. This synchrony can be modulated by upstream activity in the cerebello-cortical network. However, many questions remain over the details of how the cerebral cortex and the cerebellum communicate. Therefore, our aim is to study the contribution of the cerebellum to oscillatory brain activity, in particular in the case of dystonia, a severely disabling motor disease associated with altered sensorimotor coupling. We used a kainic-induced dystonia model to evaluate cerebral cortical oscillatory activity and connectivity during dystonic episodes. We performed microinjections of low doses of kainic acid into the cerebellar vermis in mice and examined activities in somatosensory, motor and parietal cortices. We showed that repeated applications of kainic acid into the cerebellar vermis, for five consecutive days, generate reproducible dystonic motor behavior. No epileptiform activity was recorded on electrocorticogram (ECoG) during the dystonic postures or movements. We investigated the ECoG power spectral density and coherence between motor cortex, somatosensory and parietal cortices before and during dystonic attacks. During the baseline condition, we found a phenomenon of permanent adaptation with a change of baseline locomotor activity coupled to an ECoG gamma band increase in all cortices. In addition, after kainate administration, we observed an increase in muscular activity, but less signs of dystonia together with modulations of the ECoG power spectra with an increase in gamma band in motor, parietal and somatosensory cortices. Moreover, we found reduced coherence in all measured frequency bands between the motor cortex and somatosensory or parietal cortices compared to baseline. In conclusion, examination of cortical oscillatory activities in this animal model of chronic dystonia caused by cerebellar dysfunction reveals a disruption in the coordination of neuronal activity across the cortical sensorimotor/parietal network, which may underlie motor skill deficits.
Collapse
Affiliation(s)
- Elena Laura Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Ioana Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandru Răzvan Şteopoaie
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Vlad Petru Morozan
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Ştefan Pană
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
24
|
Abstract
Dystonia is a neurological disorder characterized by involuntary, repetitive movements. Although the precise mechanisms of dystonia development remain unknown, the diversity of its clinical phenotypes is thought to be associated with multifactorial pathophysiology, which is linked not only to alterations of brain organization, but also environmental stressors and gene mutations. This chapter will present an overview of the pathophysiology of isolated dystonia through the lens of applications of major neuroimaging methodologies, with links to genetics and environmental factors that play a prominent role in symptom manifestation.
Collapse
|
25
|
Berndt M, Li Y, Gora-Stahlberg G, Jochim A, Haslinger B. Impaired white matter integrity between premotor cortex and basal ganglia in writer's cramp. Brain Behav 2018; 8:e01111. [PMID: 30239158 PMCID: PMC6192408 DOI: 10.1002/brb3.1111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Writer's cramp (WC) as a focal hand dystonia is characterized by abnormal postures of the hand during writing. Impaired inhibition and maladaptive plasticity in circuits linking the basal ganglia and sensorimotor cortices have been described. In particular, a dysfunction of lateral premotor cortices has been associated with impaired motor control in WC. We applied diffusion tensor imaging to identify changes in white matter connectivity between premotor regions and important cortical and subcortical structures. METHODS Whole brain white matter tracts were reconstructed in 18 right-handed WC patients and 18 matched controls, using probabilistic fiber tracking. We restricted our analyses to left-hemispheric fibers between the middle frontal gyrus (MFG) and basal ganglia, thalamus, primary motor, and sensory cortex. Diffusion parameters (fractional anisotropy and linear anisotropy) were compared between both groups. RESULTS A significant reduction in fractional anisotropy values was shown for patients (mean ± SD: 0.37 ± 0.02) vs. controls (0.39 ± 0.03) regarding fibers between the left-sided MFG and the putamen (p < 0.05). The same applied for linear anisotropy values in this connection (p < 0.05). CONCLUSIONS Our results suggest an impaired structural connectivity between the left-hemispheric MFG and putamen with a loss of equally aligned fibers in WC patients. This could reflect a structural basis for functional findings interpreted as altered inhibition and plasticity, both within the premotor cortex and the basal ganglia, that at last lead to the clinical symptoms of WC.
Collapse
Affiliation(s)
- Maria Berndt
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Yong Li
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Gina Gora-Stahlberg
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| |
Collapse
|
26
|
Choudhury S, Singh R, Chatterjee P, Trivedi S, Shubham S, Baker MR, Kumar H, Baker SN. Abnormal Blink Reflex and Intermuscular Coherence in Writer's Cramp. Front Neurol 2018; 9:517. [PMID: 30013510 PMCID: PMC6037196 DOI: 10.3389/fneur.2018.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Writer's cramp (WC) is a task-specific focal hand dystonia presenting with pain, stiffness and/or tremor while writing. We explored the involvement of cortical and brainstem circuits by measuring intermuscular coherence (IMC) and pre-pulse inhibition (PPI) of the blink reflex. Methods: IMC was measured in 10 healthy controls and 20 WC patients (10 with associated tremor) while they performed a precision grip task at different force levels. Blink responses were evaluated in 9 healthy controls and 10 WC patients by stimulating the right supraorbital nerve and recording surface EMG from the orbicularis oculi muscles bilaterally. PPI involved conditioning this stimulation with a prior shock to the right median nerve (100 ms interval), and measuring the reduction in the R2 component of the blink reflex. Results: Significant IMC at 3-7 Hz was present in WC patients, but not in healthy controls. Compared to healthy controls, in WC patients the R2 component of the blink reflex showed significantly less PPI. IMC at 3-7 Hz could reliably discriminate WC patients from healthy controls. Conclusion: Cortical or sub-cortical circuits generating theta (3-7 Hz) oscillations might play an important role in the pathogenesis of WC. Moreover, the lack of PPI implicates abnormalities in brainstem inhibition in the emergence of WC. IMC may merit further development as an electrodiagnostic test for focal dystonia.
Collapse
Affiliation(s)
- Supriyo Choudhury
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Ravi Singh
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Payel Chatterjee
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Santosh Trivedi
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Shantanu Shubham
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Mark R. Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Institute of Neurosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hrishikesh Kumar
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Stuart N. Baker
- Institute of Neurosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Isolated focal dystonia phenotypes are associated with distinct patterns of altered microstructure. NEUROIMAGE-CLINICAL 2018; 19:805-812. [PMID: 30013924 PMCID: PMC6024227 DOI: 10.1016/j.nicl.2018.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/21/2023]
Abstract
Objective Isolated adult-onset focal dystonia is considered a network disorder with disturbances to the motor basal ganglia and cerebellar circuits playing a pathophysiological role, but why specific body regions become affected remains unknown. We aimed to use diffusion tensor imaging to determine if the two most common phenotypes of focal dystonia are associated with distinguishing microstructural changes affecting the motor network. Methods Fifteen blepharospasm patients, 20 cervical dystonia patients, and 30 age- and sex-matched healthy controls were recruited. Maps of fractional anisotropy and mean diffusivity were analyzed using a voxel-based approach and an automated region-of-interest technique to evaluate deep gray matter nuclei. Correlations between diffusion measures and dystonia severity were tested, and post hoc discriminant analyses were conducted. Results Voxel-based analyses revealed significantly reduced fractional anisotropy in the right cerebellum and increased mean diffusivity in the left caudate of cervical dystonia patients compared to controls, as well as lower fractional anisotropy in the right cerebellum in cervical dystonia patients relative to blepharospasm patients. In addition to reduced fractional anisotropy in the bilateral caudate nucleus of cervical dystonia patients relative to controls and blepharospasm patients, region-of-interest analyses revealed significantly reduced fractional anisotropy in the right globus pallidus internus and left red nucleus of blepharospasm patients compared to both controls and cervical dystonia patients. Diffusivity measures in the red nucleus of blepharospasm patients correlated with disease severity. In a three-group discriminant analysis, participants were correctly classified with only modest reliability (67-75%), but in a two-group discriminant analysis, patients could be distinguished from each other with high reliability (83-100%). Conclusions Different focal dystonia phenotypes are associated with distinct patterns of altered microstructure within constituent regions of basal ganglia and cerebellar circuits.
Collapse
Key Words
- BSP, blepharospasm
- Basal ganglia
- Blepharospasm
- CD, cervical dystonia
- Cerebellum
- Cervical dystonia
- DTI, diffusion tensor imaging
- Diffusion tensor imaging
- FA, fractional anisotropy
- HC, healthy control
- JRS, Jankovic Rating Scale
- MD, mean diffusivity
- MNI, Montreal Neurological Institute
- ROI, region of interest
- TWSTRS, Toronto Western Spasmodic Torticollis Rating Scale
Collapse
|
28
|
Yokochi F, Kato K, Iwamuro H, Kamiyama T, Kimura K, Yugeta A, Okiyama R, Taniguchi M, Kumada S, Ushiba J. Resting-State Pallidal-Cortical Oscillatory Couplings in Patients With Predominant Phasic and Tonic Dystonia. Front Neurol 2018; 9:375. [PMID: 29904367 PMCID: PMC5990626 DOI: 10.3389/fneur.2018.00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) improves the symptoms of dystonia. The improvement processes of dystonic movements (phasic symptoms) and tonic symptoms differ. Phasic symptoms improve rapidly after starting DBS treatment, but tonic symptoms improve gradually. This difference implies distinct neuronal mechanisms for phasic and tonic symptoms in the underlying cortico-basal ganglia neuronal network. Phasic symptoms are related to the pallido-thalamo-cortical pathway. The pathway related to tonic symptoms has been assumed to be different from that for phasic symptoms. In the present study, local field potentials of the globus pallidus internus (GPi) and globus pallidus externus (GPe) and electroencephalograms from the motor cortex (MCx) were recorded in 19 dystonia patients to analyze the differences between the two types of symptoms. The 19 patients were divided into two groups, 10 with predominant phasic symptoms (phasic patients) and 9 with predominant tonic symptoms (tonic patients). To investigate the distinct features of oscillations and functional couplings across the GPi, GPe, and MCx by clinical phenotype, power and coherence were calculated over the delta (2-4 Hz), theta (5-7 Hz), alpha (8-13 Hz), and beta (14-35 Hz) frequencies. In phasic patients, the alpha spectral peaks emerged in the GPi oscillatory activities, and alpha GPi coherence with the GPe and MCx was higher than in tonic patients. On the other hand, delta GPi oscillatory activities were prominent, and delta GPi-GPe coherence was significantly higher in tonic than in phasic patients. However, there was no significant delta coherence between the GPi/GPe and MCx in tonic patients. These results suggest that different pathophysiological cortico-pallidal oscillations are related to tonic and phasic symptoms.
Collapse
Affiliation(s)
- Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kenji Kato
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tsutomu Kamiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Katsuo Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Akihiro Yugeta
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Makoto Taniguchi
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Satoko Kumada
- Department of Pediatric Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
29
|
Berman BD, Pollard RT, Shelton E, Karki R, Smith-Jones PM, Miao Y. GABA A Receptor Availability Changes Underlie Symptoms in Isolated Cervical Dystonia. Front Neurol 2018; 9:188. [PMID: 29670567 PMCID: PMC5893646 DOI: 10.3389/fneur.2018.00188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/12/2018] [Indexed: 11/28/2022] Open
Abstract
GABAA receptor availability changes within sensorimotor regions have been reported in some isolated forms of dystonia. Whether similar abnormalities underlie symptoms in cervical dystonia is not known. In the present study, a total of 15 cervical dystonia patients and 15 age- and sex-matched controls underwent 11C-flumazenil PET/CT scanning. The density of available GABAA receptors was estimated using a Simplified Reference Tissue Model 2. Group differences were evaluated using a two-sample T-test, and correlations with dystonia severity, as measured by the Toronto Western Spasmodic Torticollis Rating Scale, and disease duration were evaluated using a regression analysis. Voxel-based analyses revealed increased GABAA availability within the right precentral gyrus in brain motor regions previously associated with head turning and the left parahippocampal gyrus. GABAA availability within the bilateral cerebellum was negatively correlated with dystonia severity, and GABAA availability within the right thalamus and a variety of cerebellar and cortical regions were negatively correlated with disease duration. While GABAA availability changes within primary motor areas could represent a partial compensatory response to loss of inhibition within sensorimotor network, GABAergic signaling impairment within the cerebellum may be a key contributor to dystonia severity.
Collapse
Affiliation(s)
- Brian D Berman
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neurology Section, Denver VA Medical Center, Denver, CO, United States
| | - Rebecca Tran Pollard
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Erika Shelton
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ramesh Karki
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter M Smith-Jones
- Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Abstract
Dystonia can be seen in a number of different phenotypes that may arise from different etiologies. The pathophysiological substrate of dystonia is related to three lines of research. The first postulate a loss of inhibition which may account for the excess of movement and for the overflow phenomena. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Finally, there are strong pieces of evidence from animal and human studies suggesting that alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation may play a pivotal role in primary dystonia. These working hypotheses have been generalized in all form of dystonia. On the other hand, several pieces of evidence now suggest that the pathophysiology may be slightly different in the different types of dystonia. Therefore, in the present review, we would like to discuss the neural mechanisms underlying the different forms of dystonia to disentangle the different weight and role of environmental and predisposing factors.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Diane Ruge
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
31
|
Disrupted superior collicular activity may reveal cervical dystonia disease pathomechanisms. Sci Rep 2017; 7:16753. [PMID: 29196716 PMCID: PMC5711841 DOI: 10.1038/s41598-017-17074-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Cervical dystonia is a common neurological movement disorder characterised by muscle contractions causing abnormal movements and postures affecting the head and neck. The neural networks underpinning this condition are incompletely understood. While animal models suggest a role for the superior colliculus in its pathophysiology, this link has yet to be established in humans. The present experiment was designed to test the hypothesis that disrupted superior collicular processing is evident in affected patients and in relatives harbouring a disease-specific endophenotype (abnormal temporal discrimination). The study participants were 16 cervical dystonia patients, 16 unaffected first-degree relatives with abnormal temporal discrimination, 16 unaffected first-degree relatives with normal temporal discrimination and 16 healthy controls. The response of participant’s superior colliculi to looming stimuli was assessed by functional magnetic resonance imaging. Cervical dystonia patients and relatives with abnormal temporal discrimination demonstrated (i) significantly reduced superior collicular activation for whole brain and region of interest analysis; (ii) a statistically significant negative correlation between temporal discrimination threshold and superior collicular peak values. Our results support the hypothesis that disrupted superior collicular processing is involved in the pathogenesis of cervical dystonia. These findings, which align with animal models of cervical dystonia, shed new light on pathomechanisms in humans.
Collapse
|
32
|
Blood AJ, Waugh JL, Münte TF, Heldmann M, Domingo A, Klein C, Breiter HC, Lee LV, Rosales RL, Brüggemann N. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism. NEUROIMAGE-CLINICAL 2017. [PMID: 29527488 PMCID: PMC5842648 DOI: 10.1016/j.nicl.2017.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP) suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively) can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either “matrix-weighted”, or “striosome-weighted” connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset. Previous work suggested striosomes might degenerate preferentially in early XDP. We developed a DTI tractography method to assess striosome and matrix integrity. Striosomal afferents to putamen were elevated in XDP, despite reduced putamen volume. Connectivity was particularly elevated from the insula (two to three-fold). Striosome connectivity strength was not associated with disease duration.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Psychiatry, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Division of Child Neurology, Boston Children's Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Psychiatry, MGH, Boston, MA, USA; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lillian V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Raymond L Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
33
|
Sedov A, Popov V, Shabalov V, Raeva S, Jinnah HA, Shaikh AG. Physiology of midbrain head movement neurons in cervical dystonia. Mov Disord 2017; 32:904-912. [PMID: 28218416 DOI: 10.1002/mds.26948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Early theories for cervical dystonia, as promoted by Hassler, emphasized the role of the midbrain interstitial nucleus of Cajal. Focus then shifted to the basal ganglia, and it was further supported with the success of deep brain stimulation. Contemporary theories suggested the role of the cerebellum, but even more recent hypotheses renewed interest in the midbrain. Although the pretectum was visited on several occasions, we still do not know about the physiology of midbrain neurons in cervical dystonia. METHODS We analyzed the unique database of pretectal neurons collected in the 1970s and 1980s during historic stereotactic surgeries aimed to treat cervical dystonia. This database is valuable because such recordings could otherwise never be obtained from humans. RESULTS We found the following 3 types of eye or neck movement sensitivity: eye-only neurons responded to pure vertical eye movements, neck-only neurons were sensitive to pure neck movements, and the combined eye-neck neurons responded to eye and neck movements. There were the 2 neuronal subtypes: burst-tonic and tonic. The eye-neck or eye-only neurons sustained their activity during eccentric gaze holding. In contrast, the response of neck-only and eye-neck neurons exponentially decayed during neck movements. CONCLUSIONS Modern quantitative analysis of a historic database of midbrain single units from patients with cervical dystonia might support novel hypotheses for normal and abnormal head movements. This data, collected almost 4 decades ago, must be carefully viewed, especially because it was acquired using a less sophisticated technology available at that time and the aim was not to address specific hypothesis, but to make an accurate lesion providing optimal relief from dystonia. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexey Sedov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Valentin Popov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Burdenko Scientific Research Neurosurgery Institute, Moscow, Russia
| | | | - Svetlana Raeva
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Aasef G Shaikh
- Department of Neurology, Emory University, Atlanta, Georgia, USA.,Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA.,Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Neurology Service and Daroff-Dell'Osso Ocular Motility Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Prudente CN, Stilla R, Singh S, Buetefisch C, Evatt M, Factor SA, Freeman A, Hu XP, Hess EJ, Sathian K, Jinnah HA. A Functional Magnetic Resonance Imaging Study of Head Movements in Cervical Dystonia. Front Neurol 2016; 7:201. [PMID: 27895619 PMCID: PMC5108767 DOI: 10.3389/fneur.2016.00201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 12/24/2022] Open
Abstract
Cervical dystonia (CD) is a neurological disorder characterized by abnormal movements and postures of the head. The brain regions responsible for these abnormal movements are not well understood, because most imaging techniques for assessing regional brain activity cannot be used when the head is moving. Recently, we mapped brain activation in healthy individuals using functional magnetic resonance imaging during isometric head rotation, when muscle contractions occur without actual head movements. In the current study, we used the same methods to explore the neural substrates for head movements in subjects with CD who had predominantly rotational abnormalities (torticollis). Isometric wrist extension was examined for comparison. Electromyography of neck and hand muscles ensured compliance with tasks during scanning, and any head motion was measured and corrected. Data were analyzed in three steps. First, we conducted within-group analyses to examine task-related activation patterns separately in subjects with CD and in healthy controls. Next, we directly compared task-related activation patterns between participants with CD and controls. Finally, considering that the abnormal head movements in CD occur in a consistently patterned direction for each individual, we conducted exploratory analyses that involved normalizing data according to the direction of rotational CD. The between-group comparisons failed to reveal any significant differences, but the normalization procedure in subjects with CD revealed that isometric head rotation in the direction of dystonic head rotation was associated with more activation in the ipsilateral anterior cerebellum, whereas isometric head rotation in the opposite direction was associated with more activity in sensorimotor cortex. These findings suggest that the cerebellum contributes to abnormal head rotation in CD, whereas regions in the cerebral cortex are involved in opposing the involuntary movements.
Collapse
Affiliation(s)
| | - Randall Stilla
- Department of Neurology, Emory University , Atlanta, GA , USA
| | - Shivangi Singh
- Department of Neurology, Emory University , Atlanta, GA , USA
| | - Cathrin Buetefisch
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Marian Evatt
- Department of Neurology, Emory University, Atlanta, GA, USA; Atlanta Parkinson's Consortium Center, Atlanta VAMC, Decatur, GA, USA
| | | | - Alan Freeman
- Department of Neurology, Emory University , Atlanta, GA , USA
| | - Xiaoping Philip Hu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University , Atlanta, GA , USA
| | - Ellen J Hess
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - K Sathian
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, USA; Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Brüggemann N, Heldmann M, Klein C, Domingo A, Rasche D, Tronnier V, Rosales RL, Jamora RDG, Lee LV, Münte TF. Neuroanatomical changes extend beyond striatal atrophy in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 2016; 31:91-97. [DOI: 10.1016/j.parkreldis.2016.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/09/2016] [Accepted: 07/22/2016] [Indexed: 01/09/2023]
|
36
|
Shaikh AG, Zee DS, Crawford JD, Jinnah HA. Cervical dystonia: a neural integrator disorder. Brain 2016; 139:2590-2599. [PMID: 27324878 DOI: 10.1093/brain/aww141] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/01/2016] [Indexed: 02/03/2023] Open
Abstract
Ocular motor neural integrators ensure that eyes are held steady in straight-ahead and eccentric positions of gaze. Abnormal function of the ocular motor neural integrator leads to centripetal drifts of the eyes with consequent gaze-evoked nystagmus. In 2002 a neural integrator, analogous to that in the ocular motor system, was proposed for the control of head movements. Recently, a counterpart of gaze-evoked eye nystagmus was identified for head movements; in which the head could not be held steady in eccentric positions on the trunk. These findings lead to a novel pathophysiological explanation in cervical dystonia, which proposed that the abnormalities of head movements stem from a malfunctioning head neural integrator, either intrinsically or as a result of impaired cerebellar, basal ganglia, or peripheral feedback. Here we briefly recapitulate the history of the neural integrator for eye movements, then further develop the idea of a neural integrator for head movements, and finally discuss its putative role in cervical dystonia. We hypothesize that changing the activity in an impaired head neural integrator, by modulating feedback, could treat dystonia.
Collapse
Affiliation(s)
- Aasef G Shaikh
- 1 Department of Neurology, Case Western Reserve University, Cleveland, OH, USA 2 Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, Cleveland, OH, USA
| | - David S Zee
- 3 Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - J Douglas Crawford
- 4 Centre for Vision Research and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, ON, Canada
| | - Hyder A Jinnah
- 5 Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
Waugh JL, Kuster JK, Levenstein JM, Makris N, Multhaupt-Buell TJ, Sudarsky LR, Breiter HC, Sharma N, Blood AJ. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias. PLoS One 2016; 11:e0155302. [PMID: 27171035 PMCID: PMC4865047 DOI: 10.1371/journal.pone.0155302] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. METHODS We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. RESULTS Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. CONCLUSIONS Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.
Collapse
Affiliation(s)
- Jeff L. Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Division of Child Neurology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States of America
- * E-mail:
| | - John K. Kuster
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States of America
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States of America
| | - Jacob M. Levenstein
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States of America
| | - Nikos Makris
- Center for Morphometric Analysis, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States of America
| | | | - Lewis R. Sudarsky
- Department of Neurology, Brigham and Women’s Hospital, Boston MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Hans C. Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States of America
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States of America
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Brigham and Women’s Hospital, Boston MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Anne J. Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States of America
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States of America
| |
Collapse
|
38
|
Schneider TM, Deistung A, Biedermann U, Matthies C, Ernestus RI, Volkmann J, Heiland S, Bendszus M, Reichenbach JR. Susceptibility Sensitive Magnetic Resonance Imaging Displays Pallidofugal and Striatonigral Fiber Tracts. Oper Neurosurg (Hagerstown) 2016; 12:330-338. [DOI: 10.1227/neu.0000000000001256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND
The pallidofugal and striatonigral fiber tracts form a functional part of the basal ganglionic neuronal networks. For deep brain stimulation, a surgical procedure applied in the treatment of Parkinson disease and dystonia, precise localization of pallidofugal pathways may be of particular clinical relevance for correct electrode positioning.
OBJECTIVE
To investigate whether the pallidofugal and striatonigral pathways can be visualized with magnetic resonance imaging in vivo by exploiting their intrinsic magnetic susceptibility.
METHODS
Three-dimensional gradient-echo imaging of 5 volunteers was performed on a 7 T magnetic resonance imaging system. To demonstrate that the displayed tubular structures in the vicinity of the subthalamic nucleus and substantia nigra truly represent fiber tracts rather than veins, gradient-echo data of a formalin-fixated brain and a volunteer during inhalation of ambient air and carbogen were collected at 3 T. Susceptibility weighted images, quantitative susceptibility maps, and effective transverse relaxation maps were reconstructed and the depiction of fiber tracts was qualitatively assessed.
RESULTS
High-resolution susceptibility-based magnetic resonance imaging contrasts enabled visualization of pallidofugal and striatonigral fiber tracts noninvasively at 3 T and 7 T. We verified that the stripe-like pattern observed on susceptibility-sensitive images is not caused by veins crossing the internal capsule but by fiber tracts traversing the internal capsule.
CONCLUSION
Pallidofugal and striatonigral fiber tracts have been visualized in vivo for the first time by using susceptibility-sensitive image contrasts. Considering the course of pallidofugal pathways, in particular for deep brain stimulation procedures in the vicinity of the subthalamic nucleus, could provide landmarks for optimal targeting during stereotactic planning.
Collapse
Affiliation(s)
- Till M Schneider
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Jena, Germany
| | - Uta Biedermann
- Institute of Anatomy I, Jena University Hospital—Friedrich Schiller University Jena, Jena, Germany
| | - Cordula Matthies
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, Würzburg University Hospital, Würzburg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
39
|
Pavese N, Tai YF. Genetic and degenerative disorders primarily causing other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:507-523. [PMID: 27432681 DOI: 10.1016/b978-0-444-53485-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will discuss the contributions of structural and functional imaging to the diagnosis and management of genetic and degenerative diseases that lead to the occurrence of movement disorders. We will mainly focus on Huntington's disease, Wilson's disease, dystonia, and neurodegeneration with brain iron accumulation, as they are the more commonly encountered clinical conditions within this group.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Brain Sciences, Imperial College London, UK; Aarhus University, Denmark.
| | - Yen F Tai
- Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
40
|
Pinheiro GLS, Guimarães RP, Piovesana LG, Campos BM, Campos LS, Azevedo PC, Torres FR, Amato-Filho AC, França MC, Lopes-Cendes I, Cendes F, D'Abreu A. White Matter Microstructure in Idiopathic Craniocervical Dystonia. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5. [PMID: 26056610 PMCID: PMC4454992 DOI: 10.7916/d86972h6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/01/2022]
Abstract
Background Dystonias are hyperkinetic movement disorders characterized by involuntary muscle contractions resulting in abnormal torsional movements and postures. Recent neuroimaging studies in idiopathic craniocervical dystonia (CCD) have uncovered the involvement of multiple areas, including cortical ones. Our goal was to evaluate white matter (WM) microstructure in subjects with CCD using diffusion tensor imaging (DTI) analysis. Methods We compared 40 patients with 40 healthy controls. Patients were then divided into subgroups: cervical dystonia, blepharospasm, blepharospasm + oromandibular dystonia, blepharospasm + oromandibular dystonia + cervical dystonia, using tract-based spatial statistics. We performed a region of interest-based analysis and tractography as confirmatory tests. Results There was no significant difference in the mean fractional anisotropy (FA) and mean diffusivity (MD) between the groups in any analysis. Discussion The lack of DTI changes in CCD suggests that the WM tracts are not primarily affected.
Collapse
Affiliation(s)
- Giordanna L S Pinheiro
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Rachel P Guimarães
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Luiza G Piovesana
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Brunno M Campos
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Lidiane S Campos
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Paula C Azevedo
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fabio R Torres
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Augusto C Amato-Filho
- Department of Radiology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Marcondes C França
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Campinas, Brazil ; Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Campinas, Brazil ; Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Anelyssa D'Abreu
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Campinas, Brazil ; Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
41
|
Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH, Sander TH, Litvak V, Kühn AA. Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain 2015; 138:1894-906. [PMID: 25935723 DOI: 10.1093/brain/awv109] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement in dystonia that has been recently reported using functional magnetic resonance imaging and fibre tracking.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Ashwani Jha
- 3 Sobell Department of Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Antje Bock
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Julius Huebl
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Andreas Horn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Gerd-Helge Schneider
- 4 Department of Neurosurgery, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Tillmann H Sander
- 5 Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| | - Vladimir Litvak
- 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Andrea A Kühn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 6 Berlin School of Mind and Brain, Charité - University Medicine Berlin, Unter den Linden 6, 10099 Berlin,Germany Berlin, Germany 7 NeuroCure, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
42
|
van Pelt-Sprangers MJM, Geijteman ECT, Alsma J, Boere IA, Mathijssen RHJ, Schuit SCE. Oromandibular dystonia: a serious side effect of capecitabine. BMC Cancer 2015; 15:115. [PMID: 25850956 PMCID: PMC4358849 DOI: 10.1186/s12885-015-1132-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Capecitabine has activity against several types of cancer. In 10-15% of patients treated with capecitabine, treatment is discontinued because of serious adverse reactions, mostly within the first weeks of treatment. CASE PRESENTATION A 56 year-old female patient presented at the emergency department after ten days of chemotherapy with progressive airway obstruction and complaints of numbness of the tongue. She also had difficulty swallowing and was unable to speak. Laboratory findings were completely normal and no co-medication was used, in particular no dopamine antagonists. CONCLUSION The case highlights the need for awareness that capecitabine may potentially lead to severe life-threatening complaints of oromandibular dystonia. We hypothesize that capecitabine passed the blood brain barrier which led to a disruption within the basal ganglia in this case. Prompt treatment with an anticholinergic drug and cessation of capecitabine in the patient case led to disappearance of complaints.
Collapse
|
43
|
Evinger CL. Animal Models of Focal Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci 2014; 34:5529-38. [PMID: 24741043 DOI: 10.1523/jneurosci.4745-13.2014] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.
Collapse
|
45
|
Vo A, Sako W, Niethammer M, Carbon M, Bressman SB, Uluğ AM, Eidelberg D. Thalamocortical Connectivity Correlates with Phenotypic Variability in Dystonia. Cereb Cortex 2014; 25:3086-94. [PMID: 24860017 DOI: 10.1093/cercor/bhu104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dystonia is a brain disorder characterized by abnormal involuntary movements without defining neuropathological changes. The disease is often inherited as an autosomal-dominant trait with incomplete penetrance. Individuals with dystonia, whether inherited or sporadic, exhibit striking phenotypic variability, with marked differences in the somatic distribution and severity of clinical manifestations. In the current study, we used magnetic resonance diffusion tensor imaging to identify microstructural changes associated with specific limb manifestations. Functional MRI was used to localize specific limb regions within the somatosensory cortex. Microstructural integrity was preserved when assessed in subrolandic white matter regions somatotopically related to the clinically involved limbs, but was reduced in regions linked to clinically uninvolved (asymptomatic) body areas. Clinical manifestations were greatest in subjects with relatively intact microstructure in somatotopically relevant white matter regions. Tractography revealed significant phenotype-related differences in the visualized thalamocortical tracts while corticostriatal and corticospinal pathways did not differ between groups. Cerebellothalamic microstructural abnormalities were also seen in the dystonia subjects, but these changes were associated with genotype, rather than with phenotypic variation. The findings suggest that the thalamocortical motor system is a major determinant of dystonia phenotype. This pathway may represent a novel therapeutic target for individuals with refractory limb dystonia.
Collapse
Affiliation(s)
- An Vo
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Wataru Sako
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Maren Carbon
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Susan B Bressman
- Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Aziz M Uluğ
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
46
|
Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 2014; 28:944-57. [PMID: 23893451 DOI: 10.1002/mds.25527] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/06/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
This review will consider the knowledge that neuroimaging studies have provided to the understanding of the anatomy of dystonia. Major advances have occurred in the use of neuroimaging for dystonia in the past 2 decades. At present, the most developed imaging approaches include whole-brain or region-specific studies of structural or diffusion changes, functional imaging using fMRI or positron emission tomography (PET), and metabolic imaging using fluorodeoxyglucose PET. These techniques have provided evidence that regions other than the basal ganglia are involved in dystonia. In particular, there is increasing evidence that primary dystonia can be viewed as a circuit disorder, involving the basal ganglia-thalamo-cortical and cerebello-thalamo-cortical pathways. This suggests that a better understanding of the dysfunction in each region in the network and their interactions are important topics to address. Current views of interpretation of imaging data as cause or consequence of dystonia, and the postmortem correlates of imaging data are presented. The application of imaging as a tool to monitor therapy and its use as an outcome measure will be discussed. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Stéphane Lehéricy
- Institut du Cerveau et de la Moelle (ICM) epiniere, Centre de NeuroImagerie de Recherche (CENIR), Paris, France.
| | | | | | | | | |
Collapse
|
47
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
48
|
Torres CV, Manzanares R, Sola RG. Integrating Diffusion Tensor Imaging-Based Tractography into Deep Brain Stimulation Surgery: A Review of the Literature. Stereotact Funct Neurosurg 2014; 92:282-90. [DOI: 10.1159/000362937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|
49
|
Bova JA, Sergent AW. Chiropractic care using a functional neurologic approach for idiopathic cervical dystonia in a 59-year-old woman. J Chiropr Med 2013; 12:60-5. [PMID: 24294147 DOI: 10.1016/j.jcm.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/11/2013] [Accepted: 04/26/2013] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The purpose of this case report is to describe the care and outcomes of a patient with cervical dystonia who was treated using chiropractic and other alternative medicine interventions. CLINICAL FEATURES A 59-year-old woman had an 11-year history of cervical dystonia. She had an uncontrollable 60° leftward head rotation upon shutting her eyes and had spasmodic contractions that caused fatigue. INTERVENTION AND OUTCOME The management consisted of blue-lensed glasses, vibration stimulation, spinal manipulation, and eye-movement exercises. Within the first week of treatment, she had a reduction in symptoms, which was documented using a functional numeric scale, and improved posture, which was assessed using measurements from her midsternal line to the center of her chin. CONCLUSION This patient with cervical dystonia responded to the use of conservative, nonpharmacological treatment procedures that consisted of chiropractic care using a functional neurologic approach aimed at improving her spasmodic contractions and function.
Collapse
|
50
|
Bradnam L, Barry C. The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J Neurosci 2013; 33:18358-67. [PMID: 24259561 PMCID: PMC6618800 DOI: 10.1523/jneurosci.3544-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 12/15/2022] Open
Abstract
Isolated focal dystonia is a neurological disorder that manifests as repetitive involuntary spasms and/or aberrant postures of the affected body part. Craniocervical dystonia involves muscles of the eye, jaw, larynx, or neck. The pathophysiology is unclear, and effective therapies are limited. One mechanism for increased muscle activity in craniocervical dystonia is loss of inhibition involving the trigeminal sensory nuclear complex (TSNC). The TSNC is tightly integrated into functionally connected regions subserving sensorimotor control of the neck and face. It mediates both excitatory and inhibitory reflexes of the jaw, face, and neck. These reflexes are often aberrant in craniocervical dystonia, leading to our hypothesis that the TSNC may play a central role in these particular focal dystonias. In this review, we present a hypothetical extended brain network model that includes the TSNC in describing the pathophysiology of craniocervical dystonia. Our model suggests the TSNC may become hyperexcitable due to loss of tonic inhibition by functionally connected motor nuclei such as the motor cortex, basal ganglia, and cerebellum. Disordered sensory input from trigeminal nerve afferents, such as aberrant feedback from dystonic muscles, may continue to potentiate brainstem circuits subserving craniocervical muscle control. We suggest that potentiation of the TSNC may also contribute to disordered sensorimotor control of face and neck muscles via ascending and cortical descending projections. Better understanding of the role of the TSNC within the extended neural network contributing to the pathophysiology of craniocervical dystonia may facilitate the development of new therapies such as noninvasive brain stimulation.
Collapse
Affiliation(s)
- Lynley Bradnam
- Applied Brain Research Laboratory, Centre for Neuroscience
- Effectiveness of Therapy Group, Centre for Clinical Change and Healthcare Research, School of Medicine, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Christine Barry
- Applied Brain Research Laboratory, Centre for Neuroscience
- Department of Anatomy and Histology School of Medicine, and
| |
Collapse
|