1
|
Duan P, Yu YL, Cheng YN, Nie MH, Yang Q, Xia LH, Ji YX, Pan ZY. Exosomal miR-1a-3p derived from glucocorticoid-stimulated M1 macrophages promotes the adipogenic differentiation of BMSCs in glucocorticoid-associated osteonecrosis of the femoral head by targeting Cebpz. J Nanobiotechnology 2024; 22:648. [PMID: 39438865 PMCID: PMC11494760 DOI: 10.1186/s12951-024-02923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND By interacting with bone marrow mesenchymal stem cells (BMSCs) and regulating their function through exosomes, bone macrophages play crucial roles in various bone-related diseases. Research has highlighted a notable increase in the number of M1 macrophages in glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Nevertheless, the intricate crosstalk between M1 macrophages and BMSCs in the glucocorticoid-stimulated environment has not been fully elucidated, and the underlying regulatory mechanisms involved in the occurrence of GA-ONFH remain unclear. METHODS We employed in vivo mouse models and clinical samples from GA-ONFH patients to investigate the interactions between M1 macrophages and BMSCs. Immunofluorescence staining was used to assess the colocalization of M1 macrophages and BMSCs. Flow cytometry and transcriptomic analysis were performed to evaluate the impact of exosomes derived from normal (n-M1) and glucocorticoid-stimulated M1 macrophages (GC-M1) on BMSC differentiation. Additionally, miR-1a-3p expression was altered in vitro and in vivo to assess its role in regulating adipogenic differentiation. RESULTS In vivo, the colocalization of M1 macrophages and BMSCs was observed, and an increase in M1 macrophage numbers and a decrease in bone repair capabilities were further confirmed in both GA-ONFH patients and mouse models. Both n-M1 and GC-M1 were identified as contributors to the inhibition of osteogenic differentiation in BMSCs to a certain extent via exosome secretion. More importantly, exosomes derived from GC-M1 macrophages exhibited a heightened capacity to regulate the adipogenic differentiation of BMSCs, which was mediated by miR-1a-3p. In vivo and in vitro, miR-1a-3p promoted the adipogenic differentiation of BMSCs by targeting Cebpz and played an important role in the onset and progression of GA-ONFH. CONCLUSION We demonstrated that exosomes derived from GC-M1 macrophages disrupt the balance between osteogenic and adipogenic differentiation in BMSCs, contributing to the pathogenesis of GA-ONFH. Inhibiting miR-1a-3p expression, both in vitro and in vivo, significantly mitigates the preferential adipogenic differentiation of BMSCs, thus slowing the progression of GA-ONFH. These findings provide new insights into the regulatory mechanisms underlying GA-ONFH and highlight potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yong-Le Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan-Nan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Meng-Han Nie
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Qing Yang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Liang-Hui Xia
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yan-Xiao Ji
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China.
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Zhen-Yu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Abstract
PURPOSE Dental implant osseointegration comprises two types of bone formation-contact and distance osteogenesis-which result in bone formation originating from the implant surface or bone edges, respectively. The physicochemical properties of the implant surface regulate initial contact osteogenesis by directly tuning the osteoprogenitor cells in the peri-implant environment. However, whether these implant surface properties can regulate osteoprogenitor cells distant from the implant remains unclear. Innate immune cells, including neutrophils and macrophages, govern bone metabolism, suggesting their involvement in osseointegration and distance osteogenesis. This narrative review discusses the role of innate immunity in osseointegration and the effects of implant surface properties on distant osteogenesis, focusing on innate immune regulation. STUDY SELECTION The role of innate immunity in bone formation and the effects of implant surface properties on innate immune function were reviewed based on clinical, animal, and in vitro studies. RESULTS Neutrophils and macrophages are responsible for bone formation during osseointegration, via inflammatory mediators. The microroughness and hydrophilic status of titanium implants have the potential to alleviate this inflammatory response of neutrophils, and induce an anti-inflammatory response in macrophages, to tune both contact and distance osteogenesis through the activation of osteoblasts. Thus, the surface micro-roughness and hydrophilicity of implants can regulate the function of distant osteoprogenitor cells through innate immune cells. CONCLUSIONS Surface modification of implants aimed at regulating innate immunity may be useful in promoting further osteogenesis and overcoming the limitations encountered in severe situations, such as early loading protocol application.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
3
|
Vu EK, Karkache IY, Pham A, Koroth J, Bradley EW. Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice. J Cell Mol Med 2024; 28:e70081. [PMID: 39261913 PMCID: PMC11390340 DOI: 10.1111/jcmm.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Diet-induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti-inflammatory agents. Prior reports show that myeloid progenitor-directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high-fat/high-sugar (HFD) diet. Micro-CT analyses demonstrated that HFD-feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3-ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3-ablated cells exhibited a four-fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2-positve cells within bone defects was significantly higher in Hdac3-deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet-induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
Collapse
Affiliation(s)
- Elizabeth K. Vu
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ismael Y. Karkache
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
| | - Anthony Pham
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Jinsha Koroth
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Elizabeth W. Bradley
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
- Stem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
4
|
Batoon L, Koh AJ, Millard SM, Grewal J, Choo FM, Kannan R, Kinnaird A, Avey M, Teslya T, Pettit AR, McCauley LK, Roca H. Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation. Bone Res 2024; 12:43. [PMID: 39103355 DOI: 10.1038/s41413-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 08/07/2024] Open
Abstract
Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN+) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN+ osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix+ cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN+ osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor+ and osterix+ osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Amy Jean Koh
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Susan Marie Millard
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Jobanpreet Grewal
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Fang Ming Choo
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Rahasudha Kannan
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Aysia Kinnaird
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Megan Avey
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Tatyana Teslya
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Allison Robyn Pettit
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI, 48109, USA.
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
6
|
Gu L, Huang R, Ni N, Zhou R, Su Y, Gu P, Zhang D, Fan X. Mg-Cross-Linked Alginate Hydrogel Induces BMSC/Macrophage Crosstalk to Enhance Bone Tissue Regeneration via Dual Promotion of the Ligand-Receptor Pairing of the OSM/miR-370-3p-gp130 Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30685-30702. [PMID: 38859670 DOI: 10.1021/acsami.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Macrophages play a pivotal role in the crosstalk between the immune and skeletal systems, while Mg-based biomaterials demonstrate immunomodulatory capabilities in this procedure. However, the mechanism of how Mg2+ promotes osteogenesis through the interplay of bone marrow-derived mesenchymal stem cells (BMSCs) and macrophages remains undescribed. Here, we demonstrated that a Mg-cross-linked alginate hydrogel exerted a dual enhancement of BMSCs osteogenic differentiation through the ligand-receptor pairing of the OSM/miR-370-3p-gp130 axis. On the one hand, Mg2+, released from the Mg-cross-linked hydrogel, stimulates bone marrow-derived macrophages to produce and secrete more OSM. On the other hand, Mg2+ lowers the miR-370-3p level in BMSCs and in turn, reverses its suppression on gp130. Then, the OSM binds to the gp130 heterodimer receptor and activates intracellular osteogenic programs in BMSCs. Taken together, this study reveals a novel cross-talk pattern between the skeletal and immune systems under Mg2+ stimulation. This study not only brings new insights into the immunomodulatory properties of Mg-based biomaterials for orthopedic applications but also enriches the miRNA regulatory network and provides a promising target to facilitate bone regeneration in large bone defects.
Collapse
Affiliation(s)
- Li Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Huang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ni Ni
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rong Zhou
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yun Su
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dandan Zhang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
7
|
Lu D, Zhang Y, Liang S, Li Y, Qing J, Gu L, Xu X, Wang Z, Gao X, Liu H, Zhang X, Zhou Y, Zhang P. M2 Macrophages Guide Periosteal Stromal Cell Recruitment and Initiate Bone Injury Regeneration. Biomedicines 2024; 12:1205. [PMID: 38927412 PMCID: PMC11200943 DOI: 10.3390/biomedicines12061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The periosteum plays a critical role in bone repair and is significantly influenced by the surrounding immune microenvironment. In this study, we employed 10× single-cell RNA sequencing to create a detailed cellular atlas of the swine cranial periosteum, highlighting the cellular dynamics and interactions essential for cranial bone injury repair. We noted that such injuries lead to an increase in M2 macrophages, which are key in modulating the periosteum's immune response and driving the bone regeneration process. These macrophages actively recruit periosteal stromal cells (PSCs) by secreting Neuregulin 1 (NRG1), a crucial factor in initiating bone regeneration. This recruitment process emphasizes the critical role of PSCs in effective bone repair, positioning them as primary targets for therapeutic interventions. Our results indicate that enhancing the interaction between M2 macrophages and PSCs could significantly improve the outcomes of treatments aimed at cranial bone repair and regeneration.
Collapse
Affiliation(s)
- Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingfei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shimin Liang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lanxin Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiuyun Xu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zeying Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
8
|
Li L, Liu Y, Qian X, Zhou L, Fan Y, Yang X, Luo K, Chen Y. Modulating the phenotype and function of bone marrow-derived macrophages via mandible and femur osteoblasts. Int Immunopharmacol 2024; 132:112000. [PMID: 38583238 DOI: 10.1016/j.intimp.2024.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Various studies have been investigated the phenotypic and functional distinctions of craniofacial and long bone cells involved in bone regeneration. However, the process of bone tissue regeneration after bone grafting involves complicated interactions between different cell types at the donor-recipient site. Additionally, differences in alterations of the immune microenvironment at the recipient site remained to be explored. Osteoblasts (OBs) and macrophages (MØ) play essential roles in the bone restoration and regeneration processes in the bone and immune systems, respectively. The modulation of MØ on OBs has been extensively explored in the literature, whereas limited research has been conducted on the influence of OBs on the MØ phenotype and function. In the present study, OBs from the mandible and femur (MOBs and FOBs, respectively) promoted cranial defect regeneration in rats, with better outcomes noted in the MOBs-treated group. After MOBs transplantation, a significant inflammatory response was induced, accompanied by an early increase in IL-10 secretion. And then, there was an upregulation in M2-MØ-related cell markers and inflammatory factor expression. Condition media (CM) of OBs mildly inhibited apoptosis in MØ, enhanced their migration and phagocytic functions, and concurrently increased iNOS and Arg1 expression, with MOB-CM demonstrating more pronounced effects compared to FOB-CM. In conclusion, our investigation showed that MOBs and FOBs have the ability to modulate MØ phenotype and function, with MOBs exhibiting a stronger regulatory potential. These findings provide a new direction for improving therapeutic strategies for bone regeneration in autologous bone grafts from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Ling Zhou
- Fujian Provincial Governmental Hospital, Fuzhou 350003, People's Republic of China
| | - Yujie Fan
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, People's Republic of China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
9
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Rahmani NR, Belluomo R, Kruyt MC, Gawlitta D, Joosten LAB, Weinans H, Croes M. Trained innate immunity modulates osteoblast and osteoclast differentiation. Stem Cell Rev Rep 2024; 20:1121-1134. [PMID: 38478316 PMCID: PMC11087362 DOI: 10.1007/s12015-024-10711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 05/12/2024]
Abstract
Macrophages are key regulators in bone repair and regeneration. Recent studies have shown that long-term epigenetic changes and metabolic shifts occur during specific immune training of macrophages that affect their functional state, resulting in heightened (trained) or reduced (tolerant) responses upon exposure to a second stimulus. This is known as innate immune memory. Here, we study the impact of macrophages' memory trait on osteoblast differentiation of human mesenchymal stromal cells (hMSCs) and osteoclast differentiation. An in vitro trained immunity protocol of monocyte-derived macrophages was employed using inactivated Candida albicans and Bacillus Calmette-Guérin (BCG) to induce a 'trained' state and Pam3CSK4 (PAM) and Lipopolysaccharides (LPS) to induce a 'tolerance' state. Macrophages were subsequently cocultured with hMSCs undergoing osteogenic differentiation during either resting (unstimulated) or inflammatory conditions (restimulated with LPS). Alkaline phosphatase activity, mineralization, and cytokine levels (TNF, IL-6, oncostatin M and SDF-1α) were measured. In addition, macrophages underwent osteoclast differentiation. Our findings show that trained and tolerized macrophages induced opposing results. Under resting conditions, BCG-trained macrophages enhanced ALP levels (threefold), while under inflammatory conditions this was found in the LPS-tolerized macrophages (fourfold). Coculture of hMSCs with trained macrophages showed mineralization while tolerized macrophages inhibited the process under both resting and inflammatory conditions. While osteoclast differentiation was not affected in trained-macrophages, this ability was significantly loss in tolerized ones. This study further confirms the intricate cross talk between immune cells and bone cells, highlighting the need to consider this interaction in the development of personalized approaches for bone regenerative medicine.
Collapse
Affiliation(s)
- N R Rahmani
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - R Belluomo
- Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Developmental Biomedical Engineering, Twente University, Enschede, the Netherlands
| | - D Gawlitta
- Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - L A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomechanical Engineering, Technical University Delft, Delft, the Netherlands
| | - M Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
11
|
Capobianco CA, Hankenson KD, Knights AJ. Temporal dynamics of immune-stromal cell interactions in fracture healing. Front Immunol 2024; 15:1352819. [PMID: 38455063 PMCID: PMC10917940 DOI: 10.3389/fimmu.2024.1352819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Bone fracture repair is a complex, multi-step process that involves communication between immune and stromal cells to coordinate the repair and regeneration of damaged tissue. In the US, 10% of all bone fractures do not heal properly without intervention, resulting in non-union. Complications from non-union fractures are physically and financially debilitating. We now appreciate the important role that immune cells play in tissue repair, and the necessity of the inflammatory response in initiating healing after skeletal trauma. The temporal dynamics of immune and stromal cell populations have been well characterized across the stages of fracture healing. Recent studies have begun to untangle the intricate mechanisms driving the immune response during normal or atypical, delayed healing. Various in vivo models of fracture healing, including genetic knockouts, as well as in vitro models of the fracture callus, have been implemented to enable experimental manipulation of the heterogeneous cellular environment. The goals of this review are to (1): summarize our current understanding of immune cell involvement in fracture healing (2); describe state-of-the art approaches to study inflammatory cells in fracture healing, including computational and in vitro models; and (3) identify gaps in our knowledge concerning immune-stromal crosstalk during bone healing.
Collapse
Affiliation(s)
- Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Knights
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
13
|
Wang YM, Shen JT. Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. J Appl Biomater Funct Mater 2024; 22:22808000241266487. [PMID: 39129376 DOI: 10.1177/22808000241266487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Collapse
Affiliation(s)
- Ya-Ming Wang
- Department of Endocrine, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| | - Jiang-Tao Shen
- Department of Orthopedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| |
Collapse
|
14
|
Pan C, Zhang C, Lin Z, Liang Z, Cui Y, Shang Z, Wei Y, Chen F. Disulfidptosis-related Protein RPN1 may be a Novel Anti-osteoporosis Target of Kaempferol. Comb Chem High Throughput Screen 2024; 27:1611-1628. [PMID: 38213143 DOI: 10.2174/0113862073273655231213070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Osteoporosis (OP) is an age-related skeletal disease. Kaempferol can regulate bone mesenchymal stem cells (BMSCs) osteogenesis to improve OP, but its mechanism related to disulfidptosis, a newly discovered cell death mechanism, remains unclear. OBJECTIVE The study aimed to investigate the biological function and immune mechanism of disulfidptosis- related ribophorin I (RPN1) in OP and to experimentally confirm that RPN1 is the target for the treatment of OP with kaempferol. METHODS Differential expression analysis was conducted on disulfide-related genes extracted from the GSE56815 and GSE7158 datasets. Four machine learning algorithms identified disease signature genes, with RPN1 identified as a significant risk factor for OP through the nomogram. Validation of RPN1 differential expression in OP patients was performed using the GSE56116 dataset. The impact of RPN1 on immune alterations and biological processes was explored. Predictive ceRNA regulatory networks associated with RPN1 were generated via miRanda, miRDB, and TargetScan databases. Molecular docking estimated the binding model between kaempferol and RPN1. The targeting mechanism of kaempferol on RPN1 was confirmed through pathological HE staining and immunohistochemistry in ovariectomized (OVX) rats. RESULTS RPN1 was abnormally overexpressed in the OP cohort, associated with TNF signaling, hematopoietic cell lineage, and NF-kappa B pathway. Immune infiltration analysis showed a positive correlation between RPN1 expression and CD8+ T cells and resting NK cells, while a negative correlation with CD4+ naive T cells, macrophage M1, T cell gamma delta, T cell follicular helper cells, activated mast cells, NK cells, and dendritic cells, was found. Four miRNAs and 17 lncRNAs associated with RPN1 were identified. Kaempferol exhibited high binding affinity (-7.2 kcal/mol) and good stability towards the RPN1. The experimental results verified that kaempferol could improve bone microstructure destruction and reverse the abnormally high expression of RPN1 in the femur of ovariectomized rats. CONCLUSION RPN1 may be a new diagnostic biomarker in patients with OP, and may serve as a new target for kaempferol to improve OP.
Collapse
Affiliation(s)
- Chengzhen Pan
- Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chi Zhang
- Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zonghan Lin
- Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhou Liang
- Yulin Orthopedic Hospital of Integrated Traditional Chinese and Western Medicine, Yulin, Guangxi, China
| | - Yinhang Cui
- Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhihao Shang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanxun Wei
- Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Feng Chen
- Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
15
|
King JL, Richey B, Yang D, Olsen E, Muscatelli S, Hake ME. Ketorolac and bone healing: a review of the basic science and clinical literature. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:673-681. [PMID: 37688640 DOI: 10.1007/s00590-023-03715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Although the efficacy of ketorolac in pain management and the short duration of use align well with current clinical practice guidelines, few studies have specifically evaluated the impact of ketorolac on bony union after fracture or surgery. The purpose of this study was to review the current basic science and clinical literature on the use of ketorolac for pain management after fracture and surgery and the subsequent risk of delayed union or nonunion. Animal studies demonstrate a dose-dependent risk of delayed union in rodents treated with high doses of ketorolac for 4 weeks or greater; however, with treatment for 7 days or low doses, there is no evidence of risk of delayed union or nonunion. Current clinical evidence has also shown a dose-dependent increased risk of pseudoarthrosis and nonunion after post-operative ketorolac administration in orthopedic spine surgery. However, other orthopedic subspecialities have not demonstrated increased risk of delayed union or nonunion with the use of peri-operative ketorolac administration. While evidence exists that long-term ketorolac use may represent risks with regard to fracture healing, insufficient evidence currently exists to recommend against short-term ketorolac use that is limited to the peri-operative period. LEVEL OF EVIDENCE V: Narrative Review.
Collapse
Affiliation(s)
- Jesse Landon King
- Department of Orthopaedic Surgery, University of Michigan, Michigan Medicine, 1500 E. Medical Center Drive, 2912 Taubman Center, Box 5328, Ann Arbor, MI, 48109-5328, USA.
| | - Bradley Richey
- Department of Orthopaedic Surgery, University of Michigan, Michigan Medicine, 1500 E. Medical Center Drive, 2912 Taubman Center, Box 5328, Ann Arbor, MI, 48109-5328, USA
| | - Daniel Yang
- Department of Orthopaedic Surgery, University of Michigan, Michigan Medicine, 1500 E. Medical Center Drive, 2912 Taubman Center, Box 5328, Ann Arbor, MI, 48109-5328, USA
| | - Eric Olsen
- Department of Orthopaedic Surgery, University of Michigan, Michigan Medicine, 1500 E. Medical Center Drive, 2912 Taubman Center, Box 5328, Ann Arbor, MI, 48109-5328, USA
| | - Stefano Muscatelli
- Department of Orthopaedic Surgery, University of Michigan, Michigan Medicine, 1500 E. Medical Center Drive, 2912 Taubman Center, Box 5328, Ann Arbor, MI, 48109-5328, USA
| | - Mark E Hake
- Department of Orthopaedic Surgery, University of Michigan, Michigan Medicine, 1500 E. Medical Center Drive, 2912 Taubman Center, Box 5328, Ann Arbor, MI, 48109-5328, USA
| |
Collapse
|
16
|
Shirazi S, Huang CC, Kang M, Lu Y, Leung KS, Pitol-Palin L, Gomes-Ferreira PHS, Okamoto R, Ravindran S, Cooper LF. Evaluation of nanoscale versus hybrid micro/nano surface topographies for endosseous implants. Acta Biomater 2024; 173:199-216. [PMID: 37918471 DOI: 10.1016/j.actbio.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
We examined the effect of a nanoscale titanium surface topography (D) versus two hybrid micro/nanoscale topographies (B and OS) on adherent mesenchymal stem cells (MSCs) and bone marrow derived macrophages (BMMs) function in cell culture and in vivo. In the in vitro study, compared to OS and B surfaces, D surface induced earlier and greater cell spreading, and earlier and profound mRNA expression of RUNX2, Osterix and BMP2 in MSCs. D surface induced earlier and higher expression of RUNX2 and BMP2 and lower expression of inflammatory genes in implant adherent cells in vivo. Measurement of osteogenesis at implant surfaces showed greater bone-to-implant contact at D versus OS surfaces after 21 days. We explored the cell population on the D and OS implant surfaces 24 h after placement using single-cell RNA sequencing and identified distinct cell clusters including macrophages, neutrophils and B cells. D surface induced lower expression and earlier reduction of inflammatory genes expression in BMMs in vitro. BMMs on D, B and OS surfaces demonstrated a marked increase of BMP2 expression after 1 and 3 days, and this increase was significantly higher on D surface at day 3. Our data implicates a dynamic process that may be influenced by nanotopography at multiple stages of osseointegration including initial immunomodulation, recruitment of MSCs and later osteoblastic differentiation leading to bone matrix production and mineralization. The results suggest that a nanoscale topography (D) favorably modulates adherent macrophage polarization toward anti-inflammatory and regenerative phenotypes and promotes the osteoinductive phenotype of adherent mesenchymal stem cells. STATEMENT OF SIGNIFICANCE: Our manuscript contains original data developed to define effects of a novel nanotopography on the process of osseointegration at the cell and tissue level. Few studies have compared the effects of a nanoscale surface versus the more typical hybrid micro/nano-scale surfaces used today. We have utilized single-cell RNA sequencing for the first time to identify earliest cell populations on implant surfaces in vivo. We provide data indicating that the nanoscale surface acts upon both osteoprogenitor and immune cell (macrophages) to alter the process of bone formation in a surface-specific manner. This work represents new observations regarding osseointegration and immunomodulation.
Collapse
Affiliation(s)
- Sajjad Shirazi
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA; Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Yu Lu
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kasey S Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Letícia Pitol-Palin
- Diagnosis and Surgery Department, São Paulo State University (UNESP), School of Dentistry, Araçatuba, 16018-805, Brazil
| | | | - Roberta Okamoto
- Basic Sciences Department, São Paulo State University (UNESP), School of Dentistry, Araçatuba, 16018-805, Brazil
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Ma L, Li M, Komasa S, Hontsu S, Hashimoto Y, Okazaki J, Maekawa K. Effect of Er:YAG Pulsed Laser-Deposited Hydroxyapatite Film on Titanium Implants on M2 Macrophage Polarization In Vitro and Osteogenesis In Vivo. Int J Mol Sci 2023; 25:349. [PMID: 38203519 PMCID: PMC10778790 DOI: 10.3390/ijms25010349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In a previous study, we successfully coated hydroxyapatite (HAp) onto titanium (Ti) plates using the erbium-doped yttrium aluminum garnet pulsed-laser deposition (Er:YAG-PLD) method. In this study, we performed further experiments to validate the in vitro osteogenic properties, macrophage polarization, and in vivo osseointegration activity of HAp-coated Ti (HAp-Ti) plates and screws. Briefly, we coated a HAp film onto the surfaces of Ti plates and screws via Er:YAG-PLD. The surface morphological, elemental, and crystallographic analyses confirmed the successful surface coating. The macrophage polarization and osteogenic induction were evaluated in macrophages and rat bone marrow mesenchymal stem cells, and the in vivo osteogenic properties were studied. The results showed that needle-shaped nano-HAp promoted the early expression of osteogenic and immunogenic genes in the macrophages and induced excellent M2 polarization properties. The calcium deposition and osteocalcin production were significantly higher in the HAp-Ti than in the uncoated Ti. The implantation into rat femurs revealed that the HAp-coated materials had superior osteoinductive and osseointegration activities compared with the Ti, as assessed by microcomputed tomography and histology. Thus, HAp film on sandblasted Ti plates and screws via Er:YAG-PLD enhances hard-tissue differentiation, macrophage polarization, and new bone formation in tissues surrounding implants both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Ma
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Shigeki Hontsu
- Department of Biomedical Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Japan;
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan;
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Kenji Maekawa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| |
Collapse
|
18
|
Pappert M, Khosla S, Doolittle M. Influences of Aged Bone Marrow Macrophages on Skeletal Health and Senescence. Curr Osteoporos Rep 2023; 21:771-778. [PMID: 37688671 PMCID: PMC10724341 DOI: 10.1007/s11914-023-00820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the role of macrophages in the regulation of skeletal health with age, particularly in regard to both established and unexplored mechanisms in driving inflammation and senescence. RECENT FINDINGS A multitude of research has uncovered mechanisms of intrinsic aging in macrophages, detrimental factors released by these immune cells, and crosstalk from senescent mesenchymal cell types, which altogether drive age-related bone loss. Furthermore, bone marrow macrophages were recently proposed to be responsible for the megakaryocytic shift during aging and overall maintenance of the hematopoietic niche. Studies on extra-skeletal macrophages have shed light on possible conserved mechanisms within bone and highlight the importance of these cells in systemic aging. Macrophages are a critically important cell type in maintaining skeletal homeostasis with age. New discoveries in this area are of utmost importance in fully understanding the pathogenesis of osteoporosis in aged individuals.
Collapse
Affiliation(s)
- Moritz Pappert
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
| | - Madison Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Bernal-Alferes B, Gómez-Mosqueira R, Ortega-Tapia GT, Burgos-Vargas R, García-Latorre E, Domínguez-López ML, Romero-López JP. The role of γδ T cells in the immunopathogenesis of inflammatory diseases: from basic biology to therapeutic targeting. J Leukoc Biol 2023; 114:557-570. [PMID: 37040589 DOI: 10.1093/jleuko/qiad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
The γδ T cells are lymphocytes with an innate-like phenotype that can distribute to different tissues to reside and participate in homeostatic functions such as pathogen defense, tissue modeling, and response to stress. These cells originate during fetal development and migrate to the tissues in a TCR chain-dependent manner. Their unique manner to respond to danger signals facilitates the initiation of cytokine-mediated diseases such as spondyloarthritis and psoriasis, which are immune-mediated diseases with a very strong link with mucosal disturbances, either in the skin or the gut. In spondyloarthritis, γδ T cells are one of the main sources of IL-17 and, therefore, the main drivers of inflammation and probably new bone formation. Remarkably, this population can be the bridge between gut and joint inflammation.
Collapse
Affiliation(s)
- Brian Bernal-Alferes
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rafael Gómez-Mosqueira
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Graciela Teresa Ortega-Tapia
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rubén Burgos-Vargas
- Departamento de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis No. 148 Col. Doctores C.P. 06720, Alcaldía Cuauhtémoc Ciudad de México, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - José Pablo Romero-López
- Laboratorio de Patogénesis Molecular, Edificio A4, Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Número 1, Colonia Los Reyes Ixtacala, C.P. 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
20
|
Lee S, Ki CS. Proteolytically degradable PEG hydrogel matrix mimicking tumor immune microenvironment for 3D co-culture of lung adenocarcinoma cells and macrophages. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1981-1999. [PMID: 37071065 DOI: 10.1080/09205063.2023.2204778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Tumor-associated macrophages and monocytes are the major stromal cell types found in the tumor immune microenvironment (TIME), which modulates tumor progression, invasion, and chemoresistance. To address the need for an in vitro three-dimensional tumor model for understanding the complex cellular interactions within the TIME, we propose a TIME-mimetic co-culture matrix composed of photo-crosslinked poly(ethylene glycol) hydrogels mimicking the characteristics of the tumor and stroma. Desmoplasia-mimetic microgels encapsulating lung adenocarcinoma cells (A549) were embedded with monocyte- or macrophage-type U937 cells in normal stroma-mimetic hydrogel, increasing the proximity between the two cell types. By modulating the proteolytic degradability of the hydrogels, we could separate different cell types with high purities for use in orthogonal assays. In addition, we demonstrated that U937 cells had distinct influences on A549 cell death depending on their activation states (i.e. monocyte, M0, or M1 phenotype). M1 macrophages suppressed tumor growth and increased the susceptibility of A549 cells to cisplatin. In contrast, monocytes upregulated cancer stem cell markers (OCT4, SOX2, and SHH) of A549 cells, showing M2-like features, such as downregulated expression of proinflammatory markers (IL6 and TNFα). These findings suggest that this co-culture system is potentially used for investigation of heterotypic cellular interactions in the TIME.
Collapse
Affiliation(s)
- Sora Lee
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Department of Medical Device Evaluation, National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Chang Seok Ki
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Wolf CL, Pruett C, Lighter D, Jorcyk CL. The clinical relevance of OSM in inflammatory diseases: a comprehensive review. Front Immunol 2023; 14:1239732. [PMID: 37841259 PMCID: PMC10570509 DOI: 10.3389/fimmu.2023.1239732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory responses such as wound healing, liver regeneration, and bone remodeling. As a member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared receptor gp130, recruits either OSMRβ or LIFRβ, and activates a variety of signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT pathways. Since its discovery in 1986, OSM has been identified as a significant contributor to a multitude of inflammatory diseases, including arthritis, inflammatory bowel disease, lung and skin disease, cardiovascular disease, and most recently, COVID-19. Additionally, OSM has also been extensively studied in the context of several cancer types including breast, cervical, ovarian, testicular, colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM has been recognized as a significant contributor for each of these diseases, and studies have shown OSM inhibition is effective at treating or reducing symptoms, very few therapeutics have succeeded into clinical trials, and none have yet been approved by the FDA for treatment. In this review, we outline the role OSM plays in a variety of inflammatory diseases, including cancer, and outline the previous and current strategies for developing an inhibitor for OSM signaling.
Collapse
Affiliation(s)
- Cody L. Wolf
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
| | - Clyde Pruett
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Darren Lighter
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
22
|
Li T, Cai K, Liu X, Cao H, Liu J, Wu L. Signal transducer and activator of transcription 3 positively regulates osteoblastic differentiation in MC3T3-E1 cells. Minerva Med 2023; 114:491-499. [PMID: 33047939 DOI: 10.23736/s0026-4806.20.06588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) plays a pivotal role in osteoblastic differentiation. However, the exact role of STAT3 in osteogenic differentiation of the pre-osteoblastic cell line MC3T3-E1 is still controversial. METHODS In this study, we demonstrated that eradication of STAT3 signaling by the inhibitors cryptotanshinone (CPT, a STAT3-specific inhibitor) or STAT3 siRNA both suppressed osteogenic differentiation of MC3T3-E1 cells, with a decrease in alkaline phosphatase (ALP) activity, protein expressions of the osteogenic differentiation markers Collagen I (ColI), ALP, and osteocalcin (OCN), and reduced matrix mineralization capacity at the terminal stage of osteogenic differentiation. However, the inhibition of STAT3 by CPT did not affect MC3T3-E1 cell proliferation. To further clarify the effect of STAT3 on osteogenic differentiation of MC3T3-E1 cells, we forced STAT3 expression and found that this ameliorated osteogenic differentiation. RESULTS Thus, our results confirmed that STAT3 is a likely positive regulator of osteogenic differentiation in MC3T3-E1 cells. CONCLUSIONS These findings may provide a basis for the development of more efficient and controllable protocols for osteoblastic differentiation and facilitate their use in regenerative medicine. In addition, our results provide novel insights into the effect of the STAT3 antagonist CPT on modulation of osteogenesis.
Collapse
Affiliation(s)
- Tian Li
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Kunzhan Cai
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Xiaohan Liu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Hongjuan Cao
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jie Liu
- Center of Science Experiment, China Medical University, Shenyang, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China -
| |
Collapse
|
23
|
Gao Y, Xu X, Zhang X. Targeting different phenotypes of macrophages: A potential strategy for natural products to treat inflammatory bone and joint diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154952. [PMID: 37506402 DOI: 10.1016/j.phymed.2023.154952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Macrophages, a key class of immune cells, have a dual role in inflammatory responses, switching between anti-inflammatory M2 and pro-inflammatory M1 subtypes depending on the specific environment. Greater numbers of M1 macrophages correlate with increased production of inflammatory chemicals, decreased osteogenic potential, and eventually bone and joint disorders. Therefore, reversing M1 macrophages polarization is advantageous for lowering inflammatory factors. To better treat inflammatory bone disorders in the future, it may be helpful to gain insight into the specific mechanisms and natural products that modulate macrophage polarization. OBJECTIVE This review examines the impact of programmed cell death and different cells in the bone microenvironment on macrophage polarization, as well as the effects of natural products on the various phenotypes of macrophages, in order to suggest some possibilities for the treatment of inflammatory osteoarthritic disorders. METHODS Using 'macrophage polarization,' 'M1 macrophage' 'M2 macrophage' 'osteoporosis,' 'osteonecrosis of femoral head,' 'osteolysis,' 'gouty arthritis,' 'collagen-induced arthritis,' 'freund's adjuvant-induced arthritis,' 'adjuvant arthritis,' and 'rheumatoid arthritis' as search terms, the relevant literature was searched using the PubMed, the Cochrane Library and Web of Science databases. RESULTS Targeting macrophages through different signaling pathways has become a key mechanism for the treatment of inflammatory bone and joint diseases, including HIF-1α, NF-κB, AKT/mTOR, JAK1/2-STAT1, NF-κB, JNK, ERK, p-38α/β, p38/MAPK, PI3K/AKT, AMPK, AMPK/Sirt1, STAT TLR4/NF-κB, TLR4/NLRP3, NAMPT pathway, as well as the programmed cell death autophagy, pyroptosis and ERS. CONCLUSION As a result of a search of databases, we have summarized the available experimental and clinical evidence supporting herbal products as potential treatment agents for inflammatory osteoarthropathy. In this paper, we outline the various modulatory effects of natural substances targeting macrophages in various diseases, which may provide insight into drug options and directions for future clinical trials. In spite of this, more mechanistic studies on natural substances, as well as pharmacological, toxicological, and clinical studies are required.
Collapse
Affiliation(s)
- Yuhe Gao
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Xilin Xu
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, China.
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
24
|
Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023; 14:1222129. [PMID: 37475866 PMCID: PMC10355373 DOI: 10.3389/fimmu.2023.1222129] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
The complicated connections and cross talk between the skeletal system and the immune system are attracting more attention, which is developing into the field of Osteoimmunology. In this field, cytokines that are among osteoblasts and osteoclasts play a critical role in bone remodeling, which is a pathological process in the pathogenesis and development of osteoporosis. Those cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL) family, interferon (IFN), chemokines, and so on, most of which influence the bone microenvironment, osteoblasts, and osteoclasts. This review summarizes the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis, aiming to providing the latest reference to the role of immunology in osteoporosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linxin Yu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Deng
- Hubei Provincial Hospital of Traditional Chinese Medicine (TCM), Wuhan, China
| |
Collapse
|
25
|
Cecotto L, Stapels DAC, van Kessel KPM, Croes M, Lourens Z, Vogely HC, van der Wal BCH, van Strijp JAG, Weinans H, Amin Yavari S. Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research. Front Cell Infect Microbiol 2023; 13:1186936. [PMID: 37342248 PMCID: PMC10277478 DOI: 10.3389/fcimb.2023.1186936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Background Despite the extensive use of silver ions or nanoparticles in research related to preventing implant-associated infections (IAI), their use in clinical practice has been debated. This is because the strong antibacterial properties of silver are counterbalanced by adverse effects on host cells. One of the reasons for this may be the lack of comprehensive in vitro models that are capable of analyzing host-bacteria and host-host interactions. Methods and results In this study, we tested silver efficacy through multicellular in vitro models involving macrophages (immune system), mesenchymal stem cells (MSCs, bone cells), and S. aureus (pathogen). Our model showed to be capable of identifying each element of culture as well as tracking the intracellular survival of bacteria. Furthermore, the model enabled to find a therapeutic window for silver ions (AgNO3) and silver nanoparticles (AgNPs) where the viability of host cells was not compromised, and the antibacterial properties of silver were maintained. While AgNO3 between 0.00017 and 0.017 µg/mL retained antibacterial properties, host cell viability was not affected. The multicellular model, however, demonstrated that those concentrations had no effect on the survival of S. aureus, inside or outside host cells. Similarly, treatment with 20 nm AgNPs did not influence the phagocytic and killing capacity of macrophages or prevent S. aureus from invading MSCs. Moreover, exposure to 100 nm AgNPs elicited an inflammatory response by host cells as detected by the increased production of TNF-α and IL-6. This was visible only when macrophages and MSCs were cultured together. Conclusions Multicellular in vitro models such as the one used here that simulate complex in vivo scenarios can be used to screen other therapeutic compounds or antibacterial biomaterials without the need to use animals.
Collapse
Affiliation(s)
- Leonardo Cecotto
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne A. C. Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
- Infection Biology Group, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Zeldali Lourens
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - H. Charles Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Jing Y, Zhou J, Guo F, Yu L, Ren X, Yin X. Betaine regulates adipogenic and osteogenic differentiation of hAD-MSCs. Mol Biol Rep 2023; 50:5081-5089. [PMID: 37101008 DOI: 10.1007/s11033-023-08404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND With an ageing population, the incidence of bone loss and obesity are increasing. Numerous studies emphasized the multidirectional differentiation ability of mesenchymal stem cells (MSCs), and reported betaine modulated the osteogenic differentiation and adipogenic differentiation of MSCs in vitro. We wondered how betaine affected the differentiation of hAD-MSCs and hUC-MSCs. METHODS AND RESULTS ALP staining and alizarin red S (ARS) staining were proved 10 mM betaine significantly increased the number of ALP-positive cells and plaque calcified extracellular matrices, accompanying by the up-regulation of OPN, Runx-2 and OCN. Oil red O staining demonstrated the number and size of lipid droplets were reduced, the expression of adipogenic master genes such as PPARγ, CEBPα and FASN were down-regulated simultaneously. For further investigating the mechanism of betaine on hAD-MSCs, RNA-seq was performed in none-differentiation medium. The Gene Ontology (GO) analysis showed fat cell differentiation and bone mineralization function terms were enriched, and KEGG showed PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and ECM-receptor interaction pathways were enriched in betaine treated hAD-MSCs, demonstrated betaine had a positive inducing effect on osteogenic of hAD-MSCs in the non-differentiation medium in vitro, which is opposite to the effect on adipogenic differentiation. CONCLUSIONS Our study demonstrated that betaine promoted osteogenic and compromised adipogenic differentiation of hUC-MSCs and hAD-MSCs upon low concentration administration. PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and ECM-receptor interaction were significantly enriched under betaine-treated. We showed hAD-MSCs were more sensitive to betaine stimulation and have a better differentiation ability than hUC-MSCs. Our results contributed to the exploration of betaine as an aiding agent for MSCs therapy.
Collapse
Affiliation(s)
- Yue Jing
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Jian Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Fenghua Guo
- Jiangsu Pulu Rui Medical Technology Co., Ltd, Xuzhou, Jiangsu Province, China
| | - Lin Yu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Xiaomeng Ren
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China.
| |
Collapse
|
27
|
Mauro D, Srinath A, Guggino G, Nicolaidou V, Raimondo S, Ellis JJ, Whyte JM, Nicoletti MM, Romano M, Kenna TJ, Cañete J, Alessandro R, Rizzo A, Brown MA, Horwood NJ, Haroon N, Ciccia F. Prostaglandin E2/EP4 axis is upregulated in Spondyloarthritis and contributes to radiographic progression. Clin Immunol 2023; 251:109332. [PMID: 37075950 DOI: 10.1016/j.clim.2023.109332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease leading to spine ankylosis; however, the mechanisms behind new bone formation are still not fully understood. Single Nucleotide Polymorphisms (SNPs) in PTGER4, encoding for the receptor EP4 of prostaglandin E2 (PGE2), are associated with AS. Since the PGE2-EP4 axis participates in inflammation and bone metabolism, this work aims at investigating the influence of the prostaglandin-E2 axis on radiographic progression in AS. In 185 AS (97 progressors), baseline serum PGE2 predicted progression, and PTGER4 SNP rs6896969 was more frequent in progressors. Increased EP4/PTGER4 expression was observed in AS circulating immune cells, synovial tissue, and bone marrow. CD14highEP4 + cells frequency correlated with disease activity, and when monocytes were cocultured with mesenchymal stem cells, the PGE2/EP4 axis induced bone formation. In conclusion, the Prostaglandin E2 axis is involved in bone remodelling and may contribute to the radiographic progression in AS due to genetic and environmental upregulation.
Collapse
Affiliation(s)
- Daniele Mauro
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Archita Srinath
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Cyprus
| | - Stefania Raimondo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Jessica M Whyte
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Maria Maddalena Nicoletti
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Marco Romano
- Hepato-Gastroenterology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Tony John Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Juan Cañete
- Department of Rheumatology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Riccardo Alessandro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Aroldo Rizzo
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | | | | | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
28
|
Weivoda MM, Bradley EW. Macrophages and Bone Remodeling. J Bone Miner Res 2023; 38:359-369. [PMID: 36651575 PMCID: PMC10023335 DOI: 10.1002/jbmr.4773] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Bone remodeling in the adult skeleton facilitates the removal and replacement of damaged and old bone to maintain bone quality. Tight coordination of bone resorption and bone formation during remodeling crucially maintains skeletal mass. Increasing evidence suggests that many cell types beyond osteoclasts and osteoblasts support bone remodeling, including macrophages and other myeloid lineage cells. Herein, we discuss the origin and functions for macrophages in the bone microenvironment, tissue resident macrophages, osteomacs, as well as newly identified osteomorphs that result from osteoclast fission. We also touch on the role of macrophages during inflammatory bone resorption. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Elizabeth W. Bradley
- Department of Orthopedics and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
29
|
Research Progress of Macrophages in Bone Regeneration. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/1512966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.
Collapse
|
30
|
Zhang Q, Sun W, Li T, Liu F. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res 2023; 16:879-894. [PMID: 36891172 PMCID: PMC9986469 DOI: 10.2147/jir.s401968] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a disabling disease with high mortality in China but the detailed molecular and cellular mechanisms remain to be investigated. Macrophages are considered the key cells in osteoimmunology, and the cross-talk between bone macrophages and other cells in the microenvironment is involved in maintaining bone homeostasis. M1 polarized macrophages launch a chronic inflammatory response and secrete a broad spectrum of cytokines (eg, TNF-α, IL-6 and IL-1β) and chemokines to initiate a chronic inflammatory state in GIONFH. M2 macrophage is the alternatively activated anti-inflammatory type distributed mainly in the perivascular area of the necrotic femoral head. In the development of GIONFH, injured bone vascular endothelial cells and necrotic bone activate the TLR4/NF-κB signal pathway, promote dimerization of PKM2 and subsequently enhance the production of HIF-1, inducing metabolic transformation of macrophage to the M1 phenotype. Considering these findings, putative interventions by local chemokine regulation to correct the imbalance between M1/M2 polarized macrophages by switching macrophages to an M2 phenotype, or inhibiting the adoption of an M1 phenotype appear to be plausible regimens for preventing or intervening GIONFH in the early stage. However, these results were mainly obtained by in vitro tissue or experimental animal model. Further studies to completely elucidate the alterations of the M1/M2 macrophage polarization and functions of macrophages in glucocorticoid-induced osteonecrosis of the femoral head are imperative.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Wei Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Tengqi Li
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, People's Republic of China.,Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
31
|
Huang X, Zhu Y, Sun S, Gao X, Yang Y, Xu H, Jin A, Liu Y, Jia H, Dai Q, Jiang L. Exercise maintains bone homeostasis by promoting osteogenesis through STAT3. Int J Biol Sci 2023; 19:2021-2033. [PMID: 37151888 PMCID: PMC10158023 DOI: 10.7150/ijbs.82744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Bone exhibits changes in density, strength, and microarchitecture in relation to mechanical loading mediated by exercise. Appropriate exercise maintains bone homeostasis, while the absence of exercise leads to disuse bone loss. However, the acting mechanism of mechanotransduction in bone remains unclear. We performed the running-wheel exercise and tail suspension model to study the effects of exercise on bone metabolism, and found that osteoblastic Signal transducer and activator of transcription 3 (STAT3) activity was closely related to exercise-induced bone mass and metabolism changes. With the Flexcell tension-loading system in vitro, mechanical force promoted STAT3 activity, which was accompanied by increased osteoblastic differentiation of the bone marrow mesenchymal stem cells (BMSCs). In contrast, the inhibition of STAT3 phosphorylation blocked force-induced osteoblastic differentiation. Furthermore, pharmacological inactivation of STAT3 impaired the increase in exercise-induced bone mass and osteogenesis. With an inducible conditional deletion mouse model, we found that the osteoblast lineage-specific Stat3 deletion could also block force-induced osteoblastic differentiation in vitro and impair exercise-promoted bone mass and osteogenesis in vivo. This confirmed the crucial role of osteoblastic STAT3 in exercise-mediated bone metabolism. Finally, colivelin, a STAT3 agonist, promoted osteoblastic differentiation in vitro and partly rescued exercise loss-induced disuse bone loss by improving osteogenesis in the tail suspension model. Taken together, our study revealed the essential role of STAT3 in maintaining exercise-mediated bone homeostasis. In addition, STAT3 might act as a potential target for osteoporosis caused by exercise loss.
Collapse
Affiliation(s)
- Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Hanbing Jia
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
- ✉ Corresponding authors: Lingyong Jiang () or Qinggang Dai ()
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
- ✉ Corresponding authors: Lingyong Jiang () or Qinggang Dai ()
| |
Collapse
|
32
|
Thümmler K, Williams MTS, Kitson S, Sood S, Akbar M, Cole JJ, Hunter E, Soutar R, Goodyear CS. Targeting 3D chromosomal architecture at the RANK loci to suppress myeloma-driven osteoclastogenesis. Oncoimmunology 2022; 11:2104070. [PMID: 35936985 PMCID: PMC9348127 DOI: 10.1080/2162402x.2022.2104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Katja Thümmler
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mark TS Williams
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Susan Kitson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shatakshi Sood
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John J Cole
- GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Richard Soutar
- Beatson West of Scotland Cancer Centre, Gartnavel Hospital, Glasgow, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY, Pan J. The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther 2022; 13:511. [PMID: 36333820 PMCID: PMC9636722 DOI: 10.1186/s13287-022-03199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bone injury plagues millions of patients worldwide every year, and it demands a heavy portion of expense from the public medical insurance system. At present, orthopedists think that autologous bone transplantation is the gold standard for treating large-scale bone defects. However, this method has significant limitations, which means that parts of patients cannot obtain a satisfactory prognosis. Therefore, a basic study on new therapeutic methods is urgently needed. The in-depth research on crosstalk between macrophages (Mϕs) and bone marrow mesenchymal stem cells (BMSCs) suggests that there is a close relationship between inflammation and regeneration. The in-depth understanding of the crosstalk between Mϕs and BMSCs is helpful to amplify the efficacy of stem cell-based treatment for bone injury. Only in the suitable inflammatory microenvironment can the damaged tissues containing stem cells obtain satisfactory healing outcomes. The excessive tissue inflammation and lack of stem cells make the transplantation of biomaterials necessary. We can expect that the crosstalk between Mϕs and BMSCs and biomaterials will become the mainstream to explore new methods for bone injury in the future. This review mainly summarizes the research on the crosstalk between Mϕs and BMSCs and also briefly describes the effects of biomaterials and aging on cell transplantation therapy.
Collapse
Affiliation(s)
- Yu-Hao Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Cheng-Zhi Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ren-Yi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Qian-Xin Du
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ji-Yuan Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jian Pan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| |
Collapse
|
35
|
Isojima T, Walker EC, Poulton IJ, McGregor NE, Wicks IP, Gooi JH, Martin TJ, Sims NA. G-CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes. J Bone Miner Res 2022; 37:1876-1890. [PMID: 35856245 DOI: 10.1002/jbmr.4654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022]
Abstract
Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Ian P Wicks
- Walter and Eliza Hall Institute, Parkville, Australia
| | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| |
Collapse
|
36
|
Nadine S, Fernandes I, Patrício SG, Correia CR, Mano JF. Liquefied Microcapsules Compartmentalizing Macrophages and Umbilical Cord-Derived Cells for Bone Tissue Engineering. Adv Healthc Mater 2022; 11:e2200651. [PMID: 35904030 DOI: 10.1002/adhm.202200651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Indexed: 01/28/2023]
Abstract
Extraordinary capabilities underlie the potential use of immune cells, particularly macrophages, in bone tissue engineering. Indeed, the depletion of macrophages during bone repair often culminates in disease scenarios. Inspired by the native dynamics between immune and skeletal systems, this work proposes a straightforward in vitro method to bioengineer biomimetic bone niches using biological waste. For that, liquefied and semipermeable reservoirs generated by electrohydrodynamic atomization and layer-by-layer techniques are developed to coculture umbilical cord-derived human cells, namely monocyte-derived macrophages, mesenchymal-derived stromal cells (MSCs), and human umbilical vein endothelial cells (HUVECs). Poly(ε-caprolactone) microparticles are also added to the liquefied core to act as cell carriers. The fabricated microcapsules grant the successful development of viable microtissues, ensuring the high diffusion of bioactive factors. Interestingly, macrophages within the bioengineered microcapsules increase the release of osteocalcin, osteoprotegerin, and vascular endothelial growth factor. The cytokines profile variation indicates macrophages' polarization into a prohealing phenotype. Altogether, the incorporation of macrophages within the fabricated microcapsules allows to recreate an appropriate bone microenvironment for developing new bone mineralized microtissues. The proposed bioencapsulation protocol is a powerful self-regulated system, which might find great applicability in bone tissue engineering based on bottom-up approaches or disease modeling.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Inês Fernandes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Sónia G Patrício
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
37
|
Engineered extracellular vesicles: Regulating the crosstalk between the skeleton and immune system. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
38
|
Lu M, Li M, Luo T, Li Y, Wang M, Xue H, Zhang M, Chen Q. Beta-naphthoflavone increases the differentiation of osteoblasts and suppresses adipogenesis in human adipose derived stem cells involving STAT3 pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Hou X, Tian F. STAT3-mediated osteogenesis and osteoclastogenesis in osteoporosis. Cell Commun Signal 2022; 20:112. [PMID: 35879773 PMCID: PMC9310501 DOI: 10.1186/s12964-022-00924-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis is a common skeletal disease with marked bone loss, deterioration of the bone microstructure and bone fragility. An abnormal bone remodelling cycle with relatively increased bone resorption is the crucial pathophysiological mechanism. Bone remodelling is predominantly controlled by osteoblasts and osteoclasts, which are specialized cell types that are regulated by a variety of osteogenic and osteoclastic factors, including cytokines expressed within the bone microenvironment under local or systemic inflammatory conditions. Signal transducer and activator of transcription 3 (STAT3) plays a prominent role in the communication between cytokines and kinases by binding downstream gene promotors and is involved in a wide range of biological or pathological processes. Emerging evidence suggests that STAT3 and its network participate in bone remodelling and the development of osteoporosis, and this factor may be a potent target for osteoporosis treatment. This review focuses on the role and molecular mechanism of the STAT3 signalling pathway in osteogenesis, osteoclastogenesis and osteoporosis, particularly the bone-related cytokines that regulate the osteoblastic differentiation of bone marrow stromal cells and the osteoclastic differentiation of bone marrow macrophages by initiating STAT3 signalling. This review also examines the cellular interactions among immune cells, haematopoietic cells and osteoblastic/osteoclastic cells. Video abstract
Collapse
Affiliation(s)
- Xiaoli Hou
- School of Public Health, North China University of Science and Technology, Caofeidian Dis, Bohai Road 21, Tangshan, 063210, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Caofeidian Dis, Bohai Road 21, Tangshan, 063210, People's Republic of China.
| |
Collapse
|
40
|
Khokhani P, Belluomo R, Croes M, Gawlitta D, Kruyt MC, Weinans H. An in-vitro model to test the influence of immune cell secretome on MSC osteogenic differentiation. Tissue Eng Part C Methods 2022; 28:420-430. [PMID: 35770885 DOI: 10.1089/ten.tec.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in-vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 hours and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), Polyinosinic acid-polycytidylic acid Poly(I:C), and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, and that target Toll-like receptors TLR9, -3, and -4, respectively. The conditioned medium obtained from PBMCs after 24 hours was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The conditioned medium from CpG ODN C and LPS stimulated PBMCs increased alkaline phosphatase activity of MSCs by approximately 3-fold as compared to the unstimulated control, whereas Poly(I:C) conditioned medium did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased alkaline phosphatase activity. These results demonstrate that soluble factors present in conditioned medium from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in-vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.
Collapse
Affiliation(s)
- Paree Khokhani
- University Medical Centre Utrecht, 8124, Orthopedics , UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Utrecht, Utrecht, Drenthe, Netherlands, 3584CX.,University Medical Centre, Utrecht (UMCU), UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Netherlands;
| | - Ruggero Belluomo
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Michiel Croes
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Debby Gawlitta
- University Medical Center Utrecht, Oral and Maxillofacial Surgery, Prosthodontics & Special Dental Care, Heidelberglaan 100, G05.129, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Moyo C Kruyt
- University medical center Utrecht, Orthopedics, HP G 05.228, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Harrie Weinans
- University Medical Centre Utrecht, 8124, Orthopedics, Utrecht, Utrecht, Netherlands;
| |
Collapse
|
41
|
Wang W, Liu H, Liu T, Yang H, He F. Insights into the Role of Macrophage Polarization in the Pathogenesis of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2485959. [PMID: 35707276 PMCID: PMC9192196 DOI: 10.1155/2022/2485959] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide suffer from osteoporosis, which causes bone fragility and increases the risk of fractures. Osteoporosis is closely related to the inhibition of osteogenesis and the enhancement of osteoclastogenesis. In addition, chronic inflammation and macrophage polarization may contribute to osteoporosis as well. Macrophages, crucial to inflammatory responses, display different phenotypes under the control of microenvironment. There are two major phenotypes, classically activated macrophages (M1) and alternatively activated macrophages (M2). Generally, M1 macrophages mainly lead to bone resorption, while M2 macrophages result in osteogenesis. M1/M2 ratio reflects the "fluid" state of macrophage polarization, and the imbalance of M1/M2 ratio may cause disease such as osteoporosis. Additionally, antioxidant drugs, such as melatonin, are applied to change the state of macrophage polarization and to treat osteoporosis. In this review, we introduce the mechanisms of macrophage polarization-mediated bone resorption and bone formation and the contribution to the clinical strategies of osteoporosis treatment.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
42
|
Zhang B, Han F, Wang Y, Sun Y, Zhang M, Yu X, Qin C, Zhang H, Wu C. Cells-Micropatterning Biomaterials for Immune Activation and Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200670. [PMID: 35478383 PMCID: PMC9218778 DOI: 10.1002/advs.202200670] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Indexed: 05/05/2023]
Abstract
Natural tissues are composed of ordered architectural organizations of multiple tissue cells. The spatial distribution of cells is crucial for directing cellular behavior and maintaining tissue homeostasis and function. Herein, an artificial bone bioceramic scaffold with star-, Tai Chi-, or interlacing-shaped multicellular patterns is constructed. The "cross-talk" between mesenchymal stem cells (MSCs) and macrophages can be effectively manipulated by altering the spatial distribution of two kinds of cells in the scaffolds, thus achieving controllable modulation of the scaffold-mediated osteo-immune responses. Compared with other multicellular patterns, the Tai Chi pattern with a 2:1 ratio of MSCs to macrophages is more effective in activating anti-inflammatory M2 macrophages, improving MSCs osteogenic differentiation, and accelerating new bone formation in vivo. In brief, the Tai Chi pattern generates a more favorable osteo-immune environment for bone regeneration, exhibiting enhanced immunomodulation and osteogenesis, which may be associated with the activation of BMP-Smad, Oncostatin M (OSM), and Wnt/β-catenin signaling pathways in MSCs mediated by macrophage-derived paracrine signaling mediators. The study suggests that the manipulation of cell distribution to improve tissue formation is a feasible approach that can offer new insights for the design of tissue-engineered bone substitutes with multicellular interactions.
Collapse
Affiliation(s)
- Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
43
|
Buck E, Lee S, Gao Q, Tran SD, Tamimi F, Stone LS, Cerruti M. The Role of Surface Chemistry in the Osseointegration of PEEK Implants. ACS Biomater Sci Eng 2022; 8:1506-1521. [PMID: 35290033 DOI: 10.1021/acsbiomaterials.1c01434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(etheretherketone) (PEEK) implants suffer from poor osseointegration because of chronic inflammation. In this study, we hypothesized that adding NH2 and COOH groups to the surface of PEEK could modulate macrophage responses by altering protein adsorption and improve its osseointegration. NH2 and COOH-functionalized PEEK surfaces induced pro- and anti-inflammatory macrophage responses, respectively, and differences in protein adsorption patterns on these surfaces were related to the varied inflammatory responses. The macrophage responses to NH2 surfaces significantly reduced the osteogenic differentiation of mesenchymal stem cells (MSCs). MSCs cultured on NH2 surfaces differentiated less than those on COOH surfaces even though NH2 surfaces promoted the most mineralization in simulated body fluid solutions. After 14 days in rat tibia unicortical defects, the bone around NH2 surfaces had thinner trabeculae and higher specific bone surface than the bone around unmodified implants; surprisingly, the NH2 implants significantly increased bone-binding over the unmodified implants, while COOH implants only showed a trend for increasing bone-binding. Taken together, these results suggest that both mineral-binding and immune responses play a role in osseointegration, and PEEK implant integration may be improved with mixtures of these two functional groups to harness the ability to reduce inflammation and bind bone strongly.
Collapse
Affiliation(s)
- Emily Buck
- Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada.,Alan Edwards Center for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada
| | - Qiman Gao
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada.,Alan Edwards Center for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada
| | - Marta Cerruti
- Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
44
|
de Souza PPC, Henning P, Lerner UH. Stimulation of Osteoclast Formation by Oncostatin M and the Role of WNT16 as a Negative Feedback Regulator. Int J Mol Sci 2022; 23:3287. [PMID: 35328707 PMCID: PMC8953253 DOI: 10.3390/ijms23063287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor κ-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor κ-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.
Collapse
Affiliation(s)
- Pedro P. C. de Souza
- The Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| |
Collapse
|
45
|
Deng Y, Li R, Wang H, Yang B, Shi P, Zhang Y, Yang Q, Li G, Bian L. Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS NANO 2022; 16:1051-1062. [PMID: 34967609 DOI: 10.1021/acsnano.1c08728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development from stem cells to adult tissues requires the delicate presentation of numerous crucial inductive cues and the activation of associated signaling pathways. The Notch signaling pathways triggered by ligands such as Jagged-1 have been demonstrated to be essential in various development processes especially in osteogenesis and ossification. However, few studies have capitalized on the osteoinductivity of the Jagged-1 mimetic ligands to enhance the osteogenesis and skeleton regeneration. In this study, we conjugate the porous hyaluronic acid hydrogels with a Jagged-1 mimetic peptide ligand (Jagged-1) and investigate the efficacy of such biomimetic functionalization to promote the mechanotransduction and osteogenesis of human mesenchymal stem cells by activating the Notch signaling pathway. Our findings indicate that the immobilized Jagged-1 mimetic ligand activates Notch signaling via the upregulation of NICD and downstream MSX2, leading to the enhanced mechanotransduction and osteogenesis of stem cells. We further demonstrate that the functionalization of the Jagged-1 ligand in the porous scaffold promotes angiogenesis, regulates macrophage recruitment and polarization, and enhances in situ regeneration of rat calvarial defects. Our findings provide valuable guidance to the design of development-inspired bioactive biomaterials for diverse biomedical applications.
Collapse
Affiliation(s)
- Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P.R. China
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, P.R China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P.R. China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, P.R China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
46
|
Immunomodulatory Properties and Osteogenic Activity of Polyetheretherketone Coated with Titanate Nanonetwork Structures. Int J Mol Sci 2022; 23:ijms23020612. [PMID: 35054795 PMCID: PMC8775651 DOI: 10.3390/ijms23020612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.
Collapse
|
47
|
Ma TL, Zhu P, Ke ZR, Chen JX, Hu YH, Xie J. Focusing on OB-OC-MΦ Axis and miR-23a to Explore the Pathogenesis and Treatment Strategy of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:891313. [PMID: 35909545 PMCID: PMC9329542 DOI: 10.3389/fendo.2022.891313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoporosis is a bone metabolic disorder characterized by decreased bone density and deteriorated microstructure, which increases the risk of fractures. The imbalance between bone formation and bone resorption results in the occurrence and progression of osteoporosis. Osteoblast-mediated bone formation, osteoclast-mediated bone resorption and macrophage-regulated inflammatory response play a central role in the process of bone remodeling, which together maintain the balance of the osteoblast-osteoclast-macrophage (OB-OC-MΦ) axis under physiological conditions. Bone formation and bone resorption disorders caused by the imbalance of OB-OC-MΦ axis contribute to osteoporosis. Many microRNAs are involved in the regulation of OB-OC-MΦ axis homeostasis, with microRNA-23a (miR-23a) being particularly crucial. MiR-23a is highly expressed in the pathological process of osteoporosis, which eventually leads to the occurrence and further progression of osteoporosis by inhibiting osteogenesis, promoting bone resorption and inflammatory polarization of macrophages. This review focuses on the role and mechanism of miR-23a in regulating the OB-OC-MΦ axis to provide new clinical strategies for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| |
Collapse
|
48
|
Chun YS, Lee DH, Won TG, Kim CS, Shetty AA, Kim SJ. Cell therapy for osteonecrosis of femoral head and joint preservation. J Clin Orthop Trauma 2021; 24:101713. [PMID: 34926146 PMCID: PMC8646149 DOI: 10.1016/j.jcot.2021.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a disease of the femoral head and can cause femoral head collapse and arthritis. This can lead to pain and gait disorders. ONFH has various risk factors, it is often progressive, and if untreated results in secondary osteo-arthritis. Biological therapy makes use of bone marrow concentrate, cultured osteoblast and mesenchymal stem cell (MSC) obtained from various sources. These are often used in conjunction with core decompression surgery. In this review article, we discuss the current status of cell therapy and its limitations. We also present the future development of biological approach to treat ONFH.
Collapse
Affiliation(s)
- You Seung Chun
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Corresponding author. Department of Orthopedic Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea.
| | - Tae Gu Won
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Sik Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Asode Ananthram Shetty
- Canterbury Christ Church University, Faculty of Medicine, Health and Social Care, 30 Pembroke Court, Chatham Maritime, Kent, ME4 4UF, United Kingdom
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
49
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
50
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|