1
|
Kang W, Yang S, Roh J, Choi D, Lee HW, Lee JH, Park T. MOR23 deficiency exacerbates hepatic steatosis in mice. FASEB J 2024; 38:e70107. [PMID: 39417398 DOI: 10.1096/fj.202401468rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Hepatic steatosis, a common liver disorder, can progress to severe conditions such as nonalcoholic steatohepatitis and cirrhosis. While olfactory receptors are primarily known for detecting odorants, emerging evidence suggests that they also influence liver lipid metabolism. This study generated a mouse model with a specific knockout of olfactory receptor 23 (MOR23) to investigate its role in hepatic steatosis. MOR23 knockout mice on a normal diet showed a slight increase in liver weight compared to wild-type (WT) mice. When fed a high-fat diet (HFD), these knockout mice exhibited accelerated hepatic steatosis, indicated by increased liver weight and hepatic triglyceride levels. Our findings suggest that the cyclic adenosine monophosphate/protein kinase A/AMP-activated protein kinase pathway is involved in the role of MOR23, leading to the upregulation of peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1-α, and their target β-oxidation genes in the liver. MOR23 also appeared to regulate lipogenesis and free fatty acid uptake in HFD-fed mice, potentially by influencing sterol regulatory element-binding protein 1 activity. Notably, administering a potential MOR23 ligand, cedrene, attenuated hepatic steatosis in WT mice, but these effects were largely nullified in MOR23 knockout mice. These findings provide valuable insights into the in vivo role of MOR23 in hepatic steatosis development.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, Seoul, Republic of Korea
| | - Suhjin Yang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, Seoul, Republic of Korea
| | - Jiyun Roh
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, Seoul, Republic of Korea
| | - Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, Seoul, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Gemcro, Inc., Seoul, Republic of Korea
| | - Jae Hoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Gemcro, Inc., Seoul, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Tang Y, Tian Y, Zhang CX, Wang GT. Olfactory Receptors and Tumorigenesis: Implications for Diagnosis and Targeted Therapy. Cell Biochem Biophys 2024:10.1007/s12013-024-01556-7. [PMID: 39365517 DOI: 10.1007/s12013-024-01556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Olfactory receptors (ORs) are a class of G protein-coupled receptors (GPCR) widely distributed in olfactory sensory neurons and various non-olfactory tissues, serving significant physiological and pathological functions in the human body. Increasing evidence reveals the heightened expression of olfactory receptors in tumorous tissues and cells alongside normal tissues. Olfactory receptors have demonstrated influence over tumor cell proliferation and metastasis, establishing a close relationship with tumor initiation and progression. This review highlights the specific molecular actions and signaling pathways of olfactory receptors in the development of human tumors. The potential for precise tumor diagnosis and targeted therapy through therapeutic targeting of olfactory receptors as an adjunct anticancer treatment strategy is being considered.
Collapse
Affiliation(s)
- Yi Tang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ye Tian
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | | | - Guo-Tai Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Sub No.2, Weiyang West Road, Qindu District, Xianyang, 712000, China.
| |
Collapse
|
3
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
4
|
Dai P, Chen C, Yu J, Ma C, Zhang X. New insights into sperm physiology regulation: Enlightenment from G-protein-coupled receptors. Andrology 2024; 12:1253-1271. [PMID: 38225815 DOI: 10.1111/andr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND G-protein-coupled receptors are critical in many physiological and pathological processes in various organs. Serving as the control panel for sensing extracellular stimuli, G-protein-coupled receptors recognise various ligands, including light, temperature, odours, pheromones, hormones, neurotransmitters, chemokines, etc. Most recently, G-protein-coupled receptors residing in spermatozoa have been found to be indispensable for sperm function. OBJECTIVE Here, we have summarised cutting-edge findings on the functional mechanisms of G-protein-coupled receptors that are known to be associated with sperm functions and the activation of their downstream effectors, providing new insights into the roles of G-protein-coupled receptors in sperm physiology. RESULTS Emerging studies hint that alterations in G-protein-coupled receptors could affect sperm function, implicating their role in fertility, but solid evidence needs to be continuing excavated with various means. Several members of the G-protein-coupled receptor superfamily, including olfactory receptors, opsins, orphan G-protein-coupled receptors, CXC chemokine receptor 4, CC chemokine receptor 5 and CC chemokine receptor 6 as well as their downstream effector β-arrestins, etc., were suggested to be essential for sperm motility, capacitation, thermotaxis, chemotaxis, Ca2+ influx through CatSper channel and fertilisation capacity. CONCLUSION The present review provides a comprehensive overview of studies describing G-protein-coupled receptors and their potential action in sperm function. We also present a critical discussion of these issues, and a possible framework for future investigations on the diverse ligands, biological functions and cell signalling of G-protein-coupled receptors in spermatozoa. Here, the G-protein-coupled receptors and their related G proteins that specifically were identified in spermatozoa were summarised, and provided references valuable for further illumination, despite the evidence that is not overwhelming in most cases.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Jingyan Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chaoye Ma
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| |
Collapse
|
5
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
6
|
Gu J, Zhang N, Jiang X, Zhu L, Lou Y, Sun S, Yin L, Liu J. The Olfactory Receptor Olfr25 Mediates Sperm Dysfunction Induced by Low-Dose Bisphenol A through the CatSper-Ca 2+ Signaling Pathway. TOXICS 2024; 12:442. [PMID: 38922122 PMCID: PMC11209571 DOI: 10.3390/toxics12060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Bisphenol A (BPA), a typical endocrine disruptor, is known to have various adverse effects on the male reproductive system. However, the toxic effects and mechanisms of low-dose BPA have not yet been fully explored. In this study, male Kunming mice were orally administered low-dose BPA (0.03, 0.3 and 3 mg/kg/d) for ten consecutive weeks. Pathological sections of testicular tissue showed no significant morphological differences after BPA exposure. An analysis of the functional parameters of sperm revealed that exposure to low-dose BPA significantly decreased sperm motility, chemotaxis, and the acrosome reaction. An in vitro BPA exposure model combined with an omics data analysis showed that the olfactory receptor-related pathway was significantly enriched after BPA treatment. Subsequent experiments verified the reduced mRNA level of a novel olfactory receptor gene, Olfr25, in vivo and in vitro exposure models. Meanwhile, exposure to low-dose BPA reduced the intracellular calcium ion concentration and the mRNA levels of pore-forming subunits of the CatSper channel in sperm. Importantly, the knockdown of Olfr25 inhibited calcium ion levels and CatSper subunit expression in GC-2 cells. Olfr25 overexpression attenuated the BPA-induced downregulation of CatSper subunit expression in GC-2 cells. These findings indicate that Olfr25 might participate in low-dose BPA-induced sperm dysfunction by affecting the CatSper-Ca2+ signaling pathway. This study reveals a new mechanism underlying the effects of low-dose BPA on sperm function and provides a reference for assessing the safety of low-dose BPA exposure.
Collapse
Affiliation(s)
- Jing Gu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Ning Zhang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Xiao Jiang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Lei Zhu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Yixia Lou
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Shengqi Sun
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Li Yin
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
- Chongqing Key Lab of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jinyi Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| |
Collapse
|
7
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Kang T, Zhu L, Xue Y, Yang Q, Lei Q, Wang Q. Overexpression of olfactory receptor 78 ameliorates brain injury in cerebral ischaemia-reperfusion rats by activating Prkaca-mediated cAMP/PKA-MAPK pathway. J Cell Mol Med 2024; 28:e18366. [PMID: 38856956 PMCID: PMC11163950 DOI: 10.1111/jcmm.18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.
Collapse
Affiliation(s)
- Tao Kang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Lijuan Zhu
- Department of AnesthesiaShaanxi Provincial People's HospitalXi'anChina
| | - Yanli Xue
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qian Yang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qi Lei
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qianqian Wang
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
9
|
Weidinger D, Jacobsen J, Alisch D, Uebner H, Heinen N, Greune L, Westhoven S, Jamal Jameel K, Kronsbein J, Pfaender S, Taube C, Reuter S, Peters M, Hatt H, Knobloch J. Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells. Eur J Cell Biol 2024; 103:151408. [PMID: 38583306 DOI: 10.1016/j.ejcb.2024.151408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells. METHODS Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA. RESULTS By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality. CONCLUSION ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.
Collapse
Affiliation(s)
- Daniel Weidinger
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Julian Jacobsen
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Desiree Alisch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Lea Greune
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Saskia Westhoven
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany; University of Lübeck, Lübeck, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Hanns Hatt
- Cell Physiology ND4/35, Ruhr-University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| |
Collapse
|
10
|
Chang CC, Chen CH, Hsu SY, Leu S. Cardiomyocyte-specific overexpression of GPR22 ameliorates cardiac injury in mice with acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:287. [PMID: 38816768 PMCID: PMC11138089 DOI: 10.1186/s12872-024-03953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The activation of G protein-coupled receptors (GPCR) signaling by external stimuli has been implicated in inducing cardiac stress and stress responses. GPR22 is an orphan GPCR expressed in brains and hearts, while its expression level is associated with cardiovascular damage in diabetes. Previous studies have suggested a protective role of GPR22 in mechanical cardiac stress, as loss of its expression increases susceptibility to heart failure post-ventricular pressure overload. However, the involvement and underlying signaling of GPR22 in cardiac stress response to ischemic stress remains unexplored. METHODS In this study, we used cultured cells and a transgenic mouse model with cardiomyocyte-specific GPR22 overexpression to investigate the impact of ischemic stress on GPR22 expression and to elucidate its role in myocardial ischemic injury. Acute myocardial infarction (AMI) was induced by left coronary artery ligation in eight-week-old male GPR22 transgenic mice, followed by histopathological and biochemical examination four weeks post-AMI induction. RESULTS GPR22 expression in H9C2 and RL-14 cells, two cardiomyocyte cell lines, was decreased by cobalt chloride (CoCl2) treatment. Similarly, reduced expression of myocardial GPR22 was observed in mice with AMI. Histopathological examinations revealed a protective effect of GPR22 overexpression in attenuating myocardial infarction in mice with AMI. Furthermore, myocardial levels of Bcl-2 and activation of PI3K-Akt signaling were downregulated by ischemic stress and upregulated by GPR22 overexpression. Conversely, the expression levels of caspase-3 and phosphorylated ERK1/2 in the infarcted myocardium were downregulated with GPR22 overexpression. CONCLUSION Myocardial ischemic stress downregulates cardiac expression of GPR22, whereas overexpression of GPR22 in cardiomyocytes upregulates Akt signaling, downregulates ERK activation, and mitigates ischemia-induced myocardial injury.
Collapse
Affiliation(s)
- Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chih-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
11
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
12
|
Franco R, Garrigós C, Lillo J. The Olfactory Trail of Neurodegenerative Diseases. Cells 2024; 13:615. [PMID: 38607054 PMCID: PMC11012126 DOI: 10.3390/cells13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Alterations in olfactory functions are proposed as possible early biomarkers of neurodegenerative diseases. Parkinson's and Alzheimer's diseases manifest olfactory dysfunction as a symptom, which is worth mentioning. The alterations do not occur in all patients, but they can serve to rule out neurodegenerative pathologies that are not associated with small deficits. Several prevalent neurodegenerative conditions, including impaired smell, arise in the early stages of Parkinson's and Alzheimer's diseases, presenting an attractive prospect as a snitch for early diagnosis. This review covers the current knowledge on the link between olfactory deficits and Parkinson's and Alzheimer's diseases. The review also covers the emergence of olfactory receptors as actors in the pathophysiology of these diseases. Olfactory receptors are not exclusively expressed in olfactory sensory neurons. Olfactory receptors are widespread in the human body; they are expressed, among others, in the testicles, lungs, intestines, kidneys, skin, heart, and blood cells. Although information on these ectopically expressed olfactory receptors is limited, they appear to be involved in cell recognition, migration, proliferation, wound healing, apoptosis, and exocytosis. Regarding expression in non-chemosensory regions of the central nervous system (CNS), future research should address the role, in both the glia and neurons, of olfactory receptors. Here, we review the limited but relevant information on the altered expression of olfactory receptor genes in Parkinson's and Alzheimer's diseases. By unraveling how olfactory receptor activation is involved in neurodegeneration and identifying links between olfactory structures and neuronal death, valuable information could be gained for early diagnosis and intervention strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Sepulveda‐Falla D, Vélez JI, Acosta‐Baena N, Baena A, Moreno S, Krasemann S, Lopera F, Mastronardi CA, Arcos‐Burgos M. Genetic modifiers of cognitive decline in PSEN1 E280A Alzheimer's disease. Alzheimers Dement 2024; 20:2873-2885. [PMID: 38450831 PMCID: PMC11032577 DOI: 10.1002/alz.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Rate of cognitive decline (RCD) in Alzheimer's disease (AD) determines the degree of impairment for patients and of burden for caretakers. We studied the association of RCD with genetic variants in AD. METHODS RCD was evaluated in 62 familial AD (FAD) and 53 sporadic AD (SAD) cases, and analyzed by whole-exome sequencing for association with common exonic functional variants. Findings were validated in post mortem brain tissue. RESULTS One hundred seventy-two gene variants in FAD, and 227 gene variants in SAD associated with RCD. In FAD, performance decline of the immediate recall of the Rey-Osterrieth figure test associated with 122 genetic variants. Olfactory receptor OR51B6 showed the highest number of associated variants. Its expression was detected in temporal cortex neurons. DISCUSSION Impaired olfactory function has been associated with cognitive impairment in AD. Genetic variants in these or other genes could help to identify risk of faster memory decline in FAD and SAD patients.
Collapse
Affiliation(s)
- Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Jorge I. Vélez
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
- Universidad del NorteBarranquillaColombia
| | | | - Ana Baena
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Sonia Moreno
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Claudio A. Mastronardi
- Genomics and Predictive Medicine GroupDepartment of Genome SciencesJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
- INPAC Research Group, Fundación Universitaria SanitasBogotáColombia
| | - Mauricio Arcos‐Burgos
- Grupo de Investigación en Psiquiatría (GIPSI)Departamento de PsiquiatríaFacultad de MedicinaInstituto de Investigaciones MédicasUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
14
|
Xu J, Choi R, Gupta K, Warren HR, Santhanam L, Pluznick JL. An evolutionarily conserved olfactory receptor is required for sex differences in blood pressure. SCIENCE ADVANCES 2024; 10:eadk1487. [PMID: 38507492 PMCID: PMC10954203 DOI: 10.1126/sciadv.adk1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Sex differences in blood pressure are well-established, with premenopausal women having lower blood pressure than men by ~10 millimeters of mercury; however, the underlying mechanisms are not fully understood. We report here that sex differences in blood pressure are absent in olfactory receptor 558 knockout (KO) mice. Olfr558 localizes to renin-positive cells in the kidney and to vascular smooth muscle cells. Female KOs exhibit increased blood pressure and increased pulse wave velocity. In contrast, male KO mice have decreased renin expression and activity, altered vascular reactivity, and decreased diastolic pressure. A rare OR51E1 (human ortholog) missense variant has a statistically significant sex interaction effect with diastolic blood pressure, increasing diastolic blood pressure in women but decreasing it in men. In summary, our findings demonstrate an evolutionarily conserved role for OLFR558/OR51E1 to mediate sex differences in blood pressure.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rira Choi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kunal Gupta
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen R. Warren
- Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Kriauciunas A, Gedvilaite G, Bruzaite A, Zekonis G, Razukevicius D, Liutkeviciene R. Generalised Periodontitis: Examining TAS2R16 Serum Levels and Common Gene Polymorphisms (rs860170, rs978739, rs1357949). Biomedicines 2024; 12:319. [PMID: 38397921 PMCID: PMC10886930 DOI: 10.3390/biomedicines12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate and compare the associations between TAS2R16 serum levels and common gene rs860170, rs978739, and rs1357949 polymorphisms in patients affected by generalized periodontitis. The study enrolled 590 patients: 280 patients with periodontitis and 310 healthy controls as a reference group. Patients underwent periodontal examination and radiographic analysis to confirm the periodontitis diagnosis. Blood samples were collected, and the DNA salting-out method was used for DNA extraction from peripheral venous blood. Genotyping of TAS2R16 (rs860170, rs978739, and rs1357949) was performed using real-time polymerase chain reaction (RT-PCR), and serum level analysis was performed for both periodontitis-affected patients and reference group subjects. The analysis of TAS2R16 rs860170 (TT, CT, and CC) showed a statistically significant difference between generalized periodontitis and the reference group (41.8%, 58.2%, and 0% vs. 38.7%, 56.1%, and 5.2%, p < 0.001). TAS2R16 rs860170 (TT, CT, and CC) showed a statistically significant difference between males in generalized periodontitis and reference groups (38.4%, 61.6%, and 0% vs. 32.9%, 56.6%, and 10.5%, p = 0.002). Female-specific analysis showed that the TAS2R16 rs978739 C allele was more frequent in generalized periodontitis compared to the reference group (37.5% vs. 28.7%, p = 0.016). Subjects aged 70 years and older demonstrated a statistically significant difference in TAS2R16 rs860170 (TT, CT, and CC) between generalized periodontitis and the reference group (42.8%, 57.2%, and 0% vs. 38.6%, 53.8%, and 7.6%, p = 0.003). TAS2R16 serum levels were elevated in generalized periodontitis compared to the reference group (0.112 (0.06) ng/mL vs. 0.075 (0.03) ng/mL, p = 0.002). Females carrying the TAS2R16 rs978739 C allele were more prone to generalized periodontitis development. Associations were found between TAS2R16 rs860170 polymorphisms, elevated TAS2R16 serum levels, and generalized periodontitis development.
Collapse
Affiliation(s)
- Albertas Kriauciunas
- Department of Prosthodontics, Lithuanian University of Health Sciences, Sukilėlių Str. 51, LT-50106 Kaunas, Lithuania;
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania; (G.G.); (A.B.); (R.L.)
| | - Akvile Bruzaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania; (G.G.); (A.B.); (R.L.)
| | - Gediminas Zekonis
- Department of Prosthodontics, Lithuanian University of Health Sciences, Sukilėlių Str. 51, LT-50106 Kaunas, Lithuania;
| | - Dainius Razukevicius
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Institute of Neuroscience, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania; (G.G.); (A.B.); (R.L.)
| |
Collapse
|
16
|
Shahbaz MA, Kuivanen S, Lampinen R, Mussalo L, Hron T, Závodná T, Ojha R, Krejčík Z, Saveleva L, Tahir NA, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Singh P, Topinka J, Vapalahti O, Chew S, Balistreri G, Kanninen KM. Human-derived air-liquid interface cultures decipher Alzheimer's disease-SARS-CoV-2 crosstalk in the olfactory mucosa. J Neuroinflammation 2023; 20:299. [PMID: 38098019 PMCID: PMC10722731 DOI: 10.1186/s12974-023-02979-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Virology, 10117, Berlin, Germany
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Laura Mussalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Tomáš Hron
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Numan Ahmad Tahir
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
17
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
18
|
Hirata AHDL, Camargo LADJR, da Silva VA, de Almeida RJ, Bacigalupo LDS, Albejante MC, Curi FSD, Varela P, Martins L, Pesquero JB, Delle H, Camacho CP. Exploring the Potential of Olfactory Receptor Circulating RNA Measurement for Preeclampsia Prediction and Its Linkage to Mild Gestational Hypothyroidism. Int J Mol Sci 2023; 24:16681. [PMID: 38069004 PMCID: PMC10706743 DOI: 10.3390/ijms242316681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Gestational hypothyroidism may lead to preeclampsia development. However, this pathophysiological is unknown. We expect to find a shared mechanism by comparing hypothyroidism and preeclampsia. From our transcriptome data, we recognized olfactory receptors as that fingerprint. The reduction of taste and smell in hypothyroid patients has been known for a long time. Therefore, we decided to look to the olfactory receptors and aimed to identify genes capable of predicting preeclampsia (PEC). Methods: An Ion Proton Sequencer (Thermo Fisher Scientific, Waltham, MA, USA) was used to construct the transcriptome databases. RStudio with packages Limma v.3.50.0, GEOquery v.2.62.2, and umap v.0.2.8.8 were used to analyze the differentially expressed genes in GSE149440 from the Gene Expression Omnibus (GEO). The 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) was used for RT-qPCR amplification of OR6X1 and OR4E2. Results: Our transcriptomic datasets analysis revealed 25.08% and 26.75% downregulated olfactory receptor (ORs) in mild nontreated gestational hypothyroidism (GHT) and PEC, respectively. In the GSE149440 GEO dataset, we found OR5H1, OR5T3, OR51A7, OR51B6, OR10J5, OR6C6, and OR2AG2 as predictors of early-onset PEC. We also evaluate two chosen biomarkers' responses to levothyroxine. The RT-qPCR demonstrated a difference in OR6X1 and OR4E2 expression between GHT and healthy pregnancy (p < 0.05). Those genes presented a negative correlation with TSH (r: -0.51, p < 0.05; and r: -0.44, p < 0.05), a strong positive correlation with each other (r: 0.89; p < 0.01) and the levothyroxine-treated group had no difference from the healthy one. We conclude that ORs could be used as biomarkers at the beginning of gestation, and the downregulated ORs found in GHT may be improved with levothyroxine treatment.
Collapse
Affiliation(s)
- Andréa Harumy de Lima Hirata
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Luiz Antônio de Jesus Rocha Camargo
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Thyroid Diseases Center, Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11th Floor, São Paulo 04039-032, SP, Brazil
| | - Valdelena Alessandra da Silva
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Robson José de Almeida
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Lucas dos Santos Bacigalupo
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Department of Obstetrics and Gynecology, Conjunto Hospitalar do Mandaqui, Rua Voluntários da Pátria, 4301, São Paulo 02401-400, SP, Brazil
| | - Maria Clara Albejante
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Department of Obstetrics and Gynecology, Conjunto Hospitalar do Mandaqui, Rua Voluntários da Pátria, 4301, São Paulo 02401-400, SP, Brazil
| | - Flavia Salomão d’Avila Curi
- Department of Obstetrics and Gynecology, Conjunto Hospitalar do Mandaqui, Rua Voluntários da Pátria, 4301, São Paulo 02401-400, SP, Brazil
| | - Patrícia Varela
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 9th Floor, São Paulo 04039-032, SP, Brazil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo Martins
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 9th Floor, São Paulo 04039-032, SP, Brazil
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAS), Lodowa 106, 93-232 Łódź, Poland
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 9th Floor, São Paulo 04039-032, SP, Brazil
| | - Humberto Delle
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Cleber P. Camacho
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Thyroid Diseases Center, Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11th Floor, São Paulo 04039-032, SP, Brazil
| |
Collapse
|
19
|
Sharma A, Kumar R, Varadwaj P. Developing human olfactory network and exploring olfactory receptor-odorant interaction. J Biomol Struct Dyn 2023; 41:8941-8960. [PMID: 36310099 DOI: 10.1080/07391102.2022.2138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The Olfactory receptor (OR)-odorant interactions are perplexed. ORs can bind to structurally diverse odorants associated with one or more odor percepts. Various attempts have been made to understand the intricacies of OR-odorant interaction. In this study, experimentally documented OR-odorant interactions are investigated comprehensively to; (a) suggest potential odor percepts for ORs based on the OR-OR network; (b) determine how odorants interacting with specific ORs differ in terms of inherent pharmacophoric features and molecular properties, (c) identify molecular interactions that explained OR-odorant interactions of selective ORs; and (d) predict the probable role of ORs other than olfaction. Human olfactory receptor network (hORnet) is developed to study possible odor percepts for ORs. We identified six molecular properties which showed variation and significant patterns to differentiate odorants binding with five ORs. The pharmacophore analysis revealed that odorants subset of five ORs follow similar pharmacophore hypothesis, (one hydrogen acceptor and two hydrophobic regions) but differ in terms of distance and orientation of pharmacophoric features. To ascertain the binding site residues and key interactions between the selected ORs and their interacting odorants, 3D-structure modelling, docking and molecular dynamics studies were carried out. Lastly, the potential role of ORs beyond olfaction is explored. A human OR-OR network was developed to suggest possible odor percepts for ORs using empirically proven OR-odorant interactions. We sought to find out significant characteristics, molecular properties, and molecular interactions that could explain OR-odorant interactions and add to the understanding of the complex issue of odor perception.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Ashraf S, Frazier OH, Carranza S, McPherson DD, Taegtmeyer H, Harmancey R. A Two-Step Transcriptome Analysis of the Human Heart Reveals Broad and Disease-Responsive Expression of Ectopic Olfactory Receptors. Int J Mol Sci 2023; 24:13709. [PMID: 37762009 PMCID: PMC10530704 DOI: 10.3390/ijms241813709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are critical regulators of cardiac physiology and a key therapeutic target for the treatment of heart disease. Ectopic olfactory receptors (ORs) are GPCRs expressed in extra-nasal tissues which have recently emerged as new mediators in the metabolic control of cardiac function. The goals of this study were to profile OR gene expression in the human heart, to identify ORs dysregulated by heart failure caused by ischemic cardiomyopathy, and to provide evidence suggestive of a role for those altered ORs in the pathogenesis of heart failure. Left ventricular tissue from heart failure patients (n = 18) and non-failing heart samples (n = 4) were subjected to a two-step transcriptome analysis consisting of the quantification of 372 distinct OR transcripts on real-time PCR arrays and simultaneous determination of global cardiac gene expression by RNA sequencing. This strategy led to the identification of >160 ORs expressed in the human heart, including 38 receptors differentially regulated with heart failure. Co-expression analyses predicted the involvement of dysregulated ORs in the alteration of mitochondrial function, extracellular matrix remodeling, and inflammation. We provide this dataset as a resource for investigating roles of ORs in the human heart, with the hope that it will assist in the identification of new therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| | - O. Howard Frazier
- Texas Heart Institute at Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - Sylvia Carranza
- Texas Heart Institute at Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - David D. McPherson
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.A.)
| |
Collapse
|
21
|
Kim JM, Dziobaka S, Yoon YE, Lee HL, Jeong JH, Lee IR, Weidinger D, Yang C, Kim D, Gulperi Y, Lee CK, Sohn J, Song G, Hatt H, Lee SJ. OR2H2 Activates CAMKKβ-AMPK-Autophagy Signaling Axis and Suppresses Senescence in VK2/E6E7 Cells. Pharmaceuticals (Basel) 2023; 16:1221. [PMID: 37765029 PMCID: PMC10535153 DOI: 10.3390/ph16091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Olfactory receptors are expressed in multiple extra-nasal tissues and these ectopic olfactory receptors mediate tissue-specific functions and regulate cellular physiology. Ectopic olfactory receptors may play key roles in tissues constantly exposed to odorants, thus the functionality of these receptors in genital tissues is of particular interest. The functionality of ectopic olfactory receptors expressed in VK2/E6E7 human vaginal epithelial cells was investigated. OR2H2 was the most highly expressed olfactory receptor expressed in VK2/E6E7 cells, and activation of OR2H2 by aldehyde 13-13, a ligand of OR2H2, increased the intracellular calcium and cAMP concentrations. Immunoblotting demonstrated that activation of OR2H2 by aldehyde 13-13 stimulated the CAMKKβ-AMPK-mTORC1-autophagy signaling axis, and that these effects were negated by OR2H2 knockdown. AMPK is known to regulate senescence; consequently, we investigated further the effect of aldehyde 13-13 on senescence. In H2O2-induced senescent cells, activation of OR2H2 by aldehyde 13-13 restored proliferation, and reduced the expression of senescence markers, P16 and P19. Additionally, aldehyde 13-13 induced apoptosis of H2O2-induced senescent cells, compared with non-senescent normal cells. In vivo, aldehyde 13-13 increased the lifespan of Caenorhabditis elegans and budding yeast. These findings demonstrate that OR2H2 is a functional receptor in VK2/E6E7 cells, and that activation of OR2H2 activates the AMPK-autophagy axis, and suppresses cellular aging and senescence, which may increase cellular health.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Sina Dziobaka
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Ye Eun Yoon
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Ha Lim Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Ji Hyun Jeong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - In-Ryeong Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Daniel Weidinger
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Changwon Yang
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Deokho Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Yalcin Gulperi
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02842, Republic of Korea;
- Korea Institute of Molecular Medicine and Nutrition, Seoul 02842, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02846, Republic of Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
22
|
Galibert F, Azzouzi N. Are the Olfactory Receptors Present at the Sperm Membrane Involved in Reproduction? Int J Mol Sci 2023; 24:11277. [PMID: 37511035 PMCID: PMC10379156 DOI: 10.3390/ijms241411277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Olfactory receptors (ORs), key components in ensuring the detection of myriad odorants, are expressed not only on the surface of olfactory neurons but also in many other tissues. In the case of ORs expressed at the sperm membrane, in vitro experiments with human and mouse spermatozoids have shown that they move toward the regions with the highest concentration of bourgeonal and lyral, respectively. However, to date, no in vivo experiment has shown any biological function of these ORs. To demonstrate a possible role in vivo of ORs in sperm chemotaxis, we overloaded the vaginal space of female mice from the prolific Swiss CD1 strain with lyral to induce competition with the supposed natural ligand and to prevent its detection. As shown, the mice that received lyral had much fewer newborns than the control mice treated with PBS, showing that lyral has a strong negative impact on procreation. This indicates that the ORs at the sperm surface are biologically active and make an important contribution to reproduction. Control experiments performed with hexanal, which does not alter sperm movement in vitro, indicate that the inhibition of reproduction observed was specific to lyral. In addition, we show that males are attracted to the smell of lyral, which acts as a pheromone, and prefer to copulate with mice marked on their back with lyral rather than with those that have not been marked. These results suggest an explanation for some cases of human infertility, which could result from an absence of recognition between the natural ligand and the ORs, either due to a mutation or a lack of expression from one of the two partners, allowing for the development of a diagnostic tests. These results might also lead to the development of a novel contraception strategy based on the use of vaginal tablets delivering an odorant or a drug that competes with the natural ligand.
Collapse
Affiliation(s)
- Francis Galibert
- Institut d Genetique et Developpement de Rennes (IGDR), UMR 6290, Université de Rennes, 35000 Rennes, France
| | - Naoual Azzouzi
- Institut d Genetique et Developpement de Rennes (IGDR), UMR 6290, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
23
|
Ziegler F, Steuer A, Di Pizio A, Behrens M. Physiological activation of human and mouse bitter taste receptors by bile acids. Commun Biol 2023; 6:612. [PMID: 37286811 DOI: 10.1038/s42003-023-04971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Beside the oral cavity, bitter taste receptors are expressed in several non-gustatory tissues. Whether extra-oral bitter taste receptors function as sensors for endogenous agonists is unknown. To address this question, we devised functional experiments combined with molecular modeling approaches to investigate human and mouse receptors using a variety of bile acids as candidate agonists. We show that five human and six mouse receptors are responsive to an array of bile acids. Moreover, their activation threshold concentrations match published data of bile acid concentrations in human body fluids, suggesting a putative physiological activation of non-gustatory bitter receptors. We conclude that these receptors could serve as sensors for endogenous bile acid levels. These results also indicate that bitter receptor evolution may not be driven solely by foodstuff or xenobiotic stimuli, but also depend on endogenous ligands. The determined bitter receptor activation profiles of bile acids now enable detailed physiological model studies.
Collapse
Affiliation(s)
- Florian Ziegler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
24
|
Guardia GDA, Naressi RG, Buzzato VC, da Costa JB, Zalcberg I, Ramires J, Malnic B, Gutiyama LM, Galante PAF. Acute Myeloid Leukemia Expresses a Specific Group of Olfactory Receptors. Cancers (Basel) 2023; 15:3073. [PMID: 37370684 DOI: 10.3390/cancers15123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, with a 5-year overall survival rate of approximately 30%. Despite recent advances in therapeutic options, relapse remains the leading cause of death and poor survival outcomes. New drugs benefit specific small subgroups of patients with actionable therapeutic targets. Thus, finding new targets with greater applicability should be pursued. Olfactory receptors (ORs) are seven transmembrane G-protein coupled receptors preferentially expressed in sensory neurons with a critical role in recognizing odorant molecules. Recent studies have revealed ectopic expression and putative function of ORs in nonolfactory tissues and pathologies, including AML. Here, we investigated OR expression in 151 AML samples, 6400 samples of 15 other cancer types, and 11,200 samples of 51 types of healthy tissues. First, we identified 19 ORs with a distinct and major expression pattern in AML, which were experimentally validated by RT-PCR in an independent set of 13 AML samples, 13 healthy donors, and 8 leukemia cell lines. We also identified an OR signature with prognostic potential for AML patients. Finally, we found cancer-related genes coexpressed with the ORs in the AML samples. In summary, we conducted an extensive study to identify ORs that can be used as novel biomarkers for the diagnosis of AML and as potential drug targets.
Collapse
Affiliation(s)
- Gabriela D A Guardia
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Rafaella G Naressi
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
- Department of Biochemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Vanessa C Buzzato
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Juliana B da Costa
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Ilana Zalcberg
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Jordana Ramires
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Luciana M Gutiyama
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| |
Collapse
|
25
|
Billesbølle CB, de March CA, van der Velden WJC, Ma N, Tewari J, Del Torrent CL, Li L, Faust B, Vaidehi N, Matsunami H, Manglik A. Structural basis of odorant recognition by a human odorant receptor. Nature 2023; 615:742-749. [PMID: 36922591 PMCID: PMC10580732 DOI: 10.1038/s41586-023-05798-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
Our sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome1-3. How odorants are recognized by odorant receptors remains unclear. Here we provide mechanistic insight into how an odorant binds to a human odorant receptor. Using cryo-electron microscopy, we determined the structure of the active human odorant receptor OR51E2 bound to the fatty acid propionate. Propionate is bound within an occluded pocket in OR51E2 and makes specific contacts critical to receptor activation. Mutation of the odorant-binding pocket in OR51E2 alters the recognition spectrum for fatty acids of varying chain length, suggesting that odorant selectivity is controlled by tight packing interactions between an odorant and an odorant receptor. Molecular dynamics simulations demonstrate that propionate-induced conformational changes in extracellular loop 3 activate OR51E2. Together, our studies provide a high-resolution view of chemical recognition of an odorant by a vertebrate odorant receptor, providing insight into how this large family of G protein-coupled receptors enables our olfactory sense.
Collapse
Affiliation(s)
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Barcelona, Spain
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Wang Y, Geng R, Zhao Y, Fang J, Li M, Kang SG, Huang K, Tong T. The gut odorant receptor and taste receptor make sense of dietary components: A focus on gut hormone secretion. Crit Rev Food Sci Nutr 2023; 64:6975-6989. [PMID: 36785901 DOI: 10.1080/10408398.2023.2177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Odorant receptors (ORs) and taste receptors (TRs) are expressed primarily in the nose and tongue in which they transduce electrical signals to the brain. Advances in deciphering the dietary component-sensing mechanisms in the nose and tongue prompted research on the role of gut chemosensory cells. Acting as the pivotal interface between the body and dietary cues, gut cells "smell" and "taste" dietary components and metabolites by taking advantage of chemoreceptors-ORs and TRs, to maintain physiological homeostasis. Here, we reviewed this novel field, highlighting the latest discoveries pertinent to gut ORs and TRs responding to dietary components, their impacts on gut hormone secretion, and the mechanisms involved. Recent studies indicate that gut cells sense dietary components including fatty acid, carbohydrate, and phytochemical by activating relevant ORs, thereby modulating GLP-1, PYY, CCK, and 5-HT secretion. Similarly, gut sweet, umami, and bitter receptors can regulate the gut hormone secretion and maintain homeostasis in response to dietary components. A deeper understanding of the favorable influence of dietary components on gut hormone secretion via gut ORs and TRs, coupled with the facts that gut hormones are involved in diverse physiological or pathophysiological phenomena, may ultimately lead to a promising treatment for various human diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| |
Collapse
|
27
|
Nakanishi S, Tsutsui T, Itai N, Denda M. Distinct sets of olfactory receptors highly expressed in different human tissues evaluated by meta-transcriptome analysis: Association of OR10A6 in skin with keratinization. Front Cell Dev Biol 2023; 11:1102585. [PMID: 36776557 PMCID: PMC9909485 DOI: 10.3389/fcell.2023.1102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Olfactory receptors (ORs) are expressed in many tissues and have multiple functions. However, most studies have focused on individual ORs. Here, we aimed to conduct a comprehensive meta-transcriptome analysis of OR gene expression in human tissues by using open-source tools to search a large, publicly available genotype-tissue expression (GTEx) data set. Analysis of RNA-seq data from GTEx revealed that OR expression patterns were tissue-dependent, and we identified distinct sets of ORs that were highly expressed in 12 tissues, involving 97 ORs in total. Among them, OR5P2, OR5P3 and OR10A6 were associated with skin. We further examined the roles of these ORs in skin by performing weighted gene correlation network analysis (WGCNA) and c3net analysis. WGCNA suggested that the three ORs are involved in epidermal differentiation and water-impermeable barrier homeostasis, and OR10A6 showed the largest gene sub-network in the c3net network. Immunocytochemical examination of human skin keratinocytes revealed a sparse expression pattern of OR10A6, suggesting that it is not uniformly distributed among all keratinocytes. An OR10A6 agonist, 3-phenylpropyl propionate (3PPP), transiently increased intracellular Ca2+ concentration and increased cornified envelope (CE) production in cultured keratinocytes. Knock-down of OR10A6 diminished the effect of 3PPP. Overall, integration of meta-transcriptome analysis and functional analysis uncovered distinct expression patterns of ORs in various human tissues, providing basic data for future studies of the biological functions of highly expressed ORs in individual tissues. Our results further suggest that expression of OR10A6 in skin is related to epidermal differentiation, and OR10A6 may be a potential target for modulation of keratinization.
Collapse
Affiliation(s)
- Shinobu Nakanishi
- Shiseido Global Innovation Center, Yokohama, Japan,*Correspondence: Shinobu Nakanishi, ; Taiki Tsutsui,
| | - Taiki Tsutsui
- Shiseido Global Innovation Center, Yokohama, Japan,*Correspondence: Shinobu Nakanishi, ; Taiki Tsutsui,
| | - Nao Itai
- Shiseido Global Innovation Center, Yokohama, Japan
| | - Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Tokyo, Japan
| |
Collapse
|
28
|
Wang X, Stephen Chan HC, Yuan S. Modeling of Olfactory Receptors. Methods Mol Biol 2023; 2627:183-193. [PMID: 36959448 DOI: 10.1007/978-1-0716-2974-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Olfactory receptors (ORs) form the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date. Homology modeling has become a popular strategy to propose plausible OR models, in order to study the structure-function relationships of the receptors and to aid the discovery and development of ligands capable of modulating receptor activity. In this chapter, we provide a general guideline for OR structure construction, including the collection of candidate templates, structure-based sequence alignment, 3D structure construction, ligand docking, and molecular dynamic simulation.
Collapse
Affiliation(s)
- Xueying Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - H C Stephen Chan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
29
|
Weidinger D, Jamal Jameel K, Alisch D, Jacobsen J, Bürger P, Ruhe M, Yusuf F, Rohde S, Störtkuhl K, Kaufmann P, Kronsbein J, Peters M, Hatt H, Giannakis N, Knobloch J. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol Med 2022; 28:150. [PMID: 36503361 PMCID: PMC9743598 DOI: 10.1186/s10020-022-00572-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.
Collapse
Affiliation(s)
- Daniel Weidinger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kaschin Jamal Jameel
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Desiree Alisch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Julian Jacobsen
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Paul Bürger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Matthias Ruhe
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Faisal Yusuf
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Simon Rohde
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Klemens Störtkuhl
- grid.5570.70000 0004 0490 981XAG Physiology of Senses, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Peter Kaufmann
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Marcus Peters
- grid.5570.70000 0004 0490 981XDepartment of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hanns Hatt
- grid.5570.70000 0004 0490 981XDepartment of Cell Physiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nikolaos Giannakis
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Knobloch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
30
|
Kang W, Choi D, Son B, Park S, Park T. Activation of OR10A3 by Suberic Acid Promotes Collagen Synthesis in UVB-Irradiated Dermal Fibroblasts via the cAMP-Akt Pathway. Cells 2022; 11:cells11243961. [PMID: 36552724 PMCID: PMC9776755 DOI: 10.3390/cells11243961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been a great deal of interest in the ectopic roles of olfactory receptors (ORs) throughout the human body. Especially, the ectopic function of OR in the skin is one of the most actively researched areas. Suberic acid, a scent compound, was hypothesized to increase collagen synthesis in the ultraviolet B (UVB)-irradiated human dermal fibroblasts (Hs68) through a specific olfactory receptor. Suberic acid ameliorated UVB-induced decreases in collagen production in Hs68 cells. Using in silico docking to predict the binding conformation and affinity of suberic acid to 15 ectopic ORs detectable in Hs68, several ORs were identified as promising candidates. The effect of suberic acid on collagen synthesis in UVB-exposed dermal fibroblasts was nullified only by a reduction in OR10A3 expression via specific siRNA. In addition, using the cells transiently expressing OR10A3, we demonstrated that suberic acid can activate OR10A3 by assessing the downstream effector cAMP response element (CRE) luciferase activity. We examined that the activation of OR10A3 by suberic acid subsequently stimulates collagen synthesis via the downstream cAMP-Akt pathway. The findings support OR10A3 as a promising target for anti-aging treatments of the skin.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Correspondence: ; Tel.: +82-2-2123-3123; Fax: +82-2-365-3118
| |
Collapse
|
31
|
Wang J, Conlon D, Rivellese F, Nerviani A, Lewis MJ, Housley W, Levesque MC, Cao X, Cuff C, Long A, Pitzalis C, Ruzek MC. Synovial Inflammatory Pathways Characterize Anti-TNF-Responsive Rheumatoid Arthritis Patients. Arthritis Rheumatol 2022; 74:1916-1927. [PMID: 35854416 DOI: 10.1002/art.42295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study was undertaken to understand the mechanistic basis of response to anti-tumor necrosis factor (anti-TNF) therapies and to determine whether transcriptomic changes in the synovium are reflected in peripheral protein markers. METHODS Synovial tissue from 46 rheumatoid arthritis (RA) patients was profiled with RNA sequencing before and 12 weeks after treatment with anti-TNF therapies. Pathway and gene signature analyses were performed on RNA expression profiles of synovial biopsies to identify mechanisms that could discriminate among patients with a good response, a moderate response, or no response, according to the American College of Rheumatology (ACR)/EULAR response criteria. Serum proteins encoded by synovial genes that were differentially expressed between ACR/EULAR response groups were measured in the same patients. RESULTS Gene signatures predicted which patients would have good responses, and pathway analysis identified elevated immune pathways, including chemokine signaling, Th1/Th2 cell differentiation, and Toll-like receptor signaling, uniquely in good responders. These inflammatory pathways were correspondingly down-modulated by anti-TNF therapy only in good responders. Based on cell signature analysis, lymphocyte, myeloid, and fibroblast cell populations were elevated in good responders relative to nonresponders, consistent with the increased inflammatory pathways. Cell signatures that decreased following anti-TNF treatment were predominately associated with lymphocytes, and fewer were associated with myeloid and fibroblast populations. Following anti-TNF treatment, and only in good responders, several peripheral inflammatory proteins decreased in a manner that was consistent with corresponding synovial gene changes. CONCLUSION Collectively, these data suggest that RA patients with robust responses to anti-TNF therapies are characterized at baseline by immune pathway activation, which decreases following anti-TNF treatment. Understanding mechanisms that define patient responsiveness to anti-TNF treatment may assist in development of predictive markers of patient response and earlier treatment options.
Collapse
Affiliation(s)
- Jing Wang
- Immunology Systems Computational Biology, Genomic Research Center, AbbVie, Cambridge, Massachusetts
| | - Donna Conlon
- Immunology Discovery, AbbVie Research Center, Worcester, Massachusetts
| | - Felice Rivellese
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - William Housley
- Immunology Discovery, AbbVie Research Center, Worcester, Massachusetts
| | - Marc C Levesque
- Immunology Discovery, Cambridge Research Center, Cambridge, Massachusetts
| | - Xiaohong Cao
- Immunology Systems Computational Biology, Genomic Research Center, AbbVie, Cambridge, Massachusetts
| | - Carolyn Cuff
- Immunology Discovery, AbbVie Research Center, Worcester, Massachusetts
| | - Andrew Long
- Immunology Discovery, AbbVie Research Center, Worcester, Massachusetts
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Melanie C Ruzek
- Immunology Discovery, AbbVie Research Center, Worcester, Massachusetts
| |
Collapse
|
32
|
Abstract
Chemical biosensors are an increasingly ubiquitous part of our lives. Beyond enzyme-coupled assays, recent synthetic biology advances now allow us to hijack more complex biosensing systems to respond to difficult to detect analytes, such as chemical small molecules. Here, we briefly overview recent advances in the biosensing of small molecules, including nucleic acid aptamers, allosteric transcription factors, and two-component systems. We then look more closely at a recently developed chemical sensing system, G protein-coupled receptor (GPCR)-based sensors. Finally, we consider the chemical sensing capabilities of the largest GPCR subfamily, olfactory receptors (ORs). We examine ORs' role in nature, their potential as a biomedical target, and their ability to detect compounds not amenable for detection using other biological scaffolds. We conclude by evaluating the current challenges, opportunities, and future applications of GPCR- and OR-based sensors.
Collapse
Affiliation(s)
- Amisha Patel
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States,E-mail:
| |
Collapse
|
33
|
Teveroni E, Di Nicuolo F, Vergani E, Bruno C, Maulucci G, Bianchetti G, Astorri AL, Grande G, Gervasoni J, Santucci L, De Spirito M, Urbani A, Pontecorvi A, Mancini F, Milardi D. Short-Chain Fatty Acids Modulate Sperm Migration through Olfactory Receptor 51E2 Activity. Int J Mol Sci 2022; 23:ijms232112726. [PMID: 36361515 PMCID: PMC9658011 DOI: 10.3390/ijms232112726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
The non-orthotopic expression of olfactory receptors (ORs) includes the male reproductive system, and in particular spermatozoa; their active ligands could be essential to sperm chemotaxis and chemical sperm-oocyte communication. OR51E2 expression has been previously reported on sperm cells' surface. It has been demonstrated in different cellular models that olfactory receptor 51E2 (OR51E2) binds volatile short-chain fatty acids (SCFAs) as specific ligands. In the present research, we make use of Western blot, confocal microscopy colocalization analysis, and the calcium-release assay to demonstrate the activation of sperm cells through OR51E2 upon SCFAs stimulus. Moreover, we perform a novel modified swim-up assay to study the involvement of OR51E2/SCFAs in sperm migration. Taking advantage of computer-assisted sperm analysis (CASA system), we determine the kinematics parameters of sperm cells migrating towards SCFAs-enriched medium, revealing that these ligands are able to promote a more linear sperm-cell orientation. Finally, we obtain SCFAs by mass spectrometry in cervico-vaginal mucus and show for the first time that a direct incubation between cervical mucus and sperm cells could promote their activation. This study can shed light on the possible function of chemosensory receptors in successful reproduction activity, laying the foundation for the development of new strategies for the treatment of infertile individuals.
Collapse
Affiliation(s)
- Emanuela Teveroni
- International Scientific Institute “Paul VI”, ISI, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Fiorella Di Nicuolo
- International Scientific Institute “Paul VI”, ISI, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Edoardo Vergani
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Carmine Bruno
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Section of Biophysics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giada Bianchetti
- Department of Neuroscience, Section of Biophysics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Laura Astorri
- International Scientific Institute “Paul VI”, ISI, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital Padua, 35121 Padua, Italy
| | - Jacopo Gervasoni
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Metabolomics Research Core Facility, Gemelli Science and Technology Park (GSteP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Department of Neuroscience, Section of Biophysics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Urbani
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- International Scientific Institute “Paul VI”, ISI, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: or
| | - Francesca Mancini
- International Scientific Institute “Paul VI”, ISI, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Domenico Milardi
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
34
|
Orecchioni M, Matsunami H, Ley K. Olfactory receptors in macrophages and inflammation. Front Immunol 2022; 13:1029244. [PMID: 36311776 PMCID: PMC9606742 DOI: 10.3389/fimmu.2022.1029244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Olfactory receptors (ORs) that bind odorous ligands are the largest family of G-protein-coupled receptors. In the olfactory epithelium, approximately 400 and 1,100 members are expressed in humans and mice, respectively. Growing evidence suggests the extranasal functions of ORs. Here, we review OR expression and function in macrophages, specialized innate immune cells involved in the detection, phagocytosis, and destruction of cellular debris and pathogens as well as the initiation of inflammatory responses. RNA sequencing data in mice suggest that up to 580 ORs may be expressed in macrophages. Macrophage OR expression is increased after treatment with the Toll-like receptor 4 ligand lipopolysaccharide, which also induces the transcription of inflammasome components. Triggering human OR6A2 or its mouse orthologue Olfr2 with their cognate ligand octanal induces inflammasome assembly and the secretion of IL-1β, which exacerbates atherosclerosis. Octanal is positively correlated with blood lipids like low-density lipoprotein -cholesterol in humans. Another OR, Olfr78, is activated by lactate, which promotes the generation of tumor-associated macrophages that dampen the immune response and promote tumor progression. Olfactory receptors in macrophages are a rich source of untapped opportunity for modulating inflammation. It is not known which of the many ORs expressed in macrophages promote or modulate inflammation. Progress in this area also requires deorphanizing more ORs and determining the sources of their ligands.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Klaus Ley
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,Immunology Center of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| |
Collapse
|
35
|
Yang Z, Cheng J, Shang P, Sun JP, Yu X. Emerging roles of olfactory receptors in glucose metabolism. Trends Cell Biol 2022; 33:463-476. [PMID: 36229334 DOI: 10.1016/j.tcb.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Olfactory receptors (ORs) are widely expressed in extra-nasal tissues, where they participate in the regulation of divergent physiological processes. An increasing body of evidence over the past decade has revealed important regulatory roles for extra-nasal ORs in glucose metabolism. Recently, nonodorant endogenous ligands of ORs with metabolic significance have been identified, implying the therapeutic potential of ORs in the treatment of metabolic diseases, such as diabetes and obesity. In this review, we summarize current understanding of the expression patterns and functions of ORs in key tissues involved in glucose metabolism modulation, describe odorant and endogenous OR ligands, explain the biased signaling downstream of ORs, and outline OR therapeutic potential.
Collapse
|
36
|
Integrated Analysis of mRNAs and Long Non-Coding RNAs Expression of Oviduct That Provides Novel Insights into the Prolificacy Mechanism of Goat ( Capra hircus). Genes (Basel) 2022; 13:genes13061031. [PMID: 35741792 PMCID: PMC9222479 DOI: 10.3390/genes13061031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Artificial directional selection has replaced natural selection and resulted in trait differences across breeds in domestic animal breeding. However, the molecular mechanism by which the oviduct regulates litter size remains largely elusive in goats during the follicular phase. Accumulating data have linked lncRNAs to reproductive activities; however, little is known about the modulation mechanism in the oviduct. Herein, RNA-seq was used to measure mRNA and lncRNA expression levels in low- and high-fecundity goats. We observed distinctive differences in mRNA and lncRNA in terms of different kidding numbers and detected the differential expression of 1640 mRNA transcripts and 271 lncRNA transcripts. Enrichment analysis of differentially expressed mRNAs (DEGs) suggested that multiple pathways, such as the AMPK, PI3K–Akt, calcium signaling pathway, oocyte meiosis, ABC transporter, and ECM–receptor interaction pathways, directly or indirectly affected goat reproduction. Additionally, coexpression of differentially expressed lncRNAs (DEL)-genes analysis showed that XLOC_021615, XLOC_119780, and XLOC_076450 were trans-acting as the DEGs ATAD2, DEPDC5, and TRPM6, respectively, and could regulate embryo development. Moreover, XLOC_020079, XLOC_107361, XLOC_169844, XLOC_252348 were the trans-regulated elements of the DEGs ARHGEF2 and RAPGEF6, and the target DEGs CPEB3 of XLOC_089239, XLOC_090063, XLOC_107409, XLOC_153574, XLOC_211271, XLOC_251687 were associated with prolificacy. Collectively, our study has offered a thorough dissection of the oviduct lncRNA and mRNA landscapes in goats. These results could serve as potential targets of the oviduct affecting fertility in goats.
Collapse
|
37
|
Xu J, Pluznick JL. Key Amino Acids Alter Activity and Trafficking of a Well-conserved Olfactory Receptor. Am J Physiol Cell Physiol 2022; 322:C1279-C1288. [PMID: 35544696 DOI: 10.1152/ajpcell.00440.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we elucidate factors that regulate the trafficking and activity of a well-conserved olfactory receptor (OR), Olfr558, and its human ortholog OR51E1. Results indicate that butyrate activates Olfr558/OR51E1 leading to the production of cAMP, and evokes Ca2+ influx. We also find Golf increases cAMP production induced by Olfr558/OR51E1 activation but does not affect trafficking. Given the 93% sequence identity between OR51E1 and Olfr558, it is surprising to note that OR51E1 has significantly more surface expression yet similar total protein expression. We find that replacing the Olfr558 N-terminus with that of OR51E1 significantly increases trafficking; in contrast, there is no change in surface expression conferred by the Olfr558 TM2, TM3, or TM4 domains. A previous analysis of human OR51E1 single nucleotide polymorphisms (SNPs) identified an A156T mutant primarily found in South Asia as the most abundant (albeit still rare). We find that the OR51E1 A156T mutant has reduced surface expression and cAMP production without a change in total protein expression. In sum, this study of a well-conserved olfactory receptor identifies both protein regions and specific amino acid residues that play key roles in protein trafficking, and also elucidates common effects of Golf on the regulation of both the human and murine OR.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, Maryland, United States
| | - Jennifer L Pluznick
- Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, Maryland, United States
| |
Collapse
|
38
|
Low WY, Rosen BD, Ren Y, Bickhart DM, To TH, Martin FJ, Billis K, Sonstegard TS, Sullivan ST, Hiendleder S, Williams JL, Heaton MP, Smith TPL. Gaur genome reveals expansion of sperm odorant receptors in domesticated cattle. BMC Genomics 2022; 23:344. [PMID: 35508966 PMCID: PMC9069736 DOI: 10.1186/s12864-022-08561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The gaur (Bos gaurus) is the largest extant wild bovine species, native to South and Southeast Asia, with unique traits, and is listed as vulnerable by the International Union for Conservation of Nature (IUCN). Results We report the first gaur reference genome and identify three biological pathways including lysozyme activity, proton transmembrane transporter activity, and oxygen transport with significant changes in gene copy number in gaur compared to other mammals. These may reflect adaptation to challenges related to climate and nutrition. Comparative analyses with domesticated indicine (Bos indicus) and taurine (Bos taurus) cattle revealed genomic signatures of artificial selection, including the expansion of sperm odorant receptor genes in domesticated cattle, which may have important implications for understanding selection for male fertility. Conclusions Apart from aiding dissection of economically important traits, the gaur genome will also provide the foundation to conserve the species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08561-1.
Collapse
Affiliation(s)
- Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| | - Benjamin D Rosen
- Animal Genomics and Improvement LaboratoryARS USDA, Beltsville, MD, USA
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | | | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430, Ås, Norway
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Shawn T Sullivan
- Phase Genomics, 4000 Mason Road, Suite 225, Seattle, WA, 98195, USA
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Michael P Heaton
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA.
| |
Collapse
|
39
|
Gómez-Romero L, Alvarez-Suarez DE, Hernández-Lemus E, Ponce-Castañeda MV, Tovar H. The regulatory landscape of retinoblastoma: a pathway analysis perspective. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220031. [PMID: 35620002 PMCID: PMC9114937 DOI: 10.1098/rsos.220031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
Retinoblastoma (Rb) is a rare intraocular tumour in early childhood, with an approximate incidence of 1 in 18 000 live births. Experimental studies for Rb are complex due to the challenges associated with obtaining a normal retina to contrast with diseased tissue. In this work, we reanalyse a dataset that contains normal retina samples. We identified the individual genes whose expression is different in Rb in contrast with normal tissue, determined the pathways whose global expression pattern is more distant from the global expression observed in normal tissue, and finally, we identified which transcription factors regulate the highest number of differentially expressed genes (DEGs) and proposed as transcriptional master regulators (TMRs). The enrichment of DEGs in the phototransduction and retrograde endocannabinoid signalling pathways could be associated with abnormal behaviour of the processes leading to cellular differentiation and cellular proliferation. On the other hand, the TMRs nuclear receptor subfamily 5 group A member 2 and hepatocyte nuclear factor 4 gamma are involved in hepatocyte differentiation. Therefore, the enrichment of aberrant expression in these transcription factors could suggest an abnormal retina development that could be involved in Rb origin and progression.
Collapse
Affiliation(s)
- Laura Gómez-Romero
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Diana E. Alvarez-Suarez
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Pharmacology Department, CINVESTAV, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - M. Verónica Ponce-Castañeda
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Hugo Tovar
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
40
|
Functional analysis of human olfactory receptors with a high basal activity using LNCaP cell line. PLoS One 2022; 17:e0267356. [PMID: 35446888 PMCID: PMC9022881 DOI: 10.1371/journal.pone.0267356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Humans use a family of more than 400 olfactory receptors (ORs) to detect odorants. However, deorphanization of ORs is a critical issue because the functional properties of more than 80% of ORs remain unknown, thus, hampering our understanding of the relationship between receptor function and perception. HEK293 cells are the most commonly used heterologous expression system to determine the function of a given OR; however, they cannot functionally express a majority of ORs probably due to a lack of factor(s) required in cells in which ORs function endogenously. Interestingly, ORs have been known to be expressed in a variety of cells outside the nose and play critical physiological roles. These findings prompted us to test the capacity of cells to functionally express a specific repertoire of ORs. In this study, we selected three cell lines that endogenously express functional ORs. We demonstrated that human prostate carcinoma (LNCaP) cell lines successfully identified novel ligands for ORs that were not recognized when expressed in HEK293 cells. Further experiments suggested that the LNCaP cell line was effective for functional expression of ORs, especially with a high basal activity, which impeded the sensitive detection of ligand-mediated activity of ORs. This report provides an efficient functional assay system for a specific repertoire of ORs that cannot be characterized in current cell systems.
Collapse
|
41
|
Du X, He X, Liu Q, Di R, Liu Q, Chu M. Comparative Transcriptomics Reveals the Key lncRNA and mRNA of Sunite Sheep Adrenal Gland Affecting Seasonal Reproduction. Front Vet Sci 2022; 9:816241. [PMID: 35464356 PMCID: PMC9024317 DOI: 10.3389/fvets.2022.816241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays an important role in the growth and development of mammals. Recently, lncRNA transcripts have emerged as an area of importance in sheep photoperiod and seasonal estrus studies. This research aims to identify lncRNA and mRNA that are differentially expressed in the sheep adrenal gland in long (LP) or short (SP) photoperiods using transcriptome sequencing and bioinformatics analysis based on the OVX + E2 (Bilateral ovariectomy and estradiol-implanted) model. We found significant differences in the expression of lncRNAs in LP42 (where LP is for 42 days) vs. SP-LP42 (where SP is for 42 days followed by LP for 42 days) (n = 304), SP42 (where SP is for 42 days) vs. SP-LP42 (n = 1,110) and SP42 vs. LP42 (n = 928). Cluster analysis and enrichment analysis identified SP42 vs. LP42 as a comparable group of interest and found the following candidate genes related to reproductive phenotype: FGF16, PLGF, CDKN1A, SEMA7A, EDG1, CACNA1C and ADCY5. FGF16 (Up-regulated lncRNA MSTRG.242136 and MSTRG.236582) is the only up-regulated gene that is closely related to oocyte maturation. However, EDG1 (Down-regulated lncRNA MSTRG.43609) and CACNA1C may be related to precocious puberty in sheep. PLGF (Down-regulated lncRNA MSTRG.146618 and MSTRG.247208) and CDKN1A (Up-regulated lncRNA MSTRG.203610 and MSTRG.129663) are involved in the growth and differentiation of placental and retinal vessels, and SEMA7A (Up-regulated lncRNA MSTRG.250579) is essential for the development of gonadotropin-releasing hormone (GnRH) neurons. These results identify novel candidate genes that may regulate sheep seasonality and may lead to new methods for the management of sheep reproduction. This study provides a basis for further explanation of the basic molecular mechanism of the adrenal gland, but also provides a new idea for a comprehensive understanding of seasonal estrus characteristics in Sunite sheep.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu
| |
Collapse
|
42
|
Hanson J. [G proteins: privileged transducers of 7-transmembrane spanning receptors]. Biol Aujourdhui 2022; 215:95-106. [PMID: 35275054 DOI: 10.1051/jbio/2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors or GPCR are the most abundant membrane receptors in our genome with around 800 members. They play an essential role in most physiological and pathophysiological phenomena. In addition, they constitute 30% of the targets of currently marketed drugs and remain an important reservoir for new innovative therapies. Their main effectors are heterotrimeric G proteins. These are composed of 3 subunits, α, β and γ, which, upon coupling with a GPCR, dissociate into Gα and Gβγ to activate numerous signaling pathways. This article describes some of the recent advances in understanding the function and role of heterotrimeric G proteins. After a short introduction to GPCRs, the history of the discovery of G proteins is briefly described. Then, the fundamental mechanisms of activation, signaling and regulation of G proteins are reviewed. New paradigms concerning intracellular signaling, specific recognition of G proteins by GPCRs as well as biased signaling are also discussed.
Collapse
Affiliation(s)
- Julien Hanson
- Laboratoire de Pharmacologie Moléculaire, GIGA-Molecular Biology of Diseases, Université de Liège, CHU, B34, Tour GIGA (+4), Avenue de l'Hôpital 11, B-4000 Liège, Belgique
| |
Collapse
|
43
|
Olfactory receptors contribute to progression of kidney fibrosis. NPJ Syst Biol Appl 2022; 8:8. [PMID: 35181660 PMCID: PMC8857310 DOI: 10.1038/s41540-022-00217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Abstract
Olfactory receptors (ORs) which are mainly known as odor-sensors in the olfactory epithelium are shown to be expressed in several non-sensory tissues. Despite the specified role of some of these receptors in normal physiology of the kidney, little is known about their potential effect in renal disorders. In this study, using the holistic view of systems biology, it was determined that ORs are significantly changed during the progression of kidney fibrosis. For further validation, common differentially expressed ORs resulted from reanalysis of two time-course microarray datasets were selected for experimental evaluation in a validated murine model of unilateral ureteral obstruction (UUO). Transcriptional analysis by real-time quantitative polymerase chain reaction demonstrated considerable changes in the expression pattern of Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622 during the progression of kidney fibrosis. For localization of these ORs, single-cell RNA-sequencing datasets of normal and UUO mice were reanalyzed. Results showed that Olfr433 is highly expressed in macrophages in day-2 and 7 post-injury in UUO mice and not in normal subgroups. Besides, like previous findings, Olfr1393 was shown to be expressed prominently in the proximal tubular cells of the kidney. In conclusion, our combinatorial temporal approach to the underlying mechanisms of chronic kidney disease highlighted the potential role of ORs in progression of fibrosis. The expression of Olfr433 in the macrophages provides some clue about its relation to molecular mechanisms promoted in the fibrotic kidney. The proposed ORs in this study could be the subject of further functional assessments in the future.
Collapse
|
44
|
Wu C, Jeong MY, Kim JY, Lee G, Kim JS, Cheong YE, Kang H, Cho CH, Kim J, Park MK, Shin YK, Kim KH, Seol GH, Koo SH, Ko G, Lee SJ. Activation of ectopic olfactory receptor 544 induces GLP-1 secretion and regulates gut inflammation. Gut Microbes 2022; 13:1987782. [PMID: 34674602 PMCID: PMC8632334 DOI: 10.1080/19490976.2021.1987782] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Olfactory receptors are ectopically expressed in extra-nasal tissues. The gut is constantly exposed to high levels of odorants where ectopic olfactory receptors may play critical roles. Activation of ectopic olfactory receptor 544 (Olfr544) by azelaic acid (AzA), an Olfr544 ligand, reduces adiposity in mice fed a high-fat diet (HFD) by regulating fuel preference to fats. Herein, we investigated the novel function of Olfr544 in the gut. In GLUTag cells, AzA induces the cAMP-PKA-CREB signaling axis and increases the secretion of GLP-1, an enteroendocrine hormone with anti-obesity effects. In mice fed a HFD and orally administered AzA, GLP-1 plasma levels were elevated in mice. The induction of GLP-1 secretion was negated in cells with Olfr544 gene knockdown and in Olfr544-deficient mice. Gut microbiome analysis revealed that AzA increased the levels of Bacteroides acidifaciens and microbiota associated with antioxidant pathways. In fecal metabolomics analysis, the levels of succinate and trehalose, metabolites correlated with a lean phenotype, were elevated by AzA. The function of Olfr544 in gut inflammation, a key feature in obesity, was further investigated. In RNA sequencing analysis, AzA suppressed LPS-induced activation of inflammatory pathways and reduced TNF-α and IL-6 expression, thereby improving intestinal permeability. The effects of AzA on the gut metabolome, microbiome, and colon inflammation were abrogated in Olfr544-KO mice. These results collectively demonstrated that activation of Olfr544 by AzA in the gut exerts multiple effects by regulating GLP-1 secretion, gut microbiome and metabolites, and colonic inflammation in anti-obesogenic phenotypes and, thus, may be applied for obesity therapeutics.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Jung Yeon Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Ji-Sun Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Yu Eun Cheong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Hyena Kang
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Chung Hwan Cho
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Jimin Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Min Kyung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Seung Hoi Koo
- Division of Biological Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea,Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea,CONTACT Sung-Joon Lee Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Seo J, Choi S, Kim H, Park SH, Lee J. Association between Olfactory Receptors and Skin Physiology. Ann Dermatol 2022; 34:87-94. [PMID: 35450315 PMCID: PMC8989906 DOI: 10.5021/ad.2022.34.2.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
Olfactory receptors are chemosensory receptors that detect odorants and function in the initial perception of a smell. Intriguingly, olfactory receptors are also expressed in cells other than olfaction sensory cells, an expression pattern termed ectopic expression. Ectopically expressed olfactory receptors have a distinct role depending on the type of tissues or cells in which they are expressed. This review introduces current research on the ectopic expression and function of olfactory receptors in skin and provides insight into directions for future research.
Collapse
Affiliation(s)
- Jinyoung Seo
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Subin Choi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Hyeyoun Kim
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Korea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
46
|
Cho HJ, Koo J. Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review. BMB Rep 2021. [PMID: 34847986 PMCID: PMC8728539 DOI: 10.5483/bmbrep.2021.54.12.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.
Collapse
Affiliation(s)
- Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- 4New Biology Research Center (NBRC), DGIST, Daegu 42988, 5Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
47
|
Li M, Schweiger MW, Ryan DJ, Nakano I, Carvalho LA, Tannous BA. Olfactory receptor 5B21 drives breast cancer metastasis. iScience 2021; 24:103519. [PMID: 34917897 PMCID: PMC8666352 DOI: 10.1016/j.isci.2021.103519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
Olfactory receptors (ORs), responsible for the sense of smell, play an essential role in various physiological processes outside the nasal epithelium, including cancer. In breast cancer, however, the expression and function of ORs remain understudied. We examined the significance of OR transcript abundance in primary and metastatic breast cancer to the brain, bone, and lung. Although 20 OR transcripts were differentially expressed in distant metastases, OR5B21 displayed an increased transcript abundance in all three metastatic sites compared with the primary tumor. Knockdown of OR5B21 significantly decreased the invasion and migration of breast cancer cells as well as metastasis to different organs especially the brain, whereas increasing of OR5B21 transcript abundance had the opposite effect. Mechanistically, OR5B21 expression was associated with epithelial to mesenchymal transition through the STAT3/NF-κB/CEBPβ signaling axis. We propose OR5B21 (and potentially other ORs) as a novel oncogene contributing to breast cancer metastasis and a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Mao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Markus W. Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Daniel J. Ryan
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Litia A. Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
48
|
Gao X, Yao X, Li X, Liang Y, Liu Z, Wang Z, Li K, Li Y, Zhang G, Wang F. Roles of WNT6 in Sheep Endometrial Epithelial Cell Cycle Progression and Uterine Glands Organogenesis. Vet Sci 2021; 8:vetsci8120316. [PMID: 34941843 PMCID: PMC8708052 DOI: 10.3390/vetsci8120316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022] Open
Abstract
The uterus, as part of the female reproductive tract, is essential for embryo survival and in the maintenance of multiple pregnancies in domestic animals. This study was conducted to investigate the effects of WNT6 on Hu sheep endometrial epithelial cells (EECs) and uterine glands (UGs) in Hu sheep, with high prolificacy rates. In the present study, Hu sheep with different fecundity, over three consecutive pregnancies, were divided into two groups: high prolificacy rate group (HP, litter size = 3) and low prolificacy rate group (LP, litter size = 1). A comparative analysis of the endometrial morphology was performed by immunofluorescence. RNA-seq was used to analyze the gene’s expression in endometrium of HP and LP Hu sheep, providing a candidate gene, which was investigated in EECs and organoid culture. Firstly, higher density of UGs was found in the HP Hu sheep groups (p < 0.05). The RNA-seq data revealed the importance of the WNT signaling pathway and WNT6 gene in Hu sheep endometrium. Functionally, WNT6 could promote the cell cycle progression of EECs via WNT/β-catenin signal and enhance UGs organogenesis. Taken together, WNT6 is a crucial regulator for sheep endometrial development; this finding may offer a new insight into understanding the regulatory mechanism of sheep prolificacy.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingqi Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-84395381
| |
Collapse
|
49
|
Klauser AL, Hirschfeld M, Ritter A, Rücker G, Jäger M, Gundarova J, Weiss D, Juhasz-Böss I, Berner K, Erbes T, Asberger J. Anticarcinogenic Effects of Odorant Substances Citral, Citrathal R and Cyclovertal on Breast Cancer in vitro. BREAST CANCER: TARGETS AND THERAPY 2021; 13:659-673. [PMID: 34916844 PMCID: PMC8668161 DOI: 10.2147/bctt.s322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/17/2021] [Indexed: 12/09/2022]
Abstract
Purpose In 2020, breast cancer still represents the most common type of cancer in women worldwide. Depending on the specific molecular subtype, clinical breast cancer management comprises surgery, radiotherapy, chemotherapy and targeted therapy. Furthermore, there are some therapeutic approaches from the field of complementary and alternative medicine. Current research focuses on the elucidation of new therapeutic targets for treatment development. Odorant substances affect apoptosis, proliferation and cell cycle in healthy and cancerous cells. Exact signalling pathways involved are not entirely clear. The present study aims to analyse their therapeutic potential in breast cancer. Methods This study focuses on the effect of commonly used odorant substances (citral, citrathal R, cyclovertal, para-cymol, hexylacetat, herbavert, dihydromyrcerol and limonen) on the breast cancer cell lines MDA-MB-231, T47-D and BT474. Methodologically, this study applied cell culturing, MTT assay for detection of IC50 of the odorant substance, RNA purification followed by qRT-PCR, protein isolation and Western Blot, as well as immunocytochemistry. Further, this study investigates the role of transient receptor potential channel V1 (TRPV1), involved in the mechanisms of action for some odorant substances. Therefore, capsazepine, a TRPV1 antagonist, was used. Results The odorant substances citral, citrathal R and cyclovertal have significant pro-apoptotic (p < 0.001), anti-proliferative (p < 0.001) and cell cycle-arresting effects measurable in RNA expression as well as in protein levels and immunocytochemical staining. The combination of citral and capsazepine no longer showed significant pro-apoptotic, antiproliferative, and cell cycle inhibitory effects compared to the compounds alone. This indicates that TRPV1 is necessary for the signal transduction of citral. Conclusion This present study reveals three odorant substances with effects on cell viability, indicating their potential use in breast cancer therapy. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/-gpMvmx9sCU
Collapse
Affiliation(s)
| | - Marc Hirschfeld
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Andrea Ritter
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Julia Gundarova
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Correspondence: Jasmin Asberger Department of Obstetrics and Gynecology, Faculty of Medicine and Medical Center – University of Freiburg, Hugstetterstr. 55, Freiburg, 79106, GermanyTel +49 761 270 30020Fax +49 761 270 30370 Email
| |
Collapse
|
50
|
Olfactory Receptor OR7A17 Expression Correlates with All- Trans Retinoic Acid (ATRA)-Induced Suppression of Proliferation in Human Keratinocyte Cells. Int J Mol Sci 2021; 22:ijms222212304. [PMID: 34830183 PMCID: PMC8623719 DOI: 10.3390/ijms222212304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory receptors (ORs), which belong to the G-protein-coupled receptor family, have been widely studied as ectopically expressed receptors in various human tissues, including the skin. However, the physiological functions of only a few OR types have been elucidated in skin cells. All-trans retinoic acid (ATRA) is a well-known medication for various skin diseases. However, many studies have shown that ATRA can have adverse effects, resulting from the suppression of cell proliferation. Here, we investigated the involvement of OR7A17 in the ATRA-induced suppression of human keratinocyte (HaCaT) proliferation. We demonstrated that OR7A17 is expressed in HaCaT keratinocytes, and its expression was downregulated by ATRA. The ATRA-induced downregulation of OR7A17 was attenuated via RAR α or RAR γ antagonist treatment, indicating that the effects of ATRA on OR7A17 expression were mediated through nuclear retinoic acid receptor signaling. Moreover, we found that the overexpression of OR7A17 induced the proliferation of HaCaT cells while counteracting the antiproliferative effect of ATRA. Mechanistically, OR7A17 overexpression reversed the ATRA-induced attenuation of Ca2+ entry. Our findings indicated that ATRA suppresses cell proliferation through the downregulation of OR7A17 via RAR α- and γ-mediated retinoid signaling. Taken together, OR7A17 is a potential therapeutic target for ameliorating the anti-proliferative effects of ATRA.
Collapse
|