1
|
Lee S. Modulation of amylin and calcitonin receptor activation by hybrid peptides. Peptides 2024; 182:171314. [PMID: 39454962 DOI: 10.1016/j.peptides.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Calcitonin peptide hormone controls calcium homeostasis by activating the calcitonin receptor. When the calcitonin receptor forms a complex with an accessory protein, the complex functions as the receptors for another peptide hormone amylin. The amylin receptors are the drug target for diabetes and obesity treatment. Since human amylin can produce aggregates, rat amylin that does not form aggregates has been commonly used for research. Interestingly, calcitonin originated from salmons was reported to interact with human amylin receptors with higher affinity/potency than endogenous rat amylin. Here, the peptide hybrid was made of a rat amylin N-terminal fragment and a salmon calcitonin C-terminal fragment. This novel hybrid peptide showed higher potency for human amylin receptor 1/2 activation by 6- to 8-fold than endogenous rat amylin. To further examine the role of the peptide C-terminal fragment in receptor activation, another hybrid peptide was made where salmon calcitonin N-terminal 21 amino acids were fused with rat amylin C-terminal 11 amino acids. The rat amylin C-terminal fragment was previously reported to have relatively low affinity for calcitonin receptor extracellular domain. As expected, this calcitonin-amylin hybrid peptide decreased the potency for calcitonin receptor activation by 3-fold compared to salmon calcitonin. The hybrid strategy used in this study significantly changed the peptide potency for amylin and calcitonin receptor activation. These results provide insight into the role of peptide C-terminal fragments in modulating amylin and calcitonin receptor activation.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
3
|
Roberts BJ, Mattei AE, Howard KE, Weaver JL, Liu H, Lelias S, Martin WD, Verthelyi D, Pang E, Edwards KJ, De Groot AS. Assessing the immunogenicity risk of salmon calcitonin peptide impurities using in silico and in vitro methods. Front Pharmacol 2024; 15:1363139. [PMID: 39185315 PMCID: PMC11341359 DOI: 10.3389/fphar.2024.1363139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in synthetic peptide synthesis have enabled rapid and cost-effective peptide drug manufacturing. For this reason, peptide drugs that were first produced using recombinant DNA (rDNA) technology are now being produced using solid- and liquid-phase peptide synthesis. While peptide synthesis has some advantages over rDNA expression methods, new peptide-related impurities that differ from the active pharmaceutical ingredient (API) may be generated during synthesis. These impurity byproducts of the original peptide sequence feature amino acid insertions, deletions, and side-chain modifications that may alter the immunogenicity risk profile of the drug product. Impurities resulting from synthesis have become the special focus of regulatory review and approval for human use, as outlined in the FDA's Center for Drug Evaluation and Research guidance document, "ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin," published in 2021. This case study illustrates how in silico and in vitro methods can be applied to assess the immunogenicity risk of impurities that may be present in synthetic generic versions of the salmon calcitonin (SCT) drug product. Sponsors of generic drug abbreviated new drug applications (ANDAs) should consider careful control of these impurities (for example, keeping the concentration of the immunogenic impurities below the cut-off recommended by FDA regulators). Twenty example SCT impurities were analyzed using in silico tools and assessed as having slightly more or less immunogenic risk potential relative to the SCT API peptide. Class II human leukocyte antigen (HLA)-binding assays provided independent confirmation that a 9-mer sequence present in the C-terminus of SCT binds promiscuously to multiple HLA DR alleles, while T-cell assays confirmed the expected T-cell responses to SCT and selected impurities. In silico analysis combined with in vitro assays that directly compare the API to each individual impurity peptide may be a useful approach for assessing the potential immunogenic risk posed by peptide impurities that are present in generic drug products.
Collapse
Affiliation(s)
| | | | - Kristina E. Howard
- Division of Applied Regulatory Sciences, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - James L. Weaver
- Division of Applied Regulatory Sciences, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Hao Liu
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | | | - Daniela Verthelyi
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Eric Pang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | | |
Collapse
|
4
|
Melander SA, Larsen AT, Karsdal MA, Henriksen K. Are insulin sensitizers the new strategy to treat Type 1 diabetes? A long-acting dual amylin and calcitonin receptor agonist improves insulin-mediated glycaemic control and controls body weight. Br J Pharmacol 2024; 181:1829-1842. [PMID: 38378168 DOI: 10.1111/bph.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. EXPERIMENTAL APPROACH Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5 nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. KEY RESULTS Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. CONCLUSION AND IMPLICATIONS The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
5
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
6
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
7
|
Does receptor balance matter? – Comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed Pharmacother 2022; 156:113842. [DOI: 10.1016/j.biopha.2022.113842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
8
|
The Impact of Exposure Profile on the Efficacy of Dual Amylin and Calcitonin Receptor Agonist Therapy. Biomedicines 2022; 10:biomedicines10102365. [DOI: 10.3390/biomedicines10102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Dual Amylin and Calcitonin Receptor Agonists (DACRAs) are treatment candidates for obesity and type 2 diabetes. Recently, a once-weekly DACRA (KBP-A) showed promise, potentially due to its different exposure profile compared to daily DACRA (KBP). Parathyroid hormone, a G-protein-coupled receptor (GPCR) class B agonist, is an example of the exposure profile being critical to the effect. Since KBP and KBP-A also activate GPCR class B, we compared the effects of injection to continuous infusion of short-acting KBP and long-acting KBP-A in obese and diabetic rats to shed light on the role of exposure profiles. Methods: To explore the metabolic benefits of dose optimization, the following dosing profiles were compared in High Fat Diet (HFD)-fed Sprague–Dawley rats and diabetic Zucker Diabetic Fatty (ZDF) rats: (1) KBP dosed once-daily by injection or by continuous infusion in HFD and ZDF rats; (2) KBP injected once-daily and KBP-A injected once every 3rd day (Q3D) in HFD rats; (3) KBP-A injected Q3D or by infusion in ZDF rats. Results: KBP and KBP-A, delivered by either injection or infusion, resulted in similar weight and food intake reductions in HFD rats. In ZDF rats, injection of KBP improved glucose control significantly compared to infusion, while delivery of KBP-A by injection and continuous infusion was comparable in terms of glucose control. Conclusion: different dosing profiles of KBP and KBP-A had no impact on metabolic benefits in HFD rats. In diabetic ZDF rats, KBP by injection instead of infusion was superior, while for KBP-A the effects were similar.
Collapse
|
9
|
Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. THERAPY OF ENDOCRINE DISEASE: Amylin and calcitonin - physiology and pharmacology. Eur J Endocrinol 2022; 186:R93-R111. [PMID: 35353712 DOI: 10.1530/eje-21-1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes is a common manifestation of metabolic dysfunction due to obesity and constitutes a major burden for modern health care systems, in concert with the alarming rise in obesity worldwide. In recent years, several successful pharmacotherapies improving glucose metabolism have emerged and some of these also promote weight loss, thus, ameliorating insulin resistance. However, the progressive nature of type 2 diabetes is not halted by these new anti-diabetic pharmacotherapies. Therefore, novel therapies promoting weight loss further and delaying diabetes progression are needed. Amylin, a beta cell hormone, has satiating properties and also delays gastric emptying and inhibits postprandial glucagon secretion with the net result of reducing postprandial glucose excursions. Amylin acts through the six amylin receptors, which share the core component with the calcitonin receptor. Calcitonin, derived from thyroid C cells, is best known for its role in humane calcium metabolism, where it inhibits osteoclasts and reduces circulating calcium. However, calcitonin, particularly of salmon origin, has also been shown to affect insulin sensitivity, reduce the gastric emptying rate and promote satiation. Preclinical trials with agents targeting the calcitonin receptor and the amylin receptors, show improvements in several parameters of glucose metabolism including insulin sensitivity and some of these agents are currently undergoing clinical trials. Here, we review the physiological and pharmacological effects of amylin and calcitonin and discuss the future potential of amylin and calcitonin-based treatments for patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
10
|
McDonald JK, van der Westhuizen ET, Pham V, Thompson G, Felder CC, Paul SM, Thal DM, Christopoulos A, Valant C. Biased Profile of Xanomeline at the Recombinant Human M 4 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci 2022; 13:1206-1218. [PMID: 35380782 DOI: 10.1021/acschemneuro.1c00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many Food and Drug Administration (FDA)-approved drugs are structural analogues of the endogenous (natural) ligands of G protein-coupled receptors (GPCRs). However, it is becoming appreciated that chemically distinct ligands can bind to GPCRs in conformations that lead to different cellular signaling events, a phenomenon termed biased agonism. Despite this, the rigorous experimentation and analysis required to identify biased agonism are often not undertaken in most clinical candidates and go unrealized. Recently, xanomeline, a muscarinic acetylcholine receptor (mAChR) agonist, has entered phase III clinical trials for the treatment of schizophrenia. If successful, xanomeline will be the first novel FDA-approved antipsychotic drug in almost 50 years. Intriguingly, xanomeline's potential for biased agonism at the mAChRs and, in particular, the M4 mAChR, the most promising receptor target for schizophrenia, has not been assessed. Here, we quantify the biased agonism profile of xanomeline and three other mAChR agonists in Chinese hamster ovary cells recombinantly expressing the M4 mAChR. Agonist activity was examined across nine distinct signaling readouts, including the activation of five different G protein subtypes, ERK1/2 phosphorylation, β-arrestin recruitment, calcium mobilization, and cAMP regulation. Relative to acetylcholine (ACh), xanomeline was biased away from ERK1/2 phosphorylation and calcium mobilization compared to Gαi2 protein activation. These findings likely have important implications for our understanding of the therapeutic action of xanomeline and call for further investigation into the in vivo consequences of biased agonism in drugs targeting the M4 mAChR for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Jack K. McDonald
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Steven M. Paul
- Karuna Therapeutics, Boston, Massachusetts 02110, United States
| | - David M. Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
11
|
Jiang J, Ju J, Luo L, Song Z, Liao H, Yang X, Wei S, Wang D, Zhu W, Chang J, Ma J, Hu H, Yu J, Wang H, Hou ST, Li S, Li H, Li N. Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors. Front Pharmacol 2022; 13:826055. [PMID: 35237169 PMCID: PMC8883047 DOI: 10.3389/fphar.2022.826055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is defined as a psychiatric disease characterized by the core symptoms of anhedonia and learned helplessness. Currently, the treatment of depression still calls for medications with high effectiveness, rapid action, and few side effects, although many drugs, including fluoxetine and ketamine, have been approved for clinical usage by the Food and Drug Administration (FDA). In this study, we focused on calcitonin as an amylin receptor polypeptide, of which the antidepressant effect has not been reported, even if calcitonin gene-related peptides have been previously demonstrated to improve depressive-like behaviors in rodents. Here, the antidepressant potential of salmon calcitonin (sCT) was first evaluated in a chronic restraint stress (CRS) mouse model of depression. We observed that the immobility duration in CRS mice was significantly increased during the tail suspension test and forced swimming test. Furthermore, a single administration of sCT was found to successfully rescue depressive-like behaviors in CRS mice. Lastly, AC187 as a potent amylin receptor antagonist was applied to investigate the roles of amylin receptors in depression. We found that AC187 significantly eliminated the antidepressant effects of sCT. Taken together, our data revealed that sCT could ameliorate a depressive-like phenotype probably via the amylin signaling pathway. sCT should be considered as a potential therapeutic candidate for depressive disorder in the future.
Collapse
Affiliation(s)
- Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Ju
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ze Song
- Oncology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huanquan Liao
- The Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junzhe Ma
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
| | - Hao Hu
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiqing Wang
- The Fifth People’s Hospital of Datong City, Datong, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| |
Collapse
|
12
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
14
|
Involvement of nitric oxide pathway in the acute anticonvulsant effect of salmon calcitonin in rats. Epilepsy Res 2022; 180:106864. [DOI: 10.1016/j.eplepsyres.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
15
|
Boccia L, Borner T, Ghidewon MY, Kulka P, Piffaretti C, Doebley SA, De Jonghe BC, Grill HJ, Lutz TA, Le Foll C. Hypophagia induced by salmon calcitonin, but not by amylin, is partially driven by malaise and is mediated by CGRP neurons. Mol Metab 2022; 58:101444. [PMID: 35091058 PMCID: PMC8873943 DOI: 10.1016/j.molmet.2022.101444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The behavioral mechanisms and the neuronal pathways mediated by amylin and its long-acting analog sCT (salmon calcitonin) are not fully understood and it is unclear to what extent sCT and amylin engage overlapping or distinct neuronal subpopulations to reduce food intake. We here hypothesize that amylin and sCT recruit different neuronal population to mediate their anorectic effects. Methods Viral approaches were used to inhibit calcitonin gene-related peptide (CGRP) lateral parabrachial nucleus (LPBN) neurons and assess their role in amylin’s and sCT’s ability to decrease food intake in mice. In addition, to test the involvement of LPBN CGRP neuropeptidergic signaling in the mediation of amylin and sCT’s effects, a LPBN site-specific knockdown was performed in rats. To deeper investigate whether the greater anorectic effect of sCT compared to amylin is due do the recruitment of additional neuronal pathways related to malaise multiple and distinct animal models tested whether amylin and sCT induce conditioned avoidance, nausea, emesis, and conditioned affective taste aversion. Results Our results indicate that permanent or transient inhibition of CGRP neurons in LPBN blunts sCT-, but not amylin-induced anorexia and neuronal activation. Importantly, sCT but not amylin induces behaviors indicative of malaise including conditioned affective aversion, nausea, emesis, and conditioned avoidance; the latter mediated by CGRPLPBN neurons. Conclusions Together, the present study highlights that although amylin and sCT comparably decrease food intake, sCT is distinctive from amylin in the activation of anorectic neuronal pathways associated with malaise. CGRP neurons mediate the effect of the amylin agonist salmon calcitonin (sCT) on food intake. Amylin's hypophagic effect does not require CGRP neurons. sCT-induced anorexia but not amylin is associated with malaise.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Misgana Y Ghidewon
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Patricia Kulka
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Chiara Piffaretti
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Sarah A Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Harvey J Grill
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Wang W, Bian J, Sun Y, Li Z. The new fate of internalized membrane receptors: Internalized activation. Pharmacol Ther 2021; 233:108018. [PMID: 34626676 DOI: 10.1016/j.pharmthera.2021.108018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Classically, the fate of internalized membrane receptors includes receptor degradation and receptor recycling. However, recent findings have begun to challenge these views. Much research demonstrated that many internalized membrane receptors can trigger distinct signal activation rather than being desensitized inside the cell. Here, we introduce the concept of "internalized activation" which not only represents a new mode of receptor activation, but also endows the new fate for receptor internalization (from death to life). The new activation mode and fate of membrane receptor are ubiquitous and have unique theoretical significance. We systematically put forward the features, process, and regulation of "internalized activation" and its significance in signal transduction and diseases. "Internalized activation" will provide a completely new understanding for the theory of receptor activation, internalization and novel drug targets for precision medicine.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Yang Sun
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
17
|
Taskiran AS, Ergul M. The effect of salmon calcitonin against glutamate-induced cytotoxicity in the C6 cell line and the roles the inflammatory and nitric oxide pathways play. Metab Brain Dis 2021; 36:1985-1993. [PMID: 34370176 DOI: 10.1007/s11011-021-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Recent evidence has shown that salmon calcitonin (sCT) has positive effects on the nervous system. However, its effect and mechanisms on glutamate-induced cytotoxicity are still unclear. The current experiment was designed to examine the effect of sCT on glutamate-induced cytotoxicity in C6 cells, involving the inflammatory and nitric oxide stress pathways. The study used the C6 glioma cell line. Four cell groups were prepared to evaluate the effect of sCT on glutamate-induced cytotoxicity. The control group was without any treatment. Cells in the glutamate group were treated with 10 mM glutamate for 24 h. Cells in the sCT group were treated with various concentrations (3, 6, 12, 25, and 50 µg/mL) of sCT for 24 h. Cells in the sCT + glutamate group were pre-treated with various concentrations of sCT for 1 h and then exposed to glutamate for 24 h. The cell viability was evaluated with an XTT assay. Nuclear factor kappa b (NF-kB), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), neuronal nitric oxide synthase (nNOS), nitric oxide (NO), cyclic guanosine monophosphate (cGMP), caspase-3, and caspase-9 levels in the cells were measured by ELISA kits. Apoptosis was detected by flow cytometry method. sCT at all concentrations significantly improved the cell viability in C6 cells after glutamate-induced cytotoxicity (p < 0.001). Moreover, sCT significantly reduced the levels of NF-kB (p < 0.001), TNF-α, and IL-6 levels (p < 0.001). sCT also decreased nNOS, NO, and cGMP levels (P < 0.001). Furthermore, it decreased the apoptosis rate and increased the live-cell rate in the flow cytometry (P < 0.001). In conclusion, sCT has protective effects on glutamate-induced cytotoxicity in C6 glial cells by inhibiting inflammatory and nitric oxide pathways. sCT could be a useful supportive agent for people with neurodegenerative symptoms.
Collapse
Affiliation(s)
- Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, 58140, Sivas, Turkey.
| | - Merve Ergul
- Department of Pharmacology, Sivas Cumhuriyet University School of Pharmacy, Sivas, Turkey
| |
Collapse
|
18
|
Yuliantie E, van der Velden WJC, Labroska V, Dai A, Zhao F, Darbalaei S, Deganutti G, Xu T, Zhou Q, Yang D, Rosenkilde MM, Sexton PM, Wang MW, Wootten D. Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochem Pharmacol 2021; 192:114715. [PMID: 34339714 DOI: 10.1016/j.bcp.2021.114715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/30/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and β-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of β-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or β-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.
Collapse
Affiliation(s)
- Elita Yuliantie
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Viktorija Labroska
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Antao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Fenghui Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Alison Gingell Building, Coventry University, Coventry, CV1 2DS, UK
| | - Tongyang Xu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dehua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
19
|
Andreassen KV, Larsen AT, Sonne N, Mohamed KE, Karsdal MA, Henriksen K. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol Metab 2021; 53:101282. [PMID: 34214708 PMCID: PMC8313742 DOI: 10.1016/j.molmet.2021.101282] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Dual amylin and calcitonin receptor agonists (DACRAs) are novel therapeutic agents that not only improve insulin sensitivity but also work as an adjunct to established T2DM therapies. DACRAs are currently administered once daily, though it is unknown whether DACRAs with increased plasma half-life can be developed as a once-weekly therapy. Methods The in vitro potencies of the KBP-066A and KBP-066 (non-acylated) were assessed using reporter assays. Acylation functionality was investigated by a combination of pharmacokinetics and acute food intake in rats. in vivo efficacies were investigated head-to-head in obese (HFD) and T2D (ZDF) models. Results In in vitro, KBP-066A activated the CTR and AMY-R potently, with no off-target activity. Acylation functionality was confirmed by acute tests, as KBP-066A demonstrated a prolonged PK and PD response compared to KBP-066. Both compounds induced potent and dose-dependent weight loss in the HFD rat model. In ZDF rats, fasting blood glucose/fasting insulin levels (tAUC) were reduced by 39%/50% and 36%/47% for KBP-066 and KBP-066A, respectively. This effect resulted in a 31% and 46% vehicle-corrected reduction in HbA1c at the end of the study for KBP-066 and KBP-066A, respectively. Conclusions Here, we present pre-clinical data on an acylated DACRA, KBP-066A. The in vivo efficacy of KBP-066A is significantly improved compared to its non-acylated variant regarding weight loss and glycemic control in obese (HFD) and obese diabetic rats (ZDF). This compendium of pre-clinical studies highlights KBP-066A as a promising, once-weekly therapeutic agent for treating T2DM and obesity. DACRAs are promising once daily therapeutic candidates for metabolic diseases. We here present a novel DACRA called KBP-066A optimized for weekly delivery. KBP-066A potently reduced appetite and body weight in obese rats. More importantly, KBP-066A was superior to the corresponding daily DACRA in terms of glucose control. KBP-066A is a novel promising therapy for metabolic diseases.
Collapse
Affiliation(s)
| | - A T Larsen
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark
| | - N Sonne
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark
| | - K E Mohamed
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark
| | - M A Karsdal
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark; KeyBioscience AG, Stans, Switzerland
| | - K Henriksen
- Nordic Bioscience A/S, Herlev, DK-2730, Denmark; KeyBioscience AG, Stans, Switzerland.
| |
Collapse
|
20
|
Fletcher MM, Keov P, Truong TT, Mennen G, Hick CA, Zhao P, Furness SGB, Kruse T, Clausen TR, Wootten D, Sexton PM. AM833 Is a Novel Agonist of Calcitonin Family G Protein-Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. J Pharmacol Exp Ther 2021; 377:417-440. [PMID: 33727283 DOI: 10.1124/jpet.121.000567] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 07/25/2024] Open
Abstract
Obesity and associated comorbidities are a major health burden, and novel therapeutics to help treat obesity are urgently needed. There is increasing evidence that targeting the amylin receptors (AMYRs), heterodimers of the calcitonin G protein-coupled receptor (CTR) and receptor activity-modifying proteins, improves weight control and has the potential to act additively with other treatments such as glucagon-like peptide-1 receptor agonists. Recent data indicate that AMYR agonists, which can also independently activate the CTR, may have improved efficacy for treating obesity, even though selective activation of CTRs is not efficacious. AM833 (cagrilintide) is a novel lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and CTR agonist. In the current study, we have investigated the pharmacology of AM833 across 25 endpoints and compared this peptide with AMYR selective and nonselective lipidated analogs (AM1213 and AM1784), and the clinically used peptide agonists pramlintide (AMYR selective) and salmon CT (nonselective). We also profiled human CT and rat amylin as prototypical selective agonists of CTR and AMYRs, respectively. Our results demonstrate that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation. SIGNIFICANCE STATEMENT: AM833 is a novel nonselective agonist of calcitonin family receptors that has demonstrated efficacy for the treatment of obesity in phase 2 clinical trials. This study demonstrates that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation when compared with other selective and nonselective calcitonin receptor and amylin receptor agonists. The present data provide mechanistic insight into the actions of AM833.
Collapse
Affiliation(s)
- Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Peter Keov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Tin T Truong
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Grace Mennen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Caroline A Hick
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Sebastian G B Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Thomas Kruse
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Trine R Clausen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| |
Collapse
|
21
|
Giansanti M, De Gabrieli A, Prete SP, Ottone T, Divona MD, Karimi T, Ciccarone F, Voso MT, Graziani G, Faraoni I. Poly(ADP-Ribose) Polymerase Inhibitors for Arsenic Trioxide-Resistant Acute Promyelocytic Leukemia: Synergistic In Vitro Antitumor Effects with Hypomethylating Agents or High-Dose Vitamin C. J Pharmacol Exp Ther 2021; 377:385-397. [PMID: 33820831 DOI: 10.1124/jpet.121.000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Arsenic trioxide (ATO) is an anticancer agent used for the treatment ofacute promyelocytic leukemia (APL). However, 5%-10% of patients fail to respond or experience disease relapse. Based on poly(ADP-ribose) polymerase (PARP) 1 involvement in the processing of DNA demethylation, here we have tested the in vitro susceptibility of ATO-resistant clones (derived from the human APL cell line NB4) to PARP inhibitors (PARPi) in combination with hypomethylating agents (azacitidine and decitabine) or high-dose vitamin C (ascorbate), which induces 5-hydroxymethylcytosine (5hmC)-mediated DNA demethylation. ATO-sensitive and -resistant APL cell clones were generated and initially analyzed for their susceptibility to five clinically used PARPi (olaparib, niraparib, rucaparib, veliparib, and talazoparib). The obtained PARPi IC50 values were far below (olaparib and niraparib), within the range (talazoparib), or above (rucaparib and veliparib) the C max reported in patients, likely as a result of differences in the mechanisms of their cytotoxic activity. ATO-resistant APL cells were also susceptible to clinically relevant concentrations of azacitidine and decitabine and to high-dose ascorbate. Interestingly, the combination of these agents with olaparib, niraparib, or talazoparib resulted in synergistic antitumor activity. In combination with ascorbate, PARPi increased the ascorbate-mediated induction of 5hmC, which likely resulted in stalled DNA repair and cytotoxicity. Talazoparib was the most effective PARPi in synergizing with ascorbate, in accordance with its marked ability to trap PARP1 at damaged DNA. These findings suggest that ATO and PARPi have nonoverlapping resistance mechanisms and support further investigation on PARPi combination with hypomethylating agents or high-dose ascorbate for relapsed/ATO-refractory APL, especially in frail patients. SIGNIFICANCE STATEMENT: This study found that poly(ADP-ribose) inhibitors (PARPi) show activity as single agents against human acute promyelocytic leukemia cells resistant to arsenic trioxide at clinically relevant concentrations. Furthermore, PARPi enhance the in vitro efficacy of azacitidine, decitabine, and high-dose vitamin C, all agents that alter DNA methylation. In combination with vitamin C, PARPi increase the levels of 5-hydroxymethylcytosine, likely as a result of altered processing of the oxidized intermediates associated with DNA demethylation.
Collapse
Affiliation(s)
- Manuela Giansanti
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Antonio De Gabrieli
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Salvatore Pasquale Prete
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Tiziana Ottone
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Maria Domenica Divona
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Terry Karimi
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Fabio Ciccarone
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Maria Teresa Voso
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Isabella Faraoni
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| |
Collapse
|
22
|
Henriksen K, Broekhuizen K, de Boon WMI, Karsdal MA, Bihlet AR, Christiansen C, Dillingh MR, de Kam M, Kumar R, Burggraaf J, Kamerling IMC. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br J Clin Pharmacol 2021; 87:4786-4796. [PMID: 34019711 DOI: 10.1111/bcp.14921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022] Open
Abstract
There is a need for antidiabetic agents successfully targeting insulin sensitivity and treating obesity control at the same time. The aim of this first-in-human study was (a) to evaluate safety and tolerability, (b) to evaluate pharmacokinetics and (c) to assess indications of receptor engagement of single ascending doses of KBP-042, a dual amylin and calcitonin receptor agonist (DACRA) that has shown promising preclinical data, with superior activity in terms of typical amylin-induced responses including reduction of food intake, weight loss and gluco-regulatory capacities. A randomised double-blind placebo-controlled single ascending dose study was performed with six dose levels of KBP-042 (5, 7.5, 10, 20, 20 (evening), 40 ug) in healthy male adults. KBP-042 or placebo was administered as a single dose after an overnight fast, followed by a standardized lunch after 4 hours. KBP-042 was associated with dose-dependent complaints of nausea and vomiting, with a lack of tolerability at doses of 20 μg and above. Doses of 5-40 μg KBP-042 behaved according to a linear pharmacokinetic profile. Indications of target receptor engagement were observed at the level of glucose control and lowering of bone resorption, compared to placebo. The results of this study showed that doses up to 40 μg were safe, although tolerability was not present at the highest doses. The study confirmed target receptor engagement at the studied doses.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience, Herlev, Denmark.,KeyBioscience AG, Stans, Switzerland
| | | | | | - Morten A Karsdal
- Nordic Bioscience, Herlev, Denmark.,KeyBioscience AG, Stans, Switzerland
| | | | | | | | | | - Raj Kumar
- KeyBioscience AG, Stans, Switzerland
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherland.,Leiden Academic Center for Drug Research, Leiden, the Netherlands.,Leiden University Medical Center, Leiden, the Netherlands
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, the Netherland.,Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab 2021; 46:101109. [PMID: 33166741 PMCID: PMC8085567 DOI: 10.1016/j.molmet.2020.101109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Therapies for metabolic diseases are numerous, yet improving insulin sensitivity beyond that induced by weight loss remains challenging. Therefore, search continues for novel treatment candidates that can stimulate insulin sensitivity and increase weight loss efficacy in combination with current treatment options. Calcitonin gene-related peptide (CGRP) and amylin belong to the same peptide family and have been explored as treatments for metabolic diseases. However, their full potential remains controversial. SCOPE OF REVIEW In this article, we introduce this rather complex peptide family and its corresponding receptors. We discuss the physiology of the peptides with a focus on metabolism and insulin sensitivity. We also thoroughly review the pharmacological potential of amylin, calcitonin, CGRP, and peptide derivatives as treatments for metabolic diseases, emphasizing their ability to increase insulin sensitivity based on preclinical and clinical studies. MAJOR CONCLUSIONS Amylin receptor agonists and dual amylin and calcitonin receptor agonists are relevant treatment candidates, especially because they increase insulin sensitivity while also assisting weight loss, and their unique mode of action complements incretin-based therapies. However, CGRP and its derivatives seem to have only modest if any metabolic effects and are no longer of interest as therapies for metabolic diseases.
Collapse
Affiliation(s)
- Nina Sonne
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland.
| |
Collapse
|
24
|
Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front Endocrinol (Lausanne) 2021; 11:617400. [PMID: 33488526 PMCID: PMC7819850 DOI: 10.3389/fendo.2020.617400] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hormones amylin and calcitonin interact with receptors within the same family to exert their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity, while the more potent calcitonin extracted from salmon additionally inhibits gastric emptying, promotes gallbladder relaxation, increases energy expenditure and induces satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates plasma glucose by delaying gastric emptying after meal ingestion, and modulates glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to have metabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD) and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor agonists have demonstrated robust body weight loss, improved glucose tolerance and a decreased deposition of fat in liver tissue beyond what is observed after a body weight loss. The translational aspects of these preclinical data currently remain unknown. Here, we describe the physiology, pathophysiology, and pharmacological effects of amylin and calcitonin and review preclinical and clinical findings alluding to the future potential of amylin and calcitonin-based drugs for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- David S. Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Treatment with a dual amylin and calcitonin receptor agonist improves metabolic health in an old, obese, and ovariectomized rat model. ACTA ACUST UNITED AC 2021; 28:423-430. [PMID: 33399320 PMCID: PMC8284344 DOI: 10.1097/gme.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Menopause is often characterized by detrimental metabolic changes, such as obesity, insulin resistance, and impaired glucose tolerance, often requiring treatment. KeyBioscience Peptides (KBPs) are Dual Amylin and Calcitonin Receptor Agonists which have shown promising metabolic effects in rats. The objective of this study was to investigate the in vivo effect of KBP on the metabolic health in a model driven by unhealthy diet, age, and menopause. Methods: Female Sprague Dawley rats were fed a high-fat diet (HFD) for 3 months before the initiation of the study. At 6 months of age the rats were randomized into groups (n = 12) and subjected to ovariectomy surgery and treatment with KBP: (1) Lean-Sham, (2) HFD-Sham, (3) Lean-OVX, (4) HFD-OVX, (5) HFD-OVX-KBP (10 μg/kg/d), (6) HFD-OVX-KBP (20 μg/kg/d), (7) HFD-OVX-EE2 (30 μg/d 17a-ethynylestradiol). Body weight, food intake, oral glucose tolerance tests (OGTTs), subcutaneous fat, visceral fat, liver weight, and uterus weight were assessed during the 6-month study. Statistical analyses were conducted by one-way ANOVA with Tukey post-hoc test for multiple comparisons. Results: Combination of OVX and HFD led to significant induction of obesity (31% weight increase, P < 0.001) and insulin resistance (13% increase in tAUCglucose during OGTT P < 0.01) compared with the relevant control groups (P < 0.05), and this could be completely rescued by EE2 therapy confirming the model system (P < 0.05). Treatment of OVX-HFD rats with KBP for 26 weeks led to a significant reduction in body weight (13%, P < 0.001) in the high dose and 9% (P < 0.01) in the low dose, with corresponding improvements in fat depot sizes, all compared with HFD-OVX controls. As expected, food intake was suppressed, albeit mainly in the first 2 weeks of treatment, resulting in a reduction of overall caloric intake by 6.5% (P < 0.01) and 12.5% (P < 0.001) in the low and high doses respectively. Furthermore, treatment with KBP reduced the weight of visceral and subcutaneous fat tissues. Finally, KBP treatment significantly improved glucose tolerance, assessed using OGTTs at weeks 8, 16, and 24. Conclusions: The data presented here clearly indicate a positive and sustained effect of KBP treatment on body weight loss, fat depot size, and improved glucose tolerance, illustrating the potential of KBPs as treatments for metabolic complications of overweight and menopause.
Collapse
|
26
|
Moreira LM, Takawale A, Hulsurkar M, Menassa DA, Antanaviciute A, Lahiri SK, Mehta N, Evans N, Psarros C, Robinson P, Sparrow AJ, Gillis MA, Ashley N, Naud P, Barallobre-Barreiro J, Theofilatos K, Lee A, Norris M, Clarke MV, Russell PK, Casadei B, Bhattacharya S, Zajac JD, Davey RA, Sirois M, Mead A, Simmons A, Mayr M, Sayeed R, Krasopoulos G, Redwood C, Channon KM, Tardif JC, Wehrens XHT, Nattel S, Reilly S. Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature 2020; 587:460-465. [PMID: 33149301 DOI: 10.1038/s41586-020-2890-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2020] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.
Collapse
Affiliation(s)
- Lucia M Moreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abhijit Takawale
- Research Centre, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mohit Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - David A Menassa
- Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Biological Sciences, Faculty of Life and Environmental Sciences, University of Southampton, Southampton, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Neelam Mehta
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil Evans
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Constantinos Psarros
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marc-Antoine Gillis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Neil Ashley
- Single-Cell Genomics Facility, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Patrice Naud
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Angela Lee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Mary Norris
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michele V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Martin Sirois
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Adam Mead
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Rana Sayeed
- Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
| | - George Krasopoulos
- Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jean-Claude Tardif
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Research Centre, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- IHU LIRYC, Fondation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
27
|
Sutkeviciute I, Vilardaga JP. Structural insights into emergent signaling modes of G protein-coupled receptors. J Biol Chem 2020; 295:11626-11642. [PMID: 32571882 DOI: 10.1074/jbc.rev120.009348] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of cell membrane proteins, with >800 GPCRs in humans alone, and recognize highly diverse ligands, ranging from photons to large protein molecules. Very important to human medicine, GPCRs are targeted by about 35% of prescription drugs. GPCRs are characterized by a seven-transmembrane α-helical structure, transmitting extracellular signals into cells to regulate major physiological processes via heterotrimeric G proteins and β-arrestins. Initially viewed as receptors whose signaling via G proteins is delimited to the plasma membrane, it is now recognized that GPCRs signal also at various intracellular locations, and the mechanisms and (patho)physiological relevance of such signaling modes are actively investigated. The propensity of GPCRs to adopt different signaling modes is largely encoded in the structural plasticity of the receptors themselves and of their signaling complexes. Here, we review emerging modes of GPCR signaling via endosomal membranes and the physiological implications of such signaling modes. We further summarize recent structural insights into mechanisms of GPCR activation and signaling. We particularly emphasize the structural mechanisms governing the continued GPCR signaling from endosomes and the structural aspects of the GPCR resensitization mechanism and discuss the recently uncovered and important roles of lipids in these processes.
Collapse
Affiliation(s)
- Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. The Calcitonin Receptor Plays a Major Role in Glucose Regulation as a Function of Dual Amylin and Calcitonin Receptor Agonist Therapy. J Pharmacol Exp Ther 2020; 374:74-83. [DOI: 10.1124/jpet.119.263392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
|
29
|
Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss. J Pharmacol Exp Ther 2020; 373:269-278. [DOI: 10.1124/jpet.119.263400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
|
30
|
Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020; 177:978-991. [PMID: 31877233 DOI: 10.1111/bph.14953] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
In recent years, several novel aspects of GPCR pharmacology have been described, which are thought to play a role in determining the in vivo efficacy of a compound. Fluorescent ligands have been used to study many of these, which have also required the development of new experimental approaches. Fluorescent ligands offer the potential to use the same fluorescent probe to perform a broad range of experiments, from single-molecule microscopy to in vivo BRET. This review provides an overview of the in vitro use of fluorescent ligands in further understanding emerging pharmacological paradigms within the GPCR field, including ligand-binding kinetics, allosterism and intracellular signalling, along with the use of fluorescent ligands to study physiologically relevant therapeutic agents.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
31
|
Sonne N, Larsen AT, Andreassen KV, Karsdal MA, Henriksen K. The Dual Amylin and Calcitonin Receptor Agonist, KBP-066, Induces an Equally Potent Weight Loss Across a Broad Dose Range While Higher Doses May Further Improve Insulin Action. J Pharmacol Exp Ther 2020; 373:92-102. [PMID: 31992608 DOI: 10.1124/jpet.119.263723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
Pharmacological treatment with dual amylin and calcitonin receptor agonists (DACRAs) cause significant weight loss and improvement of glucose homeostasis. In this study, the maximally efficacious dose of the novel DACRA, KeyBiosciencePeptide (KBP)-066, was investigated. Two different rat models were used: high-fat diet (HFD)-fed male Sprague-Dawley rats and male Zucker diabetic fatty (ZDF, fa/fa) rats to determine the maximum weight loss and glucose homeostatic effect, respectively. One acute study and one chronic study was performed in HFD rats. Two chronic studies were performed in ZDF rats: a preventive and an interventive. All studies covered a dose range of 5, 50, and 500 µg/kg KBP-066 delivered by subcutaneous injection. Treatment with KBP-066 resulted in a significant weight reduction of 13%-16% and improved glucose tolerance in HFD rats, which was independent of dose concentration. Dosing with 50 and 500 µg/kg led to a transient but significant increase in blood glucose, both in the acute and the chronic study in HFD rats. All doses of KBP-066 significantly improved glucose homeostasis in ZDF rats, both in the preventive and interventive study. Moreover, dosing with 50 and 500 µg/kg preserved insulin secretion to a greater extent than 5 µg/kg when compared with ZDF vehicle rats. Taken together, these results show that maximum weight loss is achieved with 5 µg/kg, which is within the range of previously reported DACRA dosing, whereas increasing dosing concentration to 50 and 500 µg/kg may further improve preservation of insulin secretion compared with 5 µg/kg in diabetic ZDF rats. SIGNIFICANCE STATEMENT: Here we show that KeyBiosciencePeptide (KBP)-066 induces an equally potent body weight loss across a broad dose range in obese rats. However, higher dosing of KBP-066 may improve insulin action in diabetic rats both as preventive and interventive treatment.
Collapse
Affiliation(s)
- Nina Sonne
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Vietz Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
32
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
33
|
Katri A, Dąbrowska A, Löfvall H, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model. Osteoarthritis Cartilage 2019; 27:1339-1346. [PMID: 31176015 DOI: 10.1016/j.joca.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor agonist with antiresorptive and chondroprotective properties. In this study we investigated the effect of KBP in a rat model of osteoarthritis. METHODS Medial meniscectomy (MNX) was performed in 39 rats, while 10 underwent sham surgery. Rats were treated with KBP and/or naproxen. Nociception was assessed by mechanical and cold allodynia, weight bearing asymmetry, and burrowing behavior. Blood samples were collected for biomarker measurements, and knees for histology. Cartilage histopathology was evaluated according to the advanced Osteoarthritis Research International (OARSI) score and KBPs in vitro antiresorptive effects were assessed using human osteoclasts cultured on bone. RESULTS The MNX animals displayed an increased nociceptive behavior. Treatment with KBP attenuated the MNX-induced osteoarthritis-associated joint pain. The cartilage histopathology was significantly lower in rats treated with KBP than in MNX animals. Bone and cartilage degradation, assessed by CTX-I and CTX-II plasma levels, were decreased in all KBP-treated groups and KBP potently inhibited bone resorption in vitro. CONCLUSIONS Our study demonstrates the effectiveness of KBP in ameliorating osteoarthritis-associated joint pain and in protecting the articular cartilage, suggesting KBP as a potential drug candidate for osteoarthritis.
Collapse
Affiliation(s)
- A Katri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - A Dąbrowska
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - H Löfvall
- Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden.
| | - M A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K V Andreassen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - C S Thudium
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K Henriksen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| |
Collapse
|
34
|
Larsen AT, Sonne N, Andreassen KV, Gehring K, Karsdal MA, Henriksen K. The Dual Amylin and Calcitonin Receptor Agonist KBP-088 Induces Weight Loss and Improves Insulin Sensitivity Superior to Chronic Amylin Therapy. J Pharmacol Exp Ther 2019; 370:35-43. [DOI: 10.1124/jpet.119.257576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022] Open
|
35
|
Ostrovskaya A, Hick C, Hutchinson DS, Stringer BW, Wookey PJ, Wootten D, Sexton PM, Furness SGB. Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas. BMC Cancer 2019; 19:157. [PMID: 30777055 PMCID: PMC6379965 DOI: 10.1186/s12885-019-5369-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and aggressive type of primary brain cancer. With median survival of less than 15 months, identification and validation of new GBM therapeutic targets is of critical importance. Results In this study we tested expression and performed pharmacological characterization of the calcitonin receptor (CTR) as well as other members of the calcitonin family of receptors in high-grade glioma (HGG) cell lines derived from individual patient tumours, cultured in defined conditions. Previous immunohistochemical data demonstrated CTR expression in GBM biopsies and we were able to confirm CALCR (gene encoding CTR) expression. However, as assessed by cAMP accumulation assay, only one of the studied cell lines expressed functional CTR, while the other cell lines have functional CGRP (CLR/RAMP1) receptors. The only CTR-expressing cell line (SB2b) showed modest coupling to the cAMP pathway and no activation of other known CTR signaling pathways, including ERK1/2 and p38 MAP kinases, and Ca2+ mobilization, supportive of low cell surface receptor expression. Exome sequencing data failed to account for the discrepancy between functional data and expression on the cell lines that do not respond to calcitonin(s) with no deleterious non-synonymous polymorphisms detected, suggesting that other factors may be at play, such as alternative splicing or rapid constitutive receptor internalisation. Conclusions This study shows that GPCR signaling can display significant variation depending on cellular system used, and effects seen in model recombinant cell lines or tumour cell lines are not always reproduced in a more physiologically relevant system and vice versa. Electronic supplementary material The online version of this article (10.1186/s12885-019-5369-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Ostrovskaya
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Caroline Hick
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Brett W Stringer
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter J Wookey
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Sebastian G B Furness
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
36
|
dal Maso E, Glukhova A, Zhu Y, Garcia-Nafria J, Tate CG, Atanasio S, Reynolds CA, Ramírez-Aportela E, Carazo JM, Hick CA, Furness SGB, Hay DL, Liang YL, Miller LJ, Christopoulos A, Wang MW, Wootten D, Sexton PM. The Molecular Control of Calcitonin Receptor Signaling. ACS Pharmacol Transl Sci 2019; 2:31-51. [PMID: 32219215 PMCID: PMC7088896 DOI: 10.1021/acsptsci.8b00056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 12/12/2022]
Abstract
The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118-123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.
Collapse
Affiliation(s)
- Emma dal Maso
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Alisa Glukhova
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Yue Zhu
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Javier Garcia-Nafria
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, U.K.
| | - Christopher G. Tate
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, U.K.
| | - Silvia Atanasio
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
| | | | - Erney Ramírez-Aportela
- Biocomputing
Unit, National Center for Biotechnology
(CNB-CSIC), C/Darwin,
3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid Spain
| | - Jose-Maria Carazo
- Biocomputing
Unit, National Center for Biotechnology
(CNB-CSIC), C/Darwin,
3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid Spain
| | - Caroline A. Hick
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Sebastian G. B. Furness
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Debbie L. Hay
- The
University of Auckland, School of Biological
Sciences, 3 Symonds Street, Auckland 1142, New Zealand
| | - Yi-Lynn Liang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Laurence J. Miller
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Ming-Wei Wang
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | - Denise Wootten
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | - Patrick M. Sexton
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
37
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
38
|
Gingell JJ, Hendrikse ER, Hay DL. New Insights into the Regulation of CGRP-Family Receptors. Trends Pharmacol Sci 2019; 40:71-83. [DOI: 10.1016/j.tips.2018.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
|
39
|
Abstract
Mosquito breeding depends on the supply of fresh vertebrate blood, a major bottleneck for large-scale production of Anopheles spp. Feeding alternatives to fresh blood are thus a priority for research, outdoor large-cage trials and control interventions. Several artificial meal compositions were tested and Anopheles oogenesis, egg laying and development into the next generation of adult mosquitoes were followed. We identified blood-substitute-diets that supported ovarian development, egg maturation and fertility as well as, low progeny larval mortality, and normal development of offspring into adult mosquitoes. The formulated diet is an effective artificial meal, free of fresh blood that mimics a vertebrate blood meal and represents an important advance for the sustainability of Anopheles mosquito rearing in captivity.
Collapse
|
40
|
Hibbins AR, Govender M, Indermun S, Kumar P, du Toit LC, Choonara YE, Pillay V. In Vitro–In Vivo Evaluation of an Oral Ghost Drug Delivery Device for the Delivery of Salmon Calcitonin. J Pharm Sci 2018; 107:1605-1614. [DOI: 10.1016/j.xphs.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 11/29/2022]
|
41
|
Cawthray J, Wasan E, Wasan K. Bone-seeking agents for the treatment of bone disorders. Drug Deliv Transl Res 2018; 7:466-481. [PMID: 28589453 DOI: 10.1007/s13346-017-0394-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The targeting and delivery of therapeutic and diagnostic agents to bone tissue presents both a challenge and opportunity. Osteoporosis, Paget's disease, cancer, and bone metastases are all skeletal diseases whose treatment would benefit from new targeted therapeutic strategies. Osteoporosis, in particular, is a very prevalent disease, affecting over one in three women and one in five men in Canada alone with the cost to the healthcare system estimated at over $2.3 billion in 2010. Bone tissue is often considered a rigid structure when in reality there is a process of continuous remodeling that takes place via complex endocrine-regulated cell signaling pathways in addition to the signaling pathways unique to bone tissue. It is these specific boneremodeling processes that provide unique targeting opportunities but also present a number of challenges.
Collapse
Affiliation(s)
- Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Ellen Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kishor Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
42
|
Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochem Pharmacol 2018; 150:214-244. [PMID: 29454620 PMCID: PMC5908784 DOI: 10.1016/j.bcp.2018.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Class B peptide hormone GPCRs are targets for the treatment of major chronic disease. Peptide ligands of these receptors display biased agonism and this may provide future therapeutic advantage. Recent active structures of the calcitonin (CT) and glucagon-like peptide-1 (GLP-1) receptors reveal distinct engagement of peptides with extracellular loops (ECLs) 2 and 3, and mutagenesis of the GLP-1R has implicated these loops in dynamics of receptor activation. In the current study, we have mutated ECLs 2 and 3 of the human CT receptor (CTR), to interrogate receptor expression, peptide affinity and efficacy. Integration of these data with insights from the CTR and GLP-1R active structures, revealed marked diversity in mechanisms of peptide engagement and receptor activation between the CTR and GLP-1R. While the CTR ECL2 played a key role in conformational propagation linked to Gs/cAMP signalling this was mechanistically distinct from that of GLP-1R ECL2. Moreover, ECL3 was a hotspot for distinct ligand- and pathway-specific effects, and this has implications for the future design of biased agonists of class B GPCRs.
Collapse
|
43
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
44
|
Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochem Pharmacol 2017; 148:111-129. [PMID: 29277692 DOI: 10.1016/j.bcp.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/27/2023]
Abstract
The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is a therapeutic target for the treatment of hypercalcaemia of malignancy, Paget's disease and osteoporosis. In primates, the CTR is subject to alternative splicing, with a unique, primate-specific splice variant being preferentially expressed in reproductive organs, lung and kidney. In addition, humans possess a common non-synonymous single-nucleotide polymorphism (SNP) encoding a proline/leucine substitution in the C-terminal tail. In low power studies, the leucine polymorphism has been associated with increased risk of osteoporosis in East Asian populations and, independently, with increased risk of kidney stone disease in a central Asian population. The CTR is pleiotropically coupled, though the relative physiological importance of these pathways is poorly understood. Using both COS-7 and HEK293 cells recombinantly expressing human CTR, we have characterized both splice variant and polymorphism dependent response to CTs from several species in key signalling pathways and competition binding assays. These data indicate that the naturally occurring changes to the intracellular face of CTR alter ligand affinity and signalling, in a pathway and agonist dependent manner. These results further support the potential for these primate-specific CTR variants to engender different physiological responses. In addition, we report that the CTR exhibits constitutive internalization, independent of splice variant and polymorphism and this profile is unaltered by peptide binding.
Collapse
|
45
|
Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol 2017; 175:3-17. [PMID: 29059473 DOI: 10.1111/bph.14075] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
The calcitonin/CGRP family of peptides includes calcitonin, α and β CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two GPCRs, the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerization of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors, and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b) ). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP, and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example, many agents targeting the CGRP system are in clinical trials, and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael L Garelja
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | |
Collapse
|
46
|
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 2017; 269:88-99. [PMID: 29127000 DOI: 10.1016/j.jconrel.2017.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023]
Abstract
The systemic administration of drugs to treat bone diseases is often associated with poor uptake of the drug in the targeted tissue, potential systemic toxicity and suboptimal efficacy. In order to overcome these limitations, many micro- and nano-sized drug carriers have been developed for the treatment of bone pathologies that exhibit specific affinity for bone. Drug carriers can be functionalized with bone mineral seekers (BMS), creating a targeted drug delivery system (DDS) which is able to bind to bone and release therapeutics directly at the site of interest. This class of advanced DDS is of tremendous interest due to their strong affinity to bone, with great expectation to treat life-threatening bone disorders such as osteomyelitis, osteosarcoma or even osteoporosis. In this review, we first explain the mechanisms behind the affinity of several well-known BMS to bone, and then we present several effective approaches allowing the incorporation BMS into advanced DDS. Finally, we report the therapeutic applications of BMS based DDS under development or already established. Understanding the mechanisms behind the biological activity of recently developed BMS and their integration into advanced therapeutic delivery systems are essential prerequisites for further development of bone-targeting therapies with optimal efficacy.
Collapse
Affiliation(s)
- S G Rotman
- AO Research Institute Davos, Switzerland; MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - D W Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | - D Eglin
- AO Research Institute Davos, Switzerland
| | | |
Collapse
|
47
|
Gydesen S, Andreassen KV, Hjuler ST, Hellgren LI, Karsdal MA, Henriksen K. Optimization of tolerability and efficacy of the novel dual amylin and calcitonin receptor agonist KBP-089 through dose escalation and combination with a GLP-1 analog. Am J Physiol Endocrinol Metab 2017; 313:E598-E607. [PMID: 28292761 DOI: 10.1152/ajpendo.00419.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023]
Abstract
Amylin and GLP-1 agonism induce a well-known anorexic effect at dose initiation, which is managed by dose escalation. In this study we investigated how to optimize tolerability while maintaining efficacy of a novel, highly potent dual amylin and calcitonin receptor agonist (DACRA), KBP-089. Furthermore, we tested the GLP-1 add-on potential of KBP-089 in high-fat diet (HFD)-fed rats. KBP-089 potently activated both the amylin and calcitonin receptors in vitro and demonstrated a prolonged receptor activation as well as a potent reduction of acute food intake. HFD rats dosed every day or every second day obtained equal weight loss at study end, albeit with an uneven reduction in both food intake and body weight in rats dosed every second day. In a 4-fold dose escalation, KBP-089 induced a transient reduction in food intake at every escalation step, with reducing magnitude over time, and the following treatment with 2.5, 10, and 40 µg/kg resulted in an ~15% vehicle-corrected weight loss, a corresponding reduction in adipose tissue (AT), and, in all treatment groups, improved oral glucose tolerance (P < 0.01). Twofold and linear escalations suppressed body weight evenly with no significant reduction in food intake at either escalation step. KBP-089 (1.25 µg/kg) and liraglutide (50 µg/kg) reduced 24-h food intake by 29% and 37% compared with vehicle, respectively; however, when they were combined, 24-h food intake was reduced by 87%. Chronically, KBP-089 (1.25 µg/kg) and liraglutide (50 µg/kg) lowered body weight 8% and 2% in HFD rats, respectively, whereas the combination resulted in a 12% body weight reduction. Moreover, the combination improved glucose tolerance (P < 0.05). In conclusion, DACRAs act complementarily with GLP-1 on food intake and body weight. Furthermore, on escalation, KBP-089 was well tolerated and induced and sustained a significant weight loss and a reduction in AT in lean and HFD rats, underscoring the potential of KBP-089 as an anti-obesity agent.
Collapse
Affiliation(s)
- Sofie Gydesen
- Nordic Bioscience, Herlev, Denmark;
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark; and
| | | | | | - Lars I Hellgren
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark; and
| | | | | |
Collapse
|
48
|
A kinetic view of GPCR allostery and biased agonism. Nat Chem Biol 2017; 13:929-937. [DOI: 10.1038/nchembio.2431] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
|
49
|
Faour O, Gilloteaux J. Calcitonin: Survey of new anatomy data to pathology and therapeutic aspects. TRANSLATIONAL RESEARCH IN ANATOMY 2017. [DOI: 10.1016/j.tria.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
50
|
Hothersall JD, Guo D, Sarda S, Sheppard RJ, Chen H, Keur W, Waring MJ, IJzerman AP, Hill SJ, Dale IL, Rawlins PB. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics. Mol Pharmacol 2016; 91:25-38. [PMID: 27803241 PMCID: PMC5198511 DOI: 10.1124/mol.116.105551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/28/2016] [Indexed: 12/02/2022] Open
Abstract
The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy.
Collapse
Affiliation(s)
- J Daniel Hothersall
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Dong Guo
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Sunil Sarda
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Robert J Sheppard
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Hongming Chen
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Wesley Keur
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Michael J Waring
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Adriaan P IJzerman
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Stephen J Hill
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Ian L Dale
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Philip B Rawlins
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| |
Collapse
|