1
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host clathrin suggests additional contributions for Sca4 during rickettsial infection. Infect Immun 2024; 92:e0026724. [PMID: 39535192 PMCID: PMC11629629 DOI: 10.1128/iai.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single function or interaction, there are a growing number of secreted effectors capable of interacting with multiple host factors. However, few effectors secreted by arthropod-borne obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin in donor cells to promote cell-to-cell spread in the model Rickettsia species R. parkeri. We discovered that Sca4 also binds the host cell protein clathrin heavy chain (CHC, CLTC) via a conserved segment in the Sca4 N-terminus. In mammalian host cells, ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread. Unexpectedly, the contribution of CHC to spread was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell type-specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
Affiliation(s)
- Cassandra J. Vondrak
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Sanderlin AG, Kurka Margolis H, Meyer AF, Lamason RL. Cell-selective proteomics reveal novel effectors secreted by an obligate intracellular bacterial pathogen. Nat Commun 2024; 15:6073. [PMID: 39025857 PMCID: PMC11258249 DOI: 10.1038/s41467-024-50493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Pathogenic bacteria secrete protein effectors to hijack host machinery and remodel their infectious niche. Rickettsia spp. are obligate intracellular bacteria that can cause life-threatening disease, but their absolute dependence on the host cell has impeded discovery of rickettsial effectors and their host targets. We implemented bioorthogonal non-canonical amino acid tagging (BONCAT) during R. parkeri infection to selectively label, isolate, and identify effectors delivered into the host cell. As the first use of BONCAT in an obligate intracellular bacterium, our screen more than doubles the number of experimentally validated effectors for the genus. The seven novel secreted rickettsial factors (Srfs) we identified include Rickettsia-specific proteins of unknown function that localize to the host cytoplasm, mitochondria, and ER. We further show that one such effector, SrfD, interacts with the host Sec61 translocon. Altogether, our work uncovers a diverse set of previously uncharacterized rickettsial effectors and lays the foundation for a deeper exploration of the host-pathogen interface.
Collapse
Affiliation(s)
- Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Abigail F Meyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host endocytic machinery suggests additional roles for Sca4 during rickettsial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600492. [PMID: 38979345 PMCID: PMC11230260 DOI: 10.1101/2024.06.24.600492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single specific function or interaction, there are a growing number of secreted pathogen effectors capable of interacting with multiple host factors. However, few effectors secreted by obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin to promote cell-to-cell spread in the model Rickettsia species R. parkeri . We discovered that Sca4 also binds the host cell endocytic factor clathrin heavy chain (CHC, CLTC ) via a conserved segment in the Sca4 N-terminus. Ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread between mammalian cells. This activity was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction also regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell-type specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
|
4
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sit B, Lamason RL. Pathogenic Rickettsia spp. as emerging models for bacterial biology. J Bacteriol 2024; 206:e0040423. [PMID: 38315013 PMCID: PMC10883807 DOI: 10.1128/jb.00404-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
7
|
Blanton LS. Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae. Infect Dis Rep 2023; 15:700-716. [PMID: 37987401 PMCID: PMC10660532 DOI: 10.3390/idr15060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic throughout much of the world, especially in tropical and subtropical seaboard regions where rats are common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is imperative. The purpose of this review is to highlight murine typhus as an important emerging and reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of further study.
Collapse
Affiliation(s)
- Lucas S Blanton
- Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Xiao Y, Beare PA, Best SM, Morens DM, Bloom ME, Taubenberger JK. Genetic sequencing of a 1944 Rocky Mountain spotted fever vaccine. Sci Rep 2023; 13:4687. [PMID: 36949107 PMCID: PMC10031714 DOI: 10.1038/s41598-023-31894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a rapidly progressive and often fatal tick-borne disease caused by Rickettsia rickettsii. Its discovery and characterization by Howard Ricketts has been hailed as a remarkable historical example of detection and control of an emerging infectious disease, and subsequently led to the establishment of the Rocky Mountain Laboratories (RML). Here, we examined an unopened bottle of a vaccine, labeled as containing RMSF inactivated by phenol-formalin of infected ticks, developed prior to 1944 at RML by DNA analysis using Illumina high throughput sequencing technology. We found that it contains DNA from the Rocky Mountain wood tick (Dermacentor andersoni), the vector of RMSF, the complete genome of Rickettsia rickettsii, the pathogen of RMSF, as well as the complete genome of Coxiella burnetii, the pathogen of Q-fever. In addition to genomic reads of Rickettsia rickettsii and Coxiella burnetii, smaller percentages of the reads are from Rickettsia rhipicephali and Arsenophonus nasoniae, suggesting that the infected ticks used to prepare the vaccine carried more than one pathogen. Together, these findings suggest that this early vaccine was likely a bivalent vaccine for RMSF and Q-fever. This study is the among the first molecular level examinations of an historically important vaccine.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive MSC 3203, Bethesda, MD, 20892-3203, USA.
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive MSC 3203, Bethesda, MD, 20892-3203, USA
| |
Collapse
|
9
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Analysis of the Type 4 Effectome across the Genus Rickettsia. Int J Mol Sci 2022; 23:ijms232415513. [PMID: 36555155 PMCID: PMC9779031 DOI: 10.3390/ijms232415513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Rickettsia are obligate intracellular bacteria primarily carried by arthropod hosts. The genus Rickettsia contains several vertebrate pathogens vectored by hematophagous arthropods. Despite the potential for disease, our understanding of Rickettsias are limited by the difficulties associated with growing and manipulating obligate intracellular bacteria. To aid with this, our lab conducted an analysis of eight genomes and three plasmids from across the genus Rickettsia. Using OPT4e, a learning algorithm-based program designed to identify effector proteins secreted by the type 4 secretion system, we generated a putative effectome for the genus. We then consolidated effectors into homolog sets to identify effectors unique to Rickettsia with different life strategies or evolutionary histories. We also compared predicted effectors to non-effectors for differences in G+C content and gene splitting. Based on this analysis, we predicted 1571 effectors across the genus, resulting in 604 homolog sets. Each species had unique homolog sets, while 42 were present in all eight species analyzed. Effectors were flagged in association with pathogenic, tick and flea-borne Rickettsia. Predicted effectors also varied in G+C content and frequency of gene splitting as compared to non-effectors. Species effector repertoires show signs of expansion, degradation, and horizontal acquisition associated with lifestyle and lineage.
Collapse
|
11
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
12
|
Laukaitis HJ, Cooper TT, Suwanbongkot C, Verhoeve VI, Kurtti TJ, Munderloh UG, Macaluso KR. Transposon mutagenesis of Rickettsia felis sca1 confers a distinct phenotype during flea infection. PLoS Pathog 2022; 18:e1011045. [PMID: 36542675 DOI: 10.1371/journal.ppat.1011045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.
Collapse
Affiliation(s)
- Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Triston T Cooper
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
13
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
14
|
Schön ME, Martijn J, Vosseberg J, Köstlbacher S, Ettema TJG. The evolutionary origin of host association in the Rickettsiales. Nat Microbiol 2022; 7:1189-1199. [PMID: 35798888 PMCID: PMC9352585 DOI: 10.1038/s41564-022-01169-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The evolution of obligate host-association of bacterial symbionts and pathogens remains poorly understood. The Rickettsiales are an alphaproteobacterial order of obligate endosymbionts and parasites that infect a wide variety of eukaryotic hosts, including humans, livestock, insects and protists. Induced by their host-associated lifestyle, Rickettsiales genomes have undergone reductive evolution, leading to small, AT-rich genomes with limited metabolic capacities. Here we uncover eleven deep-branching alphaproteobacterial metagenome assembled genomes from aquatic environments, including data from the Tara Oceans initiative and other publicly available datasets, distributed over three previously undescribed Rickettsiales-related clades. Phylogenomic analyses reveal that two of these clades, Mitibacteraceae and Athabascaceae, branch sister to all previously sampled Rickettsiales. The third clade, Gamibacteraceae, branch sister to the recently identified ectosymbiotic ‘Candidatus Deianiraea vastatrix’. Comparative analyses indicate that the gene complement of Mitibacteraceae and Athabascaceae is reminiscent of that of free-living and biofilm-associated bacteria. Ancestral genome content reconstruction across the Rickettsiales species tree further suggests that the evolution of host association in Rickettsiales was a gradual process that may have involved the repurposing of a type IV secretion system. Phylogenomic analyses reveal novel environmental clades of Rickettsiales providing insights into their evolution from free-living to host-associated lifestyle.
Collapse
Affiliation(s)
- Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julian Vosseberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines (Basel) 2021; 9:vaccines9080896. [PMID: 34452021 PMCID: PMC8402588 DOI: 10.3390/vaccines9080896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Rickettsioses are febrile, potentially lethal infectious diseases that are a serious health threat, especially in poor income countries. The causative agents are small obligate intracellular bacteria, rickettsiae. Rickettsial infections are emerging worldwide with increasing incidence and geographic distribution. Nonetheless, these infections are clearly underdiagnosed because methods of diagnosis are still limited and often not available. Another problem is that the bacteria respond to only a few antibiotics, so delayed or wrong antibiotic treatment often leads to a more severe outcome of the disease. In addition to that, the development of antibiotic resistance is a serious threat because alternative antibiotics are missing. For these reasons, prophylactic vaccines against rickettsiae are urgently needed. In the past years, knowledge about protective immunity against rickettsiae and immunogenic determinants has been increasing and provides a basis for vaccine development against these bacterial pathogens. This review provides an overview of experimental vaccination approaches against rickettsial infections and perspectives on vaccination strategies.
Collapse
|
16
|
Rauch J, Barton J, Kwiatkowski M, Wunderlich M, Steffen P, Moderzynski K, Papp S, Höhn K, Schwanke H, Witt S, Richardt U, Mehlhoop U, Schlüter H, Pianka V, Fleischer B, Tappe D, Osterloh A. GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi. PLoS One 2021; 16:e0253084. [PMID: 34111210 PMCID: PMC8191997 DOI: 10.1371/journal.pone.0253084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Malte Wunderlich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pascal Steffen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefanie Papp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hella Schwanke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Verena Pianka
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
17
|
Voss OH, Rahman MS. Rickettsia-host interaction: strategies of intracytosolic host colonization. Pathog Dis 2021; 79:ftab015. [PMID: 33705517 PMCID: PMC8023194 DOI: 10.1093/femspd/ftab015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021; 19:375-390. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.
Collapse
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Public Health Research Institute, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
19
|
Disruption of VirB6 Paralogs in Anaplasma phagocytophilum Attenuates Its Growth. J Bacteriol 2020; 202:JB.00301-20. [PMID: 32928930 PMCID: PMC7648143 DOI: 10.1128/jb.00301-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/08/2020] [Indexed: 01/25/2023] Open
Abstract
Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens. The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library. Many pathogenic bacteria translocate virulence factors into their eukaryotic hosts by means of type IV secretion systems (T4SS) spanning the inner and outer membranes. Genes encoding components of these systems have been identified within the order Rickettsiales based upon their sequence similarities to other prototypical systems. Anaplasma phagocytophilum strains are obligate intracellular, tick-borne bacteria that are members of this order. The organization of these components at the genomic level was determined in several Anaplasma phagocytophilum strains, showing overall conservation, with the exceptions of the virB2 and virB6 genes. The virB6 loci are characterized by the presence of four virB6 copies (virB6-1 through virB6-4) arranged in tandem within a gene cluster known as the sodB-virB operon. Interestingly, the virB6-4 gene varies significantly in length among different strains due to extensive tandem repeats at the 3′ end. To gain an understanding of how these enigmatic virB6 genes function in A. phagocytophilum, we investigated their expression in infected human and tick cells. Our results show that these genes are expressed by A. phagocytophilum replicating in both cell types and that VirB6-3 and VirB6-4 proteins are surface exposed. Analysis of an A. phagocytophilum mutant carrying the Himar1 transposon within the virB6-4 gene demonstrated that the insertion not only disrupted its expression but also exerted a polar effect on the sodB-virB operon. Moreover, the altered expression of genes within this operon was associated with the attenuated in vitro growth of A. phagocytophilum in human and tick cells, indicating the importance of these genes in the physiology of this obligate intracellular bacterium in such different environments. IMPORTANCE Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens. The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library.
Collapse
|
20
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
21
|
Csicsay F, Flores-Ramirez G, Zuñiga-Navarrete F, Bartošová M, Fučíková A, Pajer P, Dresler J, Škultéty Ľ, Quevedo-Diaz M. Proteomic analysis of Rickettsia akari proposes a 44 kDa-OMP as a potential biomarker for Rickettsialpox diagnosis. BMC Microbiol 2020; 20:200. [PMID: 32640994 PMCID: PMC7341715 DOI: 10.1186/s12866-020-01877-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rickettsialpox is a febrile illness caused by the mite-borne pathogen Rickettsia akari. Several cases of this disease are reported worldwide annually. Nevertheless, the relationship between the immunogenicity of R. akari and disease development is still poorly understood. Thus, misdiagnosis is frequent. Our study is aiming to identify immunogenic proteins that may improve disease recognition and enhance subsequent treatment. To achieve this goal, two proteomics methodologies were applied, followed by immunoblot confirmation. Results Three hundred and sixteen unique proteins were identified in the whole-cell extract of R. akari. The most represented protein groups were found to be those involved in translation, post-translational modifications, energy production, and cell wall development. A significant number of proteins belonged to amino acid transport and intracellular trafficking. Also, some proteins affecting the virulence were detected. In silico analysis of membrane enriched proteins revealed 25 putative outer membrane proteins containing beta-barrel structure and 11 proteins having a secretion signal peptide sequence. Using rabbit and human sera, various immunoreactive proteins were identified from which the 44 kDa uncharacterized protein (A8GP63) has demonstrated a unique detection capability. It positively distinguished the sera of patients with Rickettsialpox from other rickettsiae positive human sera. Conclusion Our proteomic analysis certainly contributed to the lack of knowledge of R. akari pathogenesis. The result obtained may also serve as a guideline for a more accurate diagnosis of rickettsial diseases. The identified 44 kDa uncharacterized protein can be certainly used as a unique marker of rickettsialpox or as a target molecule for the development of more effective treatment.
Collapse
Affiliation(s)
- František Csicsay
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Gabriela Flores-Ramirez
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Fernando Zuñiga-Navarrete
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Mária Bartošová
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Alena Fučíková
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradecká 1285, 500 03, Hradec Králové, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00, Prague 6, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00, Prague 6, Czech Republic
| | - Ľudovít Škultéty
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic. .,Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Marco Quevedo-Diaz
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
22
|
Abstract
Rickettsia species are Gram-negative obligate intracellular bacteria that infect a wide range of eukaryotes and vertebrates. In particular, human body louse-borne Rickettsia prowazekii and flea-borne Rickettsia typhi have historically plagued humankind and continue to reemerge globally. The unavailability of vaccines and limited effectiveness of antibiotics late in infection place lethality rates up to 30%, highlighting the need to elucidate the mechanisms of Rickettsia pathogenicity in greater detail. Here, we characterize a new effector, Risk1, as a secreted phosphatidylinositol 3-kinase (PI3K) with unique dual class I and class III activities. Risk1 is required for host colonization, and its vacuolar phosphatidylinositol 3-phosphate generation modulates endosomal trafficking to arrest autophagosomal maturation. Collectively, Risk1 facilitates R. typhi growth by altering phosphoinositide metabolism and subverting intracellular trafficking. To establish a habitable intracellular niche, various pathogenic bacteria secrete effectors that target intracellular trafficking and modulate phosphoinositide (PI) metabolism. Murine typhus, caused by the obligate intracellular bacterium Rickettsia typhi, remains a severe disease in humans. However, the mechanisms by which R. typhi effector molecules contribute to internalization by induced phagocytosis and subsequent phagosomal escape into the cytosol to facilitate the intracellular growth of the bacteria remain ill-defined. Here, we characterize a new molecule, Risk1, as a phosphatidylinositol 3-kinase (PI3K) secreted effector and the first bacterial secretory kinase with both class I and III PI3K activities. Inactivation of Risk1 PI3K activities reduced the phosphorylation of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate within the host, which consequently diminished host colonization by R. typhi. During infection, Risk1 targets the Rab5-EEA1-phosphatidylinositol 3-phosphate [PI(3)P] signaling axis to promote bacterial phagosomal escape. Subsequently, R. typhi undergoes ubiquitination and induces host autophagy; however, maturation to autolysosomes is subverted to support intracellular growth. Intriguingly, only enzymatically active Risk1 binds the Beclin-1 core complex and contributes to R. typhi-induced autophagosome formation. In sum, our data suggest that Risk1, with dual class I and class III PI3K activities, alters host PI metabolism and consequently subverts intracellular trafficking to facilitate intracellular growth of R. typhi.
Collapse
|
23
|
Elliott I, Batty EM, Ming D, Robinson MT, Nawtaisong P, de Cesare M, Newton PN, Bowden R. Oxford Nanopore MinION Sequencing Enables Rapid Whole Genome Assembly of Rickettsia typhi in a Resource-Limited Setting. Am J Trop Med Hyg 2020; 102:408-414. [PMID: 31820709 PMCID: PMC7008338 DOI: 10.4269/ajtmh.19-0383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/25/2019] [Indexed: 01/30/2023] Open
Abstract
The infrastructure challenges and costs of next-generation sequencing have been largely overcome, for many sequencing applications, by Oxford Nanopore Technologies' portable MinION sequencer. However, the question remains open whether MinION-based bacterial whole genome sequencing is by itself sufficient for the accurate assessment of phylogenetic and epidemiological relationships between isolates and whether such tasks can be undertaken in resource-limited settings. To investigate this question, we sequenced the genome of an isolate of Rickettsia typhi, an important and neglected cause of fever across much of the tropics and subtropics, for which only three genomic sequences previously existed. We prepared and sequenced libraries on a MinION in Vientiane, Lao PDR, using v9.5 chemistry, and in parallel, we sequenced the same isolate on the Illumina platform in a genomics laboratory in the United Kingdom. The MinION sequence reads yielded a single contiguous assembly, in which the addition of Illumina data revealed 226 base-substitution and 5,856 indel errors. The combined assembly represents the first complete genome sequence of a human R. typhi isolate collected in the last 50 years and differed from the genomes of existing strains collected over a 90-year time period at very few sites, with no rearrangements. Filtering based on the known error profile of MinION data improved the accuracy of the nanopore-only assembly. However, the frequency of false-positive errors remained greater than true sequence divergence from recorded sequences. Although nanopore-only sequencing cannot yet recover phylogenetic signals in R. typhi, such an approach may be applicable for more diverse organisms.
Collapse
Affiliation(s)
- Ivo Elliott
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Elizabeth M. Batty
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Damien Ming
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Matthew T. Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Pruksa Nawtaisong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | | | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
25
|
Two for the price of one: Co-infection with Rickettsia bellii and spotted fever group Rickettsia in Amblyomma (Acari: Ixodidae) ticks recovered from wild birds in Brazil. Ticks Tick Borne Dis 2019; 10:101266. [PMID: 31402227 DOI: 10.1016/j.ttbdis.2019.101266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/17/2019] [Accepted: 07/28/2019] [Indexed: 11/21/2022]
Abstract
The bacterium Rickettsia bellii has been detected in 25 species of ticks in the American continents, but its pathogenic potential is considered as undetermined. A possible role for this species in the phenomenon of transovarial exclusion of pathogenic members of the spotted fever group (SFG) of Rickettsia has been suggested and co-infections with pathogenic species have been reported infrequently in both North and South America. Traditional methods for the molecular detection of rickettsial agents in ticks focus largely on the identification of sequences found in SFG Rickettsia, an approach that may overlook the presence of co-infections with R. bellii. Two novel, species-specific polymerase chain reaction (PCR) assays, targeting the genes encoding the surface cell antigen (Sca), autotransporter proteins sca9 and sca14, were developed and validated for the detection of R. bellii using 150 Amblyomma ticks collected from wild birds in Brazil. Co-infection of R. bellii infected ticks was evaluated using a novel PCR assay targeting the ompA sequence characteristic of SFG Rickettsia. Preliminary species-level identification was achieved by restriction fragment length polymorphism (RFLP) analysis and subsequently confirmed by sequencing of amplicons. Nine out of seventy-three Amblyomma longirostre and one of two Amblyomma calcaratum ticks were shown to be co-infected with R. bellii and Rickettsia amblyommatis, while two out of sixty-seven Amblyomma sp. haplotype Nazaré ticks were recorded as co-infected with R. bellii and the Rickettsia parkeri-like bacterium, strain ApPR. Interestingly, our data represent the first records of R. bellii in association with A. calcaratum and Amblyomma sp. haplotype Nazaré. The novel PCR-RFLP systems reported herein, provide an alternative, rapid and cost-efficient (relative to strategies based on sequencing or real-time PCR), approach to evaluate rickettsial co-infection of ticks, a potentially significant phenomenon that has most likely been underestimated to date.
Collapse
|
26
|
Diop A, Raoult D, Fournier PE. Paradoxical evolution of rickettsial genomes. Ticks Tick Borne Dis 2018; 10:462-469. [PMID: 30448253 DOI: 10.1016/j.ttbdis.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
Rickettsia species are strictly intracellular bacteria that evolved approximately 150 million years ago from a presumably free-living common ancestor from the order Rickettsiales that followed a transition to an obligate intracellular lifestyle. Rickettsiae are best known as human pathogens vectored by various arthropods causing a range of mild to severe human diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have undergone a convergent evolution that includes a strong genomic reduction resulting from progressive gene degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably small RNAs and short palindromic elements whose role remains unknown. This reductive evolutionary process is not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component biosynthesis and transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins. Surprisingly the most virulent Rickettsia species were shown to have the most drastically reduced and degraded genomes compared to closely related species of milder pathogenesis. In contrast, the less pathogenic species harbored the greatest number of mobile genetic elements. Thus, this distinct evolutionary process observed in Rickettsia species may be correlated with the differences in virulence and pathogenicity observed in these obligate intracellular bacteria. However, future investigations are needed to provide novel insights into the evolution of genome sizes and content, for that a better understanding of the balance between proliferation and elimination of genetic material in these intracellular bacteria is required.
Collapse
Affiliation(s)
- Awa Diop
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- UMR MEPHI, Aix-Marseille University, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
27
|
Guillotte ML, Gillespie JJ, Chandler CE, Rahman MS, Ernst RK, Azad AF. Rickettsia Lipid A Biosynthesis Utilizes the Late Acyltransferase LpxJ for Secondary Fatty Acid Addition. J Bacteriol 2018; 200:e00334-18. [PMID: 30012728 PMCID: PMC6148475 DOI: 10.1128/jb.00334-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Members of the Rickettsia genus are obligate intracellular, Gram-negative coccobacilli that infect mammalian and arthropod hosts. Several rickettsial species are human pathogens and are transmitted by blood-feeding arthropods. In Gram-negative parasites, the outer membrane (OM) sits at the nexus of the host-pathogen interaction and is rich in lipopolysaccharide (LPS). The lipid A component of LPS anchors the molecule to the bacterial surface and is an endotoxic agonist of Toll-like receptor 4 (TLR4). Despite the apparent importance of lipid A in maintaining OM integrity, as well as its inflammatory potential during infection, this molecule is poorly characterized in Rickettsia pathogens. In this work, we have identified and characterized new members of the recently discovered LpxJ family of lipid A acyltransferases in both Rickettsia typhi and Rickettsia rickettsii, the etiological agents of murine typhus and Rocky Mountain spotted fever, respectively. Our results demonstrate that these enzymes catalyze the addition of a secondary acyl chain (C14/C16) to the 3'-linked primary acyl chain of the lipid A moiety in the final steps of the Raetz pathway of lipid A biosynthesis. Since lipid A architecture is fundamental to bacterial OM integrity, we believe that rickettsial LpxJ may be important in maintaining membrane dynamics to facilitate molecular interactions at the host-pathogen interface that are required for adhesion and invasion of mammalian cells. This work contributes to our understanding of rickettsial outer membrane physiology and sets a foundation for further exploration of the envelope and its role in pathogenesis.IMPORTANCE Lipopolysaccharide (LPS) triggers an inflammatory response through the TLR4-MD2 receptor complex and inflammatory caspases, a process mediated by the lipid A moiety of LPS. Species of Rickettsia directly engage both extracellular and intracellular immunosurveillance, yet little is known about rickettsial lipid A. Here, we demonstrate that the alternative lipid A acyltransferase, LpxJ, from Rickettsia typhi and R. rickettsii catalyzes the addition of C16 fatty acid chains into the lipid A 3'-linked primary acyl chain, accounting for major structural differences relative to the highly inflammatory lipid A of Escherichia coli.
Collapse
Affiliation(s)
- Mark L Guillotte
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
29
|
Diop A, Raoult D, Fournier PE. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect 2018; 20:401-409. [DOI: 10.1016/j.micinf.2017.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
|
30
|
Monteiro R, Chafsey I, Leroy S, Chambon C, Hébraud M, Livrelli V, Pizza M, Pezzicoli A, Desvaux M. Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin. J Proteomics 2018; 181:16-23. [PMID: 29609094 DOI: 10.1016/j.jprot.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. SIGNIFICANCE While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria.
Collapse
Affiliation(s)
- Ricardo Monteiro
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Ingrid Chafsey
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Valérie Livrelli
- Centre de Recherche en Nutrition Humaine Auvergne, UMR UCA INSERM U1071, USC-INRA 2018, Clermont Université - Université d'Auvergne, Faculté de Pharmacie, CHU Clermont-Ferrand, Service Bactériologie Mycologie Parasitologie, Clermont-Ferrand, France
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
31
|
Outer Membrane Protein OmpB Methylation May Mediate Bacterial Virulence. Trends Biochem Sci 2017; 42:936-945. [PMID: 29037863 DOI: 10.1016/j.tibs.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Methylation of outer membrane proteins (OMPs) has been implicated in bacterial virulence. Lysine methylation in rickettsial OmpB is correlated with rickettsial virulence, and N- and O-methylations are also observed in virulence-relevant OMPs from several pathogenic bacteria that cause typhus, leptospirosis, tuberculosis, and anaplasmosis. We summarize recent findings on the structure of methylated OmpB, biochemical characterization, and crystal structures of OmpB methyltransferases. Native rickettsial OmpB purified from highly virulent strains contains multiple clusters of trimethyllysine, in contrast with mostly monomethyllysine, and no trimethyllysine is found in an avirulent strain. Crystal structure of the methyltransferases reveals mechanistic insights for catalysis, and a working model is discussed for this unusual post-translational modification.
Collapse
|
32
|
Evaluation of changes to the Rickettsia rickettsii transcriptome during mammalian infection. PLoS One 2017; 12:e0182290. [PMID: 28832688 PMCID: PMC5568294 DOI: 10.1371/journal.pone.0182290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
The lifecycle of Rickettsia rickettsii includes infection of both mammalian and arthropod hosts, with each environment presenting distinct challenges to survival. As such, these pathogens likely have distinctive transcriptional strategies for infection of each host. Herein, we report the utilization of next generation sequencing (RNAseq) and bioinformatic analysis techniques to examine the global transcriptional profile of R. rickettsii within an infected animal, and to compare that data to transcription in tissue culture. The results demonstrate substantial R. rickettsii transcriptional alteration in vivo, such that the bacteria are considerably altered from cell culture. Identification of significant transcriptional changes and validation of RNAseq by quantitative PCR are described with particular emphasis on known antigens and suspected virulence factors. Together, these results suggest that transcriptional regulation of a distinct cohort of genes may contribute to successful mammalian infection.
Collapse
|
33
|
El Karkouri K, Kowalczewska M, Armstrong N, Azza S, Fournier PE, Raoult D. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp. Front Microbiol 2017; 8:1363. [PMID: 28775717 PMCID: PMC5517468 DOI: 10.3389/fmicb.2017.01363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria.
Collapse
Affiliation(s)
- Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Malgorzata Kowalczewska
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Nicholas Armstrong
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Said Azza
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Pierre-Edouard Fournier
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| |
Collapse
|
34
|
Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017; 2017:2197615. [PMID: 28321417 PMCID: PMC5340944 DOI: 10.1155/2017/2197615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics.
Collapse
|
35
|
Lamason RL, Bastounis E, Kafai NM, Serrano R, Del Álamo JC, Theriot JA, Welch MD. Rickettsia Sca4 Reduces Vinculin-Mediated Intercellular Tension to Promote Spread. Cell 2016; 167:670-683.e10. [PMID: 27768890 DOI: 10.1016/j.cell.2016.09.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/22/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
Spotted fever group (SFG) rickettsiae are human pathogens that infect cells in the vasculature. They disseminate through host tissues by a process of cell-to-cell spread that involves protrusion formation, engulfment, and vacuolar escape. Other bacterial pathogens rely on actin-based motility to provide a physical force for spread. Here, we show that SFG species Rickettsia parkeri typically lack actin tails during spread and instead manipulate host intercellular tension and mechanotransduction to promote spread. Using transposon mutagenesis, we identified surface cell antigen 4 (Sca4) as a secreted effector of spread that specifically promotes protrusion engulfment. Sca4 interacts with the cell-adhesion protein vinculin and blocks association with vinculin's binding partner, α-catenin. Using traction and monolayer stress microscopy, we show that Sca4 reduces vinculin-dependent mechanotransduction at cell-cell junctions. Our results suggest that Sca4 relieves intercellular tension to promote protrusion engulfment, which represents a distinctive strategy for manipulating cytoskeletal force generation to enable spread.
Collapse
Affiliation(s)
- Rebecca L Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Effie Bastounis
- Departments of Biochemistry, Microbiology, and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Natasha M Kafai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ricardo Serrano
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan C Del Álamo
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julie A Theriot
- Departments of Biochemistry, Microbiology, and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
37
|
Smalley C, Bechelli J, Rockx-Brouwer D, Saito T, Azar SR, Ismail N, Walker DH, Fang R. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages. PLoS One 2016; 11:e0157231. [PMID: 27362650 PMCID: PMC4928923 DOI: 10.1371/journal.pone.0157231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8-12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved.
Collapse
Affiliation(s)
- Claire Smalley
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Jeremy Bechelli
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dedeke Rockx-Brouwer
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gillespie JJ, Phan IQH, Driscoll TP, Guillotte ML, Lehman SS, Rennoll-Bankert KE, Subramanian S, Beier-Sexton M, Myler PJ, Rahman MS, Azad AF. The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. Pathog Dis 2016; 74:ftw058. [PMID: 27307105 PMCID: PMC5505475 DOI: 10.1093/femspd/ftw058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Many prokaryotes utilize type IV secretion systems (T4SSs) to translocate substrates (e.g. nucleoprotein, DNA, protein) across the cell envelope, and/or to elaborate surface structures (i.e. pili or adhesins). Among eight distinct T4SS classes, P-T4SSs are typified by the Agrobacterium tumefaciens vir T4SS, which is comprised of 12 scaffold components (VirB1-VirB11, VirD4). While most P-T4SSs include all 12 Vir proteins, some differ from the vir archetype by either containing additional scaffold components not analogous to Vir proteins or lacking one or more of the Vir proteins. In a special case, the Rickettsiales vir homolog (rvh) P-T4SS comprises unprecedented gene family expansion. rvh contains three families of gene duplications (rvhB9, rvhB8, rvhB4): RvhB9,8,4-I are conserved relative to equivalents in other P-T4SSs, while RvhB9,8,4-II have evolved atypical features that deviate substantially from other homologs. Furthermore, rvh contains five VirB6-like genes (rvhB6a-e), which are tandemly arrayed and contain large N- and C-terminal extensions. Our work herein focuses on the complexity underpinned by rvh gene family expansion. Furthermore, we describe an RvhB10 insertion, which occurs in a region that forms the T4SS pore. The significance of these curious properties to rvh structure and function is evaluated, shedding light on a highly complex T4SS.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| | - Isabelle Q H Phan
- Seattle Structural Genomics Center for Infectious Disease, 307 Westlake Ave North, Seattle, WA 98109, USA Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Life Sciences Building, PO Box 6057, Morgantown, WV 26506-6201, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| | - Stephanie S Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease, 307 Westlake Ave North, Seattle, WA 98109, USA Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, 307 Westlake Ave North, Seattle, WA 98109, USA Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA
| |
Collapse
|
39
|
Yang A, Narechania A, Kim E. Rickettsial endosymbiont in the "early-diverging" streptophyte green alga Mesostigma viride. JOURNAL OF PHYCOLOGY 2016; 52:219-229. [PMID: 27037587 DOI: 10.1111/jpy.12385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
A bacterial endosymbiont was unexpectedly found in the "axenic" culture strain of the streptophyte green alga Mesostigma viride (NIES-995). Phylogenetic analyses based on 16S rRNA gene sequences showed that the symbiont belongs to the order Rickettsiales, specifically to the recently designated clade "Candidatus Megaira," which is closely related to the well-known Rickettsia clade. Rickettsiales bacteria of the "Ca. Megaira" clade are found in a taxonomically diverse array of eukaryotic hosts, including chlorophycean green algae, several ciliate species, and invertebrates such as Hydra. Transmission electron microscopy, fluorescence in situ hybridi-zation, and SYBR Green I staining experiments revealed that the endosymbiont of M. viride NIES-995 is rod shaped, typically occurs in clusters, and is surrounded by a halo-like structure, presumably formed by secretory substances from the bacterium. Two additional M. viride strains (NIES-296 and NIES-475), but not SAG50-1, were found to house the rickettsial endosymbiont. Analyses of strain NIES-995 transcriptome data indicated the presence of at least 91 transcriptionally active genes of symbiont origins. These include genes for surface proteins (e.g., rOmpB) that are known to play key roles in bacterial attachment onto host eukaryotes in related Rickettsia species. The assembled M. viride transcriptome includes transcripts that code for a suite of predicted algal-derived proteins, such as Ku70, WASH, SCAR, and CDC42, which may be important in the formation of the algal-rickettsial association.
Collapse
Affiliation(s)
- Ashley Yang
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| |
Collapse
|
40
|
Wang W, Jeffery CJ. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. MOLECULAR BIOSYSTEMS 2016; 12:1420-31. [DOI: 10.1039/c5mb00550g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dozens of intracellular proteins have a second function on the cell surface, referred to as “intracellular/surface moonlighting proteins”. An analysis of the results of 22 cell surface proteomics studies was performed to address whether the hundreds of intracellular proteins found on the cell surface could be candidates for being additional intracellular/surface moonlighting proteins.
Collapse
Affiliation(s)
- Wangfei Wang
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Constance J. Jeffery
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
- Department of Biological Sciences
| |
Collapse
|
41
|
Heu CC, Kurtti TJ, Nelson CM, Munderloh UG. Transcriptional Analysis of the Conjugal Transfer Genes of Rickettsia bellii RML 369-C. PLoS One 2015; 10:e0137214. [PMID: 26352829 PMCID: PMC4564193 DOI: 10.1371/journal.pone.0137214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Rickettsia bellii is an obligate intracellular bacterium that is one of the few rickettsiae that encode a complete set of conjugative transfer (tra) genes involved in bacterial conjugation and has been shown to exhibit pili-like structures. The reductive genomes of rickettsiae beg the question whether the tra genes are nonfunctional or functioning to enhance the genetic plasticity and biology of rickettsiae. We characterized the transcriptional dynamics of R. bellii tra genes in comparison to genes transcribed stably and above the background level to understand when and at what levels the tra genes are active or whether the tra genes are degenerative. We determined that the best reference genes, out of 10 tested, were methionyl tRNA ligase (metG) or a combination of metG and ribonucleoside diphosphate reductase 2 subunit beta (nrdF), using statistical algorithms from two different programs: Normfinder and BestKeeper. To validate the use of metG with other rickettsial genes exhibiting variable transcriptional patterns we examined its use with sca2 and rickA, genes involved in actin based motility. Both were shown to be up-regulated at different times of replication in Vero cells, showing variable and stable transcription levels of rickA and sca2, respectively. traATi was up-regulated at 72 hours post inoculation in the tick cell line ISE6, but showed no apparent changes in the monkey cell line Vero and mouse cell line L929. The transcription of tra genes was positively correlated with one another and up-regulated from 12 to 72 hours post inoculation (HPI) when compared to RBE_0422 (an inactivated transposase-derivative found within the tra cluster). Thus, the up-regulation of the tra genes indicated that the integrity and activity of each gene were intact and may facilitate the search for the optimal conditions necessary to demonstrate conjugation in rickettsiae.
Collapse
Affiliation(s)
- Chan C. Heu
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
| | - Curtis M. Nelson
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
| |
Collapse
|
42
|
Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog 2015; 11:e1005115. [PMID: 26291822 PMCID: PMC4546372 DOI: 10.1371/journal.ppat.1005115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases. Phylogenomics analysis indicates divergent mechanisms for host cell invasion across diverse species of obligate intracellular Rickettsia. For instance, only some Rickettsia species carry RalF, the rare bacterial Arf-GEF effector utilized by Legionella pneumophila to facilitate fusion of ER-derived membranes with its host-derived vacuole. For R. prowazekii (Typhus Group, TG), prior in vitro studies suggested the Arf-GEF activity of RalF, which is absent from Spotted Fever Group species, might be spatially regulated at the host plasma membrane. Herein, we demonstrate RalF of R. typhi (TG) and R. felis (Transitional Group) localizes to the host plasma membrane, yet R. bellii (Ancestral Group) RalF shows perinuclear localization reminiscent of RalF-mediated recruitment of Arf1 by L. pneumophila to its vacuole. For R. typhi, RalF expression occurs early during infection, with RalF inactivation significantly reducing host cell invasion. Furthermore, RalF co-localization with Arf6 and the phosphoinositide PI(4,5)P2 at the host plasma membrane was determined to be critical for R. typhi invasion. Thus, our work illustrates that different intracellular lifestyles across species of Rickettsia and Legionella have driven divergent roles for RalF during host cell infection. Collectively, we identify lineage-specific Arf-GEF utilization across diverse rickettsial species, previously unappreciated mechanisms for host cell invasion and infection.
Collapse
Affiliation(s)
- Kristen E. Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark L. Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J. Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie S. Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Immunoproteomic profiling of Rickettsia parkeri and Rickettsia amblyommii. Ticks Tick Borne Dis 2015; 6:829-35. [PMID: 26234571 DOI: 10.1016/j.ttbdis.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022]
Abstract
Rickettsia parkeri is an Amblyomma-associated, spotted fever group Rickettsia species that causes an eschar-associated, febrile illness in multiple countries throughout the Western Hemisphere. Many other rickettsial species of known or uncertain pathogenicity have been detected in Amblyomma spp. ticks in the Americas, including Rickettsia amblyommii, "Candidatus Rickettsia andeanae" and Rickettsia rickettsii. In this study, we utilized an immunoproteomic approach to compare antigenic profiles of low-passage isolates of R. parkeri and R. amblyommii with serum specimens from patients with PCR- and culture-confirmed infections with R. parkeri. Five immunoreactive proteins of R. amblyommii and nine immunoreactive proteins of R. parkeri were identified by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. Four of these, including the outer membrane protein (Omp) A, OmpB, translation initiation factor IF-2, and cell division protein FtsZ, were antigens common to both rickettsiae. Serum specimens from patients with R. parkeri rickettsiosis reacted specifically with cysteinyl-tRNA synthetase, DNA-directed RNA polymerase subunit alpha, putative sigma (54) modulation protein, chaperonin GroEL, and elongation factor Tu of R. parkeri which have been reported as virulence factors in other bacterial species. Unique antigens identified in this study may be useful for further development of the better serological assays for diagnosing infection caused by R. parkeri.
Collapse
|
44
|
Ha NY, Sharma P, Kim G, Kim Y, Min CK, Choi MS, Kim IS, Cho NH. Immunization with an autotransporter protein of Orientia tsutsugamushi provides protective immunity against scrub typhus. PLoS Negl Trop Dis 2015; 9:e0003585. [PMID: 25768004 PMCID: PMC4359152 DOI: 10.1371/journal.pntd.0003585] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/03/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Scrub typhus is an acute febrile disease caused by Orientia tsutsugamushi infection. Recently, the rapid increase of scrub typhus incidence in several countries within the endemic region has become a serious public health issue. Despite the wide range of preventative approaches that have been attempted in the past 70 years, all have failed to develop an effective prophylactic vaccine. Currently, the selection of the proper antigens is one of the critical barriers to generating cross-protective immunity against antigenically-variable strains of O. tsutsugamushi. METHODOLOGY/PRINCIPAL FINDINGS We examined the potential role of ScaA protein, an autotransporter protein of O. tsutsugamushi, in bacterial pathogenesis and evaluated the protective attributes of ScaA immunization in lethal O. tsutsugamushi infection in mice. Our findings demonstrate that ScaA functions as a bacterial adhesion factor, and anti-ScaA antibody significantly neutralizes bacterial infection of host cells. In addition, immunization with ScaA not only provides protective immunity against lethal challenges with the homologous strain, but also confers significant protection against heterologous strains when combined with TSA56, a major outer membrane protein of O. tsutsugamushi. CONCLUSIONS/SIGNIFICANCE Immunization of ScaA proteins provides protective immunity in mice when challenged with the homologous strain and significantly enhanced protective immunity against infection with heterologous strains. To our knowledge, this is the most promising result of scrub typhus vaccination trials against infection of heterologous strains in mouse models thus far.
Collapse
Affiliation(s)
- Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gwanghun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Wilson MM, Anderson DE, Bernstein HD. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 2015; 10:e0117732. [PMID: 25658944 PMCID: PMC4319957 DOI: 10.1371/journal.pone.0117732] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 01/28/2023] Open
Abstract
Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.
Collapse
Affiliation(s)
- Marlena M. Wilson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
46
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection. Vet Microbiol 2014; 174:448-455. [DOI: 10.1016/j.vetmic.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 11/23/2022]
|
48
|
Jiao J, Xiong X, Qi Y, Gong W, Duan C, Yang X, Wen B. Serological characterization of surface-exposed proteins of Coxiella burnetii. MICROBIOLOGY-SGM 2014; 160:2718-2731. [PMID: 25298245 DOI: 10.1099/mic.0.082131-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The obligate intracellular Gram-negative bacterium Coxiella burnetii causes Q fever, a worldwide zoonosis. Here we labelled Cox. burnetii with biotin and used biotin-streptavidin affinity chromatography to isolate surface-exposed proteins (SEPs). Using two-dimensional electrophoresis combined with mass spectrometry, we identified 37 proteins through bioinformatics analysis. Thirty SEPs expressed in Escherichia coli (recombinant SEPs, rSEPs) were used to generate microarrays, which were probed with sera from mice experimentally infected with Cox. burnetii or sera from Q fever patients. Thirteen rSEPs were recognized as seroreactive, and the majority reacted with at least 50 % of the sera from mice infected with Cox. burnetii but not with sera from mice infected with Rickettsia rickettsii, R. heilongjiangensis, or R. typhi. Further, 13 proteins that reacted with sera from patients with Q fever did not react with sera from patients with brucellosis or mycoplasma pneumonia. Our results suggest that these seroreactive SEPs have potential as serodiagnostic antigens or as subunit vaccine antigens against Q fever.
Collapse
Affiliation(s)
- Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yong Qi
- Department of Medical and Pharmaceutical Biotechnology, Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, PR China
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Changsong Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
49
|
Gong W, Xiong X, Qi Y, Jiao J, Duan C, Wen B. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics. PLoS One 2014; 9:e100253. [PMID: 24950252 PMCID: PMC4065002 DOI: 10.1371/journal.pone.0100253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.
Collapse
Affiliation(s)
- Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (BW); (XX)
| | - Yong Qi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Changsong Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (BW); (XX)
| |
Collapse
|
50
|
Patil US, Qu H, Caruntu D, O'Connor CJ, Sharma A, Cai Y, Tarr MA. Labeling primary amine groups in peptides and proteins with N-hydroxysuccinimidyl ester modified Fe3O4@SiO2 nanoparticles containing cleavable disulfide-bond linkers. Bioconjug Chem 2013; 24:1562-9. [PMID: 23909594 DOI: 10.1021/bc400165r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface of superparamagnetic silica coated iron oxide (Fe3O4@SiO2) nanoparticles was functionalized with a disulfide bond linked N-hydroxysuccinimidyl (NHS) ester group in order to develop a method for labeling primary amines in peptides/proteins. The nanoparticle labeled proteins/peptides formed after NHS ester reaction with the primary amine groups were isolated using a magnet without any additional purification step. Nanoparticle moieties conjugated to peptides/proteins were then trimmed by cleavage at the disulfide linker with a reducing agent. The labeled peptides were analyzed by LC-MS/MS to determine their sequences and the sites of NHS ester labeling. This novel approach allowed characterization of lysine residues on the solvent accessible surface of native bovine serum albumin. Low cost, rapid magnetic separation, and specificity toward primary amine groups make NHS ester coated Fe3O4@SiO2 nanoparticles a potential labeling probe to study proteins on living cell surfaces.
Collapse
Affiliation(s)
- Ujwal S Patil
- Department of Chemistry and ‡Advanced Materials Research Institute, University of New Orleans , 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| | | | | | | | | | | | | |
Collapse
|