1
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Kopsick JD, Hartzell K, Lazaro H, Nambiar P, Hasselmo ME, Dannenberg H. Temporal dynamics of cholinergic activity in the septo-hippocampal system. Front Neural Circuits 2022; 16:957441. [PMID: 36092276 PMCID: PMC9452968 DOI: 10.3389/fncir.2022.957441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cholinergic projection neurons in the medial septum and diagonal band of Broca are the major source of cholinergic modulation of hippocampal circuit functions that support neural coding of location and running speed. Changes in cholinergic modulation are known to correlate with changes in brain states, cognitive functions, and behavior. However, whether cholinergic modulation can change fast enough to serve as a potential speed signal in hippocampal and parahippocampal cortices and whether the temporal dynamics in such a signal depend on the presence of visual cues remain unknown. In this study, we use a fiber-photometric approach to quantify the temporal dynamics of cholinergic activity in freely moving mice as a function of the animal's movement speed and visual cues. We show that the population activity of cholinergic neurons in the medial septum and diagonal band of Broca changes fast enough to be aligned well with changes in the animal's running speed and is strongly and linearly correlated to the logarithm of the animal's running speed. Intriguingly, the cholinergic modulation remains strongly and linearly correlated to the speed of the animal's neck movements during periods of stationary activity. Furthermore, we show that cholinergic modulation is unaltered during darkness. Lastly, we identify rearing, a stereotypic behavior where the mouse stands on its hindlimbs to scan the environment from an elevated perspective, is associated with higher cholinergic activity than expected from neck movements on the horizontal plane alone. Taken together, these data show that temporal dynamics in the cholinergic modulation of hippocampal circuits are fast enough to provide a potential running speed signal in real-time. Moreover, the data show that cholinergic modulation is primarily a function of the logarithm of the animal's movement speed, both during locomotion and during stationary activity, with no significant interaction with visual inputs. These data advance our understanding of temporal dynamics in cholinergic modulation of hippocampal circuits and their functions in the context of neural coding of location and running speed.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Kyle Hartzell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Hallie Lazaro
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Pranav Nambiar
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
3
|
Raphael-Mizrahi B, Attar-Lamdar M, Chourasia M, Cascio MG, Shurki A, Tam J, Neuman M, Rimmerman N, Vogel Z, Shteyer A, Pertwee RG, Zimmer A, Kogan N, Bab I, Gabet Y. Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. eLife 2022; 11:65834. [PMID: 35604006 PMCID: PMC9154745 DOI: 10.7554/elife.65834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 (CB1) and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as Osteogenic Growth Peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.
Collapse
Affiliation(s)
| | - Malka Attar-Lamdar
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mukesh Chourasia
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria G Cascio
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Avital Shurki
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moshe Neuman
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neta Rimmerman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Vogel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Shteyer
- Department of Oral and Maxillofacial Surgery, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Natalya Kogan
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itai Bab
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Damborsky JC, Yakel JL. Regulation of hippocamposeptal input within the medial septum/diagonal band of Broca. Neuropharmacology 2021; 191:108589. [PMID: 33933476 DOI: 10.1016/j.neuropharm.2021.108589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022]
Abstract
The medial septum/diagonal band of Broca (MS/DBB) receives direct GABAergic input from the hippocampus via hippocamposeptal (HS) projection neurons as part of a reciprocal loop that mediates cognition and is altered in Alzheimer's disease. Cholinergic and GABAergic interactions occur throughout the MS/DBB, but it is not known how HS GABA release is impacted by these circuits. Most HS neurons contain somatostatin (SST), so to evoke HS GABA release we expressed Cre-dependent mCherry/channelrhodopisin-2 (ChR2) in the hippocampi of SST-IRES-Cre mice and then used optogenetics to stimulate HS fibers while performing whole-cell patch clamp recordings from MS/DBB neurons in acute slices. We found that the acetylcholine receptor (AChR) agonist carbachol and the GABAB receptor (GABABR) agonist baclofen significantly decreased HS GABA release in the MS/DBB. Carbachol's effects were blocked by eliminating local GABAergic activity or inhibiting GABABRs, indicating that it was indirectly decreasing HS GABA release by increasing GABAergic tone. There was no effect of acute exposure to amyloid-β on HS GABA release. Repetitive stimulation of HS fibers increased spontaneous GABA release in the MS/DBB, revealing that HS projections can modulate local GABAergic tone. These results show that HS GABA release has far-reaching impacts on overall levels of inhibition in the MS/DBB and is under regulatory control by cholinergic and GABAergic activity. This bidirectional modulation of GABA release from local and HS projections in the MS/DBB will likely have profound impact not only on activity within the MS/DBB, but also on output to the hippocampus and hippocampal-dependent learning and memory.
Collapse
Affiliation(s)
- Joanne C Damborsky
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
5
|
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019; 13:30. [PMID: 30906254 PMCID: PMC6419585 DOI: 10.3389/fnana.2019.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 loxP/loxP mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV(1/2)-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
Collapse
Affiliation(s)
- Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kimberly Tin
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Mohsen Nategh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - João Covita
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alexander D. Wykes
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jake Rogers
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
O'Leary VB, O'Connell M, Antyborzec I, Ntziachristos V, Oliver Dolly J, Ovsepian SV. Alleviation of Trigeminal Nociception Using p75 Neurotrophin Receptor Targeted Lentiviral Interference Therapy. Neurotherapeutics 2018; 15:489-499. [PMID: 29427180 PMCID: PMC5935639 DOI: 10.1007/s13311-018-0608-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute and chronic trigeminal (TG) neuropathies are the cause of considerable distress, with limited treatments available at present. Nociceptive neurons enriched with the vanilloid type 1 receptor (VR1) partake in pain sensation and sensitization in the TG system. While VR1 blockers with anti-nociceptive potential are of substantial medical interest, their use remains limited due to poor selectivity and lack of cell-targeting capabilities. This study describes a methodology for the alleviation of nociception via targeted depletion of VR1 in TG sensory neurons in rats. In cultured TG ganglion neurons, VR1 expression was virtually abolished by lentiviral short hairpin RNA (LV-VR1). By decorating GFP encoding LV (LV-GFP) and LV-VR1 with IgG192 for targeting TG sensory neurons enriched with the p75 neurotrophin receptor (p75NTR), transduction of a reporter GFP and VR1 depletion was achieved after injection of targeted vectors into the whisker pad. In IgG192/LV-VR1-injected rats, the behavioral response to capsaicin exposure as well as Erk 1/2 phosphorylation and VR1 current activation by capsaicin were significantly reduced. This pioneering investigation, thus, provides a proof of principle for a means of attenuating TG nociception, revealing therapeutic potential.
Collapse
Affiliation(s)
- Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Marie O'Connell
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Hinman JR, Dannenberg H, Alexander AS, Hasselmo ME. Neural mechanisms of navigation involving interactions of cortical and subcortical structures. J Neurophysiol 2018; 119:2007-2029. [PMID: 29442559 DOI: 10.1152/jn.00498.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must perform spatial navigation for a range of different behaviors, including selection of trajectories toward goal locations and foraging for food sources. To serve this function, a number of different brain regions play a role in coding different dimensions of sensory input important for spatial behavior, including the entorhinal cortex, the retrosplenial cortex, the hippocampus, and the medial septum. This article will review data concerning the coding of the spatial aspects of animal behavior, including location of the animal within an environment, the speed of movement, the trajectory of movement, the direction of the head in the environment, and the position of barriers and objects both relative to the animal's head direction (egocentric) and relative to the layout of the environment (allocentric). The mechanisms for coding these important spatial representations are not yet fully understood but could involve mechanisms including integration of self-motion information or coding of location based on the angle of sensory features in the environment. We will review available data and theories about the mechanisms for coding of spatial representations. The computation of different aspects of spatial representation from available sensory input requires complex cortical processing mechanisms for transformation from egocentric to allocentric coordinates that will only be understood through a combination of neurophysiological studies and computational modeling.
Collapse
Affiliation(s)
- James R Hinman
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Holger Dannenberg
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Andrew S Alexander
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| |
Collapse
|
8
|
Carpenter F, Burgess N, Barry C. Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. Sci Rep 2017; 7:14573. [PMID: 29109512 PMCID: PMC5673944 DOI: 10.1038/s41598-017-15100-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Abstract
Medial septal inputs to the hippocampal system are crucial for aspects of temporal and spatial processing, such as theta oscillations and grid cell firing. However, the precise contributions of the medial septum’s cholinergic neurones to these functions remain unknown. Here, we recorded neuronal firing and local field potentials from the medial entorhinal cortex of freely foraging mice, while modulating the excitability of medial septal cholinergic neurones. Alteration of cholinergic activity produced a reduction in the frequency of theta oscillations, without affecting the slope of the non-linear theta frequency vs running speed relationship observed. Modifying septal cholinergic tone in this way also led mice to exhibit behaviours associated with novelty or anxiety. However, grid cell firing patterns were unaffected, concordant with an absence of change in the slopes of the theta frequency and firing rate speed signals thought to be used by grid cells.
Collapse
Affiliation(s)
- Francis Carpenter
- Institute of Neurology, UCL, Queen Square, WC1N 3BG, London, UK.,Research Department of Cell & Developmental Biology, UCL, Gower Street, WC1E 6BT, London, UK
| | - Neil Burgess
- Institute of Neurology, UCL, Queen Square, WC1N 3BG, London, UK.,Institute of Cognitive Neuroscience, UCL, Queen Square, WC1N 3AR, London, UK
| | - Caswell Barry
- Research Department of Cell & Developmental Biology, UCL, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
9
|
Ahn JH, Chen BH, Yan BC, Park JH, Kang IJ, Lee TK, Cho JH, Shin BN, Lee JC, Jeon YH, Hong S, Lee YJ, Choi SY, Won MH. Effects of long‑term scopolamine treatment on cognitive deficits and calcium binding proteins immunoreactivities in the mouse hippocampus. Mol Med Rep 2017; 17:293-299. [PMID: 29115458 PMCID: PMC5780140 DOI: 10.3892/mmr.2017.7928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
GABAergic projections terminate on numerous hippocampal interneurons containing calcium binding proteins (CBPs), including calbindin D-28k (CB), calretinin (CR) and parvalbumin (PV). Memory deficits and expression levels of CB, CR, and PV were examined in the hippocampal subregions following systemic scopolamine (Scop; 1 mg/kg) treatment for 4 weeks in mice. Scop treatment induced significant memory deficits from 1 week after Scop treatment. CB, CR and PV immunoreactivities distributions were in hippocampal subregions [CA1 and CA3 regions, and the dentate gyrus (DG)]. CB immunoreactivity (CB+) was gradually decreased in all subregions until 2 weeks after Scop treatment, and CB+ was decreased to the lowest level in all subregions at 3 and 4 weeks. CR+ in the CA1 region was gradually decreased until 2 weeks and hardly observed at 3 and 4 weeks; in the CA3 region, CR+ was not altered in all subregions at any time. In the DG, CR+ was gradually decreased until 2 weeks and lowest at 3 and 4 weeks. PV+ in the CA1 region was not altered at 1 week, and gradually decreased from 2 weeks. In the CA3 region, PV+ did not change in any subregions at any time. In the DG, PV+ was not altered at 1 week, decreased at 2 weeks, and lowest at 3 and 4 weeks. In brief, Scop significantly decreased CBPs expressions in the hippocampus ≥3 weeks after the treatment although memory deficits had developed at 1 week. Therefore, it is suggested that Scop (1 mg/kg) must be systemically treated for ≥3 weeks to investigate changes in expression levels of CBPs in the hippocampus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bing Chun Yan
- Department of Traditional Chinese and Western Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Bich-Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon 24341, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 04401, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
Antyborzec I, O'Leary VB, Dolly JO, Ovsepian SV. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics 2016; 13:859-870. [PMID: 27220617 PMCID: PMC5081123 DOI: 10.1007/s13311-016-0445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75NTR) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75NTR antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75NTR for targeted transduction of vectors to BFCNs in vivo.
Collapse
Affiliation(s)
- Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - James O Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Munich School of Bioengineering, Technical University Munich, Munich, Germany.
| |
Collapse
|
11
|
Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct 2016; 222:1385-1400. [PMID: 27496091 DOI: 10.1007/s00429-016-1283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
The basal forebrain (BF) is an important regulator of hippocampal and cortical activity. In Alzheimer's disease (AD), there is a significant loss and dysfunction of cholinergic neurons within the BF, and also a hypertrophy of fibers containing the neuropeptide galanin. Understanding how galanin interacts with BF circuitry is critical in determining what role galanin overexpression plays in the progression of AD. Here, we examined the location and function of galanin in the medial septum/diagonal band (MS/DBB) region of the BF. We show that galanin fibers are located throughout the MS/DBB and intermingled with both cholinergic and GABAergic neurons. Whole-cell patch clamp recordings from MS/DBB neurons in acute slices reveal that galanin decreases tetrodotoxin-sensitive spontaneous GABA release and dampens muscarinic receptor-mediated increases in GABA release in the MS/DBB. These effects are not blocked by pre-exposure to β-amyloid peptide (Aβ1-42). Optogenetic activation of cholinergic neurons in the MS/DBB increases GABA release back onto cholinergic neurons, forming a functional circuit within the MS/DBB. Galanin disrupts this cholinergic-GABAergic circuit by blocking the cholinergic-induced increase in GABA release. These data suggest that galanin works in the BF to reduce inhibitory input onto cholinergic neurons and to prevent cholinergic-induced increase in inhibitory tone. This disinhibition of cholinergic neurons could serve as a compensatory mechanism to counteract the loss of cholinergic signaling that occurs during the progression of AD.
Collapse
|
12
|
Aranda L. Expression of c-Fos protein in medial septum/diagonal band of Broca and CA3 region, associated with the temporary inactivation of the supramammillary area. J Chem Neuroanat 2016; 74:11-7. [PMID: 26802745 DOI: 10.1016/j.jchemneu.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
The supramammillary (SuM) area is part of the diencephalic nuclei comprising the mammillary bodies, and is a key structure in the memory and spatial learning processes. It is a critical region in the modulation/generation of hippocampal theta rhythm. In addition, many papers have recently shown a clear involvement of this structure in the processes of spatial learning and memory in animal models, although it is still not known how it modulates spatial navigation and response emotional. The aim of the present research was to study the effect of the temporary inactivation of the SuM area on synaptic plasticity of crucial structures in the formation of spatial memory and emotional response. Sprague-Dawley rats were asigned in three groups: a control group where the animals were not subjected to any treatment, and two groups where the rats received microinjections of tetrodotoxin (TTX) in the SuM area (5ng diluted in 0.5μl of saline) or saline (0.5μl). The microinjections were administered 90min before the perfusion. Later, cellular activity in medial septum/diagonal band of Broca (MS/DBB) and CA3 region of the dorsal hippocampus was assessed, by measuring the immediate early gene c-fos. The results show a clear hiperactivity cellular in medial septum/diagonal band of Broca and a clear hypoactivity cellular in the CA3 region of the hippocampus when there was a functional inactivation of the SuM area. It suggests that the SuM area seems to be part of the connection and information input pathways to CA3 region of the hippocampal formation, key for proper functioning in spatial memory and emotional response.
Collapse
Affiliation(s)
- Lourdes Aranda
- Universidad de Málaga, Andalucia Tech, Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
13
|
Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study. Anat Sci Int 2015; 91:398-406. [PMID: 26643381 DOI: 10.1007/s12565-015-0316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.
Collapse
|
14
|
Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations. J Comput Neurosci 2015; 39:1-16. [DOI: 10.1007/s10827-015-0564-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022]
|
15
|
Yi F, Ball J, Stoll KE, Satpute VC, Mitchell SM, Pauli JL, Holloway BB, Johnston AD, Nathanson NM, Deisseroth K, Gerber DJ, Tonegawa S, Lawrence JJ. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol 2014; 592:3463-94. [PMID: 24879872 DOI: 10.1113/jphysiol.2014.275453] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are essential circuit elements of learning networks. As levels of acetylcholine rise during active learning tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment of either cholinergic or PV interneuron function induces learning deficits. Here, we examined PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however, CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1 mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells. Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object recognition and, to a lesser extent, impaired spatial working memory, but reference memory remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some forms of learning and memory.
Collapse
Affiliation(s)
- Feng Yi
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Jackson Ball
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Kurt E Stoll
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Vaishali C Satpute
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences Neuroscience Graduate Program
| | - Samantha M Mitchell
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences Davidson Honors College, The University of Montana, Missoula, MT 59812, USA
| | - Jordan L Pauli
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Benjamin B Holloway
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - April D Johnston
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Neil M Nathanson
- Department of Pharmacology, University of Washington, Box 357750, Seattle, WA 98195-7750, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - David J Gerber
- Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Josh Lawrence
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| |
Collapse
|
16
|
López-Vázquez MÁ, López-Loeza E, Lajud Ávila N, Gutiérrez-Guzmán BE, Hernández-Pérez JJ, Reyes YE, Olvera-Cortés ME. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity. Eur J Pharmacol 2014; 734:105-13. [PMID: 24742376 DOI: 10.1016/j.ejphar.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity.
Collapse
Affiliation(s)
- Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico; Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Elisa López-Loeza
- Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Naima Lajud Ávila
- Laboratorio de Neuroendocrinología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico
| | - Blanca Erika Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| | - J Jesús Hernández-Pérez
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| | - Yoana Estrada Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| |
Collapse
|
17
|
Maki AE, Morris KA, Catherman K, Chen X, Hatcher NG, Gold PE, Sweedler JV. Fibrinogen α-chain-derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing. Pharmacol Res Perspect 2014; 2:e00037. [PMID: 24855564 PMCID: PMC4024393 DOI: 10.1002/prp2.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain – fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR) – were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus.
Collapse
Affiliation(s)
- Agatha E Maki
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kenneth A Morris
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kasia Catherman
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Xian Chen
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Nathan G Hatcher
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Paul E Gold
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Jonathan V Sweedler
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| |
Collapse
|
18
|
Griffith WH, Dubois DW, Fincher A, Peebles KA, Bizon JL, Murchison D. Characterization of age-related changes in synaptic transmission onto F344 rat basal forebrain cholinergic neurons using a reduced synaptic preparation. J Neurophysiol 2013; 111:273-86. [PMID: 24133226 DOI: 10.1152/jn.00129.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basal forebrain (BF) cholinergic neurons participate in a number of cognitive processes that become impaired during aging. We previously found that age-related enhancement of Ca(2+) buffering in rat cholinergic BF neurons was associated with impaired performance in the water maze spatial learning task (Murchison D, McDermott AN, Lasarge CL, Peebles KA, Bizon JL, and Griffith WH. J Neurophysiol 102: 2194-2207, 2009). One way that altered Ca(2+) buffering could contribute to cognitive impairment involves synaptic function. In this report we show that synaptic transmission in the BF is altered with age and cognitive status. We have examined the properties of spontaneous postsynaptic currents (sPSCs) in cholinergic BF neurons that have been mechanically dissociated without enzymes from behaviorally characterized F344 rats. These isolated neurons retain functional presynaptic terminals on their somata and proximal dendrites. Using whole cell patch-clamp recording, we show that sPSCs and miniature PSCs are predominately GABAergic (bicuculline sensitive) and in all ways closely resemble PSCs recorded in a BF in vitro slice preparation. Adult (4-7 mo) and aged (22-24 mo) male rats were cognitively assessed using the water maze. Neuronal phenotype was identified post hoc using single-cell RT-PCR. The frequency of sPSCs was reduced during aging, and this was most pronounced in cognitively impaired subjects. This is the same population that demonstrated increased intracellular Ca(2+) buffering. We also show that increasing Ca(2+) buffering in the synaptic terminals of young BF neurons can mimic the reduced frequency of sPSCs observed in aged BF neurons.
Collapse
Affiliation(s)
- William H Griffith
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas; and
| | | | | | | | | | | |
Collapse
|
19
|
Miki T, Kusaka T, Yokoyama T, Ohta KI, Suzuki S, Warita K, Jamal M, Wang ZY, Ueki M, Liu JQ, Yakura T, Tamai M, Sumitani K, Hosomi N, Takeuchi Y. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction. J Neural Transm (Vienna) 2013; 121:201-10. [PMID: 24061482 DOI: 10.1007/s00702-013-1085-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kitchigina V, Popova I, Sinelnikova V, Malkov A, Astasheva E, Shubina L, Aliev R. Disturbances of septohippocampal theta oscillations in the epileptic brain: Reasons and consequences. Exp Neurol 2013; 247:314-27. [DOI: 10.1016/j.expneurol.2013.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 01/05/2023]
|
21
|
Olvera-Cortés ME, Gutiérrez-Guzmán BE, López-Loeza E, Hernández-Pérez JJ, López-Vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013; 230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
22
|
Zarrindast MR, Tajik R, Ebrahimi-Ghiri M, Nasehi M, Rezayof A. Role of the medial septum cholinoceptors in anxiogenic-like effects of nicotine. Physiol Behav 2013; 119:103-9. [DOI: 10.1016/j.physbeh.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/14/2013] [Accepted: 06/05/2013] [Indexed: 01/12/2023]
|
23
|
Roland JJ, Janke KL, Servatius RJ, Pang KCH. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct 2013; 219:1231-7. [PMID: 24965560 DOI: 10.1007/s00429-013-0560-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The medial septum and diagonal band of Broca (MSDB) influence hippocampal function through cholinergic, GABAergic, and glutamatergic septohippocampal neurons. Non-selective damage of the MSDB or intraseptal scopolamine impairs classical conditioning of the eyeblink response (CCER). Scopolamine preferentially inhibits GABAergic MSDB neurons suggesting that these neurons may be an important modulator of delay CCER, a form of CCER not dependent on the hippocampus. The current study directly examined the importance of GABAergic MSDB neurons in acquisition of delay CCER. Adult male Sprague-Dawley rats received either a sham (PBS) or GABAergic MSDB lesion using GAT1-saporin (SAP). Rats were given two consecutive days of delay eyeblink conditioning with 100 conditioned stimulus-unconditioned stimulus paired trials. Intraseptal GAT1-SAP impaired acquisition of CCER. The impairment was observed on the first day with sham and lesion groups reaching similar performance by the end of the second day. Our results provide evidence that GABAergic MSDB neurons are an important modulator of delay CCER. The pathways by which MSDB neurons influence the neural circuits necessary for delay CCER are discussed.
Collapse
Affiliation(s)
- J J Roland
- Stress and Motivated Behavior Institute, East Orange, NJ, 07018, USA,
| | | | | | | |
Collapse
|
24
|
Infusion of GAT1-saporin into the medial septum/vertical limb of the diagonal band disrupts self-movement cue processing and spares mnemonic function. Brain Struct Funct 2012; 218:1099-114. [PMID: 22903287 DOI: 10.1007/s00429-012-0449-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
Degeneration of the septohippocampal system is associated with the progression of Dementia of the Alzheimer's type (DAT). Impairments in mnemonic function and spatial orientation become more severe as DAT progresses. Although evidence supports a role for cholinergic function in these impairments, relatively few studies have examined the contribution of the septohippocampal GABAergic component to mnemonic function or spatial orientation. The current study uses the rat food-hoarding paradigm and water maze tasks to characterize the mnemonic and spatial impairments associated with infusing GAT1-Saporin into the medial septum/vertical limb of the diagonal band (MS/VDB). Although infusion of GAT1-Saporin significantly reduced parvalbumin-positive cells in the MS/VDB, no reductions in markers of cholinergic function were observed in the hippocampus. In general, performance was spared during spatial tasks that provided access to environmental cues. In contrast, GAT1-Saporin rats did not accurately carry the food pellet to the refuge during the dark probe. These observations are consistent with infusion of GAT1-Saporin into the MS/VDB resulting in spared mnemonic function and use of environmental cues; however, self-movement cue processing was compromised. This interpretation is consistent with a growing literature demonstrating a role for the septohippocampal system in self-movement cue processing.
Collapse
|
25
|
Tai SK, Leung LS. Vestibular stimulation enhances hippocampal long-term potentiation via activation of cholinergic septohippocampal cells. Behav Brain Res 2012; 232:174-82. [DOI: 10.1016/j.bbr.2012.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 01/07/2023]
|
26
|
Ma J, Tai SK, Leung LS. Septohippocampal GABAergic neurons mediate the altered behaviors induced by n-methyl-D-aspartate receptor antagonists. Hippocampus 2012; 22:2208-18. [PMID: 22592894 DOI: 10.1002/hipo.22039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 02/05/2023]
Abstract
We hypothesize that selective lesion of the septohippocampal GABAergic neurons suppresses the altered behaviors induced by an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine or MK-801. In addition, we hypothesize that septohippocampal GABAergic neurons generate an atropine-resistant theta rhythm that coexists with an atropine-sensitive theta rhythm in the hippocampus. Infusion of orexin-saporin (ore-SAP) into the medial septal area decreased parvalbumin-immunoreactive (GABAergic) neurons by ~80%, without significantly affecting choline-acetyltransferase-immunoreactive (cholinergic) neurons. The theta rhythm during walking, or the immobility-associated theta induced by pilocarpine, was not different between ore-SAP and sham-lesion rats. Walking theta was, however, more disrupted by atropine sulfate in ore-SAP than in sham-lesion rats. MK-801 (0.5 mg/kg i.p.) induced hyperlocomotion associated with an increase in frequency, but not power, of the hippocampal theta in both ore-SAP and sham-lesion rats. However, MK-801 induced an increase in 71-100 Hz gamma waves in sham-lesion but not ore-SAP lesion rats. In sham-lesion rats, MK-801 induced an increase in locomotion and an impairment of prepulse inhibition (PPI), and ketamine (3 mg/kg s.c.) induced a loss of gating of hippocampal auditory evoked potentials. MK-801-induced behavioral hyperlocomotion and PPI impairment, and ketamine-induced auditory gating deficit were reduced in ore-SAP rats as compared to sham-lesion rats. During baseline without drugs, locomotion and auditory gating were not different between ore-SAP and sham-lesion rats, and PPI was slightly but significantly increased in ore-SAP as compared with sham lesion rats. It is concluded that septohippocampal GABAergic neurons are important for the expression of hyperactive and psychotic symptoms an enhanced hippocampal gamma activity induced by ketamine and MK-801, and for generating an atropine-resistant theta. Selective suppression of septohippocampal GABAergic activity is suggested to be an effective treatment of some symptoms of schizophrenia.
Collapse
Affiliation(s)
- Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada N6A 5C1
| | | | | |
Collapse
|
27
|
Zhu J, Gu H, Yao Z, Zou J, Guo K, Li D, Gao T. The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus. BMC Neurosci 2011; 12:129. [PMID: 22185478 PMCID: PMC3282673 DOI: 10.1186/1471-2202-12-129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023] Open
Abstract
Background Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway. Results The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD67) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD67 or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus. Conclusions These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Jafari-Sabet M. Involvement of dorsal hippocampal muscarinic cholinergic receptors on muscimol state-dependent memory of passive avoidance in mice. Life Sci 2011; 88:1136-41. [DOI: 10.1016/j.lfs.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/24/2011] [Accepted: 04/07/2011] [Indexed: 11/27/2022]
|
29
|
Tai SK, Ma J, Ossenkopp KP, Leung LS. Activation of immobility-related hippocampal theta by cholinergic septohippocampal neurons during vestibular stimulation. Hippocampus 2011; 22:914-25. [PMID: 21542057 DOI: 10.1002/hipo.20955] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2011] [Indexed: 12/13/2022]
Abstract
The vestibular system has been suggested to participate in spatial navigation, a function ascribed to the hippocampus. Vestibular stimulation during spatial navigation activates a hippocampal theta rhythm (4-10 Hz), which may enhance spatial processing and motor response. We hypothesize that a cholinergic, atropine-sensitive theta is generated during passive whole-body rotation in freely behaving rats. Hippocampal EEGs were recorded by implanted electrodes in CA1 while rats were rotated on a vertical axis, for a minute or longer, at different angular velocities. Rotation induced a continuous hippocampal theta rhythm while the rat was immobile, in both light and dark conditions. Theta peak frequency showed a significant increase during high (50-70 rpm) as compared with a lower (20-49 rpm) rotational velocity. Rotation-induced theta was abolished by muscarinic receptor antagonist atropine sulfate (50 mg/kg i.p.) but not by atropine methyl nitrate (50 mg/kg i.p.), which did not pass the blood-brain barrier. Theta was attenuated in rats in which cholinergic neurons in the medial septum (MS) were lesioned with 192 IgG-saporin (0.14 μg in 0.4 μl), as confirmed by depletion of MS cells immunoreactive to choline acetyltransferase and an absence of acetylcholinesterase staining in the hippocampus. Bilateral lesion of the vestibular receptors by sodium arsanilate (30 mg in 0.1 ml, intratympanically) also attenuated the rotation-induced theta rhythm. In intact rats, field excitatory postsynaptic potentials (fEPSPs) in CA1 evoked by commissural stimulation were smaller during walking or rotation as compared with during immobility. Modulation of fEPSP was absent following atropine sulfate in intact rats and in 192 IgG-saporin lesion rats. In summary, this is the first report of a continuous atropine-sensitive hippocampal theta in the rat induced by vestibular stimulation during rotation, and accompanied by cholinergic modulation of hippocampal synaptic transmission. Vestibular-activated septohippocampal cholinergic activity could be an important component in sensorimotor processing and spatial memory.
Collapse
Affiliation(s)
- Siew Kian Tai
- Graduate Program in Neuroscience, The University of Western Ontario, London, Canada N6A 5C1
| | | | | | | |
Collapse
|
30
|
Hammond R, Nelson D, Gibbs R. GPR30 co-localizes with cholinergic neurons in the basal forebrain and enhances potassium-stimulated acetylcholine release in the hippocampus. Psychoneuroendocrinology 2011; 36:182-92. [PMID: 20696528 PMCID: PMC2994977 DOI: 10.1016/j.psyneuen.2010.07.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/04/2010] [Accepted: 07/06/2010] [Indexed: 11/26/2022]
Abstract
GPR30 is a novel, membrane-bound, G-protein coupled estrogen receptor (Filardo et al., 2002; Prossnitz et al., 2008). We hypothesize that GPR30 may mediate effects of estradiol (E2) on basal forebrain cholinergic neurons and cognitive performance. Recently we showed that G-1, a selective GPR30 agonist, enhances the rate of acquisition on a delayed matching-to-position (DMP) T-maze task (Hammond et al., 2009). In the present study, we examined the distribution of GPR30 in the rat forebrain, and the effects of G-1 on potassium-stimulated acetylcholine release in the hippocampus. GPR30-like immunoreactivity was detected in many regions of the forebrain including the hippocampus, frontal cortex, medial septum/diagonal band of Broca, nucleus basalis magnocellularis and striatum. GPR30 mRNA also was detected, with higher levels in the hippocampus and cortex than in the septum and striatum. Co-localization studies revealed that the majority (63-99%) of cholinergic neurons in the forebrain expressed GPR30-like immunoreactivity. A far lower percentage (0.4-42%) of GABAergic (parvalbumin-containing) cells also contained GPR30. Sustained administration of either G-1 or E2 (5 μg/day) to ovariectomized rats produced a nearly 3-fold increase in potassium-stimulated acetylcholine release in the hippocampus relative to vehicle-treated controls. These data demonstrate that GPR30 is expressed by cholinergic neurons in the basal forebrain, and suggest that activation of GPR30 enhances cholinergic function in the hippocampus similar to E2. This may account for the effects of G-1 on DMP acquisition previously reported.
Collapse
Affiliation(s)
- R. Hammond
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - D. Nelson
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - R.B. Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| |
Collapse
|
31
|
Roland JJ, Levinson M, Vetreno RP, Savage LM. Differential effects of systemic and intraseptal administration of the acetylcholinesterase inhibitor tacrine on the recovery of spatial behavior in an animal model of diencephalic amnesia. Eur J Pharmacol 2009; 629:31-9. [PMID: 20006600 DOI: 10.1016/j.ejphar.2009.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/19/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Several lines of evidence suggest that acetylcholinesterase inhibitors (AChE) have their cognitive enhancing effects by stimulating cholinergic receptors within the medial septum. However, intraseptal administration of cholinergic enhancing drugs produce mixed results that appear to depend on both the integrity of the medial septum as well as task demands. Three experiments were conducted to determine the relationship between increased cholinergic activity within the medial septum and hippocampus and behavioral recovery in a model of diencephalic amnesia produced by pyrithiamine-induced thiamine deficiency (PTD). In Experiment 1, systemic tacrine (0.0, 0.75, 1.5mg/kg) was administered to PTD and pair-fed (PF) rats prior to a spontaneous alternation task. Without tacrine, PF rats alternated at a higher rate than PTD rats. Both doses of tacrine increased alternation in PTD rats to within the range of PF rats. In Experiment 2, three doses of intraseptal tacrine (2.5, 5.0, 12.5microg) were administered to PTD and PF rats and changes in hippocampal acetylcholine efflux were assessed. Both the 5.0 and 12.5microg doses significantly increased hippocampal acetylcholine levels, but the change was greater in the PTD rats. In Experiment 3, despite the fact that both intraseptal doses of tacrine (5.0, 12.5microg) increased hippocampal acetylcholine levels, only 5.0microg significantly improved alternation scores in PTD rats. Thus, when there is basal forebrain cholinergic cell loss in conjunction with diencephalic pathology, the therapeutic range of AChE-I in the medial septum and the effective doses do not directly map onto changes in acetylcholine efflux in the hippocampus.
Collapse
Affiliation(s)
- Jessica J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, United States
| | | | | | | |
Collapse
|
32
|
Ericson M, Sama MA, Yeh HH. Acute ethanol exposure elevates muscarinic tone in the septohippocampal system. J Neurophysiol 2009; 103:290-6. [PMID: 19906873 DOI: 10.1152/jn.91072.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The septohippocampal system has been implicated in the cognitive deficits associated with ethanol consumption, but the cellular basis of ethanol action awaits full elucidation. In the medial septum/diagonal band of Broca (MS/DB), a muscarinic tone, reflective of firing activity of resident cholinergic neurons, regulates that of their noncholinergic, putatively GABAergic, counterparts. Here we tested the hypothesis that ethanol alters this muscarinic tone. The spontaneous firing activity of cholinergic and noncholinergic MS/DB neurons were monitored in acute MS/DB slices from C57Bl/6 mice. Exposing the entire slice to ethanol increased firing in both cholinergic and noncholinergic neurons. However, applying ethanol focally to individual MS/DB neurons increased firing only in cholinergic neurons. The differential outcome suggested different mechanisms of ethanol action on cholinergic and noncholinergic neurons. Indeed, with bath-perfused ethanol, the muscarinic antagonist methyl scopolamine prevented the increase in firing in noncholinergic, but not cholinergic, MS/DB neurons. Thus, the effect on noncholinergic neuronal firing was secondary to ethanol's direct action of acutely increasing muscarinic tone. We propose that the acute ethanol-induced elevation of muscarinic tone in the MS/DB contributes to the altered net flow of neuronal activity in the septohippocampal system that underlies compromised cognitive function.
Collapse
Affiliation(s)
- Mia Ericson
- Institution for Neuroscience and Physiology, Section Psychiatry and Neurochemistry, University of Gothenburg, Goteborg, Sweden
| | | | | |
Collapse
|
33
|
Roland JJ, Savage LM. Blocking GABA-A receptors in the medial septum enhances hippocampal acetylcholine release and behavior in a rat model of diencephalic amnesia. Pharmacol Biochem Behav 2009; 92:480-7. [PMID: 19463263 PMCID: PMC2687320 DOI: 10.1016/j.pbb.2009.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 11/21/2022]
Abstract
Wernicke-Korsakoff syndrome (WKS), a form of diencephalic amnesia caused by thiamine deficiency, results in severe anterograde memory loss. Pyrithiamine-induced thiamine deficiency (PTD), an animal model of WKS, produces cholinergic abnormalities including decreased functional hippocampal acetylcholine (ACh) release and poor spatial memory. Increasing hippocampal ACh levels has increased performance in PTD animals. Intraseptal bicuculline (GABA(A) antagonist) augments hippocampal ACh release in normal animals and we found it (0.50 microg/microl and 0.75 microg/microl) also increased in-vivo hippocampal ACh release in PTD animals. However, the 0.75 microg/microl dose produced a greater change in hippocampal ACh release in control animals. The 0.50 microg/microl dose of bicuculline was then selected to determine if it could enhance spontaneous alternation performance in PTD animals. This dose of bicuculline significantly increased hippocampal ACh levels above baseline in both PTD and control rats and resulted in complete behavioral recovery in PTD animals, without altering performance in control rats. This suggests that balancing ACh-GABA interactions in the septohippocampal circuit may be an effective therapeutic approach in certain amnestic syndromes.
Collapse
Affiliation(s)
- Jessica J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, NY, USA.
| | | |
Collapse
|
34
|
Organization of food protection behavior is differentially influenced by 192 IgG-saporin lesions of either the medial septum or the nucleus basalis magnocellularis. Brain Res 2008; 1241:122-35. [PMID: 18823954 DOI: 10.1016/j.brainres.2008.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/05/2008] [Accepted: 09/07/2008] [Indexed: 11/21/2022]
Abstract
Converging lines of evidence have supported a role for the nucleus basalis magnocellularis (NB) in attentional mechanisms; however, debate continues regarding the role of the medial septum in behavior (MS). Recent studies have supported a role for the septohippocampal system in the online processing of internally generated cues. The current study was designed to investigate a possible double dissociation in rat food protection behavior, a natural behavior that has been shown to depend on external and internal sources of information. The study examined the effects of intraparenchymal injections of 192 IgG-saporin into either the MS or NB on the organization of food protection behavior. NB cholinergic lesions reduced the number of successful food protection behaviors while sparing the temporal organization of food protection behavior. In contrast, MS cholinergic lesions disrupted the temporal organization of food protection behavior while sparing the ability to successfully protect food items. These observations are consistent with a double dissociation of NB and MS cholinergic systems' contributions to processing external and internal sources of information and provide further evidence for the septohippocampal system's involvement in processing internally generated cues.
Collapse
|
35
|
Synthesis and structure–activity relationship studies of theophylline analogs on population responses in the rat hippocampus in vitro. Bioorg Med Chem 2008; 16:8142-50. [DOI: 10.1016/j.bmc.2008.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/21/2022]
|
36
|
Varga V, Hangya B, Kránitz K, Ludányi A, Zemankovics R, Katona I, Shigemoto R, Freund TF, Borhegyi Z. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J Physiol 2008; 586:3893-915. [PMID: 18565991 DOI: 10.1113/jphysiol.2008.155242] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.
Collapse
Affiliation(s)
- Viktor Varga
- Department of Cell and Network Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences; Szigony u. 43. Budapest, 1083 Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morozova E, Wu M, Dumalska I, Alreja M. Neurokinins robustly activate the majority of septohippocampal cholinergic neurons. Eur J Neurosci 2008; 27:114-22. [PMID: 18184316 DOI: 10.1111/j.1460-9568.2007.05993.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the brain, tachykinins acting via the three cloned neurokinin (NK) receptors are implicated in stress-related affective disorders. Hemokinin-1 is a novel tachykinin that reportedly prefers NK1 to NK2 or NK3 receptors. Although NK1 and NK3 receptors are abundantly expressed in the brain, NK2-receptor-mediated electrophysiological effects have rarely been described as NK2 receptors are expressed only in a few brain regions such as the nucleus of the medial septum/diagonal band. Medial septal/diagonal band neurons that control hippocampal mnemonic functions also colocalize NK1 and NK3 receptors. Functionally, intraseptal activation of all three NK receptors increases hippocampal acetylcholine release and NK2 receptors have specifically been implicated in stress-induced hippocampal acetylcholine release. Electrophysiological studies on the effects of NKs on septohippocampal cholinergic neurons are lacking and electrophysiological effects of hemokinin-1 have thus far not been reported in brain neurons. In the present study we examined the electrophysiological and pharmacological effects of multiple NKs on fluorescently tagged septohippocampal cholinergic neurons using whole-cell patch-clamp recordings in a rat brain slice preparation. We demonstrate that a vast majority of septohippocampal cholinergic cells are activated by NK1, NK2 and NK3 receptor agonists as well as by hemokinin-1 via direct post-synaptic mechanisms. Pharmacologically, hemokinin-1 recruits not only NK1 but also NK2 and NK3 receptors to activate septohippocampal cholinergic neurons that are the primary source of acetylcholine for the hippocampus.
Collapse
Affiliation(s)
- Elena Morozova
- Department of Psychiatry, Yale University School of Medicine and the Bibicoff Research Facilities, Connecticut Mental Health Center 335A, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|
38
|
The nicotinic receptor blocker hexamethonium alters neuronal responses to glutamate in the medial septal area of the brain of the ground squirrel in vitro. ACTA ACUST UNITED AC 2008; 38:297-307. [DOI: 10.1007/s11055-008-0042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 11/09/2006] [Indexed: 10/22/2022]
|
39
|
Krebs-Kraft DL, Wheeler MG, Parent MB. The memory-impairing effects of septal GABA receptor activation involve GABAergic septo-hippocampal projection neurons. Learn Mem 2007; 14:833-41. [PMID: 18086826 DOI: 10.1101/lm.809407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Septal infusions of the gamma-aminobutyric acid (GABA)(A) agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA(A) receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are involved in the memory-impairing effects of septal GABA(A) receptor activation. Experiment 1 tested whether combining septal co-infusions of subeffective doses of muscimol with scopolamine, a drug that selectively influences GABA SH projections, would produce memory deficits. Experiment 2 tested whether hippocampal infusions of a GABA(A) receptor antagonist would block the effects of septal muscimol infusions. Fifteen minutes prior to assessing spontaneous alternation (SA) or training in a multiple trial inhibitory avoidance (CMIA) task, male Sprague-Dawley rats were given septal infusions of vehicle, muscimol, scopolamine, or co-infusions of muscimol with scopolamine, or septal infusions of vehicle or muscimol combined with hippocampal infusions of vehicle or bicuculline. Septal co-infusions of muscimol with scopolamine significantly impaired SA and CMIA. Hippocampal bicuculline infusions blocked deficits produced by septal muscimol infusions in SA and attenuated deficits produced in CMIA. Combined, these findings suggest that GABAergic SH projections are involved in the memory-impairing effects of septal GABA receptor activation.
Collapse
|
40
|
Hentschke H, Perkins MG, Pearce RA, Banks MI. Muscarinic blockade weakens interaction of gamma with theta rhythms in mouse hippocampus. Eur J Neurosci 2007; 26:1642-56. [PMID: 17880398 DOI: 10.1111/j.1460-9568.2007.05779.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
theta (4-12 Hz) and gamma (40-90) oscillations are prominent rhythms in the mammalian brain. A striking feature of these rhythms, possibly vital to memory encoding, is their specific coordination in a manner that has been termed 'nesting', i.e. the preferred occurrence of bouts of gamma activity during specific phases of theta. Both rhythms are shaped by the neuromodulator acetylcholine, but it is unknown to what degree their coordination is influenced by cholinergic neuromodulation. Here, we investigated the effects of a blockade of muscarinic acetylcholine receptors by atropine on theta and gamma oscillations, and their interaction, in mouse hippocampus in vivo. Multi-site recordings from area CA1 of freely moving mice showed that under control conditions gamma activity was amplitude-modulated at theta frequencies. This coordination of theta and gamma oscillations, as assessed by cross-correlation of theta with the gamma envelope, was prominent in basal and apical dendritic laminae but not in intermediate laminae. It was stronger during active exploration than during awake immobility. Atropine (50 mg/kg intraperitoneal) altered several aspects of the individual and nested rhythms. It rendered theta activity irregular, decreased theta oscillation frequency and reduced gamma power. Atropine also reduced the amplitude-modulation of gamma oscillations at theta frequencies, in part by perturbing the coordination of the rhythms on a short time scale. Thus, our findings demonstrate that phase locking of the amplitude of gamma oscillations to theta in hippocampal area CA1 is partially governed by neuronal elements harbouring muscarinic receptors.
Collapse
Affiliation(s)
- Harald Hentschke
- Department of Anesthesiology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
41
|
Krebs-Kraft DL, Parent MB. Hippocampal infusions of glucose reverse memory deficits produced by co-infusions of a GABA receptor agonist. Neurobiol Learn Mem 2007; 89:142-52. [PMID: 17728160 PMCID: PMC2259438 DOI: 10.1016/j.nlm.2007.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/11/2007] [Accepted: 07/15/2007] [Indexed: 11/30/2022]
Abstract
Although septal infusions of glucose typically have positive effects on memory, we have shown repeatedly that this treatment exacerbates memory deficits produced by co-infusions of gamma-aminobutyric acid (GABA) receptor agonists. The present experiments tested whether this negative interaction between glucose and GABA in the medial septum would be observed in the hippocampus, a brain region where glucose typically has positive effects on memory. Specifically, we determined whether hippocampal infusions of glucose would reverse or exacerbate memory deficits produced by hippocampal co-infusions of the GABA receptor agonist muscimol. Fifteen minutes prior to either assessing spontaneous alternation (SA) or continuous multiple trial inhibitory avoidance (CMIA) training, male Sprague-Dawley-derived rats were given bilateral hippocampal infusions of vehicle (phosphate-buffered saline [PBS], 1 microl/2 min), glucose (33 or 50 nmol), muscimol (0.3 or 0.4 microg, SA or 3 microg, CMIA) or muscimol and glucose combined in one solution. The results indicated that hippocampal infusions of muscimol alone decreased SA scores and CMIA retention latencies. More importantly, hippocampal infusions of glucose, at doses that had no effect when infused alone, attenuated (33 nmol) or reversed (50 nmol) the muscimol-induced memory deficits. Thus, although co-infusions of glucose with muscimol into the medial septum impair memory, the present findings show that an opposite effect is observed in the hippocampus. Collectively, these findings suggest that the memory-impairing interaction between glucose and GABA in the medial septum is not a general property of the brain, but rather is brain region-dependent.
Collapse
Affiliation(s)
- Desiree L Krebs-Kraft
- Department of Psychology and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5010, Atlanta, GA 30302-5010, USA.
| | | |
Collapse
|
42
|
Li S, Topchiy I, Kocsis B. The effect of atropine administered in the medial septum or hippocampus on high- and low-frequency theta rhythms in the hippocampus of urethane anesthetized rats. Synapse 2007; 61:412-9. [PMID: 17372965 DOI: 10.1002/syn.20388] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cholinergic mechanisms are critical for the generation of hippocampal theta rhythm. Cholinergic innervation of the hippocampus originates from the medial septum (MS) and cholinergic receptors are expressed in both the MS and hippocampus. In this study, we compared the effects of the muscarinic receptor antagonist atropine in the MS and the hippocampus on theta generation. Hippocampal theta rhythm was elicited by electrical stimulation of the pontine reticular formation using series of stimuli with varying intensities. Atropine was administered either systemically (50 mg/kg i.p.) or locally in the MS (microdialysis; 25 and 75 mM for 30 or 90 min) or in the hippocampus on one side (microinjection; 20 or 40 ug). The relative power at the peak theta frequency was calculated and averaged over episodes of low-intensity and high-intensity stimulations. We found that atropine drastically reduced theta rhythmic synchronization when injected in either location. After MS administration of atropine, however, high-frequency theta elicited by high-intensity stimuli was more resistant (58% and 67% decrease after 25 mM and 75 mM atropine, respectively) than slow theta elicited by low-intensity stimuli (86% and 91% decrease). There was no significant difference between the powers of the two oscillations after hippocampal injections (70-75% decrease). We conclude that the theta suppressing effect of atropine involves both hippocampal and septal mechanisms and that low-frequency theta as compared with fast theta rhythm is more sensitive to muscarinic acetylcholine receptor antagonism in the MS but not in the hippocampus.
Collapse
Affiliation(s)
- Shaomin Li
- Laboratory of Neurophysiology, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
43
|
Savage LM, Roland J, Klintsova A. Selective septohippocampal - but not forebrain amygdalar - cholinergic dysfunction in diencephalic amnesia. Brain Res 2007; 1139:210-9. [PMID: 17289001 PMCID: PMC1868479 DOI: 10.1016/j.brainres.2006.12.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 12/31/2022]
Abstract
A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate diencephalic-limbic interactions. In-vivo acetylcholine (ACh) efflux, a marker of memory-related activation, was measured in the hippocampus and the amygdala of PTD-treated and pair-fed (PF) control rats while they were tested on a spontaneous alternation task. During behavioral testing, all animals displayed increases in ACh efflux in both the hippocampus and amygdala. However, during spontaneous alternation testing ACh efflux in the hippocampus and the alternation scores were higher in PF rats relative to PTD-treated rats. In contrast, ACh efflux in the amygdala was not suppressed in PTD treated rats, relative to PF rats, prior to or during behavioral testing. In addition, unbiased stereological estimates of the number of choline acetyltransferase (ChAT) immunopositive neurons in the medial septal/diagonal band (MS/DB) and nucleus basalis of Meynert (NBM) also reveal a selective cholinergic dysfunction: In PTD-treated rats a significant loss of ChAT-immunopositive cells was found only in the MS/DB, but not in the NBM. Significantly, these results demonstrate that thiamine deficiency causes selective cholinergic dysfunction in the septo-hippocampal pathway.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
44
|
Xu C, Wu M, Morozova E, Alreja M. Muscarine activates the sodium-calcium exchanger via M3receptors in basal forebrain neurons. Eur J Neurosci 2006; 24:2309-13. [PMID: 17074051 DOI: 10.1111/j.1460-9568.2006.05118.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons of the medial septum/diagonal band of Broca (MSDB) project to the hippocampus. Muscarinic cholinergic mechanisms within the MSDB are potent modulators of hippocampal functions; intraseptal scopolamine disrupts and intraseptal carbachol facilitates hippocampus-dependent learning and memory tasks, and the associated hippocampal theta rhythm. In earlier work, we demonstrated that, within the MSDB, the septohippocampal GABAergic but not cholinergic neurons are the primary target of muscarinic manipulations and that muscarinic activation of septohippocampal GABAergic neurons is mediated directly via M(3) receptors. In the present study, we examined the ionic mechanism(s) underlying the excitatory actions of muscarine in these neurons. Using whole-cell patch-clamp recording techniques in rat brain slices, we demonstrated that M(3) receptor-mediated muscarinic activation of MSDB neurons is dependent on external Na(+) and is also reduced by bath-applied Ni(2+) and KB-R7943 as well as by replacing external Na(+) with Li(+), suggesting a primary involvement of the Na(+)-Ca(2+) exchanger. We conclude that the M(3) receptor-mediated muscarinic activation of MSDB septohippocampal GABA-type neurons, that is important for cognitive functioning, is mediated via activation of the Na(+)-Ca(2+) exchanger.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychiatry, CMHC 335A, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|
45
|
Fitch TE, Sahr RN, Eastwood BJ, Zhou FC, Yang CR. Dopamine D1/5 Receptor Modulation of Firing Rate and Bidirectional Theta Burst Firing in Medial Septal/Vertical Limb of Diagonal Band Neurons In Vivo. J Neurophysiol 2006; 95:2808-20. [PMID: 16452256 DOI: 10.1152/jn.01210.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The medial septum/vertical limb of diagonal band complex (MS/vDB) consists of cholinergic, GABAergic, and glutamatergic neurons that project to the hippocampus and functionally regulate attention, memory, and cognitive processes. Using tyrosine hydroxlase (TH) immunocytochemistry and dark-field light microscopy, we found that the MS/vDB is innervated by a sparse network of TH-immunoreactive (putative catecholaminergic) terminals. MS/vDB neurons are known to fire in rhythmic theta burst frequency of 3–7 Hz to pace hippocampal theta rhythm. Extracellular single-unit recording in theta and non-theta firing MS/vDB neurons and antidromically identified MS/vDB-hippocampal neurons were made in urethan-anesthetized rats. Tail-pinch noxious stimuli and ventral tegmental area (VTA) stimulation (20 Hz) evoked spontaneous theta burst firing in MS/vDB neurons. Systemic D1/5 antagonists SCH23390 or SCH39166 (0.1 mg/kg iv) alone suppressed the spontaneous theta bursts, suggesting a tonic facilitatory endogenous dopamine D1 “tone” that modulates theta bursts in vivo. Activation of D1/5 receptor by dihydrexidine (10 mg/kg iv) led to an increase in mean firing rate in 60% of all theta and non-theta MS/vDB neurons with an increase in the number of theta bursts and spikes/burst in theta cells. In strong theta firing MS/vDB neurons, D1/5 receptor stimulation suppressed the occurrence of theta burst firing, whereas the overall increase in spontaneous mean firing rate remained. In low baseline theta MS/vDB neurons D1/5 receptor stimulation increases the occurrence of theta bursts along with a net increase in mean firing rate. Atropine injection consistently disrupts theta burst pattern and reduced the time spent in theta firing. Collectively, these data suggest that dopamine D1/5 stimulation enhances the mean firing rate of most MS/vDB neurons and also provides a state-dependent bidirectional modulation of theta burst occurrence. Some of these MS/vDB neurons may be cholinergic or GABAergic that may indirectly regulate theta rhythm in the hippocampus.
Collapse
Affiliation(s)
- Thomas E Fitch
- Neuroscience Discovery, Eli Lilly & Co., Lilly Corporate Ctr., Indianapolis, IN 46285-0510, USA
| | | | | | | | | |
Collapse
|
46
|
Colom LV, García-Hernández A, Castañeda MT, Perez-Cordova MG, Garrido-Sanabria ER. Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation. J Neurophysiol 2006; 95:3645-53. [PMID: 16554504 DOI: 10.1152/jn.00040.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A series of experiments was carried out testing the hypothesis that the septal region decreases the hippocampal susceptibility to hyperexcitability states through theta rhythm generation. Medial septal neurons were simultaneously recorded with hippocampal field potentials to investigate the septo-hippocampal function in the pilocarpine model of chronic epilepsy. The theta rhythm from chronically epileptic rats had lower amplitude (20% less) and higher frequency than controls (from 3.38 to 4.25 Hz), suggesting that both generator and pacemaker structures are affected during the epileptic process. At the cellular level, the group of rhythmically bursting firing medial septal neurons, in the epileptic animals, significantly and chronically increased their firing rates in relation to controls (from 13.86 to 29.14 spikes/s). Peristimulus histograms performed around hippocampal sharp waves showed that all high-frequency firing neurons, including rhythmically bursting neurons and most slow firing neurons, decreased firing rates immediately after hippocampal epileptic discharges. Thus inhibitory hippocampo-septal influences prevail during hippocampal epileptic discharges. The occurrence of epileptic discharges was reduced 86-97% of the number observed during spontaneous theta and theta induced by sensory (tail pinch) or chemical stimulation (carbachol), suggesting that the presence of the theta state regardless of how it was produced was responsible for the reduction in epileptic discharge frequency. The understanding of the theta rhythm "anti-epileptic" effect at the cellular and molecular levels may result in novel therapeutic approaches dedicated to protect the brain against abnormal excitability states.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences and Center for Biomedical Studies, The University of Texas at Brownsville/Texas Southmost College, USA.
| | | | | | | | | |
Collapse
|
47
|
Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 2006; 58:151-64. [PMID: 16108008 DOI: 10.1002/syn.20184] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The two neuronal populations that have been typically investigated in the septum use acetylcholine and GABA as neurotransmitters. The existence of noncholinergic, non-GABAergic, most likely glutamatergic septal neurons has recently been reported. However, their morphological characteristics, numbers, distribution, and connectivity have not been determined. Furthermore, the projection of septal glutamatergic neurons to the hippocampus has not been characterized. To address these issues, subpopulations of cholinergic and GABAergic neurons were identified by immunohistochemistry. In addition, the retrograde tracer fluorogold was injected into the hippocampus to determine the characteristics of a glutamatergic septo-hippocampal projection. Our work revealed that although glutamatergic neurons are found throughout the septum, they concentrate in medial septal regions. Using stereological probes, approximately 16,000 glutamatergic neurons were estimated in the medial septal region. Triple immunostaining showed that most glutamatergic neurons do not immunoreact with cholinergic or GABAergic neuronal markers (anti-ChAT or anti-GAD67 antibodies, respectively). Fluorogold injections into CA1, CA3, and dentate gyrus of the hippocampus showed that septal glutamatergic neurons project to each of these hippocampal regions, forming approximately 23% of the septo-hippocampal projection. Most cell bodies of septo-hippocampal glutamatergic neurons were located in the medial septum. The remaining cell bodies were found in the diagonal band. This data shows that glutamatergic neurons constitute a significant neuronal population in the septum and that a subpopulation of these neurons projects to hippocampal regions. Thus, the septo-hippocampal projection needs to be reconsidered as a three neurotransmitter pathway.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences, University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Information processing and storing by brain networks requires a highly coordinated operation of multiple neuronal groups. The function of septal neurons is to modulate the activity of archicortical (e.g. hippocampal) and neocortical circuits. This modulation is necessary for the development and normal occurrence of rhythmical cortical activities that control the processing of sensory information and memory functions. Damage or degeneration of septal neurons results in abnormal information processing in cortical circuits and consequent brain dysfunction. Septal neurons not only provide the optimal levels of excitatory background to cortical structures, but they may also inhibit the occurrence of abnormal excitability states.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences, Center of Biomedical Studies, University of Texas at Brownsville/Texas Southmost College, Brownsville, TX 78520, USA.
| |
Collapse
|
49
|
Benes FM, Gisabella B. Rat modeling for GABA defects in schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 54:73-93. [PMID: 17175811 DOI: 10.1016/s1054-3589(06)54004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Francine M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, USA
| | | |
Collapse
|
50
|
Chrobak JJ, Sabolek HR, Bunce JG. Intraseptal cholinergic infusions alter memory in the rat: method and mechanism. EXS 2006; 98:87-98. [PMID: 17019884 DOI: 10.1007/978-3-7643-7772-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- James J Chrobak
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|