1
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
2
|
Setton R, Wynn JS, Schacter DL. Peering into the future: Eye movements predict neural repetition effects during episodic simulation. Neuropsychologia 2024; 197:108852. [PMID: 38508374 PMCID: PMC11140475 DOI: 10.1016/j.neuropsychologia.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Imagining future scenarios involves recombining different elements of past experiences into a coherent event, a process broadly supported by the brain's default network. Prior work suggests that distinct brain regions may contribute to the inclusion of different simulation features. Here we examine how activity in these brain regions relates to the vividness of future simulations. Thirty-four healthy young adults imagined future events with familiar people and locations in a two-part study involving a repetition suppression paradigm. First, participants imagined events while their eyes were tracked during a behavioral session. Immediately after, participants imagined events during MRI scanning. The events to be imagined were manipulated such that some were identical to those imagined in the behavioral session while others involved new locations, new people, or both. In this way, we could examine how self-report ratings and eye movements predict brain activity during simulation along with specific simulation features. Vividness ratings were negatively correlated with eye movements, in contrast to an often-observed positive relationship with past recollection. Moreover, fewer eye movements predicted greater involvement of the hippocampus during simulation, an effect specific to location features. Our findings suggest that eye movements may facilitate scene construction for future thinking, lending support to frameworks that spatial information forms the foundation of episodic simulation.
Collapse
Affiliation(s)
- Roni Setton
- Harvard University, Department of Psychology, Cambridge, MA, USA.
| | - Jordana S Wynn
- University of Victoria, Victoria, British Columbia, Canada
| | | |
Collapse
|
3
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572613. [PMID: 38187675 PMCID: PMC10769340 DOI: 10.1101/2023.12.20.572613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients may be used as biomarkers of brain degeneration. To characterize AD-specific PLR and its underlying neuromodulatory sources, we combined high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction ( P c ) and post-illumination pupil dilation recovery (amplitude, P d , and time, T ). The P c -driven differential analysis revealed altered visual signal processing coupled with reduced thalamocortical activation in AD mice compared with the wild-type normal mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlighted multiple brain areas related to AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Also, brain-wide functional connectivity analysis highlighted the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work combined non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
|
4
|
Alahmadi AA, Alotaibi NO, Hakami NY, Almutairi RS, Darwesh AM, Abdeen R, Alghamdi J, Abdulaal OM, Alsharif W, Sultan SR, Kanbayti IH. Gender and cytoarchitecture differences: Functional connectivity of the hippocampal sub-regions. Heliyon 2023; 9:e20389. [PMID: 37780771 PMCID: PMC10539667 DOI: 10.1016/j.heliyon.2023.e20389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The hippocampus plays a significant role in learning, memory encoding, and spatial navigation. Typically, the hippocampus is investigated as a whole region of interest. However, recent work has developed fully detailed atlases based on cytoarchitecture properties of brain regions, and the hippocampus has been sub-divided into seven sub-areas that have structural differences in terms of distinct numbers of cells, neurons, and other structural and chemical properties. Moreover, gender differences are of increasing concern in neuroscience research. Several neuroscience studies have found structural and functional variations between the brain regions of females and males, and the hippocampus is one of these regions. Aim The aim of this study to explore whether the cytoarchitecturally distinct sub-regions of the hippocampus have varying patterns of functional connectivity with different networks of the brain and how these functional connections differ in terms of gender differences. Method This study investigated 200 healthy participants using seed-based resting-state functional magnetic resonance imaging (rsfMRI). The primary aim of this study was to explore the resting connectivity and gender distinctions associated with specific sub-regions of the hippocampus and their relationship with major functional brain networks. Results The findings revealed that the majority of the seven hippocampal sub-regions displayed functional connections with key brain networks, and distinct patterns of functional connectivity were observed between the hippocampal sub-regions and various functional networks within the brain. Notably, the default and visual networks exhibited the most consistent functional connections. Additionally, gender-based analysis highlighted evident functional resemblances and disparities, particularly concerning the anterior section of the hippocampus. Conclusion This study highlighted the functional connectivity patterns and involvement of the hippocampal sub-regions in major brain functional networks, indicating that the hippocampus should be investigated as a region of multiple distinct functions and should always be examined as sub-regions of interest. The results also revealed clear gender differences in functional connectivity.
Collapse
Affiliation(s)
- Adnan A.S. Alahmadi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nada O. Alotaibi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Y. Hakami
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raghad S. Almutairi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan M.F. Darwesh
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawan Abdeen
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamaan Alghamdi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osamah M. Abdulaal
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Walaa Alsharif
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Salahaden R. Sultan
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahem H. Kanbayti
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Li AY, Yuan JY, Pun C, Barense MD. The effect of memory load on object reconstruction: Insights from an online mouse-tracking task. Atten Percept Psychophys 2023; 85:1612-1630. [PMID: 36600154 DOI: 10.3758/s13414-022-02650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Why can't we remember everything that we experience? Previous work in the domain of object memory has suggested that our ability to resolve interference between relevant and irrelevant object features may limit how much we can remember at any given moment. Here, we developed an online mouse-tracking task to study how memory load influences object reconstruction, testing participants synchronously over virtual conference calls. We first tested up to 18 participants concurrently, replicating memory findings from a condition where participants were tested individually. Next, we examined how memory load influenced mouse trajectories as participants reconstructed target objects. We found interference between the contents of working memory and what was perceived during object reconstruction, an effect that interacted with visual similarity and memory load. Furthermore, we found interference from previously studied but currently irrelevant objects, providing evidence of object-to-location binding errors. At the greatest memory load, participants were nearly three times more likely to move their mouse cursor over previously studied nontarget objects, an effect observed primarily during object reconstruction rather than in the period before the final response. As evidence of the dynamic interplay between working memory and perception, these results show that object reconstruction behavior may be altered by (i) interference between what is represented in mind and what is currently being viewed, and (ii) interference from previously studied but currently irrelevant information. Finally, we discuss how mouse tracking can provide a rich characterization of participant behavior at millisecond temporal resolution, enormously increasing power in cognitive psychology experiments.
Collapse
Affiliation(s)
- Aedan Y Li
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - James Y Yuan
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Carson Pun
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
6
|
Lucas HD, Daugherty AM, McAuley E, Kramer AF, Cohen NJ. Dynamic interactions between memory and viewing behaviors: Insights from dyadic modeling of eye movements. J Exp Psychol Hum Percept Perform 2023; 49:786-801. [PMID: 37166935 PMCID: PMC10621599 DOI: 10.1037/xhp0001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Humans use eye movements to build visual memories. We investigated how the contributions of specific viewing behaviors to memory formation evolve over individual study epochs. We used dyadic modeling to explain performance on a spatial reconstruction task based on interactions among two gaze measures: (a) the entropy of the scanpath and (b) the frequency of item-to-item gaze transitions. To measure these interactions, our hypothesized model included causal pathways by which early-trial viewing behaviors impacted subsequent memory via downstream effects on later viewing. We found that lower scanpath entropy throughout the trial predicted better memory performance. By contrast, the effect of item-to-item transition frequency changed from negative to positive as the trial progressed. The model also revealed multiple pathways by which early-trial viewing dynamically altered late-trial viewing, thereby impacting memory indirectly. Finally, individual differences in scores on an independent measure of memory ability were found to predict viewing effectiveness, and viewing behaviors partially mediated the relation between memory ability and reconstruction accuracy. In a second experiment, the model showed a good fit for an independent dataset. These results highlight the dynamic nature of memory formation and suggest that the order in which eye movements occur can critically determine their effectiveness. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Heather D. Lucas
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70803, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ana M. Daugherty
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, 48202, USA
| | - Edward McAuley
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arthur F. Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, 02115, USA
| | - Neal J. Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| |
Collapse
|
7
|
Popov T, Staudigl T. Cortico-ocular Coupling in the Service of Episodic Memory Formation. Prog Neurobiol 2023; 227:102476. [PMID: 37268034 DOI: 10.1016/j.pneurobio.2023.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Encoding of visual information is a necessary requirement for most types of episodic memories. In search for a neural signature of memory formation, amplitude modulation of neural activity has been repeatedly shown to correlate with and suggested to be functionally involved in successful memory encoding. We here report a complementary view on why and how brain activity relates to memory, indicating a functional role of cortico-ocular interactions for episodic memory formation. Recording simultaneous magnetoencephalography and eye tracking in 35 human participants, we demonstrate that gaze variability and amplitude modulations of alpha/beta oscillations (10-20Hz) in visual cortex covary and predict subsequent memory performance between and within participants. Amplitude variation during pre-stimulus baseline was associated with gaze direction variability, echoing the co-variation observed during scene encoding. We conclude that encoding of visual information engages unison coupling between oculomotor and visual areas in the service of memory formation.
Collapse
Affiliation(s)
- Tzvetan Popov
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland; Department of Psychology, University of Konstanz, Konstanz, Germany.
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Zhu SL, Lakshminarasimhan KJ, Angelaki DE. Computational cross-species views of the hippocampal formation. Hippocampus 2023; 33:586-599. [PMID: 37038890 PMCID: PMC10947336 DOI: 10.1002/hipo.23535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
The discovery of place cells and head direction cells in the hippocampal formation of freely foraging rodents has led to an emphasis of its role in encoding allocentric spatial relationships. In contrast, studies in head-fixed primates have additionally found representations of spatial views. We review recent experiments in freely moving monkeys that expand upon these findings and show that postural variables such as eye/head movements strongly influence neural activity in the hippocampal formation, suggesting that the function of the hippocampus depends on where the animal looks. We interpret these results in the light of recent studies in humans performing challenging navigation tasks which suggest that depending on the context, eye/head movements serve one of two roles-gathering information about the structure of the environment (active sensing) or externalizing the contents of internal beliefs/deliberation (embodied cognition). These findings prompt future experimental investigations into the information carried by signals flowing between the hippocampal formation and the brain regions controlling postural variables, and constitute a basis for updating computational theories of the hippocampal system to accommodate the influence of eye/head movements.
Collapse
Affiliation(s)
- Seren L Zhu
- Center for Neural Science, New York University, New York, New York, USA
| | - Kaushik J Lakshminarasimhan
- Center for Theoretical Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, New York, USA
- Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| |
Collapse
|
9
|
Rahavi A, Malaspina M, Albonico A, Barton JJS. "Looking at nothing": An implicit ocular motor index of face recognition in developmental prosopagnosia. Cogn Neuropsychol 2023; 40:59-70. [PMID: 37612792 DOI: 10.1080/02643294.2023.2250510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 08/25/2023]
Abstract
Subjects often look towards to previous location of a stimulus related to a task even when that stimulus is no longer visible. In this study we asked whether this effect would be preserved or reduced in subjects with developmental prosopagnosia. Participants learned faces presented in video-clips and then saw a brief montage of four faces, which was replaced by a screen with empty boxes, at which time they indicated whether the learned face had been present in the montage. Control subjects were more likely to look at the blank location where the learned face had appeared, on both hit and miss trials, though the effect was larger on hit trials. Prosopagnosic subjects showed a reduced effect, though still better on hit than on miss trials. We conclude that explicit accuracy and our implicit looking at nothing effect are parallel effects reflecting the strength of the neural activity underlying face recognition.
Collapse
Affiliation(s)
- Aida Rahavi
- Human Vision and Eye Movement Laboratory, Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Manuela Malaspina
- Human Vision and Eye Movement Laboratory, Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Human Vision and Eye Movement Laboratory, Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Jason J S Barton
- Departments of Medicine (Neurology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Nikolaev AR, Bramão I, Johansson R, Johansson M. Episodic memory formation in unrestricted viewing. Neuroimage 2023; 266:119821. [PMID: 36535321 DOI: 10.1016/j.neuroimage.2022.119821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The brain systems of episodic memory and oculomotor control are tightly linked, suggesting a crucial role of eye movements in memory. But little is known about the neural mechanisms of memory formation across eye movements in unrestricted viewing behavior. Here, we leverage simultaneous eye tracking and EEG recording to examine episodic memory formation in free viewing. Participants memorized multi-element events while their EEG and eye movements were concurrently recorded. Each event comprised elements from three categories (face, object, place), with two exemplars from each category, in different locations on the screen. A subsequent associative memory test assessed participants' memory for the between-category associations that specified each event. We used a deconvolution approach to overcome the problem of overlapping EEG responses to sequential saccades in free viewing. Brain activity was time-locked to the fixation onsets, and we examined EEG power in the theta and alpha frequency bands, the putative oscillatory correlates of episodic encoding mechanisms. Three modulations of fixation-related EEG predicted high subsequent memory performance: (1) theta increase at fixations after between-category gaze transitions, (2) theta and alpha increase at fixations after within-element gaze transitions, (3) alpha decrease at fixations after between-exemplar gaze transitions. Thus, event encoding with unrestricted viewing behavior was characterized by three neural mechanisms, manifested in fixation-locked theta and alpha EEG activity that rapidly turned on and off during the unfolding eye movement sequences. These three distinct neural mechanisms may be the essential building blocks that subserve the buildup of coherent episodic memories during unrestricted viewing behavior.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden; Brain and Cognition Research Unit, KU Leuven, Leuven, Belgium.
| | - Inês Bramão
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| | - Roger Johansson
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| | - Mikael Johansson
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Ramey MM, Henderson JM, Yonelinas AP. Eye movements dissociate between perceiving, sensing, and unconscious change detection in scenes. Psychon Bull Rev 2022; 29:2122-2132. [PMID: 35653039 PMCID: PMC11110961 DOI: 10.3758/s13423-022-02122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/08/2022]
Abstract
Detecting visual changes can be based on perceiving, whereby one can identify a specific detail that has changed, on sensing, whereby one knows that there is a change but is unable to identify what changed, or on unconscious change detection, whereby one is unaware of any change even though the change influences one's behavior. Prior work has indicated that the processes underlying these different types of change detection are functionally and neurally distinct, but the attentional mechanisms that are related to these different types of change detection remain largely unknown. In the current experiment, we examined eye movements during a change detection task in globally manipulated scenes, and participants indicated their change detection confidence on a scale that allowed us to isolate perceiving, sensing, and unconscious change detection. For perceiving-based change detection, but not sensing-based or unconscious change detection, participants were more likely to preferentially revisit highly changed scene regions across the first and second presentation of the scene (i.e., resampling). This increase in resampling started within 250 ms of the test scene onset, suggesting that the effect began within the first two fixations. In addition, changed scenes were related to more clustered (i.e., less dispersed) eye movements than unchanged scenes, particularly when the subjects were highly confident that no change had occurred - providing evidence for change detection outside of conscious awareness. The results indicate that perceiving, sensing, and unconscious change detection responses are related to partially distinct patterns of eye movements.
Collapse
Affiliation(s)
- Michelle M Ramey
- Department of Psychology, University of California, Davis, CA, USA.
- Center for Neuroscience, University of California, Davis, CA, USA.
- Center for Mind and Brain, University of California, Davis, CA, USA.
| | - John M Henderson
- Department of Psychology, University of California, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Unrestricted eye movements strengthen effective connectivity from hippocampal to oculomotor regions during scene construction. Neuroimage 2022; 260:119497. [PMID: 35870699 DOI: 10.1016/j.neuroimage.2022.119497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Scene construction is a key component of memory recall, navigation, and future imagining, and relies on the medial temporal lobes (MTL). A parallel body of work suggests that eye movements may enable the imagination and construction of scenes, even in the absence of external visual input. There are vast structural and functional connections between regions of the MTL and those of the oculomotor system. However, the directionality of connections between the MTL and oculomotor control regions, and how it relates to scene construction, has not been studied directly in human neuroimaging. In the current study, we used dynamic causal modeling (DCM) to interrogate effective connectivity between the MTL and oculomotor regions using a scene construction task in which participants' eye movements were either restricted (fixed-viewing) or unrestricted (free-viewing). By omitting external visual input, and by contrasting free- versus fixed- viewing, the directionality of neural connectivity during scene construction could be determined. As opposed to when eye movements were restricted, allowing free-viewing during construction of scenes strengthened top-down connections from the MTL to the frontal eye fields, and to lower-level cortical visual processing regions, suppressed bottom-up connections along the visual stream, and enhanced vividness of the constructed scenes. Taken together, these findings provide novel, non-invasive evidence for the underlying, directional, connectivity between the MTL memory system and oculomotor system associated with constructing vivid mental representations of scenes.
Collapse
|
13
|
Katz CN, Schjetnan AGP, Patel K, Barkley V, Hoffman KL, Kalia SK, Duncan KD, Valiante TA. A corollary discharge mediates saccade-related inhibition of single units in mnemonic structures of the human brain. Curr Biol 2022; 32:3082-3094.e4. [PMID: 35779529 DOI: 10.1016/j.cub.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Despite the critical link between visual exploration and memory, little is known about how neuronal activity in the human mesial temporal lobe (MTL) is modulated by saccades. Here, we characterize saccade-associated neuronal modulations, unit-by-unit, and contrast them to image onset and to occipital lobe neurons. We reveal evidence for a corollary discharge (CD)-like modulatory signal that accompanies saccades, inhibiting/exciting a unique population of broad-/narrow-spiking units, respectively, before and during saccades and with directional selectivity. These findings comport well with the timing, directional nature, and inhibitory circuit implementation of a CD. Additionally, by linking neuronal activity to event-related potentials (ERPs), which are directionally modulated following saccades, we recontextualize the ERP associated with saccades as a proxy for both the strength of inhibition and saccade direction, providing a mechanistic underpinning for the more commonly recorded saccade-related ERP in the human brain.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrea G P Schjetnan
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Kramay Patel
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Victoria Barkley
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Suneil K Kalia
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; The KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Katherine D Duncan
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; The KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada.
| |
Collapse
|
14
|
Johansson R, Nyström M, Dewhurst R, Johansson M. Eye-movement replay supports episodic remembering. Proc Biol Sci 2022; 289:20220964. [PMID: 35703049 PMCID: PMC9198773 DOI: 10.1098/rspb.2022.0964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
When we bring to mind something we have seen before, our eyes spontaneously unfold in a sequential pattern strikingly similar to that made during the original encounter, even in the absence of supporting visual input. Oculomotor movements of the eye may then serve the opposite purpose of acquiring new visual information; they may serve as self-generated cues, pointing to stored memories. Over 50 years ago Donald Hebb, the forefather of cognitive neuroscience, posited that such a sequential replay of eye movements supports our ability to mentally recreate visuospatial relations during episodic remembering. However, direct evidence for this influential claim is lacking. Here we isolate the sequential properties of spontaneous eye movements during encoding and retrieval in a pure recall memory task and capture their encoding-retrieval overlap. Critically, we show that the fidelity with which a series of consecutive eye movements from initial encoding is sequentially retained during subsequent retrieval predicts the quality of the recalled memory. Our findings provide direct evidence that such scanpaths are replayed to assemble and reconstruct spatio-temporal relations as we remember and further suggest that distinct scanpath properties differentially contribute depending on the nature of the goal-relevant memory.
Collapse
|
15
|
Zhu S, Lakshminarasimhan KJ, Arfaei N, Angelaki DE. Eye movements reveal spatiotemporal dynamics of visually-informed planning in navigation. eLife 2022; 11:e73097. [PMID: 35503099 PMCID: PMC9135400 DOI: 10.7554/elife.73097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/01/2022] [Indexed: 11/28/2022] Open
Abstract
Goal-oriented navigation is widely understood to depend upon internal maps. Although this may be the case in many settings, humans tend to rely on vision in complex, unfamiliar environments. To study the nature of gaze during visually-guided navigation, we tasked humans to navigate to transiently visible goals in virtual mazes of varying levels of difficulty, observing that they took near-optimal trajectories in all arenas. By analyzing participants' eye movements, we gained insights into how they performed visually-informed planning. The spatial distribution of gaze revealed that environmental complexity mediated a striking trade-off in the extent to which attention was directed towards two complimentary aspects of the world model: the reward location and task-relevant transitions. The temporal evolution of gaze revealed rapid, sequential prospection of the future path, evocative of neural replay. These findings suggest that the spatiotemporal characteristics of gaze during navigation are significantly shaped by the unique cognitive computations underlying real-world, sequential decision making.
Collapse
Affiliation(s)
- Seren Zhu
- Center for Neural Science, New York UniversityNew YorkUnited States
| | | | - Nastaran Arfaei
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Dora E Angelaki
- Center for Neural Science, New York UniversityNew YorkUnited States
- Department of Mechanical and Aerospace Engineering, New York UniversityNew YorkUnited States
| |
Collapse
|
16
|
Ryan JD, Wynn JS, Shen K, Liu ZX. Aging changes the interactions between the oculomotor and memory systems. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:418-442. [PMID: 34856890 DOI: 10.1080/13825585.2021.2007841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The use of multi-modal approaches, particularly in conjunction with multivariate analytic techniques, can enrich models of cognition, brain function, and how they change with age. Recently, multivariate approaches have been applied to the study of eye movements in a manner akin to that of neural activity (i.e., pattern similarity). Here, we review the literature regarding multi-modal and/or multivariate approaches, with specific reference to the use of eyetracking to characterize age-related changes in memory. By applying multi-modal and multivariate approaches to the study of aging, research has shown that aging is characterized by moment-to-moment alterations in the amount and pattern of visual exploration, and by extension, alterations in the activity and function of the hippocampus and broader medial temporal lobe (MTL). These methodological advances suggest that age-related declines in the integrity of the memory system has consequences for oculomotor behavior in the moment, in a reciprocal fashion. Age-related changes in hippocampal and MTL structure and function may lead to an increase in, and change in the patterns of, visual exploration in an effort to upregulate the encoding of information. However, such visual exploration patterns may be non-optimal and actually reduce the amount and/or type of incoming information that is bound into a lasting memory representation. This research indicates that age-related cognitive impairments are considerably broader in scope than previously realized.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
- Departments of Psychology, Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jordana S Wynn
- Department of Psychology, Harvard University, Cambridge MA, USA
| | - Kelly Shen
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn MI, USA
| |
Collapse
|
17
|
Bjornn DK, Van J, Kirwan CB. The contributions of eye gaze fixations and target-lure similarity to behavioral and fMRI indices of pattern separation and pattern completion. Cogn Neurosci 2022; 13:171-181. [PMID: 35410578 DOI: 10.1080/17588928.2022.2060200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pattern separation and pattern completion are generally studied in humans using mnemonic discrimination tasks such as the Mnemonic Similarity Task (MST) where participants identify similar lures and repeated items from a series of images. Failures to correctly discriminate lures are thought to reflect a failure of pattern separation and a propensity toward pattern completion. Recent research has challenged this perspective, suggesting that poor encoding rather than pattern completion accounts for the occurrence of false alarm responses to similar lures. In two experiments, participants completed a continuous recognition task version of the MST while eye movement (Experiments 1 and 2) and fMRI data (Experiment 2) were collected. In Experiment 1, we replicated the result that fixation counts at study predicted accuracy on lure trials (consistent with poor encoding predicting mnemonic discrimination performance), but this effect was not observed in our fMRI task. In both experiments, we found that target-lure similarity was a strong predictor of accuracy on lure trials. Further, we found that fMRI activation changes in the hippocampus were significantly correlated with the number of fixations at study for correct but not incorrect mnemonic discrimination judgments when controlling for target-lure similarity. Our findings indicate that while eye movements during encoding predict subsequent hippocampal activation changes for correct mnemonic discriminations, the predictive power of eye movements for activation changes for incorrect mnemonic discrimination trials was modest at best.
Collapse
Affiliation(s)
- Daniel K Bjornn
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Julie Van
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - C Brock Kirwan
- Department of Psychology, Brigham Young University, Provo, UT, USA.,Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
18
|
Mazloum-Farzaghi N, Shing N, Mendoza L, Barense MD, Ryan JD, Olsen RK. The impact of aging and repetition on eye movements and recognition memory. AGING, NEUROPSYCHOLOGY, AND COGNITION 2022; 30:402-428. [PMID: 35189778 DOI: 10.1080/13825585.2022.2039587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The modulation of gaze fixations on neural activity in the hippocampus, a region critical for memory, has been shown to be weaker in older adults compared to younger adults. However, as such research has relied on indirect measures of memory, it remains unclear whether the relationship between visual exploration and direct measures of memory is similarly disrupted in aging. The current study tested older and younger adults on a face memory eye-tracking task previously used by our group that showed that recognition memory for faces presented across variable, but not fixed, viewpoints relies on a hippocampal-dependent binding function. Here, we examined how aging influences eye movement measures that reveal the amount (cumulative sampling) and extent (distribution of gaze fixations) of visual exploration. We also examined how aging influences direct (subsequent conscious recognition) and indirect (eye movement repetition effect) expressions of memory. No age differences were found in direct recognition regardless of facial viewpoint. However, the eye movement measures revealed key group differences. Compared to younger adults, older adults exhibited more cumulative sampling, a different distribution of fixations, and a larger repetition effect. Moreover, there was a positive relationship between cumulative sampling and direct recognition in younger adults, but not older adults. Neither age group showed a relationship between the repetition effect and direct recognition. Thus, despite similar direct recognition, age-related differences were observed in visual exploration and in an indirect eye-movement memory measure, suggesting that the two groups may acquire, retain, and use different facial information to guide recognition.
Collapse
Affiliation(s)
- Negar Mazloum-Farzaghi
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Nathanael Shing
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Leanne Mendoza
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Morgan D. Barense
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Jennifer D. Ryan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Rosanna K. Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Pollmann S, Schneider WX. Working memory and active sampling of the environment: Medial temporal contributions. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:339-357. [PMID: 35964982 DOI: 10.1016/b978-0-12-823493-8.00029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Working memory (WM) refers to the ability to maintain and actively process information-either derived from perception or long-term memory (LTM)-for intelligent thought and action. This chapter focuses on the contributions of the temporal lobe, particularly medial temporal lobe (MTL) to WM. First, neuropsychological evidence for the involvement of MTL in WM maintenance is reviewed, arguing for a crucial role in the case of retaining complex relational bindings between memorized features. Next, MTL contributions at the level of neural mechanisms are covered-with a focus on WM encoding and maintenance, including interactions with ventral temporal cortex. Among WM use processes, we focus on active sampling of environmental information, a key input source to capacity-limited WM. MTL contributions to the bidirectional relationship between active sampling and memory are highlighted-WM control of active sampling and sampling as a way of selecting input to WM. Memory-based sampling studies relying on scene and object inspection, visual-based exploration behavior (e.g., vicarious behavior), and memory-guided visual search are reviewed. The conclusion is that MTL serves an important function in the selection of information from perception and transfer from LTM to capacity-limited WM.
Collapse
Affiliation(s)
- Stefan Pollmann
- Department of Psychology and Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany.
| | - Werner X Schneider
- Department of Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
21
|
Burman DD. Topography of hippocampal connectivity with sensorimotor cortex revealed by optimizing smoothing kernel and voxel size. PLoS One 2021; 16:e0260245. [PMID: 34874961 PMCID: PMC8651104 DOI: 10.1371/journal.pone.0260245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Studies of the hippocampus use smaller voxel sizes and smoothing kernels than cortical activation studies, typically using a multivoxel seed with specified radius for connectivity analysis. This study identified optimal processing parameters for evaluating hippocampal connectivity with sensorimotor cortex (SMC), comparing effectiveness by varying parameters during both activation and connectivity analysis. Using both 3mm and 4mm isovoxels, smoothing kernels of 0-10mm were evaluated on the amplitude and extent of motor activation and hippocampal connectivity with SMC. Psychophysiological interactions (PPI) identified hippocampal connectivity with SMC during volitional movements, and connectivity effects from multivoxel seeds were compared with alternate methods; a structural seed represented the mean connectivity map from all voxels within a region, whereas a functional seed represented the regional voxel with maximal SMC connectivity. With few exceptions, the same parameters were optimal for activation and connectivity. Larger isovoxels showed larger activation volumes in both SMC and the hippocampus; connectivity volumes from structural seeds were also larger, except from the posterior hippocampus. Regardless of voxel size, the 10mm smoothing kernel generated larger activation and connectivity volumes from structural seeds, as well as larger beta estimates at connectivity maxima; structural seeds also produced larger connectivity volumes than multivoxel seeds. Functional seeds showed lesser effects from voxel size and smoothing kernels. Optimal parameters revealed topography in structural seed connectivity along both the longitudinal axis and mediolateral axis of the hippocampus. These results indicate larger voxels and smoothing kernels can improve sensitivity for detecting both cortical activation and hippocampal connectivity.
Collapse
Affiliation(s)
- Douglas D. Burman
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Fiedler J, De Leonibus E, Treves A. Has the hippocampus really forgotten about space? Curr Opin Neurobiol 2021; 71:164-169. [PMID: 34847486 DOI: 10.1016/j.conb.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Several lines of evidence, including the discovery of place cells, have contributed to the notion that the hippocampus serves primarily to navigate the environment, as a repository of spatial memories, like a drawer full of charts; and that in some species it has exapted on this original one an episodic memory function. We argue that recent evidence questions the primacy of space, and points at memory load, whether spatial or not, as the challenge that mammalian hippocampal circuitry has evolved to meet.
Collapse
Affiliation(s)
| | | | - Alessandro Treves
- SISSA - Cognitive Neuroscience, Trieste, Italy; Kavli Centre for Neural Computation, NTNU, Trondheim, Norway.
| |
Collapse
|
23
|
Effects of pointing movements on visuospatial working memory in a joint-action condition: Evidence from eye movements. Mem Cognit 2021; 50:261-277. [PMID: 34480326 PMCID: PMC8821511 DOI: 10.3758/s13421-021-01230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Previous studies showed that (a) performing pointing movements towards to-be-remembered locations enhanced their later recognition, and (b) in a joint-action condition, experimenter-performed pointing movements benefited memory to the same extent as self-performed movements. The present study replicated these findings and additionally recorded participants’ fixations towards studied arrays. Each trial involved the presentation of two consecutive spatial arrays, where each item occupied a different spatial location. The item locations of one array were encoded by mere visual observation (the no-move array), whereas the locations of the other array were encoded by observation plus pointing movements (the move array). Critically, in Experiment 1, participants took turns with the experimenter in pointing towards the move arrays (joint-action condition), while in Experiment 2 pointing was performed only by the experimenter (passive condition). The results showed that the locations of move arrays were recognized better than the locations of no-move arrays in Experiment 1, but not in Experiment 2. The pattern of eye-fixations was in line with behavioral findings, indicating that in Experiment 1, fixations to the locations of move arrays were higher in number and longer in duration than fixations to the locations of no-move arrays, irrespective of the agent who performed the movements. In contrast, no differences emerged in Experiment 2. We propose that, in the joint-action condition, self- and other-performed pointing movements are coded at the same representational level and their functional equivalency is reflected in a similar pattern of eye-fixations.
Collapse
|
24
|
Abstract
Curiosity enhances memory via the hippocampus, prefrontal cortex, and ventral striatum. Development of curiosity and its effect on memory in childhood/adolescence not well understood. Maturation of curiosity-promoting brain functions might contribute to increasing benefits of curiosity for learning. Harnessing curiosity in education might need differential approaches across child development.
Accumulating evidence in adults has shown that curiosity and surprise enhance memory via activity in the hippocampus, prefrontal cortex, and dopaminergic areas. Based on findings of how these brain areas and their inter-connections develop during childhood and adolescence, we discuss how the effects of curiosity and surprise on memory may develop during childhood and adolescence. We predict that the maturation of brain areas potentially related to curiosity elicitation (hippocampus, anterior cingulate cortex [ACC], prefrontal cortex) and protracted development of hippocampal-PFC and ACC-PFC connectivity lead to differential effects of curiosity and surprise on memory during childhood and adolescence. Our predictions are centred within the PACE (Prediction-Appraisal-Curiosity-Exploration) Framework which proposes multiple levels of analyses of how curiosity is elicited and enhances memory.
Collapse
Affiliation(s)
- Matthias J Gruber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, United Kingdom
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
25
|
Smith ES, Crawford TJ. Memory-Guided Saccades in Psychosis: Effects of Medication and Stimulus Location. Brain Sci 2021; 11:1071. [PMID: 34439693 PMCID: PMC8393375 DOI: 10.3390/brainsci11081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
The memory-guided saccade task requires the remembrance of a peripheral target location, whilst inhibiting the urge to make a saccade ahead of an auditory cue. The literature has explored the endophenotypic deficits associated with differences in target laterality, but less is known about target amplitude. The data presented came from Crawford et al. (1995), employing a memory-guided saccade task among neuroleptically medicated and non-medicated patients with schizophrenia (n = 31, n = 12), neuroleptically medicated and non-medicated bipolar affective disorder (n = 12, n = 17), and neurotypical controls (n = 30). The current analyses explore the relationships between memory-guided saccades toward targets with different eccentricities (7.5° and 15°), the discernible behaviour exhibited amongst diagnostic groups, and cohorts distinguished based on psychotic symptomatology. Saccade gain control and final eye position were reduced among medicated-schizophrenia patients. These metrics were reduced further among targets with greater amplitudes (15°), indicating greater deficit. The medicated cohort exhibited reduced gain control and final eye positions in both amplitudes compared to the non-medicated cohort, with deficits markedly observed for the furthest targets. No group differences in symptomatology (positive and negative) were reported, however, a greater deficit was observed toward the larger amplitude. This suggests that within the memory-guided saccade paradigm, diagnostic classification is more prominent in characterising disparities in saccade performance than symptomatology.
Collapse
Affiliation(s)
- Eleanor S. Smith
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor J. Crawford
- Department of Psychology, Centre for Ageing Research, Lancaster University, Lancaster LA1 4YF, UK;
| |
Collapse
|
26
|
McCormick C, Maguire EA. The distinct and overlapping brain networks supporting semantic and spatial constructive scene processing. Neuropsychologia 2021; 158:107912. [PMID: 34116069 PMCID: PMC8287593 DOI: 10.1016/j.neuropsychologia.2021.107912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Scene imagery features prominently when we recall autobiographical memories, imagine the future and navigate around in the world. Consequently, in this study we sought to better understand how scene representations are supported by the brain. Processing scenes involves a variety of cognitive processes that in the real world are highly interactive. Here, however, our goal was to separate semantic and spatial constructive scene processes in order to identify the brain areas that were distinct to each process, those they had in common, and the connectivity between regions. To this end, participants searched for either semantic or spatial constructive impossibilities in scenes during functional MRI. We focussed our analyses on only those scenes that were possible, thus removing any error detection that would evoke reactions such as surprise or novelty. Importantly, we also counterbalanced possible scenes across participants, enabling us to examine brain activity and connectivity for the same possible scene images under two different conditions. We found that participants adopted different cognitive strategies, which were reflected in distinct oculomotor behaviour, for each condition. These were in turn associated with increased engagement of lateral temporal and parietal cortices for semantic scene processing, the hippocampus for spatial constructive scene processing, and increased activation of the ventromedial prefrontal cortex (vmPFC) that was common to both. Connectivity analyses showed that the vmPFC switched between semantic and spatial constructive brain networks depending on the task at hand. These findings further highlight the well-known semantic functions of lateral temporal areas, while providing additional support for the previously-asserted contribution of the hippocampus to scene construction, and recent suggestions that the vmPFC may play a key role in orchestrating scene processing.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
27
|
Wynn JS, Buchsbaum BR, Ryan JD. Encoding and retrieval eye movements mediate age differences in pattern completion. Cognition 2021; 214:104746. [PMID: 34034008 DOI: 10.1016/j.cognition.2021.104746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023]
Abstract
Older adults often mistake new information as 'old', yet the mechanisms underlying this response bias remain unclear. Typically, false alarms by older adults are thought to reflect pattern completion - the retrieval of a previously encoded stimulus in response to partial input. However, other work suggests that age-related retrieval errors can be accounted for by deficient encoding processes. In the present study, we used eye movement monitoring to quantify age-related changes in behavioral pattern completion as a function of eye movements during both encoding and partially cued retrieval. Consistent with an age-related encoding deficit, older adults executed more gaze fixations and more similar eye movements across repeated image presentations than younger adults, and such effects were predictive of subsequent recognition memory. Analysis of eye movements at retrieval further indicated that in response to partial lure cues, older adults reactivated the similar studied image, indexed by the similarity between encoding and retrieval gaze patterns, and did so more than younger adults. Critically, reactivation of encoded image content via eye movements was associated with lure false alarms in older adults, providing direct evidence for a pattern completion bias. Together, these findings suggest that age-related changes in both encoding and retrieval processes, indexed by eye movements, underlie older adults' increased vulnerability to memory errors.
Collapse
Affiliation(s)
- Jordana S Wynn
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada.
| | - Bradley R Buchsbaum
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Jennifer D Ryan
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| |
Collapse
|
28
|
Gaze-pattern similarity at encoding may interfere with future memory. Sci Rep 2021; 11:7697. [PMID: 33833314 PMCID: PMC8032786 DOI: 10.1038/s41598-021-87258-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/24/2021] [Indexed: 11/11/2022] Open
Abstract
Human brains have a remarkable ability to separate streams of visual input into distinct memory-traces. It is unclear, however, how this ability relates to the way these inputs are explored via unique gaze-patterns. Moreover, it is yet unknown how motivation to forget or remember influences the link between gaze similarity and memory. In two experiments, we used a modified directed-forgetting paradigm and either showed blurred versions of the encoded scenes (Experiment 1) or pink noise images (Experiment 2) during attempted memory control. Both experiments demonstrated that higher levels of across-stimulus gaze similarity relate to worse future memory. Although this across-stimulus interference effect was unaffected by motivation, it depended on the perceptual overlap between stimuli and was more pronounced for different scene comparisons, than scene–pink noise comparisons. Intriguingly, these findings echo the pattern similarity effects from the neuroimaging literature and pinpoint a mechanism that could aid the regulation of unwanted memories.
Collapse
|
29
|
Silson EH, Zeidman P, Knapen T, Baker CI. Representation of Contralateral Visual Space in the Human Hippocampus. J Neurosci 2021; 41:2382-2392. [PMID: 33500275 PMCID: PMC7984600 DOI: 10.1523/jneurosci.1990-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022] Open
Abstract
The initial encoding of visual information primarily from the contralateral visual field is a fundamental organizing principle of the primate visual system. Recently, the presence of such retinotopic sensitivity has been shown to extend well beyond early visual cortex to regions not historically considered retinotopically sensitive. In particular, human scene-selective regions in parahippocampal and medial parietal cortex exhibit prominent biases for the contralateral visual field. Here, we used fMRI to test the hypothesis that the human hippocampus, which is thought to be anatomically connected with these scene-selective regions, would also exhibit a biased representation of contralateral visual space. First, population receptive field (pRF) mapping with scene stimuli revealed strong biases for the contralateral visual field in bilateral hippocampus. Second, the distribution of retinotopic sensitivity suggested a more prominent representation in anterior medial portions of the hippocampus. Finally, the contralateral bias was confirmed in independent data taken from the Human Connectome Project (HCP) initiative. The presence of contralateral biases in the hippocampus, a structure considered by many as the apex of the visual hierarchy, highlights the truly pervasive influence of retinotopy. Moreover, this finding has important implications for understanding how visual information relates to the allocentric global spatial representations known to be encoded therein.SIGNIFICANCE STATEMENT Retinotopic encoding of visual information is an organizing principle of visual cortex. Recent work demonstrates this sensitivity in structures far beyond early visual cortex, including those anatomically connected to the hippocampus. Here, using population receptive field (pRF) modeling in two independent sets of data we demonstrate a consistent bias for the contralateral visual field in bilateral hippocampus. Such a bias highlights the truly pervasive influence of retinotopy, with important implications for understanding how the presence of retinotopy relates to more allocentric spatial representations.
Collapse
Affiliation(s)
- Edward H Silson
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda 20892-1366, Maryland
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, London WC1N 3AR, United Kingdom
| | - Tomas Knapen
- Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1012 WX, The Netherlands
- Spinoza Centre for NeuroImaging, Royal Dutch Academy of Sciences 1012 WX, Amsterdam, The Netherlands
| | - Chris I Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda 20892-1366, Maryland
| |
Collapse
|
30
|
McCormick C, Dalton MA, Zeidman P, Maguire EA. Characterising the hippocampal response to perception, construction and complexity. Cortex 2021; 137:1-17. [PMID: 33571913 PMCID: PMC8048772 DOI: 10.1016/j.cortex.2020.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
The precise role played by the hippocampus in supporting cognitive functions such as episodic memory and future thinking is debated, but there is general agreement that it involves constructing representations comprised of numerous elements. Visual scenes have been deployed extensively in cognitive neuroscience because they are paradigmatic multi-element stimuli. However, questions remain about the specificity and nature of the hippocampal response to scenes. Here, we devised a paradigm in which we had participants search pairs of images for either colour or layout differences, thought to be associated with perceptual or spatial constructive processes respectively. Importantly, images depicted either naturalistic scenes or phase-scrambled versions of the same scenes, and were either simple or complex. Using this paradigm during functional MRI scanning, we addressed three questions: 1. Is the hippocampus recruited specifically during scene processing? 2. If the hippocampus is more active in response to scenes, does searching for colour or layout differences influence its activation? 3. Does the complexity of the scenes affect its response? We found that, compared to phase-scrambled versions of the scenes, the hippocampus was more responsive to scene stimuli. Moreover, a clear anatomical distinction was evident, with colour detection in scenes engaging the posterior hippocampus whereas layout detection in scenes recruited the anterior hippocampus. The complexity of the scenes did not influence hippocampal activity. These findings seem to align with perspectives that propose the hippocampus is especially attuned to scenes, and its involvement occurs irrespective of the cognitive process or the complexity of the scenes.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Marshall A Dalton
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
31
|
Armson MJ, Diamond NB, Levesque L, Ryan JD, Levine B. Vividness of recollection is supported by eye movements in individuals with high, but not low trait autobiographical memory. Cognition 2021; 206:104487. [DOI: 10.1016/j.cognition.2020.104487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022]
|
32
|
Liu ZX, Rosenbaum RS, Ryan JD. Restricting Visual Exploration Directly Impedes Neural Activity, Functional Connectivity, and Memory. Cereb Cortex Commun 2020; 1:tgaa054. [PMID: 33154992 PMCID: PMC7595095 DOI: 10.1093/texcom/tgaa054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
We move our eyes to explore the visual world, extract information, and create memories. The number of gaze fixations-the stops that the eyes make-has been shown to correlate with activity in the hippocampus, a region critical for memory, and with later recognition memory. Here, we combined eyetracking with fMRI to provide direct evidence for the relationships between gaze fixations, neural activity, and memory during scene viewing. Compared to free viewing, fixating a single location reduced: 1) subsequent memory, 2) neural activity along the ventral visual stream into the hippocampus, 3) neural similarity between effects of subsequent memory and visual exploration, and 4) functional connectivity among the hippocampus, parahippocampal place area, and other cortical regions. Gaze fixations were uniquely related to hippocampal activity, even after controlling for neural effects due to subsequent memory. Therefore, this study provides key causal evidence supporting the notion that the oculomotor and memory systems are intrinsically related at both the behavioral and neural level. Individual gaze fixations may provide the basic unit of information on which memory binding processes operate.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Jennifer D Ryan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
33
|
Fehlmann B, Coynel D, Schicktanz N, Milnik A, Gschwind L, Hofmann P, Papassotiropoulos A, de Quervain DJF. Visual Exploration at Higher Fixation Frequency Increases Subsequent Memory Recall. Cereb Cortex Commun 2020; 1:tgaa032. [PMID: 34296105 PMCID: PMC8153053 DOI: 10.1093/texcom/tgaa032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023] Open
Abstract
Only a small proportion of what we see can later be recalled. Up to date it is unknown how far differences in visual exploration during encoding affect the strength of episodic memories. Here, we identified individual gaze characteristics by analyzing eye tracking data in a picture encoding task performed by 967 healthy subjects during fMRI. We found a positive correlation between fixation frequency during visual exploration and subsequent free recall performance. Brain imaging results showed a positive correlation of fixation frequency with activations in regions related to vision and memory, including the medial temporal lobe. To investigate if higher fixation frequency is causally linked to better memory, we experimentally manipulated visual exploration patterns in an independent population of 64 subjects. Doubling the number of fixations within a given exploration time increased subsequent free recall performance by 19%. Our findings provide evidence for a causal relationship between fixation frequency and episodic memory for visual information.
Collapse
Affiliation(s)
- Bernhard Fehlmann
- Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
| | - Nathalie Schicktanz
- Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
| | - Annette Milnik
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
| | - Leo Gschwind
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
| | - Pascal Hofmann
- Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
| | - Andreas Papassotiropoulos
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
- Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel 4056, Switzerland
- University Psychiatric Clinics, University of Basel, Basel 4002, Switzerland
| | - Dominique J-F de Quervain
- Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel 4055, Switzerland
- Transfaculty Research Platform, University of Basel, Basel 4055, Switzerland
- University Psychiatric Clinics, University of Basel, Basel 4002, Switzerland
| |
Collapse
|
34
|
Franceschiello B, Di Sopra L, Minier A, Ionta S, Zeugin D, Notter MP, Bastiaansen JAM, Jorge J, Yerly J, Stuber M, Murray MM. 3-Dimensional magnetic resonance imaging of the freely moving human eye. Prog Neurobiol 2020; 194:101885. [PMID: 32653462 DOI: 10.1016/j.pneurobio.2020.101885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Eye motion is a major confound for magnetic resonance imaging (MRI) in neuroscience or ophthalmology. Currently, solutions toward eye stabilisation include participants fixating or administration of paralytics/anaesthetics. We developed a novel MRI protocol for acquiring 3-dimensional images while the eye freely moves. Eye motion serves as the basis for image reconstruction, rather than an impediment. We fully reconstruct videos of the moving eye and head. We quantitatively validate data quality with millimetre resolution in two ways for individual participants. First, eye position based on reconstructed images correlated with simultaneous eye-tracking. Second, the reconstructed images preserve anatomical properties; the eye's axial length measured from MRI images matched that obtained with ocular biometry. The technique operates on a standard clinical setup, without necessitating specialized hardware, facilitating wide deployment. In clinical practice, we anticipate that this may help reduce burdens on both patients and infrastructure, by integrating multiple varieties of assessments into a single comprehensive session. More generally, our protocol is a harbinger for removing the necessity of fixation, thereby opening new opportunities for ethologically-valid, naturalistic paradigms, the inclusion of populations typically unable to stably fixate, and increased translational research such as in awake animals whose eye movements constitute an accessible behavioural readout.
Collapse
Affiliation(s)
- Benedetta Franceschiello
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland.
| | - Lorenzo Di Sopra
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Astrid Minier
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Silvio Ionta
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - David Zeugin
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Michael P Notter
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - João Jorge
- École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University Nashville, TN, USA.
| |
Collapse
|
35
|
|
36
|
Wynn JS, Ryan JD, Buchsbaum BR. Eye movements support behavioral pattern completion. Proc Natl Acad Sci U S A 2020; 117:6246-6254. [PMID: 32123109 PMCID: PMC7084073 DOI: 10.1073/pnas.1917586117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to recall a detailed event from a simple reminder is supported by pattern completion, a cognitive operation performed by the hippocampus wherein existing mnemonic representations are retrieved from incomplete input. In behavioral studies, pattern completion is often inferred through the false endorsement of lure (i.e., similar) items as old. However, evidence that such a response is due to the specific retrieval of a similar, previously encoded item is severely lacking. We used eye movement (EM) monitoring during a partial-cue recognition memory task to index reinstatement of lure images behaviorally via the recapitulation of encoding-related EMs or gaze reinstatement. Participants reinstated encoding-related EMs following degraded retrieval cues and this reinstatement was negatively correlated with accuracy for lure images, suggesting that retrieval of existing representations (i.e., pattern completion) underlies lure false alarms. Our findings provide evidence linking gaze reinstatement and pattern completion and advance a functional role for EMs in memory retrieval.
Collapse
Affiliation(s)
- Jordana S Wynn
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Jennifer D Ryan
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Bradley R Buchsbaum
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
37
|
Kragel JE, VanHaerents S, Templer JW, Schuele S, Rosenow JM, Nilakantan AS, Bridge DJ. Hippocampal theta coordinates memory processing during visual exploration. eLife 2020; 9:e52108. [PMID: 32167468 PMCID: PMC7069726 DOI: 10.7554/elife.52108] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The hippocampus supports memory encoding and retrieval, which may occur at distinct phases of the theta cycle. These processes dynamically interact over rapid timescales, especially when sensory information conflicts with memory. The ability to link hippocampal dynamics to memory-guided behaviors has been limited by experiments that lack the temporal resolution to segregate encoding and retrieval. Here, we simultaneously tracked eye movements and hippocampal field potentials while neurosurgical patients performed a spatial memory task. Phase-locking at the peak of theta preceded fixations to retrieved locations, indicating that the hippocampus coordinates memory-guided eye movements. In contrast, phase-locking at the trough of theta followed fixations to novel object-locations and predicted intact memory of the original location. Theta-gamma phase amplitude coupling increased during fixations to conflicting visual content, but predicted memory updating. Hippocampal theta thus supports learning through two interleaved processes: strengthening encoding of novel information and guiding exploration based on prior experience.
Collapse
Affiliation(s)
- James E Kragel
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Stephen VanHaerents
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Aneesha S Nilakantan
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Donna J Bridge
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
38
|
Ryan JD, Shen K, Kacollja A, Tian H, Griffiths J, Bezgin G, McIntosh AR. Modeling the influence of the hippocampal memory system on the oculomotor system. Netw Neurosci 2020; 4:217-233. [PMID: 32166209 PMCID: PMC7055646 DOI: 10.1162/netn_a_00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Visual exploration is related to activity in the hippocampus (HC) and/or extended medial temporal lobe system (MTL), is influenced by stored memories, and is altered in amnesic cases. An extensive set of polysynaptic connections exists both within and between the HC and oculomotor systems such that investigating how HC responses ultimately influence neural activity in the oculomotor system, and the timing by which such neural modulation could occur, is not trivial. We leveraged TheVirtualBrain, a software platform for large-scale network simulations, to model the functional dynamics that govern the interactions between the two systems in the macaque cortex. Evoked responses following the stimulation of the MTL and some, but not all, subfields of the HC resulted in observable responses in oculomotor regions, including the frontal eye fields, within the time of a gaze fixation. Modeled lesions to some MTL regions slowed the dissipation of HC signal to oculomotor regions, whereas HC lesions generally did not affect the rapid MTL activity propagation to oculomotor regions. These findings provide a framework for investigating how information represented by the HC/MTL may influence the oculomotor system during a fixation and predict how HC lesions may affect visual exploration.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Arber Kacollja
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Heather Tian
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - John Griffiths
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Ryan JD, Shen K, Liu Z. The intersection between the oculomotor and hippocampal memory systems: empirical developments and clinical implications. Ann N Y Acad Sci 2020; 1464:115-141. [PMID: 31617589 PMCID: PMC7154681 DOI: 10.1111/nyas.14256] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Decades of cognitive neuroscience research has shown that where we look is intimately connected to what we remember. In this article, we review findings from human and nonhuman animals, using behavioral, neuropsychological, neuroimaging, and computational modeling methods, to show that the oculomotor and hippocampal memory systems interact in a reciprocal manner, on a moment-to-moment basis, mediated by a vast structural and functional network. Visual exploration serves to efficiently gather information from the environment for the purpose of creating new memories, updating existing memories, and reconstructing the rich, vivid details from memory. Conversely, memory increases the efficiency of visual exploration. We call for models of oculomotor control to consider the influence of the hippocampal memory system on the cognitive control of eye movements, and for models of hippocampal and broader medial temporal lobe function to consider the influence of the oculomotor system on the development and expression of memory. We describe eye movement-based applications for the detection of neurodegeneration and delivery of therapeutic interventions for mental health disorders for which the hippocampus is implicated and memory dysfunctions are at the forefront.
Collapse
Affiliation(s)
- Jennifer D. Ryan
- Rotman Research InstituteBaycrestTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kelly Shen
- Rotman Research InstituteBaycrestTorontoOntarioCanada
| | - Zhong‐Xu Liu
- Department of Behavioral SciencesUniversity of Michigan‐DearbornDearbornMichigan
| |
Collapse
|
40
|
Dennis NA, Overman AA, Gerver CR, McGraw KE, Rowley MA, Salerno JM. Different types of associative encoding evoke differential processing in both younger and older adults: Evidence from univariate and multivariate analyses. Neuropsychologia 2019; 135:107240. [PMID: 31682927 PMCID: PMC6951809 DOI: 10.1016/j.neuropsychologia.2019.107240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
Age-related deficits in associative processing are well-documented (e.g., Naveh-Benjamin, 2000) and have been assumed to be the result of a general deficit that affects all types of binding. However, recent behavioral research has indicated that the visual configuration of the information that is presented to older adults influences the degree to which this binding deficit is exhibited by older adults (Overman, Dennis et al, 2019; Overman, Dennis, et al., 2018). The purpose of the present study was to further clarify the neural underpinnings of the associative deficit in aging and to examine whether functional activity at encoding differs with respect to the visual configuration and the type of associative being encoded. Using both univariate and multi-voxel pattern analysis, we found differences in both the magnitude of activation and pattern of neural responses associated with the type of association encoded (item-item and item-context). Specifically, our results suggest that, when controlling for stimuli composition, patterns of activation in sensory and frontal regions within the associative encoding network are able to distinguish between different types of associations. With respect to the MTL, multivariate results suggest that only patterns of activation in the PrC in older, but not younger adults, can distinguish between associations types. These findings extend prior work regarding the neural basis of associative memory in young and older adults, and extends the predictions of the binding of item and context model (BIC; Diana, Yonelinas, Ranganath, 2007) to older adults.
Collapse
Affiliation(s)
- Nancy A Dennis
- The Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
| | - Amy A Overman
- The Department of Psychology, Elon University, NC, USA
| | - Courtney R Gerver
- The Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
41
|
Gruber MJ, Ranganath C. How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends Cogn Sci 2019; 23:1014-1025. [PMID: 31706791 PMCID: PMC6891259 DOI: 10.1016/j.tics.2019.10.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 02/05/2023]
Abstract
Curiosity plays a fundamental role for learning and memory, but the neural mechanisms that stimulate curiosity and its effect on memory are poorly understood. Accumulating evidence suggests that curiosity states are related to modulations in activity in the dopaminergic circuit and that these modulations impact memory encoding and consolidation for both targets of curiosity and incidental information encountered during curiosity states. To account for this evidence, we propose the Prediction, Appraisal, Curiosity, and Exploration (PACE) framework, which attempts to explain curiosity and memory in terms of cognitive processes, neural circuits, behavior, and subjective experience. The PACE framework generates testable predictions that can stimulate future investigation of the mechanisms underlying curiosity-related memory enhancements.
Collapse
Affiliation(s)
- Matthias J Gruber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, CA, USA; Psychology Department, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
42
|
The hippocampus as a visual area organized by space and time: A spatiotemporal similarity hypothesis. Vision Res 2019; 165:123-130. [PMID: 31734633 DOI: 10.1016/j.visres.2019.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
The hippocampus is the canonical memory system in the brain and is not typically considered part of the visual system. Yet, it sits atop the ventral visual stream and has been implicated in certain aspects of vision. Here I review the place of the hippocampal memory system in vision science. After a brief primer on the local circuity, external connectivity, and computational functions of the hippocampus, I explore what can be learned from each field about the other. I first present four areas of vision science (scene perception, imagery, eye movements, attention) that challenge our current understanding of the hippocampus in terms of its role in episodic memory. In the reverse direction, I leverage this understanding to inform vision science in other ways, presenting a working hypothesis about a unique form of visual representation. This spatiotemporal similarity hypothesis states that the hippocampus represents objects according to whether they co-occur in space and/or time, and not whether they look alike, as elsewhere in the visual system. This tuning may reflect hippocampal mechanisms of pattern separation, relational binding, and statistical learning, allowing the hippocampus to generate visual expectations to facilitate search and recognition.
Collapse
|
43
|
Abstract
Eye Movement Desensitization and Reprocessing Therapy (EMDR) is an effective treatment for Post-traumatic Stress Disorder (PTSD). The Adaptive Information Processing Model (AIP) guides the development and practice of EMDR. The AIP postulates inadequately processed memory as the foundation of PTSD pathology. Predictive Processing postulates that the primary function of the brain is prediction that serves to anticipate the next moment of experience in order to resist the dissipative force of entropy thus facilitating continued survival. Memory is the primary substrate of prediction, and is optimized by an ongoing process of precision weighted prediction error minimization that refines prediction by updating the memories on which it is based. The Predictive Processing model of EMDR postulates that EMDR facilitates the predictive processing of traumatic memory by overcoming the bias against exploration and evidence accumulation. The EMDR protocol brings the traumatic memory into an active state of re-experiencing. Defensive responding and/or low sensory precision preclude evidence accumulation to test the predictions of the traumatic memory in the present. Sets of therapist guided eye movements repeatedly challenge the bias against evidence accumulation and compel sensory sampling of the benign present. Eye movements reset the theta rhythm organizing the flow of information through the brain, facilitating the deployment of both overt and covert attention, and the mnemonic search for associations. Sampling of sensation does not support the predictions of the traumatic memory resulting in prediction error that the brain then attempts to minimize. The net result is a restoration of the integrity of the rhythmic deployment of attention, a recalibration of sensory precision, and the updating (reconsolidation) of the traumatic memory. Thus one prediction of the model is a decrease in Attention Bias Variability, a core dysfunction in PTSD, following successful treatment with EMDR.
Collapse
|
44
|
Doucet G, Gulli RA, Corrigan BW, Duong LR, Martinez-Trujillo JC. Modulation of local field potentials and neuronal activity in primate hippocampus during saccades. Hippocampus 2019; 30:192-209. [PMID: 31339193 DOI: 10.1002/hipo.23140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
Primates use saccades to gather information about objects and their relative spatial arrangement, a process essential for visual perception and memory. It has been proposed that signals linked to saccades reset the phase of local field potential (LFP) oscillations in the hippocampus, providing a temporal window for visual signals to activate neurons in this region and influence memory formation. We investigated this issue by measuring hippocampal LFPs and spikes in two macaques performing different tasks with unconstrained eye movements. We found that LFP phase clustering (PC) in the alpha/beta (8-16 Hz) frequencies followed foveation onsets, while PC in frequencies lower than 8 Hz followed spontaneous saccades, even on a homogeneous background. Saccades to a solid grey background were not followed by increases in local neuronal firing, whereas saccades toward appearing visual stimuli were. Finally, saccade parameters correlated with LFPs phase and amplitude: saccade direction correlated with delta (≤4 Hz) phase, and saccade amplitude with theta (4-8 Hz) power. Our results suggest that signals linked to saccades reach the hippocampus, producing synchronization of delta/theta LFPs without a general activation of local neurons. Moreover, some visual inputs co-occurring with saccades produce LFP synchronization in the alpha/beta bands and elevated neuronal firing. Our findings support the hypothesis that saccade-related signals enact sensory input-dependent plasticity and therefore memory formation in the primate hippocampus.
Collapse
Affiliation(s)
- Guillaume Doucet
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Roberto A Gulli
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Neuroscience, Columbia University, New York, New York
| | - Benjamin W Corrigan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lyndon R Duong
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Center for Neural Science, New York University, New York, New York
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|
45
|
Robin J, Olsen RK. Scenes facilitate associative memory and integration. ACTA ACUST UNITED AC 2019; 26:252-261. [PMID: 31209120 PMCID: PMC6581001 DOI: 10.1101/lm.049486.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 01/22/2023]
Abstract
How do we form mental links between related items? Forming associations between representations is a key feature of episodic memory and provides the foundation for learning and guiding behavior. Theories suggest that spatial context plays a supportive role in episodic memory, providing a scaffold on which to form associations, but this has mostly been tested in the context of autobiographical memory. We examined the memory boosting effect of spatial stimuli in memory using an associative inference paradigm combined with eye-tracking. Across two experiments, we found that memory was better for associations that included scenes, even indirectly, compared to objects and faces. Eye-tracking measures indicated that these effects may be partly mediated by greater fixations to scenes compared to objects, but did not explain the differences between scenes and faces. These results suggest that scenes facilitate associative memory and integration across memories, demonstrating evidence in support of theories of scenes as a spatial scaffold for episodic memory. A shared spatial context may promote learning and could potentially be leveraged to improve learning and memory in educational settings or for memory-impaired populations.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
46
|
Abstract
Increasing evidence indicates that the subjective experience of recollection is diminished in autism spectrum disorder (ASD) compared to neurotypical individuals. The neurocognitive basis of this difference in how past events are re-experienced has been debated and various theoretical accounts have been proposed to date. Although each existing theory may capture particular features of memory in ASD, recent research questions whether any of these explanations are alone sufficient or indeed fully supported. This review first briefly considers the cognitive neuroscience of how episodic recollection operates in the neurotypical population, informing predictions about the encoding and retrieval mechanisms that might function atypically in ASD. We then review existing research on recollection in ASD, which has often not distinguished between different theoretical explanations. Recent evidence suggests a distinct difficulty engaging recollective retrieval processes, specifically the ability to consciously reconstruct and monitor a past experience, which is likely underpinned by altered functional interactions between neurocognitive systems rather than brain region-specific or process-specific dysfunction. This integrative approach serves to highlight how memory research in ASD may enhance our understanding of memory processes and networks in the typical brain. We make suggestions for future research that are important for further specifying the neurocognitive basis of episodic recollection in ASD and linking such difficulties to social developmental and educational outcomes.
Collapse
|
47
|
Wynn JS, Shen K, Ryan JD. Eye Movements Actively Reinstate Spatiotemporal Mnemonic Content. Vision (Basel) 2019; 3:E21. [PMID: 31735822 PMCID: PMC6802778 DOI: 10.3390/vision3020021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022] Open
Abstract
Eye movements support memory encoding by binding distinct elements of the visual world into coherent representations. However, the role of eye movements in memory retrieval is less clear. We propose that eye movements play a functional role in retrieval by reinstating the encoding context. By overtly shifting attention in a manner that broadly recapitulates the spatial locations and temporal order of encoded content, eye movements facilitate access to, and reactivation of, associated details. Such mnemonic gaze reinstatement may be obligatorily recruited when task demands exceed cognitive resources, as is often observed in older adults. We review research linking gaze reinstatement to retrieval, describe the neural integration between the oculomotor and memory systems, and discuss implications for models of oculomotor control, memory, and aging.
Collapse
Affiliation(s)
- Jordana S. Wynn
- Rotman Research Institute, Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 100 St George St., Toronto, ON M5S 3G3, Canada
| | - Kelly Shen
- Rotman Research Institute, Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
| | - Jennifer D. Ryan
- Rotman Research Institute, Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 100 St George St., Toronto, ON M5S 3G3, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
| |
Collapse
|
48
|
Yeung LK, Olsen RK, Hong B, Mihajlovic V, D'Angelo MC, Kacollja A, Ryan JD, Barense MD. Object-in-place Memory Predicted by Anterolateral Entorhinal Cortex and Parahippocampal Cortex Volume in Older Adults. J Cogn Neurosci 2019; 31:711-729. [DOI: 10.1162/jocn_a_01385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The lateral portion of the entorhinal cortex is one of the first brain regions affected by tau pathology, an important biomarker for Alzheimer disease. Improving our understanding of this region's cognitive role may help identify better cognitive tests for early detection of Alzheimer disease. Based on its functional connections, we tested the idea that the human anterolateral entorhinal cortex (alERC) may play a role in integrating spatial information into object representations. We recently demonstrated that the volume of the alERC was related to processing the spatial relationships of the features within an object [Yeung, L. K., Olsen, R. K., Bild-Enkin, H. E. P., D'Angelo, M. C., Kacollja, A., McQuiggan, D. A., et al. Anterolateral entorhinal cortex volume predicted by altered intra-item configural processing. Journal of Neuroscience, 37, 5527–5538, 2017]. In this study, we investigated whether the human alERC might also play a role in processing the spatial relationships between an object and its environment using an eye-tracking task that assessed visual fixations to a critical object within a scene. Guided by rodent work, we measured both object-in-place memory, the association of an object with a given context [Wilson, D. I., Langston, R. F., Schlesiger, M. I., Wagner, M., Watanabe, S., & Ainge, J. A. Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus, 23, 352–366, 2013], and object-trace memory, the memory for the former location of objects [Tsao, A., Moser, M. B., & Moser, E. I. Traces of experience in the lateral entorhinal cortex. Current Biology, 23, 399–405, 2013]. In a group of older adults with varying stages of brain atrophy and cognitive decline, we found that the volume of the alERC and the volume of the parahippocampal cortex selectively predicted object-in-place memory, but not object-trace memory. These results provide support for the notion that the alERC may integrate spatial information into object representations.
Collapse
Affiliation(s)
| | - Rosanna K. Olsen
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | | | | | | | - Arber Kacollja
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | - Jennifer D. Ryan
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | - Morgan D. Barense
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| |
Collapse
|
49
|
Armson MJ, Ryan JD, Levine B. Maintaining fixation does not increase demands on working memory relative to free viewing. PeerJ 2019; 7:e6839. [PMID: 31106058 PMCID: PMC6497038 DOI: 10.7717/peerj.6839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
The comparison of memory performance during free and fixed viewing conditions has been used to demonstrate the involvement of eye movements in memory encoding and retrieval, with stronger effects at encoding than retrieval. Relative to conditions of free viewing, participants generally show reduced memory performance following sustained fixation, suggesting that unrestricted eye movements benefit memory. However, the cognitive basis of the memory reduction during fixed viewing is uncertain, with possible mechanisms including disruption of visual-mnemonic and/or imagery processes with sustained fixation, or greater working memory demands required for fixed relative to free viewing. To investigate one possible mechanism for this reduction, we had participants perform a working memory task-an auditory n-back task-during free and fixed viewing, as well as a repetitive finger tapping condition, included to isolate the effects of motor interference independent of the oculomotor system. As expected, finger tapping significantly interfered with n-back performance relative to free viewing, as indexed by a decrease in accuracy and increase in response times. By contrast, there was no evidence that fixed viewing interfered with n-back performance relative to free viewing. Our findings failed to support a hypothesis of increased working memory load during fixation. They are consistent with the notion that fixation disrupts long-term memory performance through interference with visual processes.
Collapse
Affiliation(s)
- Michael J. Armson
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer D. Ryan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Brian Levine
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Craig M, Wolbers T, Strickland S, Achtzehn J, Dewar M. Rapid improvement of cognitive maps in the awake state. Hippocampus 2019; 29:862-868. [PMID: 30775825 DOI: 10.1002/hipo.23081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 11/08/2022]
Abstract
Post-navigation awake quiescence, relative to task engagement, benefits the accuracy of a new "cognitive map". This effect is hypothesized to reflect awake quiescence, like sleep, being conducive to the consolidation and integration of new spatial memories. Sleep has been shown to improve cognitive map accuracy over time. It remained unknown whether awake quiescence can induce similar time-related improvements in new cognitive maps, or whether it simply counteracts their decay. We examined this question via two experiments. In Experiment 1, using an established cognitive mapping paradigm, we reveal that map accuracy for a virtual town was significantly better in people whose memory was probed after 10 min of post-navigation awake quiescence or ongoing cognitive engagement, relative to those whose memory was probed shortly after initial navigation. In Experiment 2, using a newly developed cognitive mapping task that involved a more complex and real-life virtual town, we again found that map accuracy was superior in those whose memory was probed after 10 min of awake quiescence than those who were tested soon after navigation. These findings indicate that actual improvements in human memories are not restricted to sleep. Thus, contrary to conventional wisdom and theories, the passage of (day)time need not always result in forgetting.
Collapse
Affiliation(s)
- Michael Craig
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Aging and Cognition Research Group, Magdeburg, Germany.,Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Shannon Strickland
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| | - Johannes Achtzehn
- German Center for Neurodegenerative Diseases (DZNE), Aging and Cognition Research Group, Magdeburg, Germany.,Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Michaela Dewar
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|