1
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
2
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
3
|
Nguyen VVT, Welsh JA, Tertel T, Choo A, van de Wakker SI, Defourny KAY, Giebel B, Vader P, Padmanabhan J, Lim SK, Nolte‐'t Hoen ENM, Verhaar MC, Bostancioglu RB, Zickler AM, Hong JM, Jones JC, EL Andaloussi S, van Balkom BWM, Görgens A. Inter-laboratory multiplex bead-based surface protein profiling of MSC-derived EV preparations identifies MSC-EV surface marker signatures. J Extracell Vesicles 2024; 13:e12463. [PMID: 38868945 PMCID: PMC11170075 DOI: 10.1002/jev2.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.
Collapse
Affiliation(s)
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- The Measuring Stick, LtdPeterboroughUK
- Advanced Technology GroupBecton DickinsonSan JoseCaliforniaUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Andre Choo
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Simonides I. van de Wakker
- Department of Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Kyra A. Y. Defourny
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Pieter Vader
- Department of Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Jayanthi Padmanabhan
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sai Kiang Lim
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Esther N. M. Nolte‐'t Hoen
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | - R. Beklem Bostancioglu
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Antje M. Zickler
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| | - Jia Mei Hong
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| | | | - André Görgens
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| |
Collapse
|
4
|
De Sousa PA, Perfect L, Ye J, Samuels K, Piotrowska E, Gordon M, Mate R, Abranches E, Wishart TM, Dockrell DH, Courtney A. Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture. Stem Cell Res Ther 2024; 15:130. [PMID: 38702837 PMCID: PMC11069290 DOI: 10.1186/s13287-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Collapse
Affiliation(s)
- Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Stroma Therapeutics Ltd, Glasgow, UK.
| | - Leo Perfect
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Jinpei Ye
- Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China
| | - Kay Samuels
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Ewa Piotrowska
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biology, University of Gdansk, Gdańsk, Poland
| | - Martin Gordon
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Ryan Mate
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Elsa Abranches
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | | | - David H Dockrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
5
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
7
|
Hwang H, Rampoldi A, Forghani P, Li D, Fite J, Boland G, Maher K, Xu C. Space microgravity increases expression of genes associated with proliferation and differentiation in human cardiac spheres. NPJ Microgravity 2023; 9:88. [PMID: 38071377 PMCID: PMC10710480 DOI: 10.1038/s41526-023-00336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/21/2023] [Indexed: 04/12/2024] Open
Abstract
Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors.
Collapse
Affiliation(s)
- Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dong Li
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | - Kevin Maher
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Lee H, Jeong OY, Park HJ, Lee SL, Bok EY, Kim M, Suh YS, Cheon YH, Kim HO, Kim S, Chun SH, Park JM, Lee YJ, Lee SI. Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms. Immune Netw 2023; 23:e45. [PMID: 38188598 PMCID: PMC10767550 DOI: 10.4110/in.2023.23.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DW-MSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Ok-Yi Jeong
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Hee Jin Park
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-yeong Bok
- College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Young Sun Suh
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Suhee Kim
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Jung Min Park
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| | - Young Jin Lee
- Cell Therapy Center, Daewoong Pharmaceutical, Co., Ltd., Yongin 17028, Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Korea
| |
Collapse
|
9
|
Hollander JM, Goraltchouk A, Rawal M, Liu J, Luppino F, Zeng L, Seregin A. Adeno-Associated Virus-Delivered Fibroblast Growth Factor 18 Gene Therapy Promotes Cartilage Anabolism. Cartilage 2023; 14:492-505. [PMID: 36879540 PMCID: PMC10807742 DOI: 10.1177/19476035231158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To determine the characterization of chondrogenic properties of adeno-associated virus type 2 (AAV2)-delivered hFGF18, via analysis of effects on primary human chondrocyte proliferation, gene expression, and in vivo cartilage thickness changes in the tibia and meniscus. DESIGN Chondrogenic properties of AAV2-FGF18 were compared with recombinant human FGF18 (rhFGF18) in vitro relative to phosphate-buffered saline (PBS) and AAV2-GFP negative controls. Transcriptome analysis was performed using RNA-seq on primary human chondrocytes treated with rhFGF18 and AAV2-FGF18, relative to PBS. Durability of gene expression was assessed using AAV2-nLuc and in vivo imaging. Chondrogenesis was evaluated by measuring weight-normalized thickness in the tibial plateau and the white zone of the anterior horn of the medial meniscus in Sprague-Dawley rats. RESULTS AAV2-FGF18 elicits chondrogenesis by promoting proliferation and upregulation of hyaline cartilage-associated genes, including COL2A1 and HAS2, while downregulating fibrocartilage-associated COL1A1. This activity translates to statistically significant, dose-dependent increases in cartilage thickness in vivo within the area of the tibial plateau, following a single intra-articular injection of the AAV2-FGF18 or a regimen of 6 twice-weekly injections of rhFGF18 protein relative to AAV2-GFP. In addition, we observed AAV2-FGF18-induced and rhFGF18-induced increases in cartilage thickness of the anterior horn of the medial meniscus. Finally, the single-injection AAV2-delivered hFGF18 offers a potential safety advantage over the multi-injection protein treatment as evidenced by reduced joint swelling over the study period. CONCLUSION AAV2-delivered hFGF18 represents a promising strategy for the restoration of hyaline cartilage by promoting extracellular matrix production, chondrocyte proliferation, and increasing articular and meniscal cartilage thickness in vivo after a single intra-articular injection.
Collapse
Affiliation(s)
- Judith M. Hollander
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Miraj Rawal
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
10
|
Arakawa M, Sakamoto Y, Miyagawa Y, Nito C, Takahashi S, Nitahara-Kasahara Y, Suda S, Yamazaki Y, Sakai M, Kimura K, Okada T. iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress. Mol Ther Methods Clin Dev 2023; 30:333-349. [PMID: 37637385 PMCID: PMC10448333 DOI: 10.1016/j.omtm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) hold great promise as a cell source for transplantation into injured tissues to alleviate inflammation. However, the therapeutic efficacy of iMSC transplantation for ischemic stroke remains unknown. In this study, we evaluated the therapeutic effects of iMSC transplantation on brain injury after ischemia-reperfusion using a rat transient middle cerebral artery occlusion model and compared its therapeutic efficacy with that of bone marrow mesenchymal stem cells (BMMSCs). We showed that iMSCs and BMMSCs reduced infarct volumes after reperfusion and significantly improved motor function on days 3, 7, 14, 28, and 56 and cognitive function on days 28 and 56 after reperfusion compared with the vehicle group. Furthermore, immunological analyses revealed that transplantation of iMSCs and BMMSCs inhibited microglial activation and expression of proinflammatory cytokines and suppressed oxidative stress and neuronal cell death in the cerebral cortex at the ischemic border zone. No difference in therapeutic effect was observed between the iMSC and BMMSC groups. Taken together, our results demonstrate that iMSC therapy can be a practical alternative as a cell source for attenuation of brain injury and improvement of neurological function because of the unlimited supply of uniform therapeutic cells.
Collapse
Affiliation(s)
- Masafumi Arakawa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Shiro Takahashi
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
12
|
HuMSC-EV induce monocyte/macrophage mobilization to orchestrate neovascularization in wound healing process following radiation injury. Cell Death Dis 2023; 9:38. [PMID: 36725841 PMCID: PMC9892506 DOI: 10.1038/s41420-023-01335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
This study aims to investigate the mechanisms of human mesenchymal stem cell-derived extracellular vesicles (HuMSC-EV)-induced proangiogenic paracrine effects after radiation injury. HuMSC-EV were locally administered in mice hindlimb following 80-Gy X-ray irradiation and animals were monitored at different time points. HuMSC-EV improved neovascularization of the irradiated tissue, by stimulating angiogenesis, normalizing cutaneous blood perfusion, and increasing capillary density and production of proangiogenic factors. HuMSC-EV also stimulated vasculogenesis by promoting the recruitment and differentiation of bone marrow progenitors. Moreover, HuMSC-EV improved arteriogenesis by increasing the mobilization of monocytes from the spleen and the bone marrow and their recruitment into the muscle, with a pro-inflammatory potential. Importantly, monocyte depletion by clodronate treatment abolished the proangiogenic effect of HuMSC-EV. The critical role of Ly6C(hi) monocyte subset in HuMSC-EV-induced neovascularization process was further confirmed using Ccr2-/- mice. This study demonstrates that HuMSC-derived EV enhances the neovascularization process in the irradiated tissue by increasing the production of proangiogenic factors, promoting the recruitment of vascular progenitor cells, and the mobilization of innate cells to the injured site. These results support the concept that HuMSC-EV might represent a suitable alternative to stem cells for therapeutic neovascularization in tissue repair.
Collapse
|
13
|
Muacevic A, Adler JR. Adult Stem Cells for Cartilage Regeneration. Cureus 2022; 14:e32280. [PMID: 36505953 PMCID: PMC9727652 DOI: 10.7759/cureus.32280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/12/2022] Open
Abstract
As cartilage is an avascular, aneural structure, it has very low capabilities of self-repair. Osteoarthritis prevalence is increasing, and there are no clinically approved management techniques that can cure the degradation of cartilage. This report investigates the efficacy of different sources of cells to generate articular cartilage. Autologous chondrocyte implantation has been used to some extent in clinics; however it has not generated efficient, reliable results, and there is no evidence of long-term success. The usage of stem cells is more promising, particularly mesenchymal stem cells (MSCs). Human embryonic stem cells (hESCs) have also been trialed; however, it is important to note that the process of differentiation into chondrocytes is not fully understood, and the cartilage produced can often be of poor quality. MSCs seems to be the way forward, and hESCs will perhaps need further study with the usage of MSC differentiation methodology.
Collapse
|
14
|
Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 2022; 13:580. [PMID: 35787632 PMCID: PMC9252569 DOI: 10.1038/s41419-022-05034-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
Collapse
|
15
|
Jin W, He Y, Li T, Long F, Qin X, Yuan Y, Gao G, Shakhawat HM, Liu X, Jin G, Zhou Z. Rapid and robust derivation of mesenchymal stem cells from human pluripotent stem cells via temporal induction of neuralized ectoderm. Cell Biosci 2022; 12:31. [PMID: 35292115 PMCID: PMC8922747 DOI: 10.1186/s13578-022-00753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are emerging as the mainstay of regenerative medicine because of their ability to differentiate into multiple cell lineages. The infinite proliferative potential of human pluripotent stem cells (PSCs) grants an unlimited supply of MSCs. Despite their great potential in therapeutic applications, several drawbacks have hindered its clinical translation, including limited number of replication, compromised potential and altered function in late passages. The aim of this study is to establish an efficient method for the production of MSCs from pluripotent stem cells for potential clinical application in rare human disease Hutchinson-Gilford progeria syndrome. Results We established a robust method allowing rapid derivation of MSCs from both human iPSCs and ESCs via a temporal induction of neural ectoderm in chemically defined media. The iPSC- and ESC-derived MSCs satisfy the standard criteria of surface markers. They exhibited a high tri-lineage differentiation potential with over 90% transcriptional similarity to the primary MSCs derived from bone marrow. To evaluate the potential application of this method in disease modeling, MSCs were generated from iPSCs derived from a patient with Hutchinson-Gilford progeria syndrome (HGPS-MSCs) and from mutation-rectified HGPS-iPSCs (cHGPS-MSCs). HGPS-MSCs manifested accelerated senescence whereas mutation rectification rescued cellular senescence in HGPS-MSCs. Conclusions The robust method of MSC derivation from ESCs and iPSCs provides an efficient approach to rapidly generate sufficient MSCs for in vitro disease modeling and clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00753-2.
Collapse
Affiliation(s)
- Wei Jin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Chinese Academy of Sciences Regenerative Medicine of Hong Kong, Hong Kong, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tuo Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, Chang Zheng Hospital, Shanghai, 200003, China
| | - Fei Long
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin Qin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Yuan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute for Aging Research, Guangdong Medical University, Dongguan, China
| | - Ge Gao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hosen Md Shakhawat
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute for Aging Research, Guangdong Medical University, Dongguan, China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Provincial People's Hospital, Guangzhou, China.
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Shenzhen Hospital, The University of Hong Kong, Shenzhen, China.
| |
Collapse
|
16
|
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov 2022; 21:379-399. [PMID: 35236964 DOI: 10.1038/s41573-022-00410-w] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
The field of extracellular vesicle (EV) research has developed rapidly over the last decade from the study of fundamental biology to a subject of significant clinical relevance. The potential of harnessing EVs in the diagnosis and treatment of diseases - including cancer and neurological and cardiovascular disorders - is now being recognized. Accordingly, the applications of EVs as therapeutic targets, biomarkers, novel drug delivery agents and standalone therapeutics are being actively explored. This Review provides a brief overview of the characteristics and physiological functions of the various classes of EV, focusing on their association with disease and emerging strategies for their therapeutic exploitation.
Collapse
Affiliation(s)
- Lesley Cheng
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia. .,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis 2022; 9:296-309. [PMID: 35224147 PMCID: PMC8843883 DOI: 10.1016/j.gendis.2020.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs), multipotent stromal cells, have attracted extensive attention in the field of regenerative medicine and cell therapy due to the capacity of self-renewal, multilineage differentiation, and immune regulation. MSCs have different cellular effects in different diseases, and even have markedly different curative effects with different tissue sources, indicating the plasticity of MSCs. The phenotypes, secreted factors, and proliferative, migratory, differentiating, and immunomodulatory effects of MSCs depend on certain mediators present in their microenvironment. Understanding microenvironmental factors and their internal mechanisms in MSC responses may help in subsequent prediction and improvement of clinical benefits. This review highlighted the recent advances in MSC plasticity in the physiological and pathological microenvironment and multiple microenvironmental factors regulating MSC plasticity. It also highlighted some progress in the underlying molecular mechanisms of MSC remodeling in the microenvironment. It might provide references for the improvement in vitro culture of MSCs, clinical application, and in vivo induction.
Collapse
|
18
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore
| |
Collapse
|
19
|
Ng CY, Chai JY, Foo JB, Mohamad Yahaya NH, Yang Y, Ng MH, Law JX. Potential of Exosomes as Cell-Free Therapy in Articular Cartilage Regeneration: A Review. Int J Nanomedicine 2021; 16:6749-6781. [PMID: 34621125 PMCID: PMC8491788 DOI: 10.2147/ijn.s327059] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/22/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment of cartilage defects such as osteoarthritis (OA) and osteochondral defect (OCD) remains a huge clinical challenge in orthopedics. OA is one of the most common chronic health conditions and is mainly characterized by the degeneration of articular cartilage, shown in the limited capacity for intrinsic repair. OCD refers to the focal defects affecting cartilage and the underlying bone. The current OA and OCD management modalities focus on symptom control and on improving joint functionality and the patient’s quality of life. Cell-based therapy has been evaluated for managing OA and OCD, and its chondroprotective efficacy is recognized mainly through paracrine action. Hence, there is growing interest in exploiting extracellular vesicles to induce cartilage regeneration. In this review, we explore the in vivo evidence of exosomes on cartilage regeneration. A total of 29 in vivo studies from the PubMed and Scopus databases were identified and analyzed. The studies reported promising results in terms of in vivo exosome delivery and uptake; improved cartilage morphological, histological, and biochemical outcomes; enhanced subchondral bone regeneration; and improved pain behavior following exosome treatment. In addition, exosome therapy is safe, as the included studies documented no significant complications. Modifying exosomal cargos further increased the cartilage and subchondral bone regeneration capacity of exosomes. We conclude that exosome administration is a potent cell-free therapy for alleviating OA and OCD. However, additional studies are needed to confirm the therapeutic potential of exosomes and to identify the standard protocol for exosome-based therapy in OA and OCD management.
Collapse
Affiliation(s)
- Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Jia Ying Chai
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
20
|
Sikora B, Skubis-Sikora A, Prusek A, Gola J. Paracrine activity of adipose derived stem cells on limbal epithelial stem cells. Sci Rep 2021; 11:19956. [PMID: 34620960 PMCID: PMC8497478 DOI: 10.1038/s41598-021-99435-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells deficiency (LSCD) is an eye disease caused by the loss of stem cells in the corneal limbus as a succession of an injury due physical, biological, or chemical agents. Current therapies of LSCD are focused on the transplantation of donor corneas or tissue equivalents produced from autologous limbal stem cells. Every year there are waiting millions of patients for the cornea transplantation all over the world and the list is growing due to the relatively low number of cornea donors. On the other hand, the transplantation of tissue or cells into the recipient’s body is associated with the higher risk of possible side effects. The possibility of the application of an indirect treatment using the properties of the paracrine activity of stem cells, would be beneficial for the patients with transplant failures. This study was to evaluate the paracrine effect of mesenchymal stem cells derived from adipose tissue (ADSC) on the viability of limbal epithelial stem cells (LESC). The paracrine effect was assessed by treating LESC with conditioned medium collected from ADSC culture. Cell viability, cytotoxicity, apoptosis and proliferation were evaluated using in vitro assays in standard conditions and induced inflammation. After the exposure to the examined conditions, the expression of genes related to pro- and anti- inflammatory factors was evaluated and compared to the secretion of selected cytokines by ELISA test. Moreover, the changes in LESC phenotype were assessed using of phenotype microarrays. Our findings suggest that paracrine activity of ADSC on LESC promotes its proliferation and has a potential role in mitigation of the adverse impact of inflammation induced by lipopolysaccharide.
Collapse
Affiliation(s)
- Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland.
| | - Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland
| | - Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
21
|
A scaffold-free approach to cartilage tissue generation using human embryonic stem cells. Sci Rep 2021; 11:18921. [PMID: 34584110 PMCID: PMC8478992 DOI: 10.1038/s41598-021-97934-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
Articular cartilage functions as a shock absorber and facilitates the free movement of joints. Currently, there are no therapeutic drugs that promote the healing of damaged articular cartilage. Limitations associated with the two clinically relevant cell populations, human articular chondrocytes and mesenchymal stem cells, necessitate finding an alternative cell source for cartilage repair. Human embryonic stem cells (hESCs) provide a readily accessible population of self-renewing, pluripotent cells with perceived immunoprivileged properties for cartilage generation. We have developed a robust method to generate 3D, scaffold-free, hyaline cartilage tissue constructs from hESCs that are composed of numerous chondrocytes in lacunae, embedded in an extracellular matrix containing Type II collagen, sulphated glycosaminoglycans and Aggrecan. The elastic (Young's) modulus of the hESC-derived cartilage tissue constructs (0.91 ± 0.08 MPa) was comparable to full-thickness human articular cartilage (0.87 ± 0.09 MPa). Moreover, we have successfully scaled up the size of the scaffold-free, 3D hESC-derived cartilage tissue constructs to between 4.5 mm and 6 mm, thus enhancing their suitability for clinical application.
Collapse
|
22
|
Pluripotent-derived Mesenchymal Stem/stromal Cells: an Overview of the Derivation Protocol Efficacies and the Differences Among the Derived Cells. Stem Cell Rev Rep 2021; 18:94-125. [PMID: 34545529 DOI: 10.1007/s12015-021-10258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are remarkable tools for regenerative medicine. Therapeutic approaches using these cells can promote increased activity and viability in several cell types through diverse mechanisms such as paracrine and immunomodulatory activities, contributing substantially to tissue regeneration and functional recovery. However, biological samples of human MSCs, usually obtained from adult tissues, often exhibit variable behavior during in vitro culture, especially with respect to cell population heterogeneity, replicative senescence, and consequent loss of functionality. Accordingly, it is necessary to establish standard protocols to generate high-quality, stable cell cultures, for example, by using pluripotent stem cells (PSCs) in derivation protocols of MSC-like cells since PSCs maintain their characteristics consistently during culture. However, the available protocols seem to generate distinct populations of PSC-derivedMSCs (PSC-MSCs) with peculiar attributes, which do not always resemble bona fide primary MSCs. The present review addresses the developmental basis behind some of these derivation protocols, exposing the differences among them and discussing the functional properties of PSC-MSCs, shedding light on elements that may help determine standard characterizations and criteria to evaluate and define these cells.
Collapse
|
23
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
24
|
Shrestha M, Nguyen TT, Park J, Choi JU, Yook S, Jeong JH. Immunomodulation effect of mesenchymal stem cells in islet transplantation. Biomed Pharmacother 2021; 142:112042. [PMID: 34403963 DOI: 10.1016/j.biopha.2021.112042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy has brought a great enthusiasm to the treatment of various immune disorders, tissue regeneration and transplantation therapy. MSCs are being extensively investigated for their immunomodulatory actions. MSCs can deliver immunomodulatory signals to inhibit allogeneic T cell immune responses by downregulating pro-inflammatory cytokines and increasing regulatory cytokines and growth factors. Islet transplantation is a therapeutic alternative to the insulin therapy for the treatment of type 1 diabetes mellitus (T1DM). However, the acute loss of islets due to the lack of vasculature and hypoxic milieu in the immediate post-transplantation period may lead to treatment failure. Moreover, despite the use of potent immunosuppressive drugs, graft failure persists because of immunological rejection. Many in vitro and in vivo researches have demonstrated the multipotency of MSCs as a mediator of immunomodulation and a great approach for enhancement of islet engraftment. MSCs can interact with immune cells of the innate and adaptive immune systems via direct cell-cell contact or through secretomes containing numerous soluble growth and immunomodulatory factors or mitochondrial transfer. This review highlights the interactions between MSCs and different immune cells to mediate immunomodulatory functions along with the importance of MSCs therapy for the successful islet transplantation.
Collapse
Affiliation(s)
- Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jeong Uk Choi
- College of Pharmacy, Chonnam University, Gwangju 61186, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
25
|
Mesenchymal stromal cells in the bone marrow niche consist of multi-populations with distinct transcriptional and epigenetic properties. Sci Rep 2021; 11:15811. [PMID: 34349154 PMCID: PMC8338933 DOI: 10.1038/s41598-021-94186-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles. We then separately obtained the seven populations based on candidate marker genes, and specified their gene expression properties and epigenetic landscape by ATAC-seq. Our findings will enable to elucidate the stem cell niche signal in the bone marrow microenvironment, reconstitute bone marrow in vitro, and shed light on the potentially important role of identified subpopulation in various clinical applications to the treatment of bone- and bone marrow-related diseases.
Collapse
|
26
|
Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 2021; 140:111709. [PMID: 34020250 DOI: 10.1016/j.biopha.2021.111709] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the success of mesenchymal stem cells (MSCs) therapy against experimental stroke is mainly due to cellular paracrine manners rather than to replace lost tissue per se. Given such "bystander" effects, cell-free therapeutics manifest as a promising approach in regenerative medicine. Here we aimed at evaluating the effect of conditioned medium (CM) derived from human embryonic MSCs (hESC-MSC) on the neurological deficit, neurogenesis, and angiogenesis in experimental stroke. Adult male Wistar rats subjected to middle cerebral artery occlusion (MCAO), were treated with intracerebroventricular CM either one time (1 h post MCAO) or three times (1, 24, and 48 h post MCAO). Motor performance was assessed by the cylinder test on days 3 and 7. Cerebral samples were obtained for infarct size and molecular analysis on day 7 post-injury. Neurogenesis was evaluated by probing Nestin, Ki67, DCX, and Reelin transcripts and protein levels in the striatum, cortex, subventricular zone, and corpus callosum. The mRNA and protein expression of CD31 were also assessed in the striatum and cortical region to estimate angiogenesis post MCAO. Our findings demonstrate that CM treatment could significantly ameliorate neurological deficits and infarct volume in MCAO rats. Furthermore, ischemic stroke was associated with higher levels of neurogenesis and angiogenesis markers. Following treatment with CM, these markers were further potentiated in the brain regions. This study suggests that the therapeutic benefits of CM obtained from hESC-MSCs at least partly are mediated through improved neurogenesis and angiogenesis to accelerate the recovery of cerebral ischemia insult.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Wang LT, Liu KJ, Sytwu HK, Yen ML, Yen BL. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: Use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Transl Med 2021; 10:1288-1303. [PMID: 34008922 PMCID: PMC8380447 DOI: 10.1002/sctm.21-0021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell therapy (MSCT) for immune and inflammatory diseases continues to be popular based on progressive accumulation of preclinical mechanistic evidence. This has led to further expansion in clinical indications from graft rejection, autoimmune diseases, and osteoarthritis, to inflammatory liver and pulmonary diseases including COVID‐19. A clear trend is the shift from using autologous to allogeneic MSCs, which can be immediately available as off‐the‐shelf products. In addition, new products such as cell‐free exosomes and human pluripotent stem cell (hPSC)‐derived MSCs are exciting developments to further prevalent use. Increasing numbers of trials have now published results in which safety of MSCT has been largely demonstrated. While reports of therapeutic endpoints are still emerging, efficacy can be seen for specific indications—including graft‐vs‐host‐disease, strongly Th17‐mediated autoimmune diseases, and osteoarthritis—which are more robustly supported by mechanistic preclinical evidence. In this review, we update and discuss outcomes in current MSCT clinical trials for immune and inflammatory disease, as well as new innovation and emerging trends in the field.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan, Republic of China.,Department & Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, NHRI, Zhunan, Taiwan, Republic of China
| |
Collapse
|
28
|
Sagiv E, Portman MA. CD24 for Cardiovascular Researchers: A Key Molecule in Cardiac Immunology, Marker of Stem Cells and Target for Drug Development. J Pers Med 2021; 11:jpm11040260. [PMID: 33915986 PMCID: PMC8066264 DOI: 10.3390/jpm11040260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the membrane protein, CD24, and its emerging role in major disease processes, has made a huge leap forward in the past two decades. It appears to have various key roles in oncogenesis, tumor progression and metastasis, stem cell maintenance and immune modulation. First described in the 1980s as the homologous human protein to the mouse HSA (Heat Stable Antigen), it was reported as a surface marker in developing hematopoietic cell lines. The later discovery of its overexpression in a large number of human neoplasms, lead cancer researchers to discover its various active roles in critical checkpoints during cancer development and progression. Targeting CD24 in directed drug development showed promising results in cancer treatment. More recently, the chimeric CD24-Fc protein has shown exciting results in clinical trials as a specific modulator of auto-inflammatory syndromes. This report is aimed to summarize the relevant literature on CD24 and tie it together with recent advancements in cardiovascular research. We hypothesize that CD24 is a promising focus of research in the understanding of cardiovascular disease processes and the development of novel biological therapies.
Collapse
Affiliation(s)
- Eyal Sagiv
- Correspondence: ; Tel.: +1-206-987-6916; Fax: +1-206-987-3839
| | | |
Collapse
|
29
|
Corneal reconstruction in chemically damaged cornea using temperature responsive surface assisted mesenchymal stem cell transplantation in rabbits. Graefes Arch Clin Exp Ophthalmol 2021; 259:1859-1870. [PMID: 33754210 DOI: 10.1007/s00417-021-05132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Transplantation of autologous stem cells over damaged cornea seems to be a promising approach for corneal reconstruction. Use of a biocompatible carrier is still a challenge in bedside translation of transplantation. We investigated corneal reconstruction and tissue remodelling by transplantation of mesenchymal stem cells (MSCs) using temperature responsive membranes in chemically damaged rabbit cornea model. METHODS MSCs were cultured from rabbit's bone marrow and transplanted over alkali injured cornea, using either temperature responsive membrane or fibrin glue method. Endogenous levels of MSCs were assessed to decide the optimal time point for transplanting cells. MSC transplanted corneas were harvested at different time points post-transplantation. Corneal repair markers were evaluated using histopathology, immunohistochemistry (IHC) and real time qPCR. The quality of cornea reconstructed was evaluated and compared using corneal opacity scoring and immunohistochemistry (IHC). RESULTS Use of temperature responsive surface as carrier resulted in uniform and homogenous delivery of MSCs sheet over the damaged corneal surface. Corneal transparency improved day 7 onwards post-MSC transplantation in rabbit chemically injured cornea. Complete re-epithelialization of injured cornea was observed 15 days after MSC transplantation. Restoration of vimentin, α-smooth muscle actin and collagen levels in MSC transplanted cornea was observed post-transplantation. Further, differentiation of MSCs into mature corneal epithelial cells was also observed upon transplantation. CONCLUSIONS The extent of corneal repair was apparently better using temperature responsive surfaces. The surface provides biocompatible niche for MSCs and can be a method of choice in clinics for cell transplantation over the damaged ocular surfaces.
Collapse
|
30
|
Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052619. [PMID: 33807695 PMCID: PMC7961389 DOI: 10.3390/ijms22052619] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative and chronic joint disease characterized by clinical symptoms and distortion of joint tissues. It primarily damages joint cartilage, causing pain, swelling, and stiffness around the joint. It is the major cause of disability and pain. The prevalence of OA is expected to increase gradually with the aging population and increasing prevalence of obesity. Many potential therapeutic advances have been made in recent years due to the improved understanding of the underlying mechanisms, diagnosis, and management of OA. Embryonic stem cells and induced pluripotent stem cells differentiate into chondrocytes or mesenchymal stem cells (MSCs) and can be used as a source of injectable treatments in the OA joint cavity. MSCs are known to be the most studied cell therapy products in cell-based OA therapy owing to their ability to differentiate into chondrocytes and their immunomodulatory properties. They have the potential to improve cartilage recovery and ultimately restore healthy joints. However, despite currently available therapies and advances in research, unfulfilled medical needs persist for OA treatment. In this review, we focused on the contents of non-cellular and cellular therapies for OA, and briefly summarized the results of clinical trials for cell-based OA therapy to lay a solid application basis for clinical research.
Collapse
|
31
|
Javidpou M, Seifati SM, Farashahi-Yazd E, Hajizadeh-Tafti F, Golzadeh J, Akyash F, Aflatoonian B. Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles. IRANIAN BIOMEDICAL JOURNAL 2021; 25:99-105. [PMID: 33465842 PMCID: PMC7921525 DOI: 10.29252/ibj.25.2.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: hESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed for CD44, CD73, CD90, and CD105 markers. Moreover, these fibroblast-like cells, due to multipotent characteristics, differentiated to the osteoblast. Results: MSCs were derived from diploid and triploid hESC lines using sequential 3D and 2D cultures and characterized with the specific markers. IF showed the expression of FIBRONECTIN and CD105 in hESCs-MSCs. Flow cytometry data indicated no significant difference in the expression of MSC markers after 6 and 13 passages. Interestingly, gene expression profiles revealed slight differences between MSCs from diploid and triploid hESCs. The hESCs-MSCs displayed osteogenic differentiation capacity, which was confirmed by Alizarin red staining. Conclusion: Our findings reveal that both diploid and triploid hESC lines are capable of forming MSCs; however, there are some differences in their gene expression profiles. Generation of MSCs from hESCs, as a non-invasive procedure in large scale, will lend itself for the future cell-based therapeutic applications.
Collapse
Affiliation(s)
- Mahdieh Javidpou
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Seyed-Morteza Seifati
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Ehsan Farashahi-Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jalal Golzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Akyash
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
32
|
Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:ijms22052410. [PMID: 33673711 PMCID: PMC7957487 DOI: 10.3390/ijms22052410] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.
Collapse
|
33
|
Xu A, Huang MF, Zhu D, Gingold JA, Bazer DA, Chang B, Wang D, Lai CC, Lemischka IR, Zhao R, Lee DF. LncRNA H19 Suppresses Osteosarcomagenesis by Regulating snoRNAs and DNA Repair Protein Complexes. Front Genet 2021; 11:611823. [PMID: 33519915 PMCID: PMC7844330 DOI: 10.3389/fgene.2020.611823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is one of the most frequent common primary malignant tumors in childhood and adolescence. Long non-coding RNAs (lncRNAs) have been reported to regulate the initiation and progression of tumors. However, the exact molecular mechanisms involving lncRNA in osteosarcomagenesis remain largely unknown. Li-Fraumeni syndrome (LFS) is a familial cancer syndrome caused by germline p53 mutation. We investigated the tumor suppressor function of lncRNA H19 in LFS-associated osteosarcoma. Analyzing H19-induced transcriptome alterations in LFS induced pluripotent stem cell (iPSC)-derived osteoblasts, we unexpectedly discovered a large group of snoRNAs whose expression was significantly affected by H19. We identified SNORA7A among the H19-suppressed snoRNAs. SNORA7A restoration impairs H19-mediated osteogenesis and tumor suppression, indicating an oncogenic role of SNORA7A. TCGA analysis indicated that SNORA7A expression is associated with activation of oncogenic signaling and poor survival in cancer patients. Using an optimized streptavidin-binding RNA aptamer designed from H19 lncRNA, we revealed that H19-tethered protein complexes include proteins critical for DNA damage response and repair, confirming H19's tumor suppressor role. In summary, our findings demonstrate a critical role of H19-modulated SNORA7A expression in LFS-associated osteosarcomas.
Collapse
Affiliation(s)
- An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian A Gingold
- Department of Obstetrics and Gynecology and Women's Health, Einstein/Montefiore Medical Center, Bronx, NY, United States
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Betty Chang
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donghui Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
34
|
Markers of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Human Mesenchymal Stem Cells: The Present Alternative for High-Incidence Diseases, Even SARS-Cov-2. Stem Cells Int 2020; 2020:8892189. [PMID: 33414832 PMCID: PMC7769649 DOI: 10.1155/2020/8892189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs), defined as plastic adherent cells with multipotent differentiation capacity in vitro, are an emerging and valuable tool to treat a plethora of diseases due to their therapeutic mechanisms such as their paracrine activity, mitochondrial and organelle transfer, and transfer of therapeutic molecules via exosomes. Nowadays, there are more than a thousand registered clinical trials related to MSC application around the world, highlighting MSC role on difficult-to-treat high-incidence diseases such as the current COVID-19, HIV infections, and autoimmune and metabolic diseases. Here, we summarize a general overview of MSCs and their therapeutic mechanisms; also, we discuss some of the novel clinical trial protocols and their results as well as a comparison between the number of registries, countries, and search portals.
Collapse
|
36
|
Srinivasan A, Teo N, Poon KJ, Tiwari P, Ravichandran A, Wen F, Teoh SH, Lim TC, Toh YC. Comparative Craniofacial Bone Regeneration Capacities of Mesenchymal Stem Cells Derived from Human Neural Crest Stem Cells and Bone Marrow. ACS Biomater Sci Eng 2020; 7:207-221. [PMID: 33455206 DOI: 10.1021/acsbiomaterials.0c00878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Most craniofacial bones are derived from the ectodermal germ layer via neural crest stem cells, which are distinct from mesoderm-derived long bones. However, current craniofacial bone tissue engineering approaches do not account for this difference and utilize mesoderm-derived bone marrow mesenchymal stem cells (BM-MSCs) as a paradigm cell source. The effect of the embryonic origin (ontogeny) of an MSC population on its osteogenic differentiation potential and regenerative ability still remains unresolved. To clarify the effects of MSC ontogeny on bone regenerative ability, we directly compared the craniofacial bone regenerative abilities of an ecto-mesenchymal stem cell (eMSC) population, which is derived from human embryonic stem cells via a neural crest intermediate, with mesodermal adult BM-MSCs. eMSCs showed comparable osteogenic and chondrogenic ability to BM-MSCs in 2-D in vitro culture, but lower adipogenic ability. They exhibited greater proliferation than BM-MSCs and comparable construct mineralization in a well-established 3-D polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold system in vitro. eMSC-derived 3D osteogenic constructs were maintained for longer in a proliferative osteoblast state and exhibited differential levels of genes related to fibroblast growth factor (FGF) signaling compared to BM-MSCs. Although both eMSC and BM-MSC-seeded scaffold constructs could promote bone regeneration in a rat calvarial defect model, eMSC-derived osseous constructs had significantly higher cellularity due to increased number of proliferative (Ki67+) cells than those seeded with BM-MSCs, and exhibited enhanced new bone formation in the defect area as compared to untreated controls. Overall, our study demonstrates the potential of human eMSCs for future clinical use in craniofacial regeneration applications and indicates the importance of considering MSC origin when selecting an MSC source for regenerative applications.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore, 117583.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288.,NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore, 117510
| | - Nelson Teo
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228
| | - Kei Jun Poon
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228
| | - Priya Tiwari
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, National University Hospital, 1E Kent Ridge Road, Singapore, 119228
| | - Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering & Lee Kong Chian School of Medicine, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459.,School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia
| | - Feng Wen
- School of Chemical and Biomedical Engineering & Lee Kong Chian School of Medicine, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering & Lee Kong Chian School of Medicine, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Thiam Chye Lim
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, National University Hospital, 1E Kent Ridge Road, Singapore, 119228
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore, 117583.,NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore, 117510.,School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
37
|
Induced Pluripotent Stem Cell-Differentiated Chondrocytes Repair Cartilage Defect in a Rabbit Osteoarthritis Model. Stem Cells Int 2020; 2020:8867349. [PMID: 33224204 PMCID: PMC7671807 DOI: 10.1155/2020/8867349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to explore the therapeutic effect of iPSC-mesenchymal stem cell (MSC)-derived chondrocytes in a rabbit osteoarthritis (OA) model. The iPSCs were characterized by gene expressions, immunostaining of pluripotent markers, and in vivo teratoma formation. iPSC-differentiated MSCs were characterized by flow cytometry and trilineage differentiation. A rabbit OA model was established by the transection of the anterior cruciate ligament. The therapeutic effect of transplanted iPSC-MSC-chondrocytes on the OA was evaluated by the histology, immunostaining, and qPCR of defective cartilage. The results showed iPSC could express pluripotency markers such as OCT4, SOX2, and NANOG and form an embryoid body and a teratoma. After differentiation of iPSCs for 30 days, MSCs were established. The iPSC-MSC could express typical MSC markers such as CD29, CD44, CD90, CD105, and HLA-ABC. They could differentiate into adipocytes, osteocytes, and chondrocytes. In this model, iPSC-MSC-chondrocytes significantly improved the histology and ICRS (International Cartilage Repair Society) scores. The transplanted cartilage expressed less IL-1β, TNF-α, and MMP13 than control cartilage. In conclusion, the iPSCs we derived might represent an emerging source for differentiated MSC-chondrocyte and might rescue cartilage defects through its anti-inflammatory and anti-catabolic effects.
Collapse
|
38
|
Sfougataki I, Varela I, Stefanaki K, Karagiannidou A, Roubelakis MG, Kalodimou V, Papathanasiou I, Traeger-Synodinos J, Kitsiou-Tzeli S, Kanavakis E, Kitra V, Tsezou A, Tzetis M, Goussetis E. Proliferative and chondrogenic potential of mesenchymal stromal cells from pluripotent and bone marrow cells. Histol Histopathol 2020; 35:1415-1426. [PMID: 32959885 DOI: 10.14670/hh-18-259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) can be derived from a wide range of fetal and adult sources including pluripotent stem cells (PSCs). The properties of PSC-derived MSCs need to be fully characterized, in order to evaluate the feasibility of their use in clinical applications. PSC-MSC proliferation and differentiation potential in comparison with bone marrow (BM)-MSCs is still under investigation. The objective of this study was to determine the proliferative and chondrogenic capabilities of both human induced pluripotent stem cell (hiPSC-) and embryonic stem cell (hESC-) derived MSCs, by comparing them with BM-MSCs. METHODS MSCs were derived from two hiPSC lines (hiPSC-MSCs), the well characterized Hues9 hESC line (hESC-MSCs) and BM from two healthy donors (BM-MSCs). Proliferation potential was investigated using appropriate culture conditions, with serial passaging, until cells entered into senescence. Differentiation potential to cartilage was examined after in vitro chondrogenic culture conditions. RESULTS BM-MSCs revealed a fold expansion of 1.18x10⁵ and 2.3x10⁵ while the two hiPSC-MSC lines and hESC-MSC showed 5.88x10¹⁰, 3.49x10⁸ and 2.88x10⁸, respectively. Under chondrogenic conditions, all MSC lines showed a degree of chondrogenesis. However, when we examined the formed chondrocyte micromasses by histological analysis of the cartilage morphology and immunohistochemistry for the chondrocyte specific markers Sox9 and Collagen II, we observed that PSC-derived MSC lines had formed pink rather than hyaline cartilage, in contrast to BM-MSCs. CONCLUSION In conclusion, MSCs derived from both hESCs and hiPSCs had superior proliferative capacity compared to BM-MSCs, but they were inefficient in their ability to form hyaline cartilage.
Collapse
Affiliation(s)
- Irene Sfougataki
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece.,Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Aghia Sophia Children's Hospital, Athens, Greece.
| | - Ioanna Varela
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Kalliope Stefanaki
- Department of Histopathology, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Kalodimou
- Flow Cytometry-Research and Regenerative Medicine Department, IASO Hospital, Athens, Greece
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessally, Thessally, Greece
| | - Joanne Traeger-Synodinos
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel Kanavakis
- Genesis Genoma Lab, Genetic diagnosis, Clinical Genetics and Research, Chalandri, Greece
| | - Vasiliki Kitra
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessally, Thessally, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
39
|
Jonsdottir-Buch SM, Gunnarsdottir K, Sigurjonsson OE. Human Embryonic-Derived Mesenchymal Progenitor Cells (hES-MP Cells) are Fully Supported in Culture with Human Platelet Lysates. Bioengineering (Basel) 2020; 7:bioengineering7030075. [PMID: 32698321 PMCID: PMC7552691 DOI: 10.3390/bioengineering7030075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells are mesenchymal-like cells, derived from human embryonic stem cells without the aid of feeder cells. They have been suggested as a potential alternative to mesenchymal stromal cells (MSCs) in regenerative medicine due to their mesenchymal-like proliferation and differentiation characteristics. Cells and cell products intended for regenerative medicine in humans should be derived, expanded and differentiated using conditions free of animal-derived products to minimize risk of animal-transmitted disease and immune reactions to foreign proteins. Human platelets are rich in growth factors needed for cell culture and have been used successfully as an animal serum replacement for MSC expansion and differentiation. In this study, we compared the proliferation of hES-MP cells and MSCs; the hES-MP cell growth was sustained for longer than that of MSCs. Growth factors, gene expression, and surface marker expression in hES-MP cells cultured with either human platelet lysate (hPL) or fetal bovine serum (FBS) supplementation were compared, along with differentiation to osteogenic and chondrogenic lineages. Despite some differences between hES-MP cells grown in hPL- and FBS-supplemented media, hPL was found to be a suitable replacement for FBS. In this paper, we demonstrate for the first time that hES-MP cells can be grown using platelet lysates from expired platelet concentrates (hPL).
Collapse
Affiliation(s)
- Sandra M. Jonsdottir-Buch
- The Blood Bank, Landspitali—The National University Hospital of Iceland, Snorrabraut 60, 101 Reykjavik, Iceland; (S.M.J.-B.); (K.G.)
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
- Platome Biotechnology, Alfaskeid 27, 220 Hafnarfjordur, Iceland
| | - Kristbjorg Gunnarsdottir
- The Blood Bank, Landspitali—The National University Hospital of Iceland, Snorrabraut 60, 101 Reykjavik, Iceland; (S.M.J.-B.); (K.G.)
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Olafur E. Sigurjonsson
- The Blood Bank, Landspitali—The National University Hospital of Iceland, Snorrabraut 60, 101 Reykjavik, Iceland; (S.M.J.-B.); (K.G.)
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
- Platome Biotechnology, Alfaskeid 27, 220 Hafnarfjordur, Iceland
- School of Science and Engineering, University of Reykjavik, Menntavegur 1, 101 Reykjavik, Iceland
- Correspondence: ; Tel.: +354-543-5523 or +354-694-9427
| |
Collapse
|
40
|
Temporal TGF-β Supergene Family Signalling Cues Modulating Tissue Morphogenesis: Chondrogenesis within a Muscle Tissue Model? Int J Mol Sci 2020; 21:ijms21144863. [PMID: 32660137 PMCID: PMC7402331 DOI: 10.3390/ijms21144863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Temporal translational signalling cues modulate all forms of tissue morphogenesis. However, if the rules to obtain specific tissues rely upon specific ligands to be active or inactive, does this mean we can engineer any tissue from another? The present study focused on the temporal effect of “multiple” morphogen interactions on muscle tissue to figure out if chondrogenesis could be induced, opening up the way for new tissue models or therapies. Gene expression and histomorphometrical analysis of muscle tissue exposed to rat bone morphogenic protein 2 (rBMP-2), rat transforming growth factor beta 3 (rTGF-β3), and/or rBMP-7, including different combinations applied briefly for 48 h or continuously for 30 days, revealed that a continuous rBMP-2 stimulation seems to be critical to initiate a chondrogenesis response that was limited to the first seven days of culture, but only in the absence of rBMP-7 and/or rTGF-β3. After day 7, unknown modulatory effects retard rBMP-2s’ effect where only through the paired-up addition of rBMP-7 and/or rTGF-β3 a chondrogenesis-like reaction seemed to be maintained. This new tissue model, whilst still very crude in its design, is a world-first attempt to better understand how multiple morphogens affect tissue morphogenesis with time, with our goal being to one day predict the chronological order of what signals have to be applied, when, for how long, and with which other signals to induce and maintain a desired tissue morphogenesis.
Collapse
|
41
|
Nakayama N, Pothiawala A, Lee JY, Matthias N, Umeda K, Ang BK, Huard J, Huang Y, Sun D. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cell Mol Life Sci 2020; 77:2543-2563. [PMID: 31915836 PMCID: PMC11104892 DOI: 10.1007/s00018-019-03445-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The cartilage of joints, such as meniscus and articular cartilage, is normally long lasting (i.e., permanent). However, once damaged, especially in large animals and humans, joint cartilage is not spontaneously repaired. Compensating the lack of repair activity by supplying cartilage-(re)forming cells, such as chondrocytes or mesenchymal stromal cells, or by transplanting a piece of normal cartilage, has been the basis of therapy for biological restoration of damaged joint cartilage. Unfortunately, current biological therapies face problems on a number of fronts. The joint cartilage is generated de novo from a specialized cell type, termed a 'joint progenitor' or 'interzone cell' during embryogenesis. Therefore, embryonic chondroprogenitors that mimic the property of joint progenitors might be the best type of cell for regenerating joint cartilage in the adult. Pluripotent stem cells (PSCs) are expected to differentiate in culture into any somatic cell type through processes that mimic embryogenesis, making human (h)PSCs a promising source of embryonic chondroprogenitors. The major research goals toward the clinical application of PSCs in joint cartilage regeneration are to (1) efficiently generate lineage-specific chondroprogenitors from hPSCs, (2) expand the chondroprogenitors to the number needed for therapy without loss of their chondrogenic activity, and (3) direct the in vivo or in vitro differentiation of the chondroprogenitors to articular or meniscal (i.e., permanent) chondrocytes rather than growth plate (i.e., transient) chondrocytes. This review is aimed at providing the current state of research toward meeting these goals. We also include our recent achievement of successful generation of "permanent-like" cartilage from long-term expandable, hPSC-derived ectomesenchymal chondroprogenitors.
Collapse
Affiliation(s)
- Naoki Nakayama
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA.
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA.
| | - Azim Pothiawala
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - John Y Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadine Matthias
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - Katsutsugu Umeda
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Department of Pediatrics, Kyoto University School of Medicine, Kyoto, Japan
| | - Bryan K Ang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yun Huang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Deqiang Sun
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
42
|
Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res 2020; 30:794-809. [PMID: 32546764 PMCID: PMC7296193 DOI: 10.1038/s41422-020-0354-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023] Open
Abstract
Lung injury and fibrosis represent the most significant outcomes of severe and acute lung disorders, including COVID-19. However, there are still no effective drugs to treat lung injury and fibrosis. In this study, we report the generation of clinical-grade human embryonic stem cells (hESCs)-derived immunity- and matrix-regulatory cells (IMRCs) produced under good manufacturing practice requirements, that can treat lung injury and fibrosis in vivo. We generate IMRCs by sequentially differentiating hESCs with serum-free reagents. IMRCs possess a unique gene expression profile distinct from that of umbilical cord mesenchymal stem cells (UCMSCs), such as higher expression levels of proliferative, immunomodulatory and anti-fibrotic genes. Moreover, intravenous delivery of IMRCs inhibits both pulmonary inflammation and fibrosis in mouse models of lung injury, and significantly improves the survival rate of the recipient mice in a dose-dependent manner, likely through paracrine regulatory mechanisms. IMRCs are superior to both primary UCMSCs and the FDA-approved drug pirfenidone, with an excellent efficacy and safety profile in mice and monkeys. In light of public health crises involving pneumonia, acute lung injury and acute respiratory distress syndrome, our findings suggest that IMRCs are ready for clinical trials on lung disorders.
Collapse
|
43
|
Floriano JF, Willis G, Catapano F, de Lima PR, Reis FVDS, Barbosa AMP, Rudge MVC, Emanueli C. Exosomes Could Offer New Options to Combat the Long-Term Complications Inflicted by Gestational Diabetes Mellitus. Cells 2020; 9:E675. [PMID: 32164322 PMCID: PMC7140615 DOI: 10.3390/cells9030675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes Mellitus (GDM) is a complex clinical condition that promotes pelvic floor myopathy, thus predisposing sufferers to urinary incontinence (UI). GDM usually regresses after birth. Nonetheless, a GDM history is associated with higher risk of subsequently developing type 2 diabetes, cardiovascular diseases (CVD) and UI. Some aspects of the pathophysiology of GDM remain unclear and the associated pathologies (outcomes) are poorly addressed, simultaneously raising public health costs and diminishing women's quality of life. Exosomes are small extracellular vesicles produced and actively secreted by cells as part of their intercellular communication system. Exosomes are heterogenous in their cargo and depending on the cell sources and environment, they can mediate both pathogenetic and therapeutic functions. With the advancement in knowledge of exosomes, new perspectives have emerged to support the mechanistic understanding, prediction/diagnosis and ultimately, treatment of the post-GMD outcomes. Here, we will review recent advances in knowledge of the role of exosomes in GDM and related areas and discuss the possibilities for translating exosomes as therapeutic agents in the GDM clinical setting.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Gareth Willis
- Division of Newborn Medicine/Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| | - Patrícia Rodrigues de Lima
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | | | - Angélica Mercia Pascon Barbosa
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Marilza Vieira Cunha Rudge
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
44
|
Gao JY, Zhang W, Hu SQ, Zhang L, Chen TY, Tang B, Zhang ZJ, Hu JB. In vitro and in vivo induction of human embryonic stem cells differentiated into rosette neural stem cells and further generation of neuron-like cells. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1808082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jian-Yi Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
- Department of Microbiology and Immunology, the Affiliated 3201 Hospital of Medical School, Xi’an Jiaotong University, Hanzhong, People’s Republic of China
| | - San-Qiang Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Lei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
- Translational Medical Center, Department of Laboratory Medicine, the Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Tian-Yan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Bin Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhi-jian Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jia-Bo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
45
|
Kim S, Kim TM. Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J Stem Cells 2019; 11:270-280. [PMID: 31171955 PMCID: PMC6545523 DOI: 10.4252/wjsc.v11.i5.270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.
Collapse
Affiliation(s)
- Soo Kim
- Brexogen Research Center, Brexogen Inc., Seoul, Songpa-gu 05718, South Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Gangwon-do, Pyeongchang 25354, South Korea
| |
Collapse
|
46
|
Li B, Leung JCK, Chan LYY, Yiu WH, Li Y, Lok SWY, Liu WH, Chan KW, Tse HF, Lai KN, Tang SCW. Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Transl Med 2019; 8:898-910. [PMID: 31054183 PMCID: PMC6708066 DOI: 10.1002/sctm.18-0265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the understanding of lipid metabolism suggest a critical role of endoplasmic reticulum (ER) stress in obesity‐induced kidney injury. Hepatocyte growth factor (HGF) is a pleiotropic cytokine frequently featured in stem cell therapy with distinct renotropic benefits. This study aims to define the potential link between human induced pluripotent stem cell‐derived mesenchymal stem cells (iPS‐MSCs)/bone marrow‐derived MSCs (BM‐MSCs) and ER stress in lipotoxic kidney injury induced by palmitic acid (PA) in renal tubular cells and by high‐fat diet (HFD) in mice. iPS‐MSCs or BM‐MSCs alleviated ER stress (by preventing induction of Bip, chop, and unfolded protein response), inflammation (Il6, Cxcl1, and Cxcl2), and apoptosis (Bax/Bcl2 and terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick end labeling‐positive cells) in renal cortex of animals exposed to HFD thus mitigating histologic damage and albuminuria, via activating HGF/c‐Met paracrine signaling that resulted in enhanced HGF secretion in the glomerular compartment and c‐Met expression in the tubules. Coculture experiments identified glomerular endothelial cells (GECs) to be the exclusive source of glomerular HGF when incubated with either iPS‐MSCs or BM‐MSCs in the presence of PA. Furthermore, both GEC‐derived HGF and exogenous recombinant HGF attenuated PA‐induced ER stress in cultured tubular cells, and this effect was abrogated by a neutralizing anti‐HGF antibody. Taken together, this study is the first to demonstrate that MSCs ameliorate lipotoxic kidney injury via a novel microenvironment‐dependent paracrine HGF/c‐Met signaling mechanism to suppress ER stress and its downstream pro‐inflammatory and pro‐apoptotic consequences. stem cells translational medicine2019;8:898&910
Collapse
Affiliation(s)
- Bin Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Joseph C K Leung
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Ye Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Sarah W Y Lok
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Wing Han Liu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Hung Fat Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| |
Collapse
|
47
|
Abdal Dayem A, Lee SB, Kim K, Lim KM, Jeon TI, Seok J, Cho ASG. Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. Int J Mol Sci 2019; 20:ijms20081922. [PMID: 31003536 PMCID: PMC6514654 DOI: 10.3390/ijms20081922] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | | | | | | | | | | | | |
Collapse
|
48
|
Jun SM, Park M, Lee JY, Jung S, Lee JE, Shim SH, Song H, Lee DR. Single cell-derived clonally expanded mesenchymal progenitor cells from somatic cell nuclear transfer-derived pluripotent stem cells ameliorate the endometrial function in the uterus of a murine model with Asherman's syndrome. Cell Prolif 2019; 52:e12597. [PMID: 30896075 PMCID: PMC6536448 DOI: 10.1111/cpr.12597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Because primary mesenchymal progenitor cells (adult‐MPCs) have various functions that depend on the tissue origin and donor, de novo MPCs from human pluripotent stem cells (hPSCs) would be required in regenerative medicine. However, the characteristics and function of MPCs derived from reprogrammed hPSCs have not been well studied. Thus, we show that functional MPCs can be successfully established from a single cell‐derived clonal expansion following MPC derivation from somatic cell nuclear transfer‐derived (SCNT)‐hPSCs, and these cells can serve as therapeutic contributors in an animal model of Asherman's syndrome (AS). Materials and methods We developed single cell‐derived clonal expansion following MPC derivation from SCNT‐hPSCs to offer a pure population and a higher biological activity. Additionally, we investigated the therapeutic effects of SCNT‐hPSC‐MPCs in model mice of Asherman's syndrome (AS), which is characterized by synechiae or fibrosis with endometrial injury. Results Their humoral effects in proliferating host cells encouraged angiogenesis and decreased pro‐inflammatory factors via a host‐dependent mechanism, resulting in reduction in AS. We also addressed that cellular activities such as the cell proliferation and population doubling of SCNT‐hPSC‐MPCs resemble those of human embryonic stem cell‐derived MPCs (hESC‐MPCs) and are much higher than those of adult‐MPCs. Conclusions Somatic cell nuclear transfer‐derived‐hPSCs‐MPCs could be an advanced therapeutic strategy for specific diseases in the field of regenerative medicine.
Collapse
Affiliation(s)
- Sung-Min Jun
- CHA Advanced Research Institute, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Ji Yoon Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | | | | | - Sung Han Shim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong Ryul Lee
- CHA Advanced Research Institute, Seongnam, Korea.,Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
49
|
Devito L, Klontzas ME, Cvoro A, Galleu A, Simon M, Hobbs C, Dazzi F, Mantalaris A, Khalaf Y, Ilic D. Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Cell Death Dis 2019; 10:277. [PMID: 30894508 PMCID: PMC6426992 DOI: 10.1038/s41419-019-1498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Variability among donors, non-standardized methods for isolation, and characterization contribute to mesenchymal stem/stromal cell (MSC) heterogeneity. Induced pluripotent stem cell (iPSCs)-derived MSCs would circumvent many of current issues and enable large-scale production of standardized cellular therapy. To explore differences between native MSCs (nMSCs) and iPSC-derived MSCs (iMSCs), we developed isogeneic lines from Wharton’s jelly (WJ) from the umbilical cords of two donors (#12 and #13) under xeno-free conditions. Next, we reprogrammed them into iPSCs (iPSC12 and iPSC13) and subsequently differentiated them back into iMSCs (iMSC12 and iMSC13) using two different protocols, which we named ARG and TEX. We assessed their differentiation capability, transcriptome, immunomodulatory potential, and interferon-γ (IFNG)-induced changes in metabolome. Our data demonstrated that although both differentiation protocols yield iMSCs similar to their parental nMSCs, there are substantial differences. The ARG protocol resulted in iMSCs with a strong immunomodulatory potential and lower plasticity and proliferation rate, whereas the TEX protocol raised iMSCs with a higher proliferation rate, better differentiation potential, though weak immunomodulatory response. Our data suggest that, following a careful selection and screening of donors, nMSCs from umbilical’s cord WJ can be easily reprogrammed into iPSCs, providing an unlimited source of material for differentiation into iMSCs. However, the differentiation protocol should be chosen depending on their clinical use.
Collapse
Affiliation(s)
- Liani Devito
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | | | - Aleksandra Cvoro
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Antonio Galleu
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Marisa Simon
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Athanasios Mantalaris
- Department of Chemical Engineering, Imperial College London, London, UK.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Engineering Biosciences Building, Rm 3016, Atlanta, GA, 30332, USA
| | - Yacoub Khalaf
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
50
|
Xu M, Shaw G, Murphy M, Barry F. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 2019; 37:754-765. [PMID: 30779868 PMCID: PMC6591688 DOI: 10.1002/stem.2993] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
There has been considerable interest in the generation of functional mesenchymal stromal cell (MSC) preparations from induced pluripotent stem cells (iPSCs) and this is now regarded as a potential source of unlimited, standardized, high‐quality cells for therapeutic applications in regenerative medicine. Although iMSCs meet minimal criteria for defining MSCs in terms of marker expression, there are substantial differences in terms of trilineage potential, specifically a marked reduction in chondrogenic and adipogenic propensity in iMSCs compared with bone marrow‐derived (BM) MSCs. To reveal the cellular basis underlying these differences, we conducted phenotypic, functional, and genetic comparisons between iMSCs and BM‐MSCs. We found that iMSCs express very high levels of both KDR and MSX2 compared with BM‐MSCs. In addition, BM‐MSCs had significantly higher levels of PDGFRα. These distinct gene expression profiles were maintained during culture expansion, suggesting that prepared iMSCs are more closely related to vascular progenitor cells (VPCs). Although VPCs can differentiate along the chondrogenic, osteogenic, and adipogenic pathways, they require different inductive conditions compared with BM‐MSCs. These observations suggest to us that iMSCs, based on current widely used preparation protocols, do not represent a true alternative to primary MSCs isolated from BM. Furthermore, this study highlights the fact that high levels of expression of typical MSC markers such as CD73, CD90, and CD105 are insufficient to distinguish MSCs from other mesodermal progenitors in differentiated induced pluripotent stem cell cultures. stem cells2019;37:754–765
Collapse
Affiliation(s)
- Maojia Xu
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|