1
|
Zhou N, Groven RVM, Horst K, Mert Ü, Greven J, Mollnes TE, Huber-Lang M, van Griensven M, Hildebrand F, Balmayor ER. Pulmonary miRNA expression after polytrauma depends on the surgical invasiveness and displays an anti-inflammatory pattern by the combined inhibition of C5 and CD14. Front Immunol 2024; 15:1402571. [PMID: 39267761 PMCID: PMC11391096 DOI: 10.3389/fimmu.2024.1402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Background Respiratory failure can be a severe complication after polytrauma. Extensive systemic inflammation due to surgical interventions, as well as exacerbated post-traumatic immune responses influence the occurrence and progression of respiratory failure. This study investigated the effect of different surgical treatment modalities as well as combined inhibition of the complement component C5 and the toll-like receptor molecule CD14 (C5/CD14 inhibition) on the pulmonary microRNA (miRNA) signature after polytrauma, using a translational porcine polytrauma model. Methods After induction of general anesthesia, animals were subjected to polytrauma, consisting of blunt chest trauma, bilateral femur fractures, hemorrhagic shock, and liver laceration. One sham group (n=6) and three treatment groups were defined; Early Total Care (ETC, n=8), Damage Control Orthopedics (DCO, n=8), and ETC + C5/CD14 inhibition (n=4). Animals were medically and operatively stabilized, and treated in an ICU setting for 72 h. Lung tissue was sampled, miRNAs were isolated, transcribed, and pooled for qPCR array analyses, followed by validation in the individual animal population. Lastly, mRNA target prediction was performed followed by functional enrichment analyses. Results The miRNA arrays identified six significantly deregulated miRNAs in lung tissue. In the DCO group, miR-129, miR-192, miR-194, miR-382, and miR-503 were significantly upregulated compared to the ETC group. The miRNA expression profiles in the ETC + C5/CD14 inhibition group approximated those of the DCO group. Bioinformatic analysis revealed mRNA targets and signaling pathways related to alveolar edema, pulmonary fibrosis, inflammation response, and leukocytes recruitment. Collectively, the DCO group, as well as the ETC + C5/CD14 inhibition group, revealed more anti-inflammatory and regenerative miRNA expression profiles. Conclusion This study showed that reduced surgical invasiveness and combining ETC with C5/CD14 inhibition can contribute to the reduction of pulmonary complications.
Collapse
Affiliation(s)
- Nan Zhou
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Rald V. M. Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Klemens Horst
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ümit Mert
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Bodø, Bodø, Norway
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
2
|
Moussavi-Harami SF, Cleary SJ, Magnen M, Seo Y, Conrad C, English BC, Qiu L, Wang KM, Abram CL, Lowell CA, Looney MR. Loss of neutrophil Shp1 produces hemorrhagic and lethal acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595575. [PMID: 38854059 PMCID: PMC11160570 DOI: 10.1101/2024.05.23.595575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California, San Francisco
| | - S J Cleary
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - M Magnen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - Y Seo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C Conrad
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - B C English
- Department of Microbiology & Immunology, University of California, San Francisco
- CoLabs, University of California, San Francisco
| | - L Qiu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - K M Wang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C L Abram
- Department of Laboratory Medicine, University of California, San Francisco
| | - C A Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - M R Looney
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Department of Laboratory Medicine, University of California, San Francisco
| |
Collapse
|
3
|
Vargas MH, Chávez J, Del-Razo-Rodríguez R, Muñoz-Perea C, Romo-Domínguez KJ, Báez-Saldaña R, Rumbo-Nava U, Guerrero-Zúñiga S. Glycine by enteral route does not improve major clinical outcomes in severe COVID-19: a randomized clinical pilot trial. Sci Rep 2024; 14:11566. [PMID: 38773199 PMCID: PMC11109244 DOI: 10.1038/s41598-024-62321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
There is a worrying scarcity of drug options for patients with severe COVID-19. Glycine possesses anti-inflammatory, cytoprotective, endothelium-protective, and platelet-antiaggregant properties, so its use in these patients seems promising. In this open label, controlled clinical trial, inpatients with severe COVID-19 requiring mechanical ventilation randomly received usual care (control group) or usual care plus 0.5 g/kg/day glycine by the enteral route (experimental group). Major outcomes included mortality, time to weaning from mechanical ventilation, total time on mechanical ventilation, and time from study recruitment to death. Secondary outcomes included laboratory tests and serum cytokines. Patients from experimental (n = 33) and control groups (n = 23) did not differ in basal characteristics. There were no differences in mortality (glycine group, 63.6% vs control group, 52.2%, p = 0.60) nor in any other major outcome. Glycine intake was associated with lower fibrinogen levels, either evaluated per week of follow-up (p < 0.05 at weeks 1, 2, and 4) or as weighted mean during the whole hospitalization (608.7 ± 17.7 mg/dl vs control 712.2 ± 25.0 mg/dl, p = 0.001), but did not modify any other laboratory test or cytokine concentration. In summary, in severe COVID-19 glycine was unable to modify major clinical outcomes, serum cytokines or most laboratory tests, but was associated with lower serum fibrinogen concentration.Registration: ClinicalTrials.gov NCT04443673, 23/06/2020.
Collapse
Affiliation(s)
- Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México.
| | - Jaime Chávez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México
| | - Rosangela Del-Razo-Rodríguez
- Servicio Clínico de Neumología Pediátrica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Carolina Muñoz-Perea
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karina Julieta Romo-Domínguez
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Servicio de Neumología, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, México
| | - Renata Báez-Saldaña
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Uriel Rumbo-Nava
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Selene Guerrero-Zúñiga
- Unidad de Medicina del Sueño, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
4
|
Yudhawati R, Wicaksono NF. Immunomodulatory Effects of Fluoroquinolones in Community-Acquired Pneumonia-Associated Acute Respiratory Distress Syndrome. Biomedicines 2024; 12:761. [PMID: 38672119 PMCID: PMC11048665 DOI: 10.3390/biomedicines12040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Community-acquired pneumonia is reported as one of the infectious diseases that leads to the development of acute respiratory distress syndrome. The innate immune system is the first line of defence against microbial invasion; however, its dysregulation during infection, resulting in an increased pathogen load, stimulates the over-secretion of chemokines and pro-inflammatory cytokines. This phenomenon causes damage to the epithelial-endothelial barrier of the pulmonary alveoli and the leakage of the intravascular protein into the alveolar lumen. Fluoroquinolones are synthetic antimicrobial agents with immunomodulatory properties that can inhibit bacterial proliferation as well as exhibit anti-inflammatory activities. It has been demonstrated that the structure of fluoroquinolones, particularly those with a cyclopropyl group, exerts immunomodulatory effects. Its capability to inhibit phosphodiesterase activity leads to the accumulation of intracellular cAMP, which subsequently enhances PKA activity, resulting in the inhibition of transcriptional factor NF-κB and the activation of CREB. Another mechanism reported is the inhibition of TLR and ERK signalling pathways. Although the sequence of events has not been completely understood, significant progress has been made in comprehending the specific mechanisms underlying the immunomodulatory effects of fluoroquinolones. Here, we review the indirect immunomodulatory effects of FQs as an alternative to empirical therapy in patients diagnosed with community-acquired pneumonia.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Department of Pulmonology and Respiratory Medicine, Dr. Soetomo General Hospital, Surabaya 60286, Indonesia
| | | |
Collapse
|
5
|
Kuzmanović J, Savić S, Bogdanović M, Martinović T, Bumbaširević V, Stevović TK. Micromorphological features and interleukin 6, 8, and 18 expressions in post-mortem lung tissue in cases with acute respiratory distress syndrome. Forensic Sci Med Pathol 2024; 20:1-7. [PMID: 36809485 DOI: 10.1007/s12024-022-00572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 02/23/2023]
Abstract
The purpose of this study was to analyze the presence of interleukins 6, 8, and 18 in post-mortem lung tissue of subjects deceased due to polytrauma. In addition to this, we have described different micromorphological features of lung tissue in ARDS cases associated with fatal traffic trauma. A total of 18 autopsy cases with ARDS after polytrauma and 15 control autopsy cases were analyzed in this study. From every subject, we collected one sample for each lung lobe. All of the histological sections were analyzed by using light microscopy, and for the purpose of ultrastructural analysis, we used transmission electron microscopy. Representative sections were further processed by way of immunohistochemistry analysis. Quantification of IL-6, IL-8, and IL-18-positive cells was conducted by applying the IHC score. We noticed that all samples of ARDS cases exhibited elements of the proliferative phase. Immunohistochemical analysis of lung tissue in patients with ARDS showed strong positive staining for IL-6 (2.8 ± 0.7), IL-8 (2.2 ± 1.3), and IL-18 (2.7 ± 1.2), while staining of the control samples resulted in no positivity to low/moderate positivity (for IL-6 1.4 ± 0.5; for IL-8 0.1 ± 0.4; for IL-18 0.6 ± 0.9). Only IL-6 correlated negatively with the patients' age (r = -0.6805, p < 0.01). In this study, we described microstructural changes in lung sections of ARDS cases and control cases, as well as interleukins' expression, demonstrating that autopsy material is as informing as tissue samples collected by performing open lung biopsy.
Collapse
Affiliation(s)
- Jelena Kuzmanović
- Pathology Department, University Medical Centre Zvezdara, Belgrade, Serbia
| | - Slobodan Savić
- Institute of Forensic Medicine "Dr Milovan Milovanovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milenko Bogdanović
- Institute of Forensic Medicine "Dr Milovan Milovanovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tamara Martinović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbaširević
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Tamara Kravić Stevović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Barmada A, Handfield LF, Godoy-Tena G, de la Calle-Fabregat C, Ciudad L, Arutyunyan A, Andrés-León E, Hoo R, Porter T, Oszlanczi A, Richardson L, Calero-Nieto FJ, Wilson NK, Marchese D, Sancho-Serra C, Carrillo J, Presas-Rodríguez S, Ramo-Tello C, Ruiz-Sanmartin A, Ferrer R, Ruiz-Rodriguez JC, Martínez-Gallo M, Munera-Campos M, Carrascosa JM, Göttgens B, Heyn H, Prigmore E, Casafont-Solé I, Solanich X, Sánchez-Cerrillo I, González-Álvaro I, Raimondo MG, Ramming A, Martin J, Martínez-Cáceres E, Ballestar E, Vento-Tormo R, Rodríguez-Ubreva J. Single-cell multi-omics analysis of COVID-19 patients with pre-existing autoimmune diseases shows aberrant immune responses to infection. Eur J Immunol 2024; 54:e2350633. [PMID: 37799110 DOI: 10.1002/eji.202350633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.
Collapse
Affiliation(s)
- Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Anna Arutyunyan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Fernando J Calero-Nieto
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Silvia Presas-Rodríguez
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Cristina Ramo-Tello
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartin
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Division of Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Munera-Campos
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Jose Manuel Carrascosa
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Berthold Göttgens
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Ivette Casafont-Solé
- Department of Rheumatology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Infectious Diseases, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Maria Gabriella Raimondo
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Eva Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
7
|
Bay P, Rodriguez C, Caruso S, Demontant V, Boizeau L, Soulier A, Woerther PL, Mekontso-Dessap A, Pawlotsky JM, de Prost N, Fourati S. Omicron induced distinct immune respiratory transcriptomics signatures compared to pre-existing variants in critically ill COVID-19 patients. J Med Virol 2023; 95:e29268. [PMID: 38050838 DOI: 10.1002/jmv.29268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) is related to dysregulated immune responses. We aimed to explore the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on the immune response by nasopharyngeal transcriptomic in critically-ill patients. This prospective monocentric study included COVID-19 patients requiring intensive care unit (ICU) admission between March 2020 and 2022. Patients were classified according to VOC (ancestral, Alpha, Delta, and Omicron). Eighty-eight patients with severe COVID-19 were included after matching (on prespecified clinical criteria). Profiling of gene expression markers of innate and adaptive immune responses were investigated by respiratory transcriptomics at ICU admission. Eighty-eight patients were included in the study after matching (ancestral [n = 24], Alpha [n = 24], Delta [n = 22], and Omicron [n = 18] variants). Respiratory transcriptomic analysis revealed distinct innate and adaptive immune profiling between variants. In comparison with the ancestral variant, there was a reduced expression of neutrophil degranulation, T cell activation, cytokines signalling pathways in patients infected with Alpha and Delta variants. In contrast, there was a higher expression of neutrophil degranulation, T and B cells activation, and inflammatory interleukins pathways in patients infected with Omicron. To conclude, Omicron induced distinct immune respiratory transcriptomics signatures compared to pre-existing variants in patients with severe COVID-19, pointing to an evolving pathophysiology of severe COVID-19 in the Omicron era.
Collapse
Affiliation(s)
- Pierre Bay
- Service de Médecine Intensive Réanimation, DMU Médecine, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- GRC CARMAS, Faculté de Santé de Créteil, Université Paris-Est-Créteil (UPEC), Créteil, France
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Christophe Rodriguez
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Stefano Caruso
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Vanessa Demontant
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Laure Boizeau
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Alexandre Soulier
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Paul L Woerther
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- EA 7380 Dynamic, Université Paris-Est-Créteil (UPEC), École Nationale Vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Armand Mekontso-Dessap
- Service de Médecine Intensive Réanimation, DMU Médecine, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- GRC CARMAS, Faculté de Santé de Créteil, Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Jean-Michel Pawlotsky
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Plateforme de Génomique, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, DMU Médecine, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- GRC CARMAS, Faculté de Santé de Créteil, Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Slim Fourati
- Équipe Virus, Hépatologie, Cancer, INSERM U955, Université Paris-Est-Créteil (UPEC), Créteil, France
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| |
Collapse
|
8
|
Yadav R, Momin A, Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases. Int Immunopharmacol 2023; 124:110846. [PMID: 37634446 DOI: 10.1016/j.intimp.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Neutrophils are the primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils limit pathogen transmission is NETosis, which includes releasing the nuclear content into the cytosol by forming pores in the plasma membrane. The extrusion of cellular deoxyribonucleic acid (DNA) results in neutrophil extracellular traps (NETs) composed of nuclear DNA associated with histones and granule proteins. NETosis is driven by the enzyme PAD-4 (Peptidylarginine deiminase-4), which converts arginine into citrulline, leading to decondensation of chromatin, separation of DNA, and eventual extrusion. DNase is responsible for the breakdown of NETs. On the one hand, the release of DNase may interfere with the antibacterial effects of NETs; further, DNase may protect tissues from self-destruction caused by the increased release of NET under septic conditions. NETs in physiological quantities are expected to have a role in anti-infectious innate immune responses. In contrast, abnormally high concentrations of NETs in the body that are not adequately cleared by DNases can damage tissues and cause inflammation. Through several novel approaches, it is now possible to avoid the adverse effects caused by the continued release of NETs into the extracellular environment. In this review we have highlighted the basic mechanisms of NETosis, its significance in the pathogenesis of various inflammatory disorders, and the role of DNase enzyme with a focus on the possible function of nanotechnology in its management.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Borazjani R, Mahmudi-Azer S, Taghrir MH, Homaeifar R, Dabiri G, Paydar S, Fard HA. Adjunctive hemoperfusion with Resin Hemoadsorption (HA) 330 cartridges improves outcomes in patients sustaining multiple Blunt Trauma: a prospective, quasi-experimental study. BMC Surg 2023; 23:148. [PMID: 37270595 DOI: 10.1186/s12893-023-02056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Multi-organ dysfunction syndrome and multi-organ failure are the leading causes of late death in patients sustaining severe blunt trauma. So far, there is no established protocol to mitigate these sequelae. This study assessed the effect of hemoperfusion using resin-hemoadsorption 330 (HA330) cartridges on mortality and complications such as acute respiratory distress syndrome (ARDS) and systemic inflammatory response syndrome (SIRS) among such patients. METHODS This quasi-experimental study recruited patients ≥ 15 years of age with blunt trauma, injury severity score (ISS) ≥ 15, or initial clinical presentation consistent with SIRS. They were divided into two groups: the Control group received only conventional acute care, while the case group received adjunctive hemoperfusion. P-values less than 0.05 were statistically significant. RESULTS Twenty-five patients were included (Control and Case groups: 13 and 12 patients). The presenting vital signs, demographic and injury-related features (except for thoracic injury severity) were similar (p > 0.05). The Case group experienced significantly more severe thoracic injuries than the Control group (Thoracic AIS, median [IQR]: 3 [2-4] vs. 2 [0-2], p = 0.01). Eleven and twelve patients in the Case group had ARDS and SIRS before the hemoperfusion, respectively, and these complications were decreased considerably after hemoperfusion. Meanwhile, the frequency of ARDS and SIRS did not decrease in the Control group. Hemoperfusion significantly reduced the mortality rate in the Case group compared to the Control group (three vs. nine patients, p = 0.027). CONCLUSIONS Adjunctive Hemoperfusion using an HA330 cartridge decreases morbidity and improves outcomes in patients suffering from severe blunt trauma.
Collapse
Affiliation(s)
- Roham Borazjani
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salahaddin Mahmudi-Azer
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Taghrir
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Homaeifar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Dabiri
- Department of Intensive Care Medicine, Trauma Research Center, Shahid Rajaee (Emtiaz) Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Abdolrahimzadeh Fard
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Cong Y, Lee JH, Perry DL, Cooper K, Wang H, Dixit S, Liu DX, Feuerstein IM, Solomon J, Bartos C, Seidel J, Hammoud DA, Adams R, Anthony SM, Liang J, Schuko N, Li R, Liu Y, Wang Z, Tarbet EB, Hischak AMW, Hart R, Isic N, Burdette T, Drawbaugh D, Huzella LM, Byrum R, Ragland D, St Claire MC, Wada J, Kurtz JR, Hensley LE, Schmaljohn CS, Holbrook MR, Johnson RF. Longitudinal analyses using 18F-Fluorodeoxyglucose positron emission tomography with computed tomography as a measure of COVID-19 severity in the aged, young, and humanized ACE2 SARS-CoV-2 hamster models. Antiviral Res 2023; 214:105605. [PMID: 37068595 PMCID: PMC10105383 DOI: 10.1016/j.antiviral.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ji Hyun Lee
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, Bethesda, MD, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Hui Wang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Irwin M Feuerstein
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jeffrey Solomon
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christopher Bartos
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jurgen Seidel
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Scott M Anthony
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nicolette Schuko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - E Bart Tarbet
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Amanda M W Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nejra Isic
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Tracey Burdette
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Danny Ragland
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Marisa C St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jonathan R Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Reed F Johnson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; SARS-CoV-2 Virology Core Laboratory, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Mujawar S, Patil G, Suthar S, Shendkar T, Gangadhar V. COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19. Genomics Inform 2023; 21:e16. [PMID: 37415451 PMCID: PMC10326536 DOI: 10.5808/gi.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.
Collapse
Affiliation(s)
- Shama Mujawar
- MIT School of Bioengineering Sciences and Research, MIT-Art, Design and Technology University, Loni Kalbhor, Pune 412201, India
| | - Gayatri Patil
- MIT School of Bioengineering Sciences and Research, MIT-Art, Design and Technology University, Loni Kalbhor, Pune 412201, India
| | - Srushti Suthar
- MIT School of Bioengineering Sciences and Research, MIT-Art, Design and Technology University, Loni Kalbhor, Pune 412201, India
| | - Tanuja Shendkar
- MIT School of Bioengineering Sciences and Research, MIT-Art, Design and Technology University, Loni Kalbhor, Pune 412201, India
| | - Vaishnavi Gangadhar
- MIT School of Bioengineering Sciences and Research, MIT-Art, Design and Technology University, Loni Kalbhor, Pune 412201, India
| |
Collapse
|
12
|
Mo J, Yang Y, Feng J, Lei Y, Huang S, Cen W, Wei S, Huang H, Lu J, Zhang J. Single-cell analysis reveals dysregulated inflammatory response in peripheral blood immunity in patients with acute respiratory distress syndrome. Front Cell Dev Biol 2023; 11:1199122. [PMID: 37283946 PMCID: PMC10239863 DOI: 10.3389/fcell.2023.1199122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) remains a major clinical challenge for patients in intensive care units. Determining the differential mechanisms underlying ARDS with different etiologies is a key goal to improve the effectiveness of ARDS therapy. Despite growing evidence that different immune cell types are involved in ARDS, the role of altered immune cell subpopulations in disease progression is unelucidated. Methods: In this study, we combined scRNA-seq and bulk-level sequencing to analyze the transcriptomes of peripheral blood mononuclear cells from healthy volunteers and patients with septic ARDS (sep-ARDS) and pneumonic ARDS (PNE-ARDS). Results: Our data revealed differential alterations at the cellular and molecular levels and within biological signaling pathways in ARDS with different etiologies. The dynamics of neutrophils, macrophages (Macs), classical dendritic cells (cDCs), myeloid-derived suppressive cells (MDSCs), and CD8+ T cells varied significantly among groups of different samples, with neutrophils and cDCs at higher, and Macs at significantly lower, amounts in the patients with sep-ARDS. Furthermore, MDSCs were highly enriched only in the sep-ARDS patients, whereas a higher abundance of CD8+ T cells was observed in patients with PNE-ARDS. In addition, these cell subpopulations were found to be significantly involved in apoptosis, inflammatory, and immune-related pathways. In particular, a significant enhancement of the oxidative stress response was observed in the neutrophil subpopulation. Conclusion: Our study shows that the composition of cells involved in the main peripheral circulation differs in patients with ARDS with different etiologies. Studying the role and mechanism of action of these cells during ARDS will provide new opportunities for the treatment of this condition.
Collapse
Affiliation(s)
- Jingjia Mo
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanhua Lei
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Suhong Huang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiluan Cen
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Wei
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Huang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Chen L, Yang J, Zhang M, Fu D, Luo H, Yang X. SPP1 exacerbates ARDS via elevating Th17/Treg and M1/M2 ratios through suppression of ubiquitination-dependent HIF-1α degradation. Cytokine 2023; 164:156107. [PMID: 36773529 DOI: 10.1016/j.cyto.2022.156107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary condition that leads to respiratory failure. The imbalance of Th17/Treg and M1/M2 is implicated in ARDS. A better understanding of the regulation of the balance of Th17/Treg and M1/M2 may provide novel therapeutic targets for ARDS. METHODS Plasma and BALF samples were collected from ARDS patients. Inflammatory cytokines were examined by ELISA. Th17, Treg, M1 and M2 were identified via immunofluorescence staining of RORγt, Foxp3, iNOS and Arg-1. H&E and Masson's trichrome staining were applied for evaluating pulmonary damage and fibrosis. A mouse model of ARDS was established through LPS administration. HIF-1α was immunoprecipitated and subjected to ubiquitination analysis via western blotting. The expression of SPP1, VHL and HIF-1α was examined by RT-qPCR and western blotting. RESULTS ARDS patients showed elevated levels of inflammatory cytokines and ratios of Th17/Treg and M1/M2. SPP1 was upregulated in ARDS mice, and silencing of SPP1 alleviated lung injury and fibrosis. SPP1 inhibited VHL expression to reduce the ubiquitination and degradation of HIF-1α in ARDS. Overexpression of SPP1 facilitated Th17, Treg and M1 polarization but inhibited M2 polarization through upregulation of HIF-1α. CONCLUSION SPP1 elevates Th17/Treg and M1/M2 ratio by suppressing VHL expression and ubiquitination-dependent HIF-1α degradation, thus exacerbating ARDS. Our study provides novel mechanistic insights into ARDS pathogenesis and promising therapeutic targets.
Collapse
Affiliation(s)
- Liang Chen
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China.
| | - Jin Yang
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Meng Zhang
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Donglin Fu
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Huan Luo
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| | - Xiaolei Yang
- Intensive Care Unit, Chongqing General Hospital, Chongqing 401147, PR China
| |
Collapse
|
14
|
Sun Y, Chen Y, Wang J, Yuan W, Xue R, Li C, Xia Q, Hu L, Wei Y, He M, Lai K. Intratracheally administered iron oxide nanoparticles induced murine lung inflammation depending on T cells and B cells. Food Chem Toxicol 2023; 175:113735. [PMID: 36935073 DOI: 10.1016/j.fct.2023.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Iron oxide nanoparticles (Fe2O3 NPs), produced in track traffic system and a wide range of industrial production, poses a great threat to human health. However, there is little research about the mechanism of Fe2O3 NPs toxicity on respiratory system. Rag1-/- mice which lack functional T and B cells were intratracheally challenged with Fe2O3 NPs, and interleukin (IL)-33 as an activator of group 2 innate lymphoid cells (ILC2s) to observe ILC2s changes. The lung inflammatory response to Fe2O3 NPs was alleviated in Rag1-/- mice compared with wild type (WT) mice. Infiltration of inflammatory cells and collagen deposition in tissue, leukocyte numbers (neutrophils, macrophages and lymphocytes), cytokine levels, such as IL-6, IL-13 and thymic stromal lymphopoietin (TSLP), and expression of Toll-like receptor (TLR)2, TLR4, and downstream myeloid differentiation factor (MyD)88, nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α were decreased in lungs. Fe2O3 NPs markedly elevated ILC2s compared with the control, but ILC2s numbers were much lower compared with IL-33 in both WT and Rag1-/- mice. Furthermore, ILC2s amounts were strongly greater in Rag1-/- mice than WT mice. Our results suggested that Fe2O3 NPs induced sub-chronic pulmonary inflammation, which is majorly dependent on T cells and B cells rather than ILC2s.
Collapse
Affiliation(s)
- Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China.
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
15
|
Zhu W, Luo W, Han J, Zhang Q, Ji L, Samorodov AV, Pavlov VN, Zhuang Z, Yang D, Yin L, Huang L, Liang G, Huh JY, Wang Y. Schisandrin B protects against LPS-induced inflammatory lung injury by targeting MyD88. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154489. [PMID: 36270224 DOI: 10.1016/j.phymed.2022.154489] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a challenging clinical syndrome that manifests as an acute inflammatory response. Schisandrin B (Sch B), a bioactive lignan from Schisandra genus plants, has been shown to suppress inflammatory responses and oxidative stress. However, the underlying molecular mechanisms have remained elusive. HYPOTHESIS/PURPOSE This study performed an in-depth investigation of the anti-inflammatory mechanism of Sch B in macrophages and in an animal model of ALI. METHODS qPCR array was used to probe the differential effects and potential target of Sch B. ALI was induced by intratracheal administration of LPS in experimental mice with or without Sch B treatment. RESULTS Our studies show that Sch B differentially modulates inflammatory factor induction by LPS in macrophages by directly binding myeloid differentiation response factor-88 (MyD88), an essential adaptor protein in the toll-like receptor-4 (TLR4) pathway. Sch B spares non-MyD88-pathways downstream of TLR4. Such inhibition suppressed key signaling mediators such as TAK1, MAPKs, and NF-κB, and pro-inflammatory factor induction. Pull down assay using biotinylated-Sch B validate the direct interaction between Sch B and MyD88 in macrophages. Treatment of mice with Sch B prior to LPS challenge reduced inflammatory cell infiltration in lungs, induction of MyD88-pathway signaling proteins, and prevented inflammatory cytokine induction. CONCLUSION In summary, our studies have identified MyD88 as a direct target of Sch B for its anti-inflammatory activity, and suggest that Sch B may have therapeutic value for acute lung injury and other MyD88-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Wu Luo
- Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiuyan Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijun Ji
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa 450005, Russia
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Daona Yang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lijiang Huang
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China.
| |
Collapse
|
16
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
17
|
IL-33 Deficiency Attenuates Lung Inflammation by Inducing Th17 Response and Impacting the Th17/Treg Balance in LPS-Induced ARDS Mice via Dendritic Cells. J Immunol Res 2022; 2022:9543083. [PMID: 36570798 PMCID: PMC9788894 DOI: 10.1155/2022/9543083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives The characteristic pathophysiological feature of acute respiratory distress syndrome (ARDS) is a dysregulated inflammatory response. T helper 17 (Th17) cells in the lung are inflammatory cells that contribute to pulmonary inflammatory cascades. In addition, Th17/regulatory T cells (Treg cells) also play an important role in the inflammatory process. Dendritic cells (DCs) can regulate the differentiation of CD4+ T cells, including Th17 and Treg cells. Recent evidence revealed that interleukin-33 (IL-33) signaling could activate and mature DCs. Therefore, the aim of this study was to investigate the effects of IL-33 on inflammation and immunoregulation by inducing the Th17 response and influencing the Th17/Treg balance in LPS-induced ARDS. Methods IL-33 gene knockout mice and the administration of recombinant mouse IL-33 (rmIL-33) were used to investigate the role of IL-33 and the underlying mechanisms in an LPS-induced ARDS model. Hematoxylin and eosin (H&E) staining, wet/dry (W/D) weight ratios, cell counts, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), and interleukin-10 (IL-10) in bronchoalveolar lavage fluid (BALF) were investigated. The levels of IL-33, orphan nuclear receptor gamma t (RORγt), and forkhead transcription factor protein 3 (FOXP3) protein in lung tissue were evaluated by Western blotting. The mRNA expression levels of IL-33 and RORγt were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Th17 and Treg cell frequencies were determined by flow cytometry. The levels of IL-6 in the supernatant in a dendritic cell culture system were examined by ELISA. Results Increased expression of IL-33 was observed in mice with LPS-induced ARDS. IL-33 deficiency significantly inhibited inflammation and attenuated LPS-induced ARDS, whereas pretreatment with rmIL-33 aggravated pulmonary inflammatory response. Furthermore, depletion of IL-33 inhibited Th17 cells, significantly decreased RORγt mRNA and protein expression and IL-17 levels in BALF, and led to less differentiation of T cells into Th17 cells than Treg cells. Moreover, IL-33-/- DCs secreted less IL-6 and IL-23 than normal control DCs. Conclusion IL-33 deficiency alleviated lung injury in the LPS-induced ARDS model, which was closely related to suppressing Th17 responses and regulating the Th17/Treg balance. The expansion of Th17 cells and imbalance in Th17/Treg cells may be associated with IL-6 and IL-23 secreted from IL-33-activated DCs.
Collapse
|
18
|
Attenuation of the Severity of Acute Respiratory Distress Syndrome by Pomiferin through Blocking Inflammation and Oxidative Stress in an AKT/Foxo1 Pathway-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5236908. [PMID: 36471865 PMCID: PMC9719418 DOI: 10.1155/2022/5236908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) gives rise to uncontrolled inflammatory response and oxidative stress, causing very high mortality globally. Pomiferin is a kind of prenylated isoflavonoid extracted from Maclura pomifera, owning anti-inflammatory and antioxidant properties. However, the functions and possible mechanisms of pomiferin in lipopolysaccharide- (LPS-) induced ARDS remain unknown. C57BL/6 mice were injected with LPS (5 mg/kg) intratracheally to induce an in vivo ARDS model while RAW264.7 macrophages were stimulated with LPS (100 ng/ml) to induce an in vitro model. Our data demonstrated that pomiferin (20 mg/kg) significantly improved pulmonary function and lung pathological injury in mice with ARDS, apart from increasing survival rate. Meanwhile, pomiferin treatment also inhibited LPS-induced inflammation as well as oxidative stress in lung tissues. LPS stimulation significantly activated AKT/Foxo1 signal pathway in lung tissues, which could be reversed after pomiferin treatment. In vitro experiments further showed that 10, 20, and 50 μM of pomiferin could enhance cell viability of RAW264.7 macrophages stimulated with LPS. What is more, 3-deoxysappanchalcone (3-DE), one AKT agonist, was used to active AKT in RAW264.7 macrophages. The results further showed that 3-DE could abolish pomiferin-elicited protection in LPS-treated RAW264.7 macrophages, evidenced by activated inflammation and oxidative stress. Taken together, our study showed that pomiferin could exert an ARDS-protective effect by blocking the AKT/Foxo1 signal pathway to inhibit LPS-induced inflammatory response and oxidative injury, which may serve as a potential candidate for the treatment of ARDS in the future.
Collapse
|
19
|
Richman S, Lyman C, Nesterova A, Yuryev A, Morris M, Cao H, Cheadle C, Skuse G, Broderick G. Old drugs, new tricks: leveraging known compounds to disrupt coronavirus-induced cytokine storm. NPJ Syst Biol Appl 2022; 8:38. [PMID: 36216820 PMCID: PMC9549818 DOI: 10.1038/s41540-022-00250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
A major complication in COVID-19 infection consists in the onset of acute respiratory distress fueled by a dysregulation of the host immune network that leads to a run-away cytokine storm. Here, we present an in silico approach that captures the host immune system's complex regulatory dynamics, allowing us to identify and rank candidate drugs and drug pairs that engage with minimal subsets of immune mediators such that their downstream interactions effectively disrupt the signaling cascades driving cytokine storm. Drug-target regulatory interactions are extracted from peer-reviewed literature using automated text-mining for over 5000 compounds associated with COVID-induced cytokine storm and elements of the underlying biology. The targets and mode of action of each compound, as well as combinations of compounds, were scored against their functional alignment with sets of competing model-predicted optimal intervention strategies, as well as the availability of like-acting compounds and known off-target effects. Top-ranking individual compounds identified included a number of known immune suppressors such as calcineurin and mTOR inhibitors as well as compounds less frequently associated for their immune-modulatory effects, including antimicrobials, statins, and cholinergic agonists. Pairwise combinations of drugs targeting distinct biological pathways tended to perform significantly better than single drugs with dexamethasone emerging as a frequent high-ranking companion. While these predicted drug combinations aim to disrupt COVID-induced acute respiratory distress syndrome, the approach itself can be applied more broadly to other diseases and may provide a standard tool for drug discovery initiatives in evaluating alternative targets and repurposing approved drugs.
Collapse
Affiliation(s)
- Spencer Richman
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA
| | - Cole Lyman
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA
| | | | - Anton Yuryev
- Elsevier BV, Biology Solutions, Amsterdam, the Netherlands
| | - Matthew Morris
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA
| | - Hongbao Cao
- Elsevier BV, Biology Solutions, Amsterdam, the Netherlands
| | - Chris Cheadle
- Elsevier BV, Biology Solutions, Amsterdam, the Netherlands
| | - Gary Skuse
- Rochester Institute of Technology, Gosnell School of Life Sciences, Rochester, NY, USA
| | - Gordon Broderick
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA.
| |
Collapse
|
20
|
Hernandez L, Laucyte-Cibulskiene A, Ward LJ, Kautzky-Willer A, Herrero MT, Norris CM, Raparelli V, Pilote L, Stenvinkel P, Kublickiene K. Gender dimension in cardio-pulmonary continuum. Front Cardiovasc Med 2022; 9:916194. [PMID: 36003909 PMCID: PMC9393639 DOI: 10.3389/fcvm.2022.916194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cardio-pulmonary diseases, which were once regarded as a man's illness, have been one of the leading causes of morbidity and mortality for both men and women in many countries in recent years. Both gender and sex influence the functional and structural changes in the human body and therefore play an important role in disease clinical manifestation, treatment choice, and/or response to treatment and prognosis of health outcomes. The gender dimension integrates sex and gender analysis in health sciences and medical research, however, it is still relatively overlooked suggesting the need for empowerment in the medical research community. Latest advances in the field of cardiovascular research have provided supportive evidence that the application of biological variables of sex has led to the understanding that heart disease in females may have different pathophysiology compared to males, particularly in younger adults. It has also resulted in new diagnostic techniques and a better understanding of symptomatology, while gender analysis has informed more appropriate risk stratification and prevention strategies. The existing knowledge in the pulmonary field shows the higher prevalence of pulmonary disorders among females, however, the role of gender as a socio-cultural construct has yet to be explored for the implementation of targeted interventions. The purpose of this review is to introduce the concept of gender dimension and its importance for the cardiopulmonary continuum with a focus on shared pathophysiology and disease presentation in addition to interrelation with chronic kidney disease. The review presents basic knowledge of what gender dimension means, and the application of sex and gender aspects in cardiovascular medicine with a specific focus on early pulmonary development, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Early vascular aging and inflammation have been presented as a potential pathophysiological link, with further interactions between the cardiopulmonary continuum and chronic kidney disease. Finally, implications for potential future research have been provided to increase the impact of gender dimension on research excellence that would add value to everybody, foster toward precision medicine and ultimately improve human health.
Collapse
Affiliation(s)
- Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Agne Laucyte-Cibulskiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Nephrology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Liam J. Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maria-Trinidad Herrero
- Clinical and Experimental Neuroscience, Institutes for Aging Research and Bio-Health Research of Murcia, School of Medicine, University of Murcia, Murcia, Spain
| | - Colleen M. Norris
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
- Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada
| | - Valeria Raparelli
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Louise Pilote
- Division of Clinical Epidemiology, Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
21
|
Guo H, Song Y, Li F, Fan Y, Li Y, Zhang C, Hou H, Shi M, Zhao Z, Chen Z. ACT001 suppressing M1 polarization against inflammation via NF-κB and STAT1 signaling pathways alleviates acute lung injury in mice. Int Immunopharmacol 2022; 110:108944. [PMID: 35728304 DOI: 10.1016/j.intimp.2022.108944] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
ACT001 has been shown to exhibit excellent antitumor and anti-fibrosis activities. However, the role of ACT001 in acute lung injury (ALI) and the underlying mechanism remains largely unclear. The present study aimed to investigate the protective effects of ACT001 on ALI and explore the potential mechanisms. Herein, we firstly established the ALI mouse model induced by intratracheal instillation of lipopolysaccharide (LPS). ACT001 treatment significantly alleviated histopathological changes of lung tissues with lower infiltration of pulmonary M1 macrophages in ALI mice. Then, we performed in vitro experiment and found that ACT001 treatment effectively inhibited the M1 phenotype of RAW264.7 and THP-1.. Next, we performed pull-down and mass spectrometry analysis to screen the interacting proteins of ACT001, identifying IKKβ and STAT1 as the critical target proteins of ACT001. And ACT001 treatment significantly suppressed the NF-κB and STAT1 pathways, thereby inhibiting the M1 polarization against inflammation in vivo and in vitro. Finally, we used IMD 0354 (IMD) and Fludarabine (Flud) to specifically block the activity of IKKβ and STAT1, and stimulated macrophages through IKKβ and STAT1 overexpression. Our data clearly showed that ACT001-induced decrease of the M1 polarization was blocked by IMD and Flud treatment, and reversed by IKKβ and STAT1 overexpression in RAW264.7 cells. In conclusion, we discovered that ACT001 significantly alleviates inflammation and limits M1 phenotype of pulmonary macrophages via suppressing NF-κB and STAT1 signaling pathways, providing new insights for the development of drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Hui Guo
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Fan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiman Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaonan Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Hou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Minmin Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
22
|
Ludwig N, Hilger A, Zarbock A, Rossaint J. Platelets at the Crossroads of Pro-Inflammatory and Resolution Pathways during Inflammation. Cells 2022; 11:cells11121957. [PMID: 35741086 PMCID: PMC9221767 DOI: 10.3390/cells11121957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Platelets are among the most abundant cells in the mammalian circulation. Classical platelet functions in hemostasis and wound healing have been intensively explored and are generally accepted. During the past decades, the research focus broadened towards their participation in immune-modulatory events, including pro-inflammatory and, more recently, inflammatory resolution processes. Platelets are equipped with a variety of abilities enabling active participation in immunological processes. Toll-like receptors mediate the recognition of pathogens, while the release of granule contents and microvesicles promotes direct pathogen defense and an interaction with leukocytes. Platelets communicate and physically interact with neutrophils, monocytes and a subset of lymphocytes via soluble mediators and surface adhesion receptors. This interaction promotes leukocyte recruitment, migration and extravasation, as well as the initiation of effector functions, such as the release of extracellular traps by neutrophils. Platelet-derived prostaglandin E2, C-type lectin-like receptor 2 and transforming growth factor β modulate inflammatory resolution processes by promoting the synthesis of pro-resolving mediators while reducing pro-inflammatory ones. Furthermore, platelets promote the differentiation of CD4+ T cells in T helper and regulatory T cells, which affects macrophage polarization. These abilities make platelets key players in inflammatory diseases such as pneumonia and the acute respiratory distress syndrome, including the pandemic coronavirus disease 2019. This review focuses on recent findings in platelet-mediated immunity during acute inflammation.
Collapse
|
23
|
Insights into the Role of Neutrophils and Neutrophil Extracellular Traps in Causing Cardiovascular Complications in Patients with COVID-19: A Systematic Review. J Clin Med 2022; 11:jcm11092460. [PMID: 35566589 PMCID: PMC9104617 DOI: 10.3390/jcm11092460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has resulted in significant mortality and burdening of healthcare resources. While initially noted as a pulmonary pathology, subsequent studies later identified cardiovascular involvement with high mortalities reported in specific cohorts of patients. While cardiovascular comorbidities were identified early on, the exact manifestation and etiopathology of the infection remained elusive. This systematic review aims to investigate the role of inflammatory pathways, highlighting several culprits including neutrophil extracellular traps (NETs) which have since been extensively investigated. Method: A search was conducted using three databases (MEDLINE; MEDLINE In-Process & Other Non-Indexed Citations and EMBASE). Data from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were considered for the processing of the algorithm and treatment of inflammatory response during SARS-CoV-2 infection. Studies without the SARS-CoV-2 Infection period and case reports were excluded. Results: A total of 47 studies were included in this study. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining outcomes. Some of the mechanisms of activation of these pathways have been highlighted in previous studies and are highlighted. Conclusion: NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, COVID-19 remains an entity that has not been fully understood with long-term effects remaining uncertain and requiring ongoing monitoring and research.
Collapse
|
24
|
Kitzerow O, Zucker IH, Lisco SJ, Wang HJ. Timeline of Multi-Organ Plasma Extravasation After Bleomycin-Induced Acute Lung Injury. Front Physiol 2022; 13:777072. [PMID: 35173628 PMCID: PMC8841715 DOI: 10.3389/fphys.2022.777072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Acute lung injury (ALI) is characterized by the abrupt onset of clinically significant hypoxemia in the context of non-hydrostatic pulmonary edema. Acute lung injury is associated with cytokine release and plasma extravasation (PEx) that can cause pulmonary edema and subsequently acute respiratory distress syndrome (ARDS). Therefore, it is critical we understand the relationship between ALI and lung PEx. In addition, it is also important to assess PEx in the lungs and other organs post-ALI since ALI/ARDS often causes multi-organ failure. We hypothesized that ALI induces time-dependent lung PEx, which promotes extravasation in the heart, liver, kidney, spleen, pancreas, and gastrointestinal (GI) tract, in a time-dependent manner. To test our hypothesis, we administered bleomycin or saline via tracheal intubation in 8-week-old Sprague Dawley rats. At the terminal experiments, Evans Blue was injected (IV) through the femoral vein to allow for the visualization of PEx. Plasma extravasation of desired organs was evaluated at 3-, 7-, 14-, 21-, and 28-days after bleomycin or saline treatment by evaluating Evans Blue concentrations calorimetrically at fluorescence excitation wavelength of 620 nm (bandwidth 10 nm) and an emission wavelength of 680 nm (bandwidth 40 nm). Data show that ALI induces lung PEx beginning at day 3 and peaking between 7 and 21 days. Extravasation was also seen in all organs at varying degrees beginning at day 3 and peaking between days 7 and 14. Resolution appears to start after day 21 and continues past day 28. We conclude that ALI caused by bleomycin incites a time-dependent PEx of the lungs and multiple other organs.
Collapse
Affiliation(s)
- Oliver Kitzerow
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Deptrtment of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Steven J. Lisco
- Deptrtment of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Deptrtment of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Han-Jun Wang,
| |
Collapse
|
25
|
Kim TO, Park KJ, Cho YN, Jin HM, Jo YG, Kim HS, Ju JK, Shin HJ, Kho BG, Kee SJ, Park YW. Altered distribution, activation and increased IL-17 production of mucosal-associated invariant T cells in patients with acute respiratory distress syndrome. Thorax 2022; 77:865-872. [PMID: 35086913 DOI: 10.1136/thoraxjnl-2021-217724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/06/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that are engaged in a number of diseases, but their roles in acute respiratory distress syndrome (ARDS) are not fully examined yet. This study aimed to examine levels and functions of MAIT cells in patients with ARDS. METHODS Peripheral blood samples from patients with ARDS (n=50) and healthy controls (HCs, n=50) were collected. Levels of MAIT cells, cytokines, CD69, programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) were measured by flow cytometry. RESULTS Circulating MAIT cell levels were significantly reduced in patients with ARDS than in HCs. MAIT cell levels were inversely correlated with disease severity and mortality. Cytokine production profiles in MAIT cells showed that percentages of interleukin (IL)-17 producing MAIT cell were significantly higher in patients with ARDS than in HCs. Patients with ARDS exhibited higher expression levels of CD69, PD-1 and LAG-3 in circulating MAIT cells. Moreover, levels of MAIT cells and expression levels of CD69, PD-1 and IL-17 in MAIT cells were higher in bronchoalveolar lavage fluid samples than in peripheral blood samples. Our in vitro experiments showed that MAIT cells triggered macrophages to produce proinflammatory cytokines such as tumour necrosis factor-α, IL-1β and IL-8. CONCLUSIONS This study demonstrates that circulating MAIT cells are numerically deficient in patients with ARDS. In addition, MAIT cells were found to be activated, migrate into lung, secrete IL-17 and then stimulate macrophages. These findings suggest that MAIT cells contribute to the worsening of inflammation in the lung of patients with ARDS.
Collapse
Affiliation(s)
- Tae-Ok Kim
- Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Ki-Jeong Park
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young-Nan Cho
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hye-Mi Jin
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young-Goun Jo
- Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hyo Shin Kim
- Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jae Kyun Ju
- Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hong-Joon Shin
- Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Bo-Gun Kho
- Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Seung-Jung Kee
- Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong-Wook Park
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea .,Rheumatology, Chonnam National University Bitgoeul Hospital, Gwangju, Korea
| |
Collapse
|
26
|
Michels JR, Nazrul MS, Adhikari S, Wilkins D, Pavel AB. Th1, Th2 and Th17 inflammatory pathways predict cardiometabolic protein expression in serum of COVID-19 patients. Mol Omics 2022; 18:408-416. [DOI: 10.1039/d2mo00055e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A predominant source of complication in SARS-CoV-2 patients arises from a severe systemic inflammation that can lead to tissue damage and organ failure. The high inflammatory burden of this viral...
Collapse
|
27
|
Galati D, Zanotta S, Capitelli L, Bocchino M. A bird's eye view on the role of dendritic cells in SARS‐CoV‐2 infection: Perspectives for immune‐based vaccines. Allergy 2022. [DOI: 10.1111/all.15004
expr 869230256 + 930548950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Domenico Galati
- Hematology‐Oncology and Stem Cell Transplantation Unit Department of Hematology and Developmental Therapeutics Istituto Nazionale Tumori‐ IRCCS‐ Fondazione G. Pascale Napoli Italy
| | - Serena Zanotta
- Hematology‐Oncology and Stem Cell Transplantation Unit Department of Hematology and Developmental Therapeutics Istituto Nazionale Tumori‐ IRCCS‐ Fondazione G. Pascale Napoli Italy
| | - Ludovica Capitelli
- Department of Clinical Medicine and Surgery Università degli Studi di Napoli Federico II Napoli Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery Università degli Studi di Napoli Federico II Napoli Italy
| |
Collapse
|
28
|
Galati D, Zanotta S, Capitelli L, Bocchino M. A bird's eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy 2022; 77:100-110. [PMID: 34245591 PMCID: PMC8441836 DOI: 10.1111/all.15004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disorder caused by the pandemic diffusion of a novel coronavirus named SARS-CoV-2. Clinical manifestations vary from silent infection to severe pneumonia, disseminated thrombosis, multi-organ failure, and death. COVID-19 pathogenesis is still not fully elucidated, while increasing evidence suggests that disease phenotypes are strongly related to the virus-induced immune system's dysregulation. Indeed, when the virus-host cross talk is out of control, the occurrence of an aberrant systemic inflammatory reaction, named "cytokine storm," leads to a detrimental impairment of the adaptive immune response. Dendritic cells (DCs) are the most potent antigen-presenting cells able to support innate immune and promote adaptive responses. Besides, DCs play a key role in the anti-viral defense. The aim of this review is to focus on DC involvement in SARS-CoV-2 infection to better understand pathogenesis and clinical behavior of COVID-19 and explore potential implications for immune-based therapy strategies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology‐Oncology and Stem Cell Transplantation UnitDepartment of Hematology and Developmental TherapeuticsIstituto Nazionale Tumori‐ IRCCS‐ Fondazione G. PascaleNapoliItaly
| | - Serena Zanotta
- Hematology‐Oncology and Stem Cell Transplantation UnitDepartment of Hematology and Developmental TherapeuticsIstituto Nazionale Tumori‐ IRCCS‐ Fondazione G. PascaleNapoliItaly
| | - Ludovica Capitelli
- Department of Clinical Medicine and SurgeryUniversità degli Studi di Napoli Federico IINapoliItaly
| | - Marialuisa Bocchino
- Department of Clinical Medicine and SurgeryUniversità degli Studi di Napoli Federico IINapoliItaly
| |
Collapse
|
29
|
Aslan A, Aslan C, Zolbanin NM, Jafari R. Acute respiratory distress syndrome in COVID-19: possible mechanisms and therapeutic management. Pneumonia (Nathan) 2021; 13:14. [PMID: 34872623 PMCID: PMC8647516 DOI: 10.1186/s41479-021-00092-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 pandemic is a serious concern in the new era. Acute respiratory distress syndrome (ARDS), and lung failure are the main lung diseases in COVID-19 patients. Even though COVID-19 vaccinations are available now, there is still an urgent need to find potential treatments to ease the effects of COVID-19 on already sick patients. Multiple experimental drugs have been approved by the FDA with unknown efficacy and possible adverse effects. Probably the increasing number of studies worldwide examining the potential COVID-19 related therapies will help to identification of effective ARDS treatment. In this review article, we first provide a summary on immunopathology of ARDS next we will give an overview of management of patients with COVID-19 requiring intensive care unit (ICU), while focusing on the current treatment strategies being evaluated in the clinical trials in COVID-19-induced ARDS patients.
Collapse
Affiliation(s)
- Anolin Aslan
- Department of Critical Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Science, Tehran, Iran
| | - Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran. .,Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
30
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
31
|
Cai W, Marouf N, Said KN, Tamimi F. Nature of the Interplay Between Periodontal Diseases and COVID-19. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.735126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is mostly a mild condition, however, in some patients, it could progress into a severe and even fatal disease. Recent studies have shown that COVID-19 infection and severity could be associated with the presence of periodontitis, one of the most prevalent chronic diseases. This association could be explained by the fact that periodontitis and COVID-19 share some common risk factors that included chronic diseases, such as diabetes and hypertension as well as conditions such as age, sex, and genetic variants. Another possible explanation could be the systemic inflammation and the aspiration of periodontopathogens seen in patients with periodontitis, which could have a synergism with the virus or compromise the reaction of the body against COVID-19. This narrative review explores the nature of these associations, the evidence behind them, and their implications.
Collapse
|
32
|
Ghosh A, Sarkar A, Paul P, Patel P. The rise in cases of mucormycosis, candidiasis and aspergillosis amidst COVID19. FUNGAL BIOL REV 2021; 38:67-91. [PMID: 34548877 PMCID: PMC8445778 DOI: 10.1016/j.fbr.2021.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The Coronavirus outbreak globally has changed the medical system and also led to a shortage of medical facilities in both developing and underdeveloped countries. The COVID19 disease, being novel in nature along with high infectivity and frequent mutational rate, has been termed to be fatal across the globe. The advent of infection by SARS-CoV-2 has brought a myriad of secondary complications and comorbidities resulting in additional challenges to the health care system induced by novel therapeutic procedures. The emerging variant with respect to the Indian subcontinent and the associated genetic mutations have worsened the situation at hand. Proper clinical management along with epidemiological studies and clinical presentations in scientific studies and trials is necessary in order to combat the simultaneous waves of emerging strains. This article summarizes three of the major fungal outbreaks in India namely mucormycosis, candidiasis and aspergillosis, and elaborates their subtypes, pathogenesis, symptoms and treatment and detection techniques. A detail of future therapeutics under consideration are also elaborated along with a general hypothesis on how COVID19 is related to immunological advances leading to major widespread fungal infection in the country. The factors that contribute in promoting virus proliferation and invasive fungal infections include cell-mediated immunity, associated immunocompromised conditions and treatment protocols that slows down immune mechanisms. To better comprehend a fungal or bacterial outbreak, it is very important to conduct audits mediated through multicenter national and state research teams for recognizing patterns and studying current cases of fungal infection in both healthy and comorbid groups of COVID19 patients.
Collapse
Affiliation(s)
- Asmita Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Anusua Sarkar
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Pubali Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Parth Patel
- H. K. College of Pharmacy, Jogeshwari West, Mumbai 400102, Maharashtra, India
| |
Collapse
|
33
|
Charla Y, Kalra M, Chopra N, Choudhury S. COVID-19 vaccination in pediatric cancer patients: A high priority. Pediatr Blood Cancer 2021; 68:e29397. [PMID: 34636133 PMCID: PMC8661652 DOI: 10.1002/pbc.29397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Yashika Charla
- Department of ResearchSir Ganga Ram HospitalNew DelhiIndia
| | - Manas Kalra
- Department of Pediatric Hematology, Oncology and BMT, Sir Ganga Ram HospitalNew DelhiIndia
| | - Neha Chopra
- Department of ResearchSir Ganga Ram HospitalNew DelhiIndia,Spine Labs, St. George and Southerland Clinical SchoolUniversity of New South WalesKogarahNew South WalesAustralia
| | | |
Collapse
|
34
|
Zheng YR, Xie WP, Liu JF, Wu HL, Xu N, Huang ST, Cao H, Chen Q. Impact of High-Frequency Oscillatory Ventilation Combined With Volume Guarantee on Lung Inflammatory Response in Infants With Acute Respiratory Distress Syndrome After Congenital Heart Surgery: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth 2021; 36:2368-2375. [PMID: 34753654 DOI: 10.1053/j.jvca.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Congenital heart disease (CHD) after cardiopulmonary bypass can cause systemic inflammation, and its degree is closely related to the incidence of acute respiratory distress syndrome (ARDS). The purpose of this study was to determine the effectiveness of high-frequency oscillatory ventilation (HFOV) combined with volume guarantee (VG) in reducing systemic inflammation in infants with ARDS after cardiopulmonary bypass for congenital heart surgery. DESIGN A randomized controlled trial. SETTING Single-center study in a tertiary teaching hospital. PARTICIPANTS A total of 58 infants with ARDS after congenital heart surgery were eligible and were randomized to the HFOV (n = 29) or the HFOV-VG (n = 29) between January 2020 and January 2021. INTERVENTIONS Tracheal aspirate samples for the measurement of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) were obtained on days one, two, and three of HFOV or HFOV-VG ventilation. MEASUREMENTS AND MAIN RESULTS The authors found a significantly increasing trend in the HFOV group mean values of IL-6, IL-8, and TNF-α (p < 0.05 on days two and three v day one), and IL-6, IL-8, and TNF-α levels were significantly higher on day three in the HFOV group versus the HFOV+VG group (p < 0.05). In addition, the incidences of hypocapnia and hypercapnia in infants supported with HFOV-VG were significantly lower (p < 0.05). Furthermore, the postoperative mechanical ventilation duration in the HFOV-VG group also was shorter than that in the HFOV group (p < 0.05). CONCLUSION Compared with HFOV alone, HFOV-VG reduced proinflammatory systemic reactions after congenital cardiac surgery, decreased the incidences of hypercapnia and hypocapnia, and shortened the postoperative mechanical ventilation duration.
Collapse
Affiliation(s)
- Yi-Rong Zheng
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Wen-Peng Xie
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Jian-Feng Liu
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Hong-Lin Wu
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Ning Xu
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Shu-Ting Huang
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Hua Cao
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Qiang Chen
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| |
Collapse
|
35
|
Abdalla AE, Xie J, Junaid K, Younas S, Elsaman T, Abosalif KOA, Alameen AAM, Mahjoob MO, Elamir MYM, Ejaz H. Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosn J Basic Med Sci 2021; 21:515-527. [PMID: 33714258 PMCID: PMC8381213 DOI: 10.17305/bjbms.2020.5543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is an extremely infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has become a major global health concern. The induction of a coordinated immune response is crucial to the elimination of any pathogenic infection. However, SARS-CoV-2 can modulate the host immune system to favor viral adaptation and persistence within the host. The virus can counteract type I interferon (IFN-I) production, attenuating IFN-I signaling pathway activation and disrupting antigen presentation. Simultaneously, SARS-CoV-2 infection can enhance apoptosis and the production of inflammatory mediators, which ultimately results in increased disease severity. SARS-CoV-2 produces an array of effector molecules, including nonstructural proteins (NSPs) and open-reading frames (ORFs) accessory proteins. We describe the complex molecular interplay of SARS-CoV-2 NSPs and accessory proteins with the host's signaling mediating immune evasion in the current review. In addition, the crucial role played by immunomodulation therapy to address immune evasion is discussed. Thus, the current review can provide new directions for the development of vaccines and specific therapies.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
| | - Sonia Younas
- Department of Pathology, Tehsil Headquarter Hospital Kamoke, District Gujranwala, Kamoke, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mahjoob Osman Mahjoob
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Mohammed Yagoub Mohammed Elamir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
| |
Collapse
|
36
|
Huckriede J, Anderberg SB, Morales A, de Vries F, Hultström M, Bergqvist A, Ortiz-Pérez JT, Sels JW, Wichapong K, Lipcsey M, van de Poll M, Larsson A, Luther T, Reutelingsperger C, de Frutos PG, Frithiof R, Nicolaes GAF. Evolution of NETosis markers and DAMPs have prognostic value in critically ill COVID-19 patients. Sci Rep 2021; 11:15701. [PMID: 34344929 PMCID: PMC8333321 DOI: 10.1038/s41598-021-95209-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) presents with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels and evolution of the damage associated molecular patterns (DAMPS) cell free DNA (cfDNA), extracellular histone H3 (H3) and neutrophil elastase (NE), and the immune modulators GAS6 and AXL in relation to clinical parameters, ICU scoring systems and mortality in patients (n = 100) with severe COVID-19. cfDNA, H3, NE, GAS6 and AXL were increased in COVID-19 patients compared to controls. These measures associated with occurrence of clinical events and intensive care unit acquired weakness (ICUAW). cfDNA and GAS6 decreased in time in patients surviving to 30 days post ICU admission. A decrease of 27.2 ng/mL cfDNA during ICU stay associated with patient survival, whereas levels of GAS6 decreasing more than 4.0 ng/mL associated with survival. The presence of H3 in plasma was a common feature of COVID-19 patients, detected in 38% of the patients at ICU admission. NETosis markers cfDNA, H3 and NE correlated well with parameters of tissue damage and neutrophil counts. Furthermore, cfDNA correlated with lowest p/f ratio and a lowering in cfDNA was observed in patients with ventilator-free days.
Collapse
Affiliation(s)
- Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Sara Bülow Anderberg
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, and BCLC, CIBEREHD, Barcelona, Spain
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - José T Ortiz-Pérez
- Cardiology Department, Hospital Clinic Barcelona and CIBERCV, Barcelona, Spain
| | - Jan Willem Sels
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Centre, MUMC+), Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Marcel van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Surgery, Maastricht University Medical Centre (MUMC+), School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Tomas Luther
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Pablo Garcia de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS and CIBERCV, Barcelona, Spain
| | - Robert Frithiof
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
37
|
Vita S, Centanni D, Lanini S, Piselli P, Rosati S, Giancola ML, Mondi A, Pinnetti C, Topino S, Chinello P, Mosti S, Gualano G, Faraglia F, Iacomi F, Marchioni L, Maritti M, Girardi E, Ippolito G, Nicastri E. Benefits of Steroid Therapy in COVID-19 Patients with Different PaO 2/FiO 2 Ratio at Admission. J Clin Med 2021; 10:jcm10153236. [PMID: 34362021 PMCID: PMC8347049 DOI: 10.3390/jcm10153236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: The use of steroid therapy in patients within the context of SARS-CoV-2 infection is still a matter of debate. This study aimed to evaluate if potential steroid benefits could be predicted by the ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2) (P/F) in COVID-19 patients at admission. Materials and Methods: Medical records were retrospectively collected from all adult patients admitted because of COVID-19 from 29 January to 31 July 2020. The association of steroid therapy with 28-day all-cause mortality outcome was analysed in a multivariable logistic regression model adjusted for confounding factors. Results: Overall, 511 patients were analysed, of which 39.1% underwent steroid therapy. Steroid treated patients were mostly male, older, and more frequently treated with antiviral drugs and aminoquinolines; the most common comorbidities were hypertension, followed by cardiovascular disease. Overall, 51 patients died within 28-days, and overall 28-days mortality was 19.5% in the cohort of patients exposed to steroids versus 3.9% mortality in unexposed patients (p < 0.001). Steroid therapy on patients with P/F ratio of 235 mmHg or higher at admission can be considered as detrimental, with an 8% increased probability of death. Conclusions: Steroid therapy is associated with increased 28-day mortality in COVID-19 in patients with mild or no ARDS.
Collapse
|
38
|
Feng J, Liu L, He Y, Wang M, Zhou D, Wang J. Novel insights into the pathogenesis of virus-induced ARDS: review on the central role of the epithelial-endothelial barrier. Expert Rev Clin Immunol 2021; 17:991-1001. [PMID: 34224287 DOI: 10.1080/1744666x.2021.1951233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Respiratory viruses can directly or indirectly damage the pulmonary defense barrier, potentially contributing to acute respiratory distress syndrome (ARDS). Despite developments in the understanding of the pathogenesis of ARDS, the underlying pathophysiology still needs to be elucidated.Areas covered: The PubMed database was reviewed for relevant papers published up to 2021. This review summarizes the currently immunological and clinical studies to provide a systemic overview of the epithelial-endothelial barrier, given the recently published immunological profiles upon viral pneumonia, and the potentially detrimental contribution to respiratory function caused by damage to this barrier.Expert opinion: The biophysical structure of host pulmonary defense is intrinsically linked with the ability of alveolar epithelial and capillary endothelial cells, known as the epithelial-endothelial barrier, to respond to, and instruct the delicate immune system to protect the lungs from infections and injuries. Recently published immunological profiles upon viral infection, and its contributions to the damage of respiratory function, suggest a central role for the pulmonary epithelial and endothelial barrier in the pathogenesis of ARDS. We suggest a central role and common pathways by which the epithelial-endothelial barrier contributes to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Large scale cytokine profiling uncovers elevated IL12-p70 and IL-17A in severe pediatric acute respiratory distress syndrome. Sci Rep 2021; 11:14158. [PMID: 34239039 PMCID: PMC8266860 DOI: 10.1038/s41598-021-93705-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
The specific cytokines that regulate pediatric acute respiratory distress syndrome (PARDS) pathophysiology remains unclear. Here, we evaluated the respiratory cytokine profile in PARDS to identify the molecular signatures associated with severe disease. A multiplex suspension immunoassay was used to profile 45 cytokines, chemokines and growth factors. Cytokine concentrations were compared between severe and non-severe PARDS, and correlated with oxygenation index (OI). Partial least squares regression modelling and regression coefficient plots were used to identify a composite of key mediators that differentially segregated severe from non-severe disease. The mean (standard deviation) age and OI of this cohort was 5.2 (4.9) years and 17.8 (11.3), respectively. Early PARDS patients with severe disease exhibited a cytokine signature that was up-regulated for IL-12p70, IL-17A, MCP-1, IL-4, IL-1β, IL-6, MIP-1β, SCF, EGF and HGF. In particular, pro-inflammatory cytokines (IL-6, MCP-1, IP-10, IL-17A, IL-12p70) positively correlated with OI early in the disease. Whereas late PARDS was characterized by a differential lung cytokine signature consisting of both up-regulated (IL-8, IL-12p70, VEGF-D, IL-4, GM-CSF) and down-regulated (IL-1β, EGF, Eotaxin, IL-1RA, and PDGF-BB) profiles segregating non-severe and severe groups. This cytokine signature was associated with increased transcription, T cell activation and proliferation as well as activation of mitogen-activated protein kinase pathway that underpin PARDS severity.
Collapse
|
40
|
Wang Y, Pang SC, Yang Y. A potential association between immunosenescence and high COVID-19 related mortality among elderly patients with cardiovascular diseases. Immun Ageing 2021; 18:25. [PMID: 34074305 PMCID: PMC8166579 DOI: 10.1186/s12979-021-00234-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Elderly patients with cardiovascular diseases account for a large proportion of Corona virus Disease 2019(COVID-19)related deaths. COVID-19, as a new coronavirus, mainly targets the patient's lung triggering a cascade of innate and adaptive immune responses in the host. The principal causes of death among COVID-19 patients, especially elderly subjects with cardiovascular diseases, are acute respiratory distress syndrome(ARDS), multiple organ dysfunction syndrome (MODS), and microvascular thrombosis. All prompted by an excessive uncontrolled systemic inflammatory response. Immunosenescence, characterized by systemic and chronic inflammation as well as innate/adaptive immune imbalance, presents both in the elderly and cardiovascular patients. COVID-19 infection further aggravates the existing inflammatory process and lymphocyte depletion leading to uncontrollable systemic inflammatory responses, which is the primary cause of death. Based on the higher mortality, this study attempts to elucidate the pathophysiological mechanisms of COVID-19 in elderly subjects with cardiovascular diseases as well as the cause of the high mortality result from COVID-19.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Cardiology, Hangzhou Xiacheng Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310004, Zhejiang, China
| | - Shu-Chao Pang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Yang
- Department of Cardiology, SirRunRunShaw Hospital, College of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
41
|
Wang W, Lei W, Jiang L, Gao S, Hu S, Zhao ZG, Niu CY, Zhao ZA. Therapeutic mechanisms of mesenchymal stem cells in acute respiratory distress syndrome reveal potentials for Covid-19 treatment. J Transl Med 2021; 19:198. [PMID: 33971907 PMCID: PMC8107778 DOI: 10.1186/s12967-021-02862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of critically ill patients with acute respiratory distress syndrome (ARDS) is 30.9% to 46.1%. The emergence of the coronavirus disease 2019 (Covid-19) has become a global issue with raising dire concerns. Patients with severe Covid-19 may progress toward ARDS. Mesenchymal stem cells (MSCs) can be derived from bone marrow, umbilical cord, adipose tissue and so on. The easy accessibility and low immunogenicity enable MSCs for allogeneic administration, and thus they were widely used in animal and clinical studies. Accumulating evidence suggests that mesenchymal stem cell infusion can ameliorate ARDS. However, the underlying mechanisms of MSCs need to be discussed. Recent studies showed MSCs can modulate immune/inflammatory cells, attenuate endoplasmic reticulum stress, and inhibit pulmonary fibrosis. The paracrine cytokines and exosomes may account for these beneficial effects. In this review, we summarize the therapeutic mechanisms of MSCs in ARDS, analyzed the most recent animal experiments and Covid-19 clinical trial results, discussed the adverse effects and prospects in the recent studies, and highlight the potential roles of MSC therapy for Covid-19 patients with ARDS.
Collapse
Affiliation(s)
- Wendi Wang
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Lina Jiang
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China
| | - Siqi Gao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China. .,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
42
|
Flores-Ramírez R, Berumen-Rodríguez AA, Martínez-Castillo MA, Alcántara-Quintana LE, Díaz-Barriga F, Díaz de León-Martínez L. A review of Environmental risks and vulnerability factors of indigenous populations from Latin America and the Caribbean in the face of the COVID-19. Glob Public Health 2021; 16:975-999. [PMID: 33966608 DOI: 10.1080/17441692.2021.1923777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Latin America and the Caribbean (LAC) was declared a new epicentre of the coronavirus pandemic by the World Health Organization (WHO) on 22 May 2020. As of 13 January 2021, the numbers of deaths and cases caused by COVID-19 in LAC reported are 552,000 and 17'485,000 respectively. LAC concentrates the largest percentage of indigenous populations throughout the world. In this region, poverty is persistent and particularly rural indigenous peoples hold the steepest barriers to health services and experience profound discrimination based on ethnicity, poverty, and language, compared to their non-indigenous counterparts. The information regarding the health of indigenous populations, in general, is scarce, and this problem is aggravated in the face of the COVID-19 pandemic. Therefore, the main objective of this work is to address the overall scenario of indigenous peoples in the Latin American and Caribbean region from March 2020 to January 2021, in this manner gathering information regarding health problems, economic, social, cultural and environmental factors that make indigenous populations in LAC particularly vulnerable to serious health effects from the COVID-19 pandemic, as well as compiling the mitigation strategies implemented in indigenous communities.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), San Luis Potosí, México
| | | | | | - Luz Eugenia Alcántara-Quintana
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), San Luis Potosí, México
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), San Luis Potosí, México
| | | |
Collapse
|
43
|
Al Duhailib Z, Farooqi M, Piticaru J, Alhazzani W, Nair P. The role of eosinophils in sepsis and acute respiratory distress syndrome: a scoping review. Can J Anaesth 2021; 68:715-726. [PMID: 33495945 PMCID: PMC7833890 DOI: 10.1007/s12630-021-01920-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Septic shock and acute respiratory distress syndrome (ARDS) are characterized by a dysregulated immune host response that may respond to steroid therapy. Eosinophils contribute to type 2 inflammation that often responds to steroid therapy; their role in immune dysregulation and outcomes in sepsis and ARDS is unclear. SOURCE A systematic search of Cochrane Library, MEDLINE, and EMBASE was performed from inception to 9 September 2020. The search comprised the following terms: eosinophils, sepsis, septic shock, and ARDS. Two reviewers independently screened abstracts and texts and extracted data on disease severity and clinical outcomes. PRINCIPAL FINDINGS Thirty-nine studies were identified: 30 evaluated serum eosinophil count in sepsis, one evaluated eosinophil activity in sepsis, three assessed bronchoalveolar lavage (BAL) eosinophil count in ARDS, four assessed eosinophil activity in ARDS, and one assessed peripheral eosinophil count in ARDS. Eleven studies showed an association between eosinopenia and sepsis, and eight studies found persistent eosinopenia at > 48 hr of intensive care unit admission to predict mortality and readmission in septic patients. Three studies found BAL eosinophil count to be low in ARDS, although one found that levels rose in late-phase ARDS. Three studies found eosinophil activity markers in BAL to be high in ARDS and correlate with ARDS severity. CONCLUSION Persistent peripheral eosinopenia is a marker of bacterial sepsis and is independently associated with poor outcomes. Bronchoalveolar lavage eosinophil counts are low in early-phase ARDS, but increase in late-phase ARDS, while elevated markers of eosinophil activity correlate with ARDS severity. Further studies understanding the mechanisms leading to eosinopenia in sepsis and increased eosinophil activity in ARDS are needed.
Collapse
Affiliation(s)
- Zainab Al Duhailib
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Critical Care Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada.
| | - Malik Farooqi
- Department of Medicine, Division of Respirology, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
| | - Joshua Piticaru
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Waleed Alhazzani
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Parameswaran Nair
- Department of Medicine, Division of Respirology, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Mastitskaya S, Thompson N, Holder D. Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Front Neurosci 2021; 15:667036. [PMID: 33927594 PMCID: PMC8076564 DOI: 10.3389/fnins.2021.667036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury. It is induced by sepsis, aspiration, and pneumonia, including that caused by SARS coronavirus and human influenza viruses. The main pathophysiological mechanism of ARDS is a systemic inflammatory response. Vagus nerve stimulation (VNS) can limit cytokine production in the spleen and thereby dampen any systemic inflammation and inflammation-induced tissue damage in the lungs and other organs. However, the effects of increased parasympathetic outflow to the lungs when non-selective VNS is applied may result in bronchoconstriction, increased mucus secretion and enhance local pulmonary inflammatory activity; this may outweigh the beneficial systemic anti-inflammatory action of VNS. Organ/function-specific therapy can be achieved by imaging of localized fascicle activity within the vagus nerve and selective stimulation of identified organ-specific fascicles. This may be able to provide selective neuromodulation of different pathways within the vagus nerve and offer a novel means to improve outcome in ARDS. This has motivated this review in which we discuss the mechanisms of anti-inflammatory effects of VNS, progress in selective VNS techniques, and a possible application for ARDS.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | |
Collapse
|
45
|
Saris A, Reijnders TDY, Nossent EJ, Schuurman AR, Verhoeff J, Asten SV, Bontkes H, Blok S, Duitman J, Bogaard HJ, Heunks L, Lutter R, van der Poll T, Garcia Vallejo JJ. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax 2021; 76:1010-1019. [PMID: 33846275 PMCID: PMC8050882 DOI: 10.1136/thoraxjnl-2020-216256] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Background Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. Methods This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. Findings Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. Interpretation The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.
Collapse
Affiliation(s)
- Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands .,Infectious Disease, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | - Saskia van Asten
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | - Hetty Bontkes
- Medical Immunology Laboratory, Department of Clinical Chemistry, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Siebe Blok
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Janwillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Rene Lutter
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands.,Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | | |
Collapse
|
46
|
Molaei S, Dadkhah M, Asghariazar V, Karami C, Safarzadeh E. The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. Int Immunopharmacol 2021; 92:107051. [PMID: 33429331 PMCID: PMC7522676 DOI: 10.1016/j.intimp.2020.107051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/25/2023]
Abstract
The worldwide outbreak of SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 as a novel human coronavirus, was the worrying news at the beginning of 2020. Since its emergence complicated more than 870,000 individuals and led to more than 43,000 deaths worldwide. Considering to the potential threat of a pandemic and transmission severity of it, there is an urgent need to evaluate and realize this new virus's structure and behavior and the immunopathology of this disease to find potential therapeutic protocols and to design and develop effective vaccines. This disease is able to agitate the response of the immune system in the infected patients, so ARDS, as a common consequence of immunopathological events for infections with Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2, could be the main reason for death. Here, we summarized the immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2 and therapeutic and prophylactic strategies with a focus on vaccine development and its challenges.
Collapse
Affiliation(s)
- Soheila Molaei
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Chiman Karami
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
47
|
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential Targets to Mitigate Trauma- or Sepsis-Induced Immune Suppression. Front Immunol 2021; 12:622601. [PMID: 33717127 PMCID: PMC7947256 DOI: 10.3389/fimmu.2021.622601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-β (TGF-β) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-β and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nadine Beckmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Christen E Salyer
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| |
Collapse
|
48
|
Influence of aging on T cell response and renin-angiotensin system imbalance during SARS-CoV-2 infection. Immunol Lett 2021; 232:35-38. [PMID: 33581170 PMCID: PMC7874963 DOI: 10.1016/j.imlet.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/18/2023]
|
49
|
Deschler S, Kager J, Erber J, Fricke L, Koyumdzhieva P, Georgieva A, Lahmer T, Wiessner JR, Voit F, Schneider J, Horstmann J, Iakoubov R, Treiber M, Winter C, Ruland J, Busch DH, Knolle PA, Protzer U, Spinner CD, Schmid RM, Quante M, Böttcher K. Mucosal-Associated Invariant T (MAIT) Cells Are Highly Activated and Functionally Impaired in COVID-19 Patients. Viruses 2021; 13:241. [PMID: 33546489 PMCID: PMC7913667 DOI: 10.3390/v13020241] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprises mild courses of disease as well as progression to severe disease, characterised by lung and other organ failure. The immune system is considered to play a crucial role for the pathogenesis of COVID-19, although especially the contribution of innate-like T cells remains poorly understood. Here, we analysed the phenotype and function of mucosal-associated invariant T (MAIT) cells, innate-like T cells with potent antimicrobial effector function, in patients with mild and severe COVID-19 by multicolour flow cytometry. Our data indicate that MAIT cells are highly activated in patients with COVID-19, irrespective of the course of disease, and express high levels of proinflammatory cytokines such as IL-17A and TNFα ex vivo. Of note, expression of the activation marker HLA-DR positively correlated with SAPS II score, a measure of disease severity. Upon MAIT cell-specific in vitro stimulation, MAIT cells however failed to upregulate expression of the cytokines IL-17A and TNFα, as well as cytolytic proteins, that is, granzyme B and perforin. Thus, our data point towards an altered cytokine expression profile alongside an impaired antibacterial and antiviral function of MAIT cells in COVID-19 and thereby contribute to the understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Sebastian Deschler
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Juliane Kager
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Lisa Fricke
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Plamena Koyumdzhieva
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Alexandra Georgieva
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Tobias Lahmer
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Johannes R. Wiessner
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Florian Voit
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Jochen Schneider
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Julia Horstmann
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Roman Iakoubov
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Matthias Treiber
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.W.); (J.R.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.W.); (J.R.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany;
| | - Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, 81675 Munich, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Partner Site Munich, Germany
| | - Christoph D. Spinner
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
- German Center for Infection Research (DZIF), 38124 Braunschweig, Partner Site Munich, Germany
| | - Roland M. Schmid
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Michael Quante
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
- Freiburg University Medical Center, Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Katrin Böttcher
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| |
Collapse
|
50
|
Yang HZ, Ge WH, Pan W, Meng LP, Su J, Yang ZB, Du WF, Xu ZW, Chen YX, Zhang S, Xie F, Xu C. Crotalaria ferruginea extract attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting MAPK/NF-κB signaling pathways. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.328055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|