1
|
Shahaj O, Meiwald A, Puri Sudhir K, Gara-Adams R, Wark P, Cazaux A, Rios AE, Avdeev SN, Adams EJ. Mapping the Common Barriers to Optimal COPD Care in High and Middle-Income Countries: Qualitative Perspectives from Clinicians. Int J Chron Obstruct Pulmon Dis 2024; 19:1207-1223. [PMID: 38831892 PMCID: PMC11146611 DOI: 10.2147/copd.s449659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) poses a significant global health burden despite being largely preventable and treatable. Despite the availability of guidelines, COPD care remains suboptimal in many settings, including high-income countries (HICs) and upper-middle-income countries (UMICs), with varied approaches to diagnosis and management. This study aimed to identify common and unique barriers to COPD care across six countries (Australia, Spain, Taiwan, Argentina, Mexico, and Russia) to inform global policy initiatives for improved care. Methods COPD care pathways were mapped for each country and supplemented with epidemiological, health-economic, and clinical data from a targeted literature review. Semi-structured interviews with 17 respiratory care clinicians were used to further validate the pathways and identify key barriers. Thematic content analysis was used to generate the themes. Results Six themes were common in most HICs and UMICs: "Challenges in COPD diagnosis", "Strengthening the role of primary care", "Fragmented healthcare systems and coordination challenges", "Inadequate management of COPD exacerbations", "Limited access to specialized care" and, "Impact of underfinanced and overloaded healthcare systems". One theme, "Insurance coverage and reimbursement challenges", was more relevant for UMICs. HICs and UMICs differ in patient and healthcare provider awareness, primary care involvement, spirometry access, and availability of specialized care. Both face issues with healthcare fragmentation, guideline adherence, and COPD exacerbation management. In addition, UMICs also grapple with resource limitations and healthcare infrastructure challenges. Conclusion Many challenges to COPD care are the same in both HICs and UMICs, underscoring the pervasive nature of these issues. While country-specific issues require customized solutions, there are untapped possibilities for implementing global respiratory strategies that support countries to manage COPD effectively. In addition to healthcare system-level initiatives, there is a crucial need for political prioritization of COPD to allocate the essential resources it requires.
Collapse
Affiliation(s)
| | | | | | | | - Peter Wark
- Respiratory and Sleep Medicine, John Hunter Hospital, New Castle, Australia
| | - Alexis Cazaux
- Pulmonary and Respiratory Medicine, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Abelardo Elizondo Rios
- Intensive Pneumology, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Sergey N Avdeev
- Respiratory Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
2
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
3
|
Yang Q, Huang W, Yin D, Zhang L, Gao Y, Tong J, Li Z. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: a systematic review and meta-analysis. Front Genet 2023; 14:1128985. [PMID: 37284064 PMCID: PMC10239837 DOI: 10.3389/fgene.2023.1128985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) affects approximately 400 million people worldwide and is associated with high mortality and morbidity. The effect of EPHX1 and GSTP1 gene polymorphisms on COPD risk has not been fully characterized. Objective: To investigate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. Methods: A systematic search was conducted on 9 databases to identify studies published in English and Chinese. The analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines (PRISMA). The pooled OR and 95% CI were calculated to evaluate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. The I2 test, Q test, Egger's test, and Begg's test were conducted to determine the level of heterogeneity and publication bias of the included studies. Results: In total, 857 articles were retrieved, among which 59 met the inclusion criteria. The EPHX1 rs1051740 polymorphism (homozygote, heterozygote, dominant, recessives, and allele model) was significantly associated with high risk of COPD risk. Subgroup analysis revealed that the EPHX1 rs1051740 polymorphism was significantly associated with COPD risk among Asians (homozygote, heterozygote, dominant, and allele model) and Caucasians (homozygote, dominant, recessives, and allele model). The EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with a low risk of COPD. Subgroup analysis showed that the EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Asians. The GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk. Subgroup analysis showed that the GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk among Caucasians. The GSTP1 rs1138272 polymorphism (heterozygote and dominant model) was significantly associated with COPD risk. Subgroup analysis suggested that the GSTP1 rs1138272 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Caucasians. Conclusion: The C allele in EPHX1 rs1051740 among Asians and the CC genotype among Caucasians may be risk factors for COPD. However, the GA genotype in EPHX1 rs2234922 may be a protective factor against COPD in Asians. The GG genotype in GSTP1 rs1695 and the TC genotype in GSTP1 rs1138272 may be risk factors for COPD, especially among Caucasians.
Collapse
Affiliation(s)
- Qinjun Yang
- Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wanqiu Huang
- Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| |
Collapse
|
4
|
Wilke RA, Larson EA. Air, Land, and Sea: Gene-Environment Interaction in Chronic Disease. Am J Med 2021; 134:1476-1482. [PMID: 34343516 PMCID: PMC8922305 DOI: 10.1016/j.amjmed.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Each of us reflects a unique convergence of DNA and the environment. Over the past 2 decades, huge biobanks linked to electronic medical records have positioned the clinical and scientific communities to understand the complex genetic architecture underlying many common diseases. Although these efforts are producing increasingly accurate gene-based risk prediction algorithms for use in routine clinical care, the algorithms often fail to include environmental factors. This review explores the concept of heritability (genetic vs nongenetic determinants of disease), with emphasis on the role of environmental factors as risk determinants for common complex diseases influenced by air and water quality. Efforts to define patient exposure to specific toxicants in practice-based data sets will deepen our understanding of diseases with low heritability, and improved land management practices will reduce the burden of disease.
Collapse
Affiliation(s)
- Russell A Wilke
- Professor and Vice Chair, Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls; Professor and Chair, Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls.
| | - Eric A Larson
- Professor and Vice Chair, Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls; Professor and Chair, Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls
| |
Collapse
|
5
|
Application of text mining to develop AOP-based mucus hypersecretion genesets and confirmation with in vitro and clinical samples. Sci Rep 2021; 11:6091. [PMID: 33731770 PMCID: PMC7969622 DOI: 10.1038/s41598-021-85345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Mucus hypersecretion contributes to lung function impairment observed in COPD (chronic obstructive pulmonary disease), a tobacco smoking-related disease. A detailed mucus hypersecretion adverse outcome pathway (AOP) has been constructed from literature reviews, experimental and clinical data, mapping key events (KEs) across biological organisational hierarchy leading to an adverse outcome. AOPs can guide the development of biomarkers that are potentially predictive of diseases and support the assessment frameworks of nicotine products including electronic cigarettes. Here, we describe a method employing manual literature curation supported by a focused automated text mining approach to identify genes involved in 5 KEs contributing to decreased lung function observed in tobacco-related COPD. KE genesets were subsequently confirmed by unsupervised clustering against 3 different transcriptomic datasets including (1) in vitro acute cigarette smoke and e-cigarette aerosol exposure, (2) in vitro repeated incubation with IL-13, and (3) lung biopsies from COPD and healthy patients. The 5 KE genesets were demonstrated to be predictive of cigarette smoke exposure and mucus hypersecretion in vitro, and less conclusively predict the COPD status of lung biopsies. In conclusion, using a focused automated text mining and curation approach with experimental and clinical data supports the development of risk assessment strategies utilising AOPs.
Collapse
|
6
|
He D, Li J, Zhou B, Chen Y, Hui Q, Ye F, Zhang L, He X, Niu W, Zhang Q. A correlational meta-analytical study of transforming growth factor-β genetic polymorphisms as a risk factor for chronic obstructive pulmonary disease. Gene 2020; 744:144633. [PMID: 32240778 DOI: 10.1016/j.gene.2020.144633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Several studies have examined the association between transforming growth factor-β (TGF-β) genetic polymorphisms and chronic obstructive pulmonary disease (COPD) risk, but the results remained inconclusive and controversial. AIMS We aimed to examine the correlation between TGF-β genetic polymorphisms and COPD risk through a comprehensive meta-analysis. Additionally, changes in circulating TGF-β concentrations across genotypes of TGF-β genetic polymorphisms were analyzed. METHODS Literature search, quality assessment, and data extraction were completed independently and in duplicate. Data are expressed in odds ratio (OR) or weighted mean difference (WMD) with 95% confidence interval (CI). RESULTS A total of 12 articles, involving 14 independent studies and 7 170 participants, were meta-analyzed for the correlation of five polymorphisms (rs2241712, rs1800469, rs1982073, rs6957, and rs2241718) in TGF-β gene with COPD risk. Under the allele model, no statistical significance was observed for all polymorphisms associated with COPD risk. Subsidiary analyses indicated that country, COPD stage, and diagnosis of COPD were potential sources of between-study heterogeneity. Filled full plots revealed no missing studies for all studied polymorphisms, except rs1982073. Genotype-phenotype analyses showed that carriers of rs1800469 CT genotype had significantly higher concentrations of circulating TGF-β than those with CC genotype in COPD patients (WMD: 0.28 pg/ml, 95% CI: 0.01 to 0.56). CONCLUSION Our findings failed to support the candidacy of TGF-β gene in the development of COPD, whereas the contribution of TGF-β gene to COPD might be ethnicity- and stage-dependent.
Collapse
Affiliation(s)
- Danni He
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jialin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qin Hui
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Lipeng Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China; Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuge He
- Department of Urology, Anshan Cancer Hospital, Anshan, Liaoning Province, China.
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China.
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China.
| |
Collapse
|
7
|
Matsumura K, Ito S. Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach. BMC Pulm Med 2020; 20:29. [PMID: 32013930 PMCID: PMC6998147 DOI: 10.1186/s12890-020-1062-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is combination of progressive lung diseases. The diagnosis of COPD is generally based on the pulmonary function testing, however, difficulties underlie in prognosis of smokers or early stage of COPD patients due to the complexity and heterogeneity of the pathogenesis. Computational analyses of omics technologies are expected as one of the solutions to resolve such complexities. Methods We obtained transcriptomic data by in vitro testing with exposures of human bronchial epithelial cells to the inducers for early events of COPD to identify the potential descriptive marker genes. With the identified genes, the machine learning technique was employed with the publicly available transcriptome data obtained from the lung specimens of COPD and non-COPD patients to develop the model that can reflect the risk continuum across smoking and COPD. Results The expression levels of 15 genes were commonly altered among in vitro tissues exposed to known inducible factors for earlier events of COPD (exposure to cigarette smoke, DNA damage, oxidative stress, and inflammation), and 10 of these genes and their corresponding proteins have not previously reported as COPD biomarkers. Although these genes were able to predict each group with 65% accuracy, the accuracy with which they were able to discriminate COPD subjects from smokers was only 29%. Furthermore, logistic regression enabled the conversion of gene expression levels to a numerical index, which we named the “potential risk factor (PRF)” index. The highest significant index value was recorded in COPD subjects (0.56 at the median), followed by smokers (0.30) and non-smokers (0.02). In vitro tissues exposed to cigarette smoke displayed dose-dependent increases of PRF, suggesting its utility for prospective risk estimation of tobacco products. Conclusions Our experimental-based transcriptomic analysis identified novel genes associated with COPD, and the 15 genes could distinguish smokers and COPD subjects from non-smokers via machine-learning classification with remarkable accuracy. We also suggested a PRF index that can quantitatively reflect the risk continuum across smoking and COPD pathogenesis, and we believe it will provide an improved understanding of smoking effects and new insights into COPD.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
8
|
Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional development and asthma trajectories. Semin Immunopathol 2020; 42:17-27. [PMID: 31989229 DOI: 10.1007/s00281-020-00784-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Early life environmental risk factors are associated with chronic respiratory morbidity in child- and adulthood. A possible mechanism for this sustained effect is their influence on early life lung functional growth and development, a susceptible phase of rapid lung growth with increased plasticity. We summarize evidence of hereditary and environmental ante-, peri-, and early postnatal factors on lung functional development, such as air pollution, tobacco exposure, nutrition, intrauterine growth retardation, prematurity, early life infections, microbiome, and allergies and their effect on lung functional trajectories. While some of the factors (e.g., prematurity) directly impair lung growth, the influence of many environmental factors is mediated through inflammatory processes (e.g., recurrent infections or oxidative stress). The timing and nature of these influences and their impact result in degrees of impaired maximal lung functional capacity in early adulthood; and they potentially impact future long-term respiratory morbidity such as chronic asthma or chronic obstructive airway disease (COPD). We discuss possibilities to prevent or modify such early abnormal lung functional growth trajectories and the need for future studies and prevention programs.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Jakob Usemann
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Respiratory Medicin, University Children's Hospital Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| |
Collapse
|
9
|
Yao Y, Gu Y, Yang M, Cao D, Wu F. The Gene Expression Biomarkers for Chronic Obstructive Pulmonary Disease and Interstitial Lung Disease. Front Genet 2019; 10:1154. [PMID: 31824564 PMCID: PMC6879656 DOI: 10.3389/fgene.2019.01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Abstract
COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are two common respiratory diseases. They share similar clinical traits but require different therapeutic treatments. Identifying the biomarkers that are differentially expressed between them will not only help the diagnosis of COPD and ILD, but also provide candidate drug targets that may facilitate the development of new treatment for COPD and ILD. Due to the irreversible complex pathological changes of COPD, there are very limited therapeutic options for COPD patients. In this study, we analyzed the gene expression profiles of two datasets: one training dataset that includes 144 COPD patients and 194 ILD patients, and one test dataset that includes 75 COPD patients and 61 ILD patients. Advanced feature selection methods, mRMR (minimal Redundancy Maximal Relevance) and incremental feature selection (IFS), were applied to identify the 38-gene biomarker. An SVM (support vector machine) classifier was built based on the 38-gene biomarker. Its accuracy, sensitivity, and specificity on training dataset evaluated by leave one out cross-validation were 0.905, 0.896, and 0.912, respectively. And on independent test dataset, the accuracy, sensitivity, and specificity on were as great as and were 0.904, 0.933, and 0.869, respectively. The biological function analysis of the 38 genes indicated that many of them can be potential treatment targets that may benefit COPD and ILD patients.
Collapse
Affiliation(s)
- Yangwei Yao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Yangyang Gu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Meng Yang
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Dakui Cao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Fengjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
10
|
Li XX, Peng T, Gao J, Feng JG, Wu DD, Yang T, Zhong L, Fu WP, Sun C. Allele-specific expression identified rs2509956 as a novel long-distance cis-regulatory SNP for SCGB1A1, an important gene for multiple pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 317:L456-L463. [PMID: 31322430 DOI: 10.1152/ajplung.00275.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SCGB1A1 (secretoglobin family 1A member 1) is an important protein for multiple pulmonary diseases, especially asthma, chronic obstructive pulmonary disease, and lung cancer. One single-nucleotide polymorphism (SNP) at 5'-untranslated region of SCGB1A1, rs3741240, has been suggested to be associated with reduced protein expression and further asthma susceptibility. However, it was still unclear whether there were other cis-regulatory elements for SCGB1A1 that might further contribute to pulmonary diseases. Allele-specific expression (ASE) is a novel approach to identify the functional region in human genome. In the present study, we measured ASE on rs3741240 in lung tissues and observed a consistent excess of G allele over A (P < 10-6), which indicated that this SNP or the one(s) in linkage disequilibrium (LD) could regulate SCGB1A1 expression. By analyzing 1000 Genomes Project data for Chinese, one SNP locating ~10.2 kb away and downstream of SCGB1A1, rs2509956, was identified to be in strong LD with rs3741240. Reporter gene assay confirmed that both SNPs could regulate gene expression in the lung cell. By chromosome conformation capture, it was verified that the region surrounding rs2509956 could interact with SCGB1A1 promoter region and act as an enhancer. Through chromatin immunoprecipitation and overexpression assay, the related transcription factor RELA (RELA proto-oncogene, NF-kB subunit) was recognized to bind the region spanning rs2509956. Our work identified a novel long-distance cis-regulatory SNP for SCGB1A1, which might contribute to multiple pulmonary diseases.
Collapse
Affiliation(s)
- Xiu-Xiong Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Tao Peng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jing Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jia-Gang Feng
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Dan-Dan Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, People's Republic of China
| | - Ting Yang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Li Zhong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China.,Provincial Demonstration Center for Experimental Biology Education, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Wei-Ping Fu
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Chang Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Bossé Y, Lamontagne M, Gaudreault N, Racine C, Levesque MH, Smith BM, Auger D, Clemenceau A, Paré MÈ, Laviolette L, Tremblay V, Maranda B, Morissette MC, Maltais F. Early-onset emphysema in a large French-Canadian family: a genetic investigation. THE LANCET RESPIRATORY MEDICINE 2019; 7:427-436. [PMID: 31000475 DOI: 10.1016/s2213-2600(19)30056-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inherited mutations in SERPINA1 coding for the alpha-1 antitrypsin (A1AT) protein is the only well established cause of hereditary emphysema. We aimed to identify the genetic ecause of early-onset emphysema in a five-generation French-Canadian family free of A1AT deficiency. METHODS Between Dec 1, 2014, and April 1, 2017, we investigated 63 individuals from a single pedigree, including 55 with DNA available. Whole-exome sequencing was done in a convenience sample of 14 individuals (nine with unambiguous expression of the typical form of emphysema observed in this family). We filtered rare non-synonymous variants that were predicted to be damaging to identify a single mutation in a biologically relevant gene shared among all affected individuals. We assessed segregation with the disease in additional family members who were not evaluated by whole-exome sequencing. The effect of the candidate variant on protein function was evaluated in vitro. mRNA and protein expression of the candidate gene was assessed in lung samples from unrelated individuals (n=80) with and without emphysema who underwent surgery for lung cancer at our institution. FINDINGS A rare in-silico-predicted damaging variant (Ala455Thr) was identified in the protein tyrosine phosphatase non-receptor type 6 (PTPN6) gene, also known as SHP-1, an important negative regulator of immune processes. 20 (95%) of 21 family members with computed tomography-confirmed emphysema were heterozygotes for the Ala455Thr mutation. No Thr455 homozygotes were identified. Emphysema or reduced diffusion capacity was observed in all heterozygotes with a history of smoking. Incomplete penetrance of the mutation and variable degrees of emphysema were observed in never smokers. The Ala455Thr mutation in SHP-1 caused a reduction in phosphatase activity in vitro, confirming the loss-of-function effect of the mutation. mRNA and protein expression of PTPN6 were upregulated in smokers, but were not associated with emphysema or severity of airflow limitation. INTERPRETATION An inherited variant in the gene PTPN6 is responsible for early-onset emphysema in this family. To our knowledge, this is the second form of hereditary emphysema since the discovery of A1AT deficiency in the 1960s, representing a breakthrough in understanding the genetics and pathogenesis of emphysema. FUNDING Fonds sur les maladies respiratoires J.-D. Bégin-P.-H. Lavoie de l'Université Laval, Fondation de l'Institut universitaire de cardiologie et de pneumologie de Québec, CIHR/GSK research Chair on COPD at Université Laval, and the Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada; Department of Molecular Medicine, Laval University, Quebec, Canada.
| | - Maxime Lamontagne
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Christine Racine
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Marie-Hélène Levesque
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Benjamin M Smith
- McGill University Health Centre Research Institute, Montreal, Canada; College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dominique Auger
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Alisson Clemenceau
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Marie-Ève Paré
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Louis Laviolette
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Victor Tremblay
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Bruno Maranda
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - Mathieu C Morissette
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| | - François Maltais
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec, Canada
| |
Collapse
|
12
|
Park J, Hescott BJ, Slonim DK. Pathway centrality in protein interaction networks identifies putative functional mediating pathways in pulmonary disease. Sci Rep 2019; 9:5863. [PMID: 30971743 PMCID: PMC6458310 DOI: 10.1038/s41598-019-42299-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Identification of functional pathways mediating molecular responses may lead to better understanding of disease processes and suggest new therapeutic approaches. We introduce a method to detect such mediating functions using topological properties of protein-protein interaction networks. We define the concept of pathway centrality, a measure of communication between disease genes and differentially expressed genes. Using pathway centrality, we identify mediating pathways in three pulmonary diseases (asthma; bronchopulmonary dysplasia (BPD); and chronic obstructive pulmonary disease (COPD)). We systematically evaluate the significance of all identified central pathways using genetic interactions. Mediating pathways shared by all three pulmonary disorders favor innate immune and inflammation-related processes, including toll-like receptor (TLR) signaling, PDGF- and angiotensin-regulated airway remodeling, the JAK-STAT signaling pathway, and interferon gamma. Disease-specific mediators, such as neurodevelopmental processes in BPD or adhesion molecules in COPD, are also highlighted. Some of our findings implicate pathways already in development as drug targets, while others may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Jisoo Park
- School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Benjamin J Hescott
- College of Computer and Information Science, Northeastern University, Boston, MA, 02115, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA.
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Lamontagne M, Bérubé JC, Obeidat M, Cho MH, Hobbs BD, Sakornsakolpat P, de Jong K, Boezen HM, Nickle D, Hao K, Timens W, van den Berge M, Joubert P, Laviolette M, Sin DD, Paré PD, Bossé Y. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Hum Mol Genet 2019; 27:1819-1829. [PMID: 29547942 DOI: 10.1093/hmg/ddy091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Causal genes of chronic obstructive pulmonary disease (COPD) remain elusive. The current study aims at integrating genome-wide association studies (GWAS) and lung expression quantitative trait loci (eQTL) data to map COPD candidate causal genes and gain biological insights into the recently discovered COPD susceptibility loci. Two complementary genomic datasets on COPD were studied. First, the lung eQTL dataset which included whole-genome gene expression and genotyping data from 1038 individuals. Second, the largest COPD GWAS to date from the International COPD Genetics Consortium (ICGC) with 13 710 cases and 38 062 controls. Methods that integrated GWAS with eQTL signals including transcriptome-wide association study (TWAS), colocalization and Mendelian randomization-based (SMR) approaches were used to map causality genes, i.e. genes with the strongest evidence of being the functional effector at specific loci. These methods were applied at the genome-wide level and at COPD risk loci derived from the GWAS literature. Replication was performed using lung data from GTEx. We collated 129 non-overlapping risk loci for COPD from the GWAS literature. At the genome-wide scale, 12 new COPD candidate genes/loci were revealed and six replicated in GTEx including CAMK2A, DMPK, MYO15A, TNFRSF10A, BTN3A2 and TRBV30. In addition, we mapped candidate causal genes for 60 out of the 129 GWAS-nominated loci and 23 of them were replicated in GTEx. Mapping candidate causal genes in lung tissue represents an important contribution to the genetics of COPD, enriches our biological interpretation of GWAS findings, and brings us closer to clinical translation of genetic associations.
Collapse
Affiliation(s)
- Maxime Lamontagne
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Jean-Christophe Bérubé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kim de Jong
- Department of Epidemiology, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | | | - David Nickle
- Merck Research Laboratories (MRL), Seattle, WA, USA
| | - Ke Hao
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, QC, Canada
| | - Michel Laviolette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter D Paré
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
14
|
Zeng X, Vonk JM, van der Plaat DA, Faiz A, Paré PD, Joubert P, Nickle D, Brandsma CA, Kromhout H, Vermeulen R, Xu X, Huo X, de Jong K, Boezen HM. Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms. ENVIRONMENT INTERNATIONAL 2019; 122:263-269. [PMID: 30449631 DOI: 10.1016/j.envint.2018.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023]
Abstract
Respiratory symptoms are important indicators of respiratory diseases. Both genetic and environmental factors contribute to respiratory symptoms development but less is known about gene-environment interactions. We aimed to assess interactions between single nucleotide polymorphisms (SNPs) and occupational exposures on respiratory symptoms cough, dyspnea and phlegm. As identification cohort LifeLines I (n = 7976 subjects) was used. Job-specific exposure was estimated using the ALOHA + job exposure matrix. SNP-by-occupational exposure interactions on respiratory symptoms were tested using logistic regression adjusted for gender, age, and current smoking. SNP-by-exposure interactions with a p-value <10-4 were tested for replication in two independent cohorts: LifeLines II (n = 5260) and the Vlagtwedde-Vlaardingen cohort (n = 1529). The interaction estimates of the replication cohorts were meta-analyzed using PLINK. Replication was achieved when the meta-analysis p-value was <0.05 and the interaction effect had the same direction as in the identification cohort. Additionally, we assessed whether replicated SNPs associated with gene expression by analyzing if they were cis-acting expression quantitative trait loci (eQTL) in lung tissue. In the replication meta-analysis, sixteen out of 477 identified SNP-by-occupational exposure interactions had a p-value <0.05 and 9 of these interactions had the same direction as in the identification cohort. Several identified loci were plausible candidates for respiratory symptoms, such as TMPRSS9, SERPINH1, TOX3, and ARHGAP18. Three replicated SNPs were cis-eQTLs for FCER1A, CHN1, and TIMM13 in lung tissue. Taken together, this genome-wide SNP-by-occupational exposure interaction study in relation to cough, dyspnea, and phlegm identified several suggestive susceptibility genes. Further research should determine if these genes are true susceptibility loci for respiratory symptoms in relation to occupational exposures.
Collapse
Affiliation(s)
- Xiang Zeng
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; Shantou University Medical College, Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China; Xinxiang Medical University, School of Public Health, Department of Epidemiology and Health Statistics, Xinxiang, China
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Peter D Paré
- University of British Columbia, Department of Medicine, Center for Heart Lung Innovation and Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, BC, Canada
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, QC, Canada
| | | | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Hans Kromhout
- University of Utrecht, Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht, the Netherlands
| | - Roel Vermeulen
- University of Utrecht, Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht, the Netherlands
| | - Xijin Xu
- Shantou University Medical College, Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Xia Huo
- Jinan University, School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangzhou, China
| | - Kim de Jong
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| |
Collapse
|
15
|
de Vries M, van der Plaat DA, Nedeljkovic I, Verkaik-Schakel RN, Kooistra W, Amin N, van Duijn CM, Brandsma CA, van Diemen CC, Vonk JM, Marike Boezen H. From blood to lung tissue: effect of cigarette smoke on DNA methylation and lung function. Respir Res 2018; 19:212. [PMID: 30390659 PMCID: PMC6215675 DOI: 10.1186/s12931-018-0904-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue. Methods The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression. Results 15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression. Conclusion This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue. Electronic supplementary material The online version of this article (10.1186/s12931-018-0904-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands. .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynaecology, Groningen, The Netherlands
| | - Wierd Kooistra
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Cleo C van Diemen
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
16
|
Sauler M, Lamontagne M, Finnemore E, Herazo-Maya JD, Tedrow J, Zhang X, Morneau JE, Sciurba F, Timens W, Paré PD, Lee PJ, Kaminski N, Bossé Y, Gomez JL. The DNA repair transcriptome in severe COPD. Eur Respir J 2018; 52:13993003.01994-2017. [PMID: 30190272 DOI: 10.1183/13993003.01994-2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/25/2018] [Indexed: 02/05/2023]
Abstract
Inadequate DNA repair is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the mechanisms that underlie inadequate DNA repair in COPD are poorly understood. We applied an integrative genomic approach to identify DNA repair genes and pathways associated with COPD severity.We measured the transcriptomic changes of 419 genes involved in DNA repair and DNA damage tolerance that occur with severe COPD in three independent cohorts (n=1129). Differentially expressed genes were confirmed with RNA sequencing and used for patient clustering. Clinical and genome-wide transcriptomic differences were assessed following cluster identification. We complemented this analysis by performing gene set enrichment analysis, Z-score and weighted gene correlation network analysis to identify transcriptomic patterns of DNA repair pathways associated with clinical measurements of COPD severity.We found 15 genes involved in DNA repair and DNA damage tolerance to be differentially expressed in severe COPD. K-means clustering of COPD cases based on this 15-gene signature identified three patient clusters with significant differences in clinical characteristics and global transcriptomic profiles. Increasing COPD severity was associated with downregulation of the nucleotide excision repair pathway.Systematic analysis of the lung tissue transcriptome of individuals with severe COPD identified DNA repair responses associated with disease severity that may underlie COPD pathogenesis.
Collapse
Affiliation(s)
- Maor Sauler
- Dept of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Maxime Lamontagne
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec, QC, Canada
| | - Eric Finnemore
- Dept of Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - John Tedrow
- Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuchen Zhang
- Dept of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Julia E Morneau
- Dept of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Frank Sciurba
- Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Peter D Paré
- The University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Patty J Lee
- Dept of Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Yohan Bossé
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec, QC, Canada.,Dept of Molecular Medicine, Laval University, Quebec, QC, Canada
| | - Jose L Gomez
- Dept of Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Nedeljkovic I, Carnero-Montoro E, Lahousse L, van der Plaat DA, de Jong K, Vonk JM, van Diemen CC, Faiz A, van den Berge M, Obeidat M, Bossé Y, Nickle DC, Consortium B, Uitterlinden AG, van Meurs JJB, Stricker BCH, Brusselle GG, Postma DS, Boezen HM, van Duijn CM, Amin N. Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics. Eur J Hum Genet 2018; 26:709-722. [PMID: 29422661 PMCID: PMC5945654 DOI: 10.1038/s41431-017-0089-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10-8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180:C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489). All four variants were significantly associated (P < 1.4 × 10-6) with blood DNA methylation of IREB2, CHRNA3 and PSMA4, of which two, including IREB2 and PSMA4, were also differentially methylated in COPD cases and controls (P < 0.04). Further additive and multiplicative effects of smoking were evaluated and no significant effect was observed. To evaluate if these four genetic variants are expression quantitative trait loci, transcriptome-wide association analysis was performed in 1087 lung samples. All four variants were also significantly associated with differential expression of the IREB2 3'UTR in lung tissues (P < 5.4 × 10-95). We conclude that regulatory mechanisms affecting the expression of IREB2 gene, such as DNA methylation, may explain the association between genetic variants in chromosome 15q25.1 and COPD, largely independent of smoking.
Collapse
Affiliation(s)
- Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Elena Carnero-Montoro
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Pfizer University of Granada, GENYO Centre for Genomics and Oncological Research, Andalusian Region Government, Granada, Spain
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Bioanalysis Pharmaceutical Care Unit, Ghent University Hospital, Ghent, Belgium
| | - Diana A van der Plaat
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Kim de Jong
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - David C Nickle
- Genetics and Pharmacogenomics (GpGx), Merck Research Laboratories, Seattle, WA, USA
| | | | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joyce J B van Meurs
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Bruno C H Stricker
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Bioanalysis Pharmaceutical Care Unit, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
- Department of Pulmonology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Xie L, Chen W, Dong R, He B, Zhao K, Zhang L, Zhou M, He P. Function of macrophage scavenger receptor 1 gene polymorphisms in chronic obstructive pulmonary disease with and without lung cancer in China. Oncol Lett 2018; 15:8046-8052. [PMID: 29731913 DOI: 10.3892/ol.2018.8311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
The present study assessed the association between the variants of macrophage scavenger receptor (MSR)1 and chronic obstructive pulmonary disease (COPD), with or without lung cancer in China. COPD and lung cancer were previously regarded as two separate diseases. However, it has since been reported that there are close associations between COPD and lung cancer. Lung cancer may be an outcome of COPD. COPD may also coexist with lung cancer, and patients with COPD with lung cancer tend to have increased mortality. It is important to have a better understanding of the pathogenesis of COPD and the reason why it develops into lung cancer. MSR1 serves a crucial function in phagocytosis, which may be associated with the pathogenesis of COPD and lung cancer in patients with COPD. From 1 July 2015 to 20 February 2016, 100 patients with COPD and lung cancer, 100 patients with COPD without lung cancer and 100 healthy smokers were enrolled at the Shanghai Ruijin Hospital (Shanghai, China) for the genotyping of eight single-nucleotide polymorphisms (SNPs; ex3P36A_C>G, ex3S41Y_C>A, ex4V113A_T>C, ex4P174Y_G>T, ex6P275A_C>G, ex6R293×_C>T, ex10G369S_G>A and ex11H441R_A>G) via gene sequencing. The genotype frequencies of these SNPs did not significantly differ between patients with COPD with and without lung cancer, and the healthy controls. However, during DNA sequencing, the SNP rs13306550 (IVS4+3A>G) was identified in the splice donor site and was significantly associated with an increased risk of COPD compared with the healthy smokers (P=0.0053). The present study demonstrated that the variant rs13306550 was a risk factor for COPD susceptibility, but that did not influence lung cancer pathogenesis in patients with COPD. However, the mechanisms underlying the influence of rs13306550 on COPD development and progression remain to be elucidated and require further study.
Collapse
Affiliation(s)
- Liang Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wei Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ran Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Bin He
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Kaishun Zhao
- Department of Respiration, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ping He
- Department of Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
19
|
Yeo J, Morales DA, Chen T, Crawford EL, Zhang X, Blomquist TM, Levin AM, Massion PP, Arenberg DA, Midthun DE, Mazzone PJ, Nathan SD, Wainz RJ, Nana-Sinkam P, Willey PFS, Arend TJ, Padda K, Qiu S, Federov A, Hernandez DAR, Hammersley JR, Yoon Y, Safi F, Khuder SA, Willey JC. RNAseq analysis of bronchial epithelial cells to identify COPD-associated genes and SNPs. BMC Pulm Med 2018; 18:42. [PMID: 29506519 PMCID: PMC5838965 DOI: 10.1186/s12890-018-0603-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
Background There is a need for more powerful methods to identify low-effect SNPs that contribute to hereditary COPD pathogenesis. We hypothesized that SNPs contributing to COPD risk through cis-regulatory effects are enriched in genes comprised by bronchial epithelial cell (BEC) expression patterns associated with COPD. Methods To test this hypothesis, normal BEC specimens were obtained by bronchoscopy from 60 subjects: 30 subjects with COPD defined by spirometry (FEV1/FVC < 0.7, FEV1% < 80%), and 30 non-COPD controls. Targeted next generation sequencing was used to measure total and allele-specific expression of 35 genes in genome maintenance (GM) genes pathways linked to COPD pathogenesis, including seven TP53 and CEBP transcription factor family members. Shrinkage linear discriminant analysis (SLDA) was used to identify COPD-classification models. COPD GWAS were queried for putative cis-regulatory SNPs in the targeted genes. Results On a network basis, TP53 and CEBP transcription factor pathway gene pair network connections, including key DNA repair gene ERCC5, were significantly different in COPD subjects (e.g., Wilcoxon rank sum test for closeness, p-value = 5.0E-11). ERCC5 SNP rs4150275 association with chronic bronchitis was identified in a set of Lung Health Study (LHS) COPD GWAS SNPs restricted to those in putative regulatory regions within the targeted genes, and this association was validated in the COPDgene non-hispanic white (NHW) GWAS. ERCC5 SNP rs4150275 is linked (D’ = 1) to ERCC5 SNP rs17655 which displayed differential allelic expression (DAE) in BEC and is an expression quantitative trait locus (eQTL) in lung tissue (p = 3.2E-7). SNPs in linkage (D’ = 1) with rs17655 were predicted to alter miRNA binding (rs873601). A classifier model that comprised gene features CAT, CEBPG, GPX1, KEAP1, TP73, and XPA had pooled 10-fold cross-validation receiver operator characteristic area under the curve of 75.4% (95% CI: 66.3%–89.3%). The prevalence of DAE was higher than expected (p = 0.0023) in the classifier genes. Conclusions GM genes comprised by COPD-associated BEC expression patterns were enriched for SNPs with cis-regulatory function, including a putative cis-rSNP in ERCC5 that was associated with COPD risk. These findings support additional total and allele-specific expression analysis of gene pathways with high prior likelihood for involvement in COPD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12890-018-0603-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiyoun Yeo
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Diego A Morales
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Tian Chen
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Erin L Crawford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Xiaolu Zhang
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Thomas M Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Albert M Levin
- Department of Biostatistics, Henry Ford Health System, 1 Ford Place Detroit, MI, Detroit, MI, 48202, USA
| | - Pierre P Massion
- Thoracic Program, Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | | | - David E Midthun
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Peter J Mazzone
- Department of Pulmonary Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Steven D Nathan
- Department of Pulmonary Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042-3300, USA
| | - Ronald J Wainz
- The Toledo Hospital, 2142 N Cove Blvd, Toledo, OH, 43606, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, USA, Richmond, VA, 23284-2512, USA.,Ohio State University James Comprehensive Cancer Center and Solove Research Institute, Columbus, OH, USA
| | - Paige F S Willey
- American Enterprise Institute, 1789 Massachusetts Ave NW, Washington, DC, 20036, USA
| | - Taylor J Arend
- The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Karanbir Padda
- Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA, 30307, USA
| | - Shuhao Qiu
- Department of Medicine, The University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Alexei Federov
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA.,Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Dawn-Alita R Hernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Jeffrey R Hammersley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Youngsook Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Fadi Safi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Sadik A Khuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - James C Willey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
20
|
Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2017; 14:33-40. [PMID: 27739898 DOI: 10.1513/annalsats.201606-427oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Automated analysis of computed tomographic (CT) lung images for epidemiologic and genetic association studies is increasingly common, but little is known about the utility of visual versus semiautomated emphysema and airway assessments for genetic association studies. OBJECTIVES Assess the relative utility of visual versus semiautomated emphysema and airway assessments for genetic association studies. METHODS A standardized inspection protocol was used to visually assess chest CT images for 1,540 non-Hispanic white subjects within the COPDGene Study for the presence and severity of radiographic features representing airway wall thickness and emphysema. A genome-wide association study (GWAS) was performed, and two sets of candidate single-nucleotide polymorphisms with a higher prior likelihood of association were specified a priori for separate analysis. For each visual CT examination feature, a corresponding semiautomated CT feature(s) was identified for comparison in the same subjects. MEASUREMENTS AND MAIN RESULTS GWAS for visual features of chest CT scans identified a genome-wide significant association with visual emphysema at the 15q25 locus (P = 6.3e-9). In the a priori-specified set of 19 previously identified GWAS loci, 7 and 8 loci were associated with airway measures or emphysema measures, respectively. In the a priori-specified candidate gene set, 13 of 196 candidate genes harbored a nearby single-nucleotide polymorphism significantly associated with an emphysema phenotype. Visual CT examination associations were robust to adjustment for semiautomated correlates in many cases. CONCLUSIONS Standardized visual assessments of emphysema and airway disease are significantly associated with genetic loci previously associated with chronic obstructive pulmonary disease susceptibility or semiautomated CT examination phenotypes in GWAS. Visual CT measures of emphysema and airways disease offer independent information for genetic association studies in relation to standard semiautomated measures.
Collapse
|
21
|
Zhang J, Peng S, Cheng H, Nomura Y, Di Narzo AF, Hao K. Genetic Pleiotropy between Nicotine Dependence and Respiratory Outcomes. Sci Rep 2017; 7:16907. [PMID: 29203782 PMCID: PMC5715160 DOI: 10.1038/s41598-017-16964-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Smoking is a major cause of respiratory conditions. To date, the genetic pleiotropy between smoking behavior and lung function/chronic obstructive pulmonary disease (COPD) have not been systematically explored. We leverage large data sets of smoking behavior, lung function and COPD, and addressed two questions, (1) whether the genetic predisposition of nicotine dependence influence COPD risk and lung function; and (2) the genetic pleiotropy follow causal or independent model. We found the genetic predisposition of nicotine dependence was associated with COPD risk, even after adjusting for smoking behavior, indicating genetic pleiotropy and independent model. Two known nicotine dependent loci (15q25.1 and 19q13.2) were associated with smoking adjusted lung function, and 15q25.1 reached genome-wide significance. At various suggestive p-value thresholds, the smoking adjusted lung function traits share association signals with cigarettes per day and former smoking, substantially greater than random chance. Empirical data showed the genetic pleiotropy between nicotine dependence and COPD or lung function. The basis of pleiotropic effect is rather complex, attributable to a large number of genetic variants, and many variants functions through independent model, where the pleiotropic variants directly affect lung function, not mediated by influencing subjects' smoking behavior.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.,School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shouneng Peng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yoko Nomura
- Department of Psychology, Queens College & Graduate Center, the City University of New York, New York, NY 10016, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Fabio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. .,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
22
|
Stankovic M, Nikolic A, Nagorni-Obradovic L, Petrovic-Stanojevic N, Radojkovic D. Gene–Gene Interactions Between Glutathione S-Transferase M1 and Matrix Metalloproteinases 1, 9, and 12 in Chronic Obstructive Pulmonary Disease in Serbians. COPD 2017; 14:581-589. [DOI: 10.1080/15412555.2017.1369022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marija Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ljudmila Nagorni-Obradovic
- Clinic for Pulmonary Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Petrovic-Stanojevic
- Department of Pulmonology, Zvezdara University Medical Center, Belgrade, Serbia
- School of Dentistry, University of Belgrade, Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Icduygu FM, Erdogan MO, Ulasli SS, Yildiz HG, Celik ZS, Unlu M, Solak M. Is There an Association Between NOD2 Gene Polymorphisms and Chronic Obstructive Pulmonary Disease Progression? INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1351118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey
| | - Mujgan Ozdemir Erdogan
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Sevinc Sarinc Ulasli
- Department of Pulmonary Diseases, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Handan Gonenli Yildiz
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Zeynep Sonmez Celik
- Department of Pulmonary Diseases, Eskisehir State Hospital, Eskisehir, 26060 Turkey
| | - Mehmet Unlu
- Department of Pulmonary Diseases, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Mustafa Solak
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| |
Collapse
|
24
|
Nielsen AO, Jensen CS, Arredouani MS, Dahl R, Dahl M. Variants of the ADRB2 Gene in COPD: Systematic Review and Meta-Analyses of Disease Risk and Treatment Response. COPD 2017; 14:451-460. [DOI: 10.1080/15412555.2017.1320370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Camilla Steen Jensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mohamed Simo Arredouani
- Department of Surgery, Beth Israel Deaconess Medical Center, Medical Harvard School, Boston, USA
| | - Ronald Dahl
- Department of Respiratory Medicine, Odense University Hospital, Denmark
| | - Morten Dahl
- Department of Clinical Biochemistry, Zealand University Hospital, Denmark
| |
Collapse
|
25
|
Weidner J, Jarenbäck L, de Jong K, Vonk JM, van den Berge M, Brandsma CA, Boezen HM, Sin D, Bossé Y, Nickle D, Ankerst J, Bjermer L, Postma DS, Faiz A, Tufvesson E. Sulfatase modifying factor 1 (SUMF1) is associated with Chronic Obstructive Pulmonary Disease. Respir Res 2017; 18:77. [PMID: 28464818 PMCID: PMC5414362 DOI: 10.1186/s12931-017-0562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background It has been observed that mice lacking the sulfatase modifying factor (Sumf1) developed an emphysema-like phenotype. However, it is unknown if SUMF1 may play a role in Chronic Obstructive Pulmonary Disease (COPD) in humans. The aim was to investigate if the expression and genetic regulation of SUMF1 differs between smokers with and without COPD. Methods SUMF1 mRNA was investigated in sputum cells and whole blood from controls and COPD patients (all current or former smokers). Expression quantitative trait loci (eQTL) analysis was used to investigate if single nucleotide polymorphisms (SNPs) in SUMF1 were significantly associated with SUMF1 expression. The association of SUMF1 SNPs with COPD was examined in a population based cohort, Lifelines. SUMF1 mRNA from sputum cells, lung tissue, and lung fibroblasts, as well as lung function parameters, were investigated in relation to genotype. Results Certain splice variants of SUMF1 showed a relatively high expression in lung tissue compared to many other tissues. SUMF1 Splice variant 2 and 3 showed lower levels in sputum cells from COPD patients as compared to controls. Twelve SNPs were found significant by eQTL analysis and overlapped with the array used for genotyping of Lifelines. We found alterations in mRNA expression in sputum cells and lung fibroblasts associated with SNP rs11915920 (top hit in eQTL), which validated the results of the lung tissue eQTL analysis. Of the twelve SNPs, two SNPs, rs793391 and rs308739, were found to be associated with COPD in Lifelines. The SNP rs793391 was also confirmed to be associated with lung function changes. Conclusions We show that SUMF1 expression is affected in COPD patients compared to controls, and that SNPs in SUMF1 are associated with an increased risk of COPD. Certain COPD-associated SNPs have effects on either SUMF1 gene expression or on lung function. Collectively, this study shows that SUMF1 is associated with an increased risk of developing COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0562-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Weidner
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Linnea Jarenbäck
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Kim de Jong
- University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Don Sin
- Department of Medicine (Respirology), University of British Columbia, Centre for Heart Lung Innovation, Vancouver, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - David Nickle
- Genetics and Pharmacogenomics (GpGx), Merck Research Laboratories, Boston, MA, USA
| | - Jaro Ankerst
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Leif Bjermer
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Dirkje S Postma
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Ellen Tufvesson
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden.
| |
Collapse
|
26
|
Ding Y, Niu H, Li Y, He P, Li Q, Ouyang Y, Li M, Hu Z, Zhong Y, Sun P, Jin T. Polymorphisms in VEGF-A are associated with COPD risk in the Chinese population from Hainan province. J Genet 2016; 95:151-6. [PMID: 27019442 DOI: 10.1007/s12041-016-0627-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we examined and validated how common variants contribute to susceptibility to chronic obstructive pulmonary disease (COPD) in the Han Chinese population. Here, we genotyped 18 nucleotide polymorphisms and evaluated their association with COPD using chi-square test and genetic model analysis (246 COPD patients and 350 controls), and found three SNPs that might cause a predisposition to COPD. Both rs3025030 and rs3025033 are located on chromosome 6 in VEGF-A. We found one risk allele 'C' from rs3025030 and another 'G' from rs3025033 using the log-additive model (OR 1.40; 95% CI 1.05-5.96; P = 0.022), (OR 1.38; 95% CI 1.03-1.84; P = 0.03). We also found another risk allele 'A' of rs9296092 in gene region ZBTB9-BAK1 by the allele model (OR 2.63; 95% CI 1.27-5.45; P = 0.0078), (adjusted OR 3.53; 95% CI 1.12-11.11; P = 0.031).We found a risk haplotype 'CG' associated with the risk of COPD (OR 1.39; 95% CI 1.04-1.86; P = 0.028). Our results when compared with previous studies showed significant association between VEGF-A polymorphism and COPD. We also identified rs9296092 as a risk factor for COPD.
Collapse
Affiliation(s)
- Yipeng Ding
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan 570311,People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsson H, Söderhäll C, Einarsdottir E, Lamontagne M, Gudmundsson S, Backman H, Lindberg A, Rönmark E, Kere J, Sin D, Postma DS, Bossé Y, Lundbäck B, Klar J. Targeted high-throughput sequencing of candidate genes for chronic obstructive pulmonary disease. BMC Pulm Med 2016; 16:146. [PMID: 27835950 PMCID: PMC5106844 DOI: 10.1186/s12890-016-0309-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
Background Reduced lung function in patients with chronic obstructive pulmonary disease (COPD) is likely due to both environmental and genetic factors. We report here a targeted high-throughput DNA sequencing approach to identify new and previously known genetic variants in a set of candidate genes for COPD. Methods Exons in 22 genes implicated in lung development as well as 61 genes and 10 genomic regions previously associated with COPD were sequenced using individual DNA samples from 68 cases with moderate or severe COPD and 66 controls matched for age, gender and smoking. Cases and controls were selected from the Obstructive Lung Disease in Northern Sweden (OLIN) studies. Results In total, 37 genetic variants showed association with COPD (p < 0.05, uncorrected). Several variants previously discovered to be associated with COPD from genetic genome-wide analysis studies were replicated using our sample. Two high-risk variants were followed-up for functional characterization in a large eQTL mapping study of 1,111 human lung specimens. The C allele of a synonymous variant, rs8040868, predicting a p.(S45=) in the gene for cholinergic receptor nicotinic alpha 3 (CHRNA3) was associated with COPD (p = 8.8 x 10−3). This association remained (p = 0.003 and OR = 1.4, 95 % CI 1.1-1.7) when analysing all available cases and controls in OLIN (n = 1,534). The rs8040868 variant is in linkage disequilibrium with rs16969968 previously associated with COPD and altered expression of the CHRNA5 gene. A follow-up analysis for detection of expression quantitative trait loci revealed that rs8040868-C was found to be significantly associated with a decreased expression of the nearby gene cholinergic receptor, nicotinic, alpha 5 (CHRNA5) in lung tissue. Conclusion Our data replicate previous result suggesting CHRNA5 as a candidate gene for COPD and rs8040868 as a risk variant for the development of COPD in the Swedish population. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0309-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hans Matsson
- Department of Biosciences and Nutrition, Karolinska Institutet, 7-9, SE-141 83, Huddinge, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, 7-9, SE-141 83, Huddinge, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, 7-9, SE-141 83, Huddinge, Sweden.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maxime Lamontagne
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Backman
- Department of Public Health and Clinical Medicine, Division of Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Eva Rönmark
- Department of Public Health and Clinical Medicine, Division of Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, 7-9, SE-141 83, Huddinge, Sweden.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Don Sin
- The University of British Columbia Center for Heart Lung Innovation, St-Paul's Hospital, Vancouver, Canada
| | - Dirkje S Postma
- Center Groningen, GRIAC research institute, University of Groningen, Groningen, The Netherlands
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec, Canada
| | - Bo Lundbäck
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Genetic Predisposition to COPD: Are There Any Relevant Genes Determining the Susceptibility to Smoking? ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-981-10-0839-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Marchetti-Bowick M, Yin J, Howrylak JA, Xing EP. A time-varying group sparse additive model for genome-wide association studies of dynamic complex traits. Bioinformatics 2016; 32:2903-10. [PMID: 27296983 PMCID: PMC5942717 DOI: 10.1093/bioinformatics/btw347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Despite the widespread popularity of genome-wide association studies (GWAS) for genetic mapping of complex traits, most existing GWAS methodologies are still limited to the use of static phenotypes measured at a single time point. In this work, we propose a new method for association mapping that considers dynamic phenotypes measured at a sequence of time points. Our approach relies on the use of Time-Varying Group Sparse Additive Models (TV-GroupSpAM) for high-dimensional, functional regression. RESULTS This new model detects a sparse set of genomic loci that are associated with trait dynamics, and demonstrates increased statistical power over existing methods. We evaluate our method via experiments on synthetic data and perform a proof-of-concept analysis for detecting single nucleotide polymorphisms associated with two phenotypes used to assess asthma severity: forced vital capacity, a sensitive measure of airway obstruction and bronchodilator response, which measures lung response to bronchodilator drugs. AVAILABILITY AND IMPLEMENTATION Source code for TV-GroupSpAM freely available for download at http://www.cs.cmu.edu/~mmarchet/projects/tv_group_spam, implemented in MATLAB. CONTACT epxing@cs.cmu.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Junming Yin
- Department of Management Information Systems, University of Arizona, Tucson, AZ, USA
| | - Judie A Howrylak
- Division of Pulmonary and Critical Care Medicine, Penn State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Eric P Xing
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Role of glutathione S-transferase P-1 (GSTP-1) gene polymorphism in COPD patients. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Pan Z, Yu H, Liao JL. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling. PLoS One 2016; 11:e0163192. [PMID: 27669518 PMCID: PMC5036797 DOI: 10.1371/journal.pone.0163192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future.
Collapse
Affiliation(s)
- Zhichao Pan
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| | - Haishan Yu
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| | - Jie-Lou Liao
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| |
Collapse
|
32
|
Identification of Susceptibility Genes of Adult Asthma in French Canadian Women. Can Respir J 2016; 2016:3564341. [PMID: 27445529 PMCID: PMC4904514 DOI: 10.1155/2016/3564341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/05/2015] [Indexed: 11/18/2022] Open
Abstract
Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E - 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients.
Collapse
|
33
|
Liu Y, Yan S, Poh K, Liu S, Iyioriobhe E, Sterling DA. Impact of air quality guidelines on COPD sufferers. Int J Chron Obstruct Pulmon Dis 2016; 11:839-72. [PMID: 27143874 PMCID: PMC4846081 DOI: 10.2147/copd.s49378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background COPD is one of the leading causes of morbidity and mortality in both high- and low-income countries and a major public health burden worldwide. While cigarette smoking remains the main cause of COPD, outdoor and indoor air pollution are important risk factors to its etiology. Although studies over the last 30 years helped reduce the values, it is not very clear if the current air quality guidelines are adequately protective for COPD sufferers. Objective This systematic review was to summarize the up-to-date literature on the impact of air pollution on the COPD sufferers. Methods PubMed and Google Scholar were utilized to search for articles related to our study’s focus. Search terms included “COPD exacerbation”, “air pollution”, “air quality guidelines”, “air quality standards”, “COPD morbidity and mortality”, “chronic bronchitis”, and “air pollution control” separately and in combination. We focused on articles from 1990 to 2015. We also used articles prior to 1990 if they contained relevant information. We focused on articles written in English or with an English abstract. We also used the articles in the reference lists of the identified articles. Results Both short-term and long-term exposures to outdoor air pollution around the world are associated with the mortality and morbidity of COPD sufferers even at levels below the current air quality guidelines. Biomass cooking in low-income countries was clearly associated with COPD morbidity in adult nonsmoking females. Conclusion There is a need to continue to improve the air quality guidelines. A range of intervention measures could be selected at different levels based on countries’ socioeconomic conditions to reduce the air pollution exposure and COPD burden.
Collapse
Affiliation(s)
- Youcheng Liu
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shuang Yan
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Karen Poh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Suyang Liu
- Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Emanehi Iyioriobhe
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - David A Sterling
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
34
|
Mlak R, Homa-Mlak I, Powrózek T, Mackiewicz B, Michnar M, Krawczyk P, Dziedzic M, Rubinsztajn R, Chazan R, Milanowski J, Małecka-Massalska T. Impact of I/D polymorphism of ACE gene on risk of development and course of chronic obstructive pulmonary disease. Arch Med Sci 2016; 12:279-87. [PMID: 27186170 PMCID: PMC4848351 DOI: 10.5114/aoms.2015.50757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/10/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) affects more than 10% of the world's population over 40 years of age. The main exogenous risk factor is cigarette smoking; however, only 20% of smokers develop COPD, indicating that some other factors, e.g. genetic, may play an important role in the disease pathogenesis. Recent research indicates that ACE (angiotensin-converting enzyme) may be a susceptibility gene for asthma or COPD. The aim of our study was to determine the influence of I/D (insertion/deletion) polymorphism of the ACE gene (AluYa5, rs4646994) on the risk and course of COPD. MATERIAL AND METHODS We investigated ACE I/D polymorphism in 206 COPD and 165 healthy Caucasian subjects. RESULTS In the generalized linear model (GLZ) analysis of the influence of selected factors on presence of COPD we found a significant independent effect for male sex (repeatedly increases the risk of COPD, OR = 7.7, p = 0.049), as well as smoking or lower body mass index, but only in combination with older age (OR = 0.96, p = 0.003 and OR = 1.005, p = 0.04 respectively). Interestingly, analysis of factors which may influence the risk of a higher number of exacerbations demonstrated that occurrence of DD genotype, but only in men, is associated with a lower risk (OR = 0.7, p = 0.03) of this complication. CONCLUSIONS We suggest that ACE may not be a susceptibility gene for the origin of COPD but a disease-modifying gene. Since the impact of I/D polymorphism of the ACE gene on COPD risk is moderate or negligible, other molecular changes, that will help predict the development of this disease, should still be sought.
Collapse
Affiliation(s)
- Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
- Department of Oncology, Medical University of Lublin, Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
- Department of Oncology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Powrózek
- Department of Oncology, Medical University of Lublin, Lublin, Poland
| | | | - Marek Michnar
- Department of Oncology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Oncology, Medical University of Lublin, Lublin, Poland
| | - Marcin Dziedzic
- Department of Laboratory Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Renata Rubinsztajn
- Department of Internal Medicine, Pulmonology and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Ryszarda Chazan
- Department of Internal Medicine, Pulmonology and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Milanowski
- Department of Oncology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
35
|
Fallica J, Varela L, Johnston L, Kim B, Serebreni L, Wang L, Damarla M, Kolb TM, Hassoun PM, Damico R. Macrophage Migration Inhibitory Factor: A Novel Inhibitor of Apoptosis Signal-Regulating Kinase 1-p38-Xanthine Oxidoreductase-Dependent Cigarette Smoke-Induced Apoptosis. Am J Respir Cell Mol Biol 2016; 54:504-14. [PMID: 26390063 PMCID: PMC4821049 DOI: 10.1165/rcmb.2014-0403oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Cigarette smoke (CS) exposure is the leading cause of emphysema. CS mediates pathologic emphysematous remodeling of the lung via apoptosis of lung parenchymal cells resulting in enlargement of the airspaces, loss of the capillary bed, and diminished surface area for gas exchange. Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, is reduced both in a preclinical model of CS-induced emphysema and in patients with chronic obstructive pulmonary disease, particularly those with the most severe disease and emphysematous phenotype. MIF functions to antagonize CS-induced DNA damage, p53-dependent apoptosis of pulmonary endothelial cells (EndoCs) and resultant emphysematous tissue remodeling. Using primary alveolar EndoCs and a mouse model of CS-induced lung damage, we investigated the capacity and molecular mechanism(s) by which MIF modifies oxidant injury. Here, we demonstrate that both the activity of xanthine oxidoreductase (XOR), a superoxide-generating enzyme obligatory for CS-induced DNA damage and EndoC apoptosis, and superoxide concentrations are increased after CS exposure in the absence of MIF. Both XOR hyperactivation and apoptosis in the absence of MIF occurred via a p38 mitogen-activated protein kinase-dependent mechanism. Furthermore, a mitogen-activated protein kinase kinase kinase family member, apoptosis signal-regulating kinase 1 (ASK1), was necessary for CS-induced p38 activation and EndoC apoptosis. MIF was sufficient to directly suppress ASK1 enzymatic activity. Taken together, MIF suppresses CS-mediated cytotoxicity in the lung, in part by antagonizing ASK1-p38-XOR-dependent apoptosis.
Collapse
Affiliation(s)
- Jonathan Fallica
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lidenys Varela
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Bo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Leonid Serebreni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Lan Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
36
|
The BuMPy Road to COPD Gene Discovery. EBioMedicine 2016; 5:18-9. [PMID: 27077103 PMCID: PMC4816841 DOI: 10.1016/j.ebiom.2016.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
|
37
|
Cherubini E, Esposito MC, Scozzi D, Terzo F, Osman GA, Mariotta S, Mancini R, Bruno P, Ricci A. Genetic Polymorphism of CHRM2 in COPD: Clinical Significance and Therapeutic Implications. J Cell Physiol 2016; 231:1745-51. [DOI: 10.1002/jcp.25277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Emanuela Cherubini
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
| | - Maria Cristina Esposito
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Davide Scozzi
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
| | - Fabrizio Terzo
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Giorgia Amira Osman
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Salvatore Mariotta
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Department of Surgery “Pietro Valdoni”; Sapienza University of Rome; Rome Italy
| | - Pierdonato Bruno
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| |
Collapse
|
38
|
Liu Z, Li W, Lv J, Xie R, Huang H, Li Y, He Y, Jiang J, Chen B, Guo S, Chen L. Identification of potential COPD genes based on multi-omics data at the functional level. MOLECULAR BIOSYSTEMS 2016; 12:191-204. [DOI: 10.1039/c5mb00577a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel systematic approach MMMG (Methylation–MicroRNA–MRNA–GO) to identify potential COPD genes and their classifying performance evaluation.
Collapse
Affiliation(s)
- Zhe Liu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Wan Li
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Junjie Lv
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Ruiqiang Xie
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Hao Huang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Yiran Li
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Yuehan He
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Jing Jiang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Binbin Chen
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Lina Chen
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| |
Collapse
|
39
|
Abstract
RATIONALE Genome-wide association studies (GWAS) of chronic obstructive pulmonary disease (COPD) have identified disease-susceptibility loci, mostly in subjects of European descent. OBJECTIVES We hypothesized that by studying Hispanic populations we would be able to identify unique loci that contribute to COPD pathogenesis in Hispanics but remain undetected in GWAS of non-Hispanic populations. METHODS We conducted a metaanalysis of two GWAS of COPD in independent cohorts of Hispanics in Costa Rica and the United States (Multi-Ethnic Study of Atherosclerosis [MESA]). We performed a replication study of the top single-nucleotide polymorphisms in an independent Hispanic cohort in New Mexico (the Lovelace Smokers Cohort). We also attempted to replicate prior findings from genome-wide studies in non-Hispanic populations in Hispanic cohorts. MEASUREMENTS AND MAIN RESULTS We found no genome-wide significant association with COPD in our metaanalysis of Costa Rica and MESA. After combining the top results from this metaanalysis with those from our replication study in the Lovelace Smokers Cohort, we identified two single-nucleotide polymorphisms approaching genome-wide significance for an association with COPD. The first (rs858249, combined P value = 6.1 × 10(-8)) is near the genes KLHL7 and NUPL2 on chromosome 7. The second (rs286499, combined P value = 8.4 × 10(-8)) is located in an intron of DLG2. The two most significant single-nucleotide polymorphisms in FAM13A from a previous genome-wide study in non-Hispanics were associated with COPD in Hispanics. CONCLUSIONS We have identified two novel loci (in or near the genes KLHL7/NUPL2 and DLG2) that may play a role in COPD pathogenesis in Hispanic populations.
Collapse
|
40
|
Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS One 2015; 10:e0140885. [PMID: 26480348 PMCID: PMC4610675 DOI: 10.1371/journal.pone.0140885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation.
Collapse
|
41
|
de Jong K, Vonk JM, Timens W, Bossé Y, Sin DD, Hao K, Kromhout H, Vermeulen R, Postma DS, Boezen HM. Genome-wide interaction study of gene-by-occupational exposure and effects on FEV1 levels. J Allergy Clin Immunol 2015; 136:1664-1672.e14. [PMID: 25979521 DOI: 10.1016/j.jaci.2015.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by impaired lung function and airway obstruction resulting from interactions between multiple genes and multiple environmental exposures. Thus far, genome-wide association studies have largely disregarded environmental factors that might trigger the development of lung function impairment and COPD, such as occupational exposures, which are thought to contribute to 15% to 20% of the COPD prevalence. OBJECTIVES We performed a genome-wide interaction study to identify novel susceptibility loci for occupational exposure to biological dust, mineral dust, and gases and fumes in relation to FEV1 levels. METHODS We performed an identification analysis in 12,400 subjects from the LifeLines cohort study and verified our findings in 1436 subjects from a second independent cohort, the Vlagtwedde-Vlaardingen cohort. Additionally, we assessed whether replicated single nucleotide polymorphisms (SNPs) were cis-acting expression (mRNA) quantitative trait loci in lung tissue. RESULTS Of the 7 replicated SNPs that interacted with one of the occupational exposures, several identified loci were plausible candidates that might be involved in biological pathways leading to lung function impairment, such as PCDH9 and GALNT13. Two of the 7 replicated SNPs were cis-acting expression quantitative trait loci associated with gene expression of PDE4D and TMEM176A in lung tissue. CONCLUSION This genome-wide interaction study on occupational exposures in relation to the level of lung function identified several novel genes. Further research should determine whether the identified genes are true susceptibility loci for occupational exposures and whether these SNP-by-exposure interactions consequently contribute to the development of COPD.
Collapse
Affiliation(s)
- Kim de Jong
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Don D Sin
- Department of Medicine and Center for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hans Kromhout
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Utrecht, The Netherlands
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Utrecht, The Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
42
|
Yoo S, Takikawa S, Geraghty P, Argmann C, Campbell J, Lin L, Huang T, Tu Z, Feronjy R, Spira A, Schadt EE, Powell CA, Zhu J. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet 2015; 11:e1004898. [PMID: 25569234 PMCID: PMC4287352 DOI: 10.1371/journal.pgen.1004898] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/17/2014] [Indexed: 01/11/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. Chronic Obstructive Pulmonary Disease (COPD) is a common lung disease. It is the fourth leading cause of death in the world and is expected to be the third by 2020. COPD is a heterogeneous and complex disease consisting of obstruction in the small airways, emphysema, and chronic bronchitis. COPD is generally caused by exposure to noxious particles or gases, most commonly from cigarette smoking. However, only 20–25% of smokers develop clinically significant airflow obstruction. Smoking is known to cause epigenetic changes in lung tissues. Thus, genetics, epigenetic, and their interaction with environmental factors play an important role in COPD pathogenesis and progression. Currently, there are no therapeutics that can reverse COPD progression. In order to identify new targets that may lead to the development of therapeutics for curing COPD, we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity.
Collapse
Affiliation(s)
- Seungyeul Yoo
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sachiko Takikawa
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Patrick Geraghty
- Department of Medicine, St. Luke's Roosevelt Medical Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Carmen Argmann
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Joshua Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Luan Lin
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Tao Huang
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Robert Feronjy
- Department of Medicine, St. Luke's Roosevelt Medical Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Avrum Spira
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Aoshiba K, Tsuji T, Itoh M, Yamaguchi K, Nakamura H. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 2015; 89:243-52. [PMID: 25677028 DOI: 10.1159/000369861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Collapse
Affiliation(s)
- Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Japan
| | | | | | | | | |
Collapse
|
44
|
Horita N, Miyazawa N, Tomaru K, Inoue M, Ishigatsubo Y, Kaneko T. Vitamin D binding protein genotype variants and risk of chronic obstructive pulmonary disease: A meta-analysis. Respirology 2014; 20:219-25. [DOI: 10.1111/resp.12448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Nobuyuki Horita
- Department of Respiratory Medicine; Saiseikai Yokohamashi Nanbu Hospital; Yokohama Japan
| | - Naoki Miyazawa
- Department of Respiratory Medicine; Saiseikai Yokohamashi Nanbu Hospital; Yokohama Japan
| | - Koji Tomaru
- Department of Respiratory Medicine; Saiseikai Yokohamashi Nanbu Hospital; Yokohama Japan
| | - Miyo Inoue
- Department of Respiratory Medicine; Saiseikai Yokohamashi Nanbu Hospital; Yokohama Japan
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Takeshi Kaneko
- Department of Pulmonology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| |
Collapse
|
45
|
Lamontagne M, Timens W, Hao K, Bossé Y, Laviolette M, Steiling K, Campbell JD, Couture C, Conti M, Sherwood K, Hogg JC, Brandsma CA, van den Berge M, Sandford A, Lam S, Lenburg ME, Spira A, Paré PD, Nickle D, Sin DD, Postma DS. Genetic regulation of gene expression in the lung identifiesCST3andCD22as potential causal genes for airflow obstruction. Thorax 2014; 69:997-1004. [DOI: 10.1136/thoraxjnl-2014-205630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Xie ZK, Huang QP, Huang J, Xie ZF. Association between the IL1B, IL1RN polymorphisms and COPD risk: a meta-analysis. Sci Rep 2014; 4:6202. [PMID: 25174605 PMCID: PMC4150103 DOI: 10.1038/srep06202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
The interleukin-1 (IL-1) gene polymorphisms have been implicated in chronic obstructive pulmonary disease (COPD) risk, but results are controversial. We aimed to conduct a meta-analysis to address this issue. Odds ratio (OR) and 95% confidence interval (CI) were used to investigate the strength of the association. The meta-analysis revealed no association between the IL1B (−511), (−31), (+3954) polymorphisms and COPD risk. However, stratification by ethnicity indicated that the T allele carriers of the IL1B (−511) polymorphism and the C allele carriers of the IL1B (−31) variant were associated with an increased risk for developing COPD in East Asians (OR = 1.61, 95% CI: 1.13–2.31, Pz = 0.009 and OR = 1.55, 95% CI: 1.14–2.11, Pz = 0.006, respectively). The meta-analysis revealed a significant association between the IL1RN (VNTR) polymorphism and COPD risk in all study subjects and East Asians under homozygote model (22 vs. LL: OR = 3.16, 95% CI: 1.23–8.13, Pz = 0.017 and OR = 3.20, 95% CI: 1.13–9.12, Pz = 0.029, respectively). Our meta-analysis suggests that the IL1B (−511), (−31) and IL1RN (VNTR) polymorphisms are associated with COPD risk in East Asians. There is no association between the IL1B(+3954) polymorphism and COPD risk. Further studies should be performed in other ethnic groups besides East Asians.
Collapse
Affiliation(s)
- Zi-Kang Xie
- 1] Department of Clinical Medicine, Grade 2011, Guangxi Medical University, Nanning, China [2]
| | - Qiu-Pin Huang
- 1] Department of Geriatrics and Gerontology, First Affiliated Hospital, Guangxi Medical University, Nanning, China [2]
| | - Jian Huang
- Department of Clinical Medicine, Grade 2001, Guangxi Medical University, Nanning, China
| | - Zheng-Fu Xie
- Department of Geriatrics and Gerontology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
47
|
Yang IA, Holloway JW, Fong KM. Genetic susceptibility to lung cancer and co-morbidities. J Thorac Dis 2014; 5 Suppl 5:S454-62. [PMID: 24163739 DOI: 10.3978/j.issn.2072-1439.2013.08.06] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
Lung cancer is a leading cause of cancer death and disease burden in many countries. Understanding of the biological pathways involved in lung cancer aetiology is required to identify key biomolecules that could be of significant clinical value, either as predictive, prognostic or diagnostic markers, or as targets for the development of novel therapies to treat this disease, in addition to smoking avoidance strategies. Genome-wide association studies (GWAS) have enabled significant progress in the past 5 years in investigating genetic susceptibility to lung cancer. Large scale, multi-cohort GWAS of mainly Caucasian, smoking, populations have identified strong associations for lung cancer mapped to chromosomal regions 15q [nicotinic acetylcholine receptor (nAChR) subunits: CHRNA3, CHRNA5], 5p (TERT-CLPTM1L locus) and 6p (BAT3-MSH5). Some studies in Asian populations of smokers have found similar risk loci, whereas GWAS in never smoking Asian females have identified associations in other chromosomal regions, e.g., 3q (TP63), that are distinct from smoking-related lung cancer risk loci. GWAS of smoking behaviour have identified risk loci for smoking quantity at 15q (similar genes to lung cancer susceptibility: CHRNA3, CHRNA5) and 19q (CYP2A6). Other genes have been mapped for smoking initiation and smoking cessation. In chronic obstructive pulmonary disease (COPD), which is a known risk factor for lung cancer, GWAS in large cohorts have also found CHRNA3 and CHRNA5 single nucleotide polymorphisms (SNPs) mapping at 15q as risk loci, as well as other regions at 4q31 (HHIP), 4q24 (FAM13A) and 5q (HTR4). The overlap in risk loci between lung cancer, smoking behaviour and COPD may be due to the effects of nicotine addiction; however, more work needs to be undertaken to explore the potential direct effects of nicotine and its metabolites in gene-environment interaction in these phenotypes. Goals of future genetic susceptibility studies of lung cancer should focus on refining the strongest risk loci in a wide range of populations with lung cancer, and integrating other clinical and biomarker information, in order to achieve the aim of personalised therapy for lung cancer.
Collapse
Affiliation(s)
- Ian A Yang
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia; ; UQ Thoracic Research Centre, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
48
|
Córdoba-Lanús E, Baz-Dávila R, Espinoza-Jiménez A, Rodríguez-Pérez MC, Varo N, de-Torres JP, González-Almeida D, Aguirre-Jaime A, Casanova C. IL-8 gene variants are associated with lung function decline and multidimensional BODE index in COPD patients but not with disease susceptibility: a validation study. COPD 2014; 12:55-61. [PMID: 24946112 DOI: 10.3109/15412555.2014.908831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE COPD is a leading cause of dead worldwide and tobacco smoking is its major risk factor. IL8 is a proinflammatory chemokine mainly involved in the acute inflammatory reaction. The aim of this study was to test the association of IL-8, CXCR1 and CXCR2 gene variants and COPD susceptibility as part of a replication study and explore the effect of these variations in disease progression. METHODS 9 tagSNPs were genotyped in 728 Caucasian individuals (196 COPD patients, 80 smokers and 452 non-smoking controls). Pulmonary compromise was evaluated using spirometry and clinical parameters at baseline and annually over a 2 years period. We also determined plasma levels of TNF-α, IL-6, IL-8 and IL-16 in COPD patients. RESULTS There was a lack of association between gene variants or haplotypes with predisposition to COPD. No correlation was observed between the polymorphisms and cytokines levels. Interestingly, significant associations were found between carriers of the rs4073A (OR = 3.53, CI 1.34-9.35, p = 0.01), rs2227306C (OR = 5.65, CI 1.75-18.88, p = 0.004) and rs2227307T (OR = 4.52, CI = 1.49-12.82, p = 0.007) alleles in the IL-8 gene and patients who scored higher in the BODE index and showed an important decrease in their FEV1 and FVC during the 2 years follow-up period (p < 0.05). CONCLUSIONS Despite no association was found between the studied genes and COPD susceptibility, three polymorphisms in the IL-8 gene appear to be involved in a worse progression of the disease, with an affectation beyond the pulmonary function and importantly, a reduction in lung function along the follow-up years.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- 1Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lopez-Campos JL, Bustamante V, Muñoz X, Barreiro E. Moving towards patient-centered medicine for COPD management: multidimensional approaches versus phenotype-based medicine--a critical view. COPD 2014; 11:591-602. [PMID: 24914771 DOI: 10.3109/15412555.2014.898035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For decades, chronic obstructive pulmonary disease (COPD) has been considered a relentlessly progressive disease in which the deterioration of lung function is associated with an increase in symptoms, interrupted only by periods of exacerbation. However, this paradigm of COPD severity based on FEV1 has been challenged by currently available evidence. So far, three main approaches, though with contradictory aspects, have been proposed in order to address the complexity of COPD as well as to develop appropriate diagnostic, prognostic and therapeutic strategies for the disease: 1) the use of independent, clinically relevant variables, 2) the use of multidimensional indices, and 3) disease approaches based on clinical phenotypes. Multivariable systems seem superior to FEV1 in predicting prognosis and defining disease severity. However, selection of variables available from current literature must be confronted with issues of medical practice. Future evidence will be needed to reveal their effective relationship with disease long-term prognosis and to demonstrate the most adequate cutoff values to be used in clinical settings. Multidimensional scores provide a good prognostic instrument for the identification of patients with a particular degree of disease severity. Clinical phenotyping can help clinicians identify the patients who respond to specific pharmacological interventions; however, there is some controversy about the phenotypes to select and their long-term implications. Although these approaches are not perfect, they represent the first step towards patient-centered medicine for COPD. In the near-future, these different approaches should converge towards one new field to focus on the better management of COPD patients.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- 1Unidad Médico-quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
50
|
Diaz-Guzman E, Mannino DM. Epidemiology and prevalence of chronic obstructive pulmonary disease. Clin Chest Med 2014; 35:7-16. [PMID: 24507833 DOI: 10.1016/j.ccm.2013.10.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents one of the main causes of morbidity and mortality worldwide. According to the World Health Organization, approximately 3 million people in the world die as a consequence of COPD every year. Tobacco use remains the main factor associated with development of disease in the industrialized world, but other risk factors are important and preventable causes of COPD, particularly in the developing world. The purpose of this review is to summarize the literature on the subject and to provide an update of the most recent advances in the field.
Collapse
Affiliation(s)
- Enrique Diaz-Guzman
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Alabama at Birmingham, 625 19th Street, Birmingham, AL 35249, USA
| | - David M Mannino
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Alabama at Birmingham, 625 19th Street, Birmingham, AL 35249, USA; Department of Preventive Medicine and Environmental Health, University of Kentucky College of Public Health, 111 Washington Avenue, Lexington, KY 40536, USA.
| |
Collapse
|