1
|
Palmer MA, Benatzy Y, Brüne B. Murine Alox8 versus the human ALOX15B ortholog: differences and similarities. Pflugers Arch 2024:10.1007/s00424-024-02961-w. [PMID: 38637408 DOI: 10.1007/s00424-024-02961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Human arachidonate 15-lipoxygenase type B is a lipoxygenase that catalyzes the peroxidation of arachidonic acid at carbon-15. The corresponding murine ortholog however has 8-lipoxygenase activity. Both enzymes oxygenate polyunsaturated fatty acids in S-chirality with singular reaction specificity, although they generate a different product pattern. Furthermore, while both enzymes utilize both esterified fatty acids and fatty acid hydro(pero)xides as substrates, they differ with respect to the orientation of the fatty acid in their substrate-binding pocket. While ALOX15B accepts the fatty acid "tail-first," Alox8 oxygenates the free fatty acid with its "head-first." These differences in substrate orientation and thus in regio- and stereospecificity are thought to be determined by distinct amino acid residues. Towards their biological function, both enzymes share a commonality in regulating cholesterol homeostasis in macrophages, and Alox8 knockdown is associated with reduced atherosclerosis in mice. Additional roles have been linked to lung inflammation along with tumor suppressor activity. This review focuses on the current knowledge of the enzymatic activity of human ALOX15B and murine Alox8, along with their association with diseases.
Collapse
Affiliation(s)
- Megan A Palmer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
3
|
Li X, Meng F, Wang H, Sun L, Chang S, Li G, Chen F. Iron accumulation and lipid peroxidation: implication of ferroptosis in hepatocellular carcinoma. Front Endocrinol (Lausanne) 2024; 14:1319969. [PMID: 38274225 PMCID: PMC10808879 DOI: 10.3389/fendo.2023.1319969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Ferroptosis is a type of controlled cell death caused by lipid peroxidation, which results in the rupture of the cell membrane. ferroptosis has been repeatedly demonstrated over the past ten years to be a significant factor in a number of diseases. The liver is a significant iron storage organ, thus ferroptosis will have great potential in the treatment of liver diseases. Ferroptosis is particularly prevalent in HCC. In the opening section of this article, we give a general summary of the pertinent molecular mechanisms, signaling pathways, and associated characteristics of ferroptosis. The primary regulating mechanisms during ferroptosis are then briefly discussed, and we conclude by summarizing the development of a number of novel therapeutic strategies used to treat HCC in recent years. Ferroptosis is a crucial strategy for the treatment of HCC and offers new perspectives on the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fanguang Meng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liwei Sun
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shulin Chang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
| |
Collapse
|
4
|
Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in cell death, autophagy, and disease. Autophagy 2023; 19:2621-2638. [PMID: 37272058 PMCID: PMC10472888 DOI: 10.1080/15548627.2023.2218764] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Selenoprotein GPX4 (glutathione peroxidase 4), originally known as PHGPX (phospholipid hydroperoxide glutathione peroxidase), is the main oxidoreductase in the use of glutathione as a reducing agent in scavenging lipid peroxidation products. There are three GPX4 isoforms: cytosolic (cGPX4), mitochondrial (mGPX4), and nuclear (nGPX4), with distinct spatiotemporal expression patterns during embryonic development and adult life. In addition to inducing the main phenotype of ferroptosis, the loss of GPX4 can in some cells trigger apoptosis, necroptosis, pyroptosis, or parthanatos, which mediates or accelerates developmental defects, tissue damage, and sterile inflammation. The interaction of GPX4 with the autophagic degradation pathway further modulates cell fate in response to oxidative stress. Impaired GPX4 function is implicated in tumorigenesis, neurodegeneration, infertility, inflammation, immune disorders, and ischemia-reperfusion injury. Additionally, the R152H mutation in GPX4 can promote the development of Sedaghatian-type spinal metaphyseal dysplasia, a rare and fatal disease in newborns. Here, we discuss the roles of classical GPX4 functions as well as emerging GPX4-regulated processes in cell death, autophagy, and disease.Abbreviations: AA: arachidonic acid; cGPX4: cytosolic GPX4; CMA: chaperone-mediated autophagy; DAMPs: danger/damage-associated molecular patterns; mGPX4: mitochondrial GPX4; nGPX4: nuclear GPX4; GSDMD-N: N-terminal fragment of GSDMD; I/R: ischemia-reperfusion; PLOOH: phospholipid hydroperoxide; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; ROS: reactive oxygen species; Se: selenium; SSMD: Sedaghatian-type spondylometaphyseal dysplasia; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Yang H, Huang Y, Li Z, Guo Y, Li S, Huang H, Yang X, Li G, Chen H. Effects of Dietary Supplementation with Aurantiochytrium sp. on Zebrafish Growth as Determined by Transcriptomics. Animals (Basel) 2022; 12:ani12202794. [PMID: 36290180 PMCID: PMC9597791 DOI: 10.3390/ani12202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The marine protist Aurantiochytrium produces several bioactive chemicals, including EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), and other critical fish fatty acids. It has the potential to improve growth and fatty acid profiles in aquatic taxa. This study evaluated zebrafish growth performance in response to diets containing 1% to 3% Aurantiochytrium sp. crude extract (TE) and single extract for 56 days. Growth performance was best in the 1% TE group, and therefore, this concentration was used for further analyses of the influence of Aurantiochytrium sp. Levels of hepatic lipase, glucose-6-phosphate dehydrogenase, acetyl-CoA oxidase, glutathione peroxidase, and superoxide dismutase increased significantly in response to 1% TE, while malic enzyme activity, carnitine lipid acylase, acetyl-CoA carboxylase, fatty acid synthase, and malondialdehyde levels decreased. These findings suggest that Aurantiochytrium sp. extract can modulate lipase activity, improve lipid synthesis, and decrease oxidative damage caused by lipid peroxidation. Transcriptome analysis revealed 310 genes that were differentially expressed between the 1% TE group and the control group, including 185 up-regulated genes and 125 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses of the differentially expressed genes revealed that Aurantiochytrium sp. extracts may influence liver metabolism, cell proliferation, motility, and signal transduction in zebrafish.
Collapse
Affiliation(s)
- Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyuan Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuwen Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Correspondence: (H.H.); (H.C.); Tel.: +86-18876860068 (H.H.); +86-18820706692 (H.C.); Fax: +86-898-88651861 (H.H.); +86-759-2382459 (H.C.)
| | - Xuewei Yang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Correspondence: (H.H.); (H.C.); Tel.: +86-18876860068 (H.H.); +86-18820706692 (H.C.); Fax: +86-898-88651861 (H.H.); +86-759-2382459 (H.C.)
| |
Collapse
|
6
|
Yang J, Dong C, Ren F, Xie Y, Liu H, Zhang H, Jin J. Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3107-3118. [PMID: 34786708 DOI: 10.1002/jsfa.11652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Lactobacillus paracasei are one of the most frequently used probiotics in humans. The L. paracasei strain M11-4, isolated from fermented rice (which could ferment soymilk within a short curd time) and fermented soymilk presented high viability, acceptable flavor, and antioxidant activity, which revealed that the strain maybe have a potential antioxidant value. Therefore, it is necessary to further explore the antioxidant activity of L. paracasei strain M11-4. RESULTS The radical scavenging activities, lipid peroxidation inhibition, and reducing power of L. paracasei M11-4 were the highest in the fermentation culture without cells, whereas the activities of other antioxidant enzymes of L. paracasei M11-4 were high in the cell-free extract and bacterial suspension. Moreover, L. paracasei M11-4 exerted its antioxidant effect by upregulating the gene expression of its antioxidant enzymes - the thioredoxin and glutathione systems - when hydrogen peroxide existed. Supplementation of rats with L. paracasei M11-4 effectively alleviated d-galactose-induced oxidative damage in the liver and serum and prevented d-galactose-induced changes to intestinal microbiota. Supplementation with L. paracasei M11-4 also reduced the elevated expression of thioredoxin and glutathione system genes induced by d-galactose. CONCLUSION L. paracasei M11-4 has good antioxidant properties both in vitro and in vivo, and its antioxidant mechanism was studied at the molecular level. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianjun Yang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Chenyang Dong
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| |
Collapse
|
7
|
Krümmel B, von Hanstein AS, Plötz T, Lenzen S, Mehmeti I. Differential effects of saturated and unsaturated free fatty acids on ferroptosis in rat β-cells. J Nutr Biochem 2022; 106:109013. [PMID: 35447320 DOI: 10.1016/j.jnutbio.2022.109013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/21/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Elevated plasma concentrations of saturated free fatty acids (SFAs) are involved in pancreatic β-cell dysfunction and apoptosis, referred to as lipotoxicity. However, in contrast to apoptosis, the involvement of ferroptosis, as a distinct type of oxidative regulated cell death in β-cell lipotoxicity remains elusive. Therefore, the aim of this study was to determine the effects of various free fatty acids on ferroptosis induction in rat insulin-producing β-cells. Herein, rat insulin-producing β-cells underwent lipid peroxidation in the presence of long-chain SFAs and ω-6-polyunsaturated fatty acids (PUFAs), but only the latter induced ferroptosis. On the other hand, ω-3-polyunsaturated fatty acid α-linolenate did not induce ferroptosis but sensitized insulin-producing β-cells to SFA-mediated lipid peroxidation. While the monounsaturated fatty acid oleate, overexpression of glutathione peroxidase 4 (GPx4), and the specific ferroptosis inhibitor ferrostatin-1 significantly abrogated lipid peroxidation, neither GPx4 nor ferrostatin-1 affected palmitate-mediated toxicity. Site-specific expression of catalase in cytosol, mitochondria, and ER attenuated lipid peroxidation, indicating the contribution of metabolically generated H2O2 from all three subcellular compartments. These observations suggest that only ω-6-PUFAs reach the thresholds of lipid peroxidation required for ferroptosis, whereas SFAs favour apoptosis in β-cells. Hence, avoiding an excessive dietary intake of ω-6-PUFAs might be a crucial prerequisite for prevention of reactive oxygen species-mediated ferroptosis in insulin-producing cells.
Collapse
Affiliation(s)
- Bastian Krümmel
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anna-Sophie von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Chen X, Kang R, Kroemer G, Tang D. Organelle-specific regulation of ferroptosis. Cell Death Differ 2021; 28:2843-2856. [PMID: 34465893 PMCID: PMC8481335 DOI: 10.1038/s41418-021-00859-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis, a cell death modality characterized by iron-dependent lipid peroxidation, is involved in the development of multiple pathological conditions, including ischemic tissue damage, infection, neurodegeneration, and cancer. The cellular machinery responsible for the execution of ferroptosis integrates multiple pro-survival or pro-death signals from subcellular organelles and then 'decides' whether to engage the lethal process or not. Here, we outline the evidence implicating different organelles (including mitochondria, lysosomes, endoplasmic reticulum, lipid droplets, peroxisomes, Golgi apparatus, and nucleus) in the ignition or avoidance of ferroptosis, while emphasizing their potential relevance for human disease and their targetability for pharmacological interventions.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Krümmel B, Plötz T, Jörns A, Lenzen S, Mehmeti I. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta-cell death. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166114. [PMID: 33662571 DOI: 10.1016/j.bbadis.2021.166114] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Pro-inflammatory cytokines are crucial mediators of beta-cell destruction in type 1 diabetes mellitus (T1DM). The involvement of ferroptosis as a form of oxidative non-apoptotic cell death in T1DM pathogenesis has not been elucidated so far. Moreover, the role of glutathione peroxidase 4 (GPx4) as an antioxidative enzyme and a major regulator of ferroptosis remains elusive. Assessment of GPx4 expression in different pancreatic islet cell types revealed a predominant expression in beta-cells. Silencing of GPx4 by RNA interference and exposure to tert-butyl hydroperoxide (tert-BHP) caused ferroptosis in rat pancreatic beta-cells as evidenced by non-apoptotic cell death in association with increased lipid peroxidation, disturbed ATP synthesis, reduced GSH content, and GPx4 degradation. GPx4 overexpression as well as the ferroptosis inhibitor ferrostatin-1 effectively attenuated beta-cell death induced by tert-BHP. Notably, beta-cell toxic cytokines did not induce ferroptosis although beta-cells underwent cell death. Inhibition of iNOS by Nω-nitro-L-arginine however led to a massive lipid peroxidation upon exposure to pro-inflammatory cytokines. Hence, nitric oxide produced during pro-inflammatory cytokine action prevents the induction of ferroptosis, thereby favouring apoptosis as a primary cell death mechanism. The extraordinarily high abundance of the phospholipid hydroperoxidase GPx4 in beta-cells in contrast to the very low expression in other islet cell types points to a susceptibility of beta-cells to the accumulation of toxic lipid peroxides. Overall, these data strongly suggest that GPx4 is indispensable for beta-cell function under physiological conditions. On the other hand, our results exclude an involvement of ferroptosis as an alternative beta-cell death mode under pro-inflammatory cytokine attack.
Collapse
Affiliation(s)
- Bastian Krümmel
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Plötz
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Tian R, Geng Y, Yang Y, Seim I, Yang G. Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integr Zool 2021; 16:696-711. [PMID: 33417299 DOI: 10.1111/1749-4877.12521] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular basis for adaptations to extreme environments can now be understood by interrogating the ever-increasing number of sequenced genomes. Mammals such as cetaceans, bats, and highland species can protect themselves from oxidative stress, a disruption in the balance of reactive oxygen species, which results in oxidative injury and cell damage. Here, we consider the evolution of the glutathione peroxidase (GPX) family of antioxidant enzymes by interrogating publicly available genome data from 70 mammalian species from all major clades. We identified 8 GPX subclasses ubiquitous to all mammalian groups. Mammalian GPX gene families resolved into the GPX4/7/8 and GPX1/2/3/5/6 groups and are characterized by several instances of gene duplication and loss, indicating a dynamic process of gene birth and death in mammals. Seven of the eight GPX subfamilies (all but GPX7) were under positive selection, with the residues under selection located at or close to active sites or at the dimer interface. We also reveal evidence of a correlation between ecological niches (e.g. high oxidative stress) and the divergent selection and gene copy number of GPX subclasses. Notably, a convergent expansion of GPX1 was observed in several independent lineages of mammals under oxidative stress and may be important for avoiding oxidative damage. Collectively, this study suggests that the GPX gene family has shaped the adaption of mammals to stressful environments.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ying Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
|
12
|
Yang Y, Yang L, Jiang S, Yang T, Lan J, Lei Y, Tan H, Pan K. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells. Cancer Cell Int 2020; 20:205. [PMID: 32514250 PMCID: PMC7260829 DOI: 10.1186/s12935-020-01289-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation is one of a main reason for colon cancer progression and poor prognosis. The high-mobility group box-1 (HMGB1) and glutathione peroxidase 4 (GPX4) are responsible for inflammation, but the relationship between HMGB1 and GPX4 remains unknown about inflammation in colon cancer. Methods RT-qPCR was carried out to investigate the expression of IL1β, IL6 and TNFα in colon cancer cells stimulated with LPS or siHMGB1. To observe the relationship between HMGB1, GPX4 and inflammation or ROS, Western blot assays were adopted. Pull-down, CoIP and immunohistochemistry assays were performed to further investigate the molecular mechanisms of HMGB1 and GPX4 in colon cancer. Results We report that HMGB1 mediates lipopolysaccharide (LPS)-induced inflammation in colon cancer cells. Mechanistically, acetylated HMGB1 interacts with GPX4, negatively regulating GPX4 activity. Furthermore, by utilizing siHMGB1 and its inhibitor, our discoveries demonstrate that HMGB1 knockdown can inhibit inflammation and reactive oxygen species (ROS) accumulation via NF-kB. Conclusion Collectively, our findings first demonstrate that acetylated HMGB1 can interact with GPX4, leading to inflammation, and providing therapeutic strategies targeting HMGB1 and GPX4 for colon cancer.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Ling Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Sheng Jiang
- Ministry of science and technology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, People's Republic of China
| | - Ting Yang
- Department of pathology, Yiyang Central Hospital, Yiyang, 413000 Hunan People's Republic of China
| | - Jingbin Lan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Yun Lei
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Hao Tan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| |
Collapse
|
13
|
Bai YY, Yan D, Zhou HY, Li WX, Lou YY, Zhou XR, Qian LB, Xiao C. Betulinic acid attenuates lipopolysaccharide-induced vascular hyporeactivity in the rat aorta by modulating Nrf2 antioxidative function. Inflammopharmacology 2020; 28:165-174. [PMID: 31352642 DOI: 10.1007/s10787-019-00622-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid, has been reported to inhibit cardiovascular dysfunction under sepsis-induced oxidative stress. Nuclear factor erythroid-2 related factor-2 (Nrf2) is regarded as a key transcription factor regulating expression of endogenous antioxidative genes. To explore the preventive effects of BA against vascular hyporeactivity and the related antioxidative mechanism in sepsis, contraction and relaxation in aortas isolated from lipopolysaccharide (LPS)-challenged rats were performed. Male Sprague-Dawley rats were pretreated with brusatol (Bru, 0.4 mg/kg/2 days, i.p.), an inhibitor of Nrf2, and BA (10, 25, 50 mg/kg/day, i.g.) for 3 days and injected with LPS (10 mg/kg, i.p.) at the 4th day. Rats were anesthetized and killed by cervical dislocation after they were treated with LPS for 4 h. Thoracic aortas were immediately dissected out to determine contraction and relaxation using the organ bath system. Pro-inflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and oxidative stress were measured in aortic tissues and plasma. mRNA expression of Nrf2-regulated antioxidative enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and heme oxygenase-1 (HO-1), in rat aortas was determined. Increases of IL-1β, TNF-α, nitric oxide, and malondialdehyde and the decrease of glutathione induced by LPS were significantly attenuated by pretreatment with different doses of BA in plasma and aortas (p < 0.05 versus LPS), all of which were blocked by Bru (p < 0.01). Inhibition of phenylephrine (PE)- and KCl-induced contractions and acetylcholine (ACh)-induced vasodilatation in aortas from LPS-challenged rats was dose-dependently reduced by BA (p < 0.05; percentage improvements by BA in PE-induced contraction were 55.38%, 96.41%, and 104.33%; those in KCl-induced contraction were 15.11%, 23.96%, and 22.96%; and those in ACh-induced vasodilatation were 16.08%, 42.99%, and 47.97%), all of which were reversed by Bru (p < 0.01). Improvements of SOD, GPx, and HO-1 mRNA expression conferred by BA in LPS-challenged rat aortas were inhibited by Bru (p < 0.01; 145.45% versus 17.42%, 160.69% versus 22.76%, and 166.88% versus 23.57%). These findings suggest that BA attenuates impairments of aortic contraction and relaxation in LPS-challenged rats by activating Nrf2-regulated antioxidative pathways.
Collapse
Affiliation(s)
- Yao-Yao Bai
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Radiology, Hangzhou Medical College, Hangzhou, 310053, China
| | - Dong Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Radiology, Hangzhou Medical College, Hangzhou, 310053, China
| | - Hui-Ying Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Radiology, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wei-Xin Li
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Lopes Junior E, Leite HP, Konstantyner T. Selenium and selenoproteins: from endothelial cytoprotection to clinical outcomes. Transl Res 2019; 208:85-104. [PMID: 30738860 DOI: 10.1016/j.trsl.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
The role of the vascular endothelium in inflammation was demonstrated experimentally through biomarkers of endothelial dysfunction and cytoprotection. Selenium is a trace element essential for cell protection against oxidative lesions triggered by reactive oxygen species or inflammatory responses. Preclinical studies have demonstrated a relationship between adhesion molecules as biomarkers of endothelial dysfunction and selenoproteins as biomarkers of selenium status under conditions that mimic different diseases. Most studies in humans indicate an association between selenium deficiency and increased risk of morbidity and mortality, yet the pathophysiology of selenium in endothelial activation remains unknown. Here, we summarize selenium-dependent endothelial function evaluation techniques and focus on the role of selenium in endothelial cytoprotection according to current scientific knowledge. Most studies on the role of selenium in endothelial processes show selenium-dependent endothelial functions and explain how cells and tissues adapt to inflammatory insults. Taken together, these studies show an increase in adhesion molecules and a decrease in the expression of selenoproteins following a decreased exposure to selenium. Few clinical trials have enough methodological quality to be included in meta-analysis on the benefits of selenium supplementation. Furthermore, the methodology adopted in many studies does not consider the relevant findings on the pathophysiology of endothelial dysfunction. Preclinical studies should be more frequently integrated into clinical studies to provide clearer views on the role of selenium status in endothelial cytoprotection.
Collapse
Affiliation(s)
- Emilio Lopes Junior
- Discipline of Nutrition and Metabolism, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | - Heitor Pons Leite
- Discipline of Nutrition and Metabolism, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil.
| | - Tulio Konstantyner
- Discipline of Nutrition and Metabolism, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Li C, Deng X, Xie X, Liu Y, Friedmann Angeli JP, Lai L. Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy. Front Pharmacol 2018; 9:1120. [PMID: 30337875 PMCID: PMC6178849 DOI: 10.3389/fphar.2018.01120] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023] Open
Abstract
The anti-oxidative enzyme, glutathione peroxidase 4 (GPX4), helps to promote inflammation resolution by eliminating oxidative species produced by the arachidonic acid (AA) metabolic network. Up-regulating its activity has been proposed as a promising strategy for inflammation intervention. In the present study, we aimed to study the effect of GPX4 activator on the AA metabolic network and inflammation related pathways. Using combined computational and experimental screen, we identified a novel compound that can activate the enzyme activity of GPX4 by more than two folds. We further assessed its potential in a series of cellular assays where GPX4 was demonstrated to play a regulatory role. We are able to show that GPX4 activation suppressed inflammatory conditions such as oxidation of AA and NF-κB pathway activation. We further demonstrated that this GPX4 activator can decrease the intracellular ROS level and suppress ferroptosis. Our study suggests that GPX4 activators can be developed as anti-inflammatory or cyto-protective agent in lipid-peroxidation-mediated diseases.
Collapse
Affiliation(s)
- Cong Li
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaowen Xie
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Ying Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| | | | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
16
|
Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines. J Cancer Res Clin Oncol 2018; 144:1717-1730. [DOI: 10.1007/s00432-018-2699-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
|
17
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 2017; 101:3991-4008. [PMID: 28409384 DOI: 10.1007/s00253-017-8264-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Environmental stresses are usually active during the process of microbial fermentation and have significant influence on microbial physiology. Microorganisms have developed a series of strategies to resist environmental stresses. For instance, they maintain the integrity and fluidity of cell membranes by modulating their structure and composition, and the permeability and activities of transporters are adjusted to control nutrient transport and ion exchange. Certain transcription factors are activated to enhance gene expression, and specific signal transduction pathways are induced to adapt to environmental changes. Besides, microbial cells also have well-established repair mechanisms that protect their macromolecules against damages inflicted by environmental stresses. Oxidative, hyperosmotic, thermal, acid, and organic solvent stresses are significant in microbial fermentation. In this review, we summarize the modus operandi by which these stresses act on cellular components, as well as the corresponding resistance mechanisms developed by microorganisms. Then, we discuss the applications of these stress resistance mechanisms on the production of industrially important chemicals. Finally, we prospect the application of systems biology and synthetic biology in the identification of resistant mechanisms and improvement of metabolic robustness of microorganisms in environmental stresses.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules 2017; 22:molecules22020259. [PMID: 28208651 PMCID: PMC6155587 DOI: 10.3390/molecules22020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.
Collapse
|
19
|
Abstract
Selenium is a micronutrient essential to human health and has long been associated with cancer prevention. Functionally, these effects are thought to be mediated by a class of selenium-containing proteins known as selenoproteins. Indeed, many selenoproteins have antioxidant activity which can attenuate cancer development by minimizing oxidative insult and resultant DNA damage. However, oxidative stress is increasingly being recognized for its "double-edged sword" effect in tumorigenesis, whereby it can mediate both negative and positive effects on tumor growth depending on the cellular context. In addition to their roles in redox homeostasis, recent work has also implicated selenoproteins in key oncogenic and tumor-suppressive pathways. Together, these data suggest that the overall contribution of selenoproteins to tumorigenesis is complicated and may be affected by a variety of factors. In this review, we discuss what is currently known about selenoproteins in tumorigenesis with a focus on their contextual roles in cancer development, growth, and progression.
Collapse
Affiliation(s)
- Sarah P Short
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S Williams
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, United States.
| |
Collapse
|
20
|
A role for Sel-Plex™, a source of organic selenium in selenised yeast cell wall protein, as a factor that influences meat stability. JOURNAL OF APPLIED ANIMAL NUTRITION 2016. [DOI: 10.1017/jan.2016.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SummarySelenium is an important mineral required in the antioxidant system in animals, which is involved with oxidative stability in tissues, particularly membranes, and is involved in various aspects of meat quality and stability on the shelf, due to its protective properties on lipids, preventing rancidity. Se can be supplied in an inorganic or chemically organic form, and it is well known that the latter has beneficial properties and improved functionality in physiological systems compared to the former. Research has shown that organic Se is associated with increased tenderness and the prevention of certain problems in pale exudative meat, discolouration and off-flavours and odours in meat, although this depends on other components of the antioxidant system, such as vitamin E, being present as well. The change in prominence of glutathione peroxidase forms in their interaction with vitamin E in cell membranes is also noted. The following review (the third in a series) details the research that has been conducted into the role of Se in meat stability and related factors, with specific focus on organic forms of Se, namely the commercial product Sel-Plex™ (Alltech Inc, Nicholasville, KY, USA), which is derived from yeast and in which selenium replaces sulphur in methionine forming selenomethionine in yeast protein.
Collapse
|
21
|
Organic selenium in animal nutrition – utilisation, metabolism, storage and comparison with other selenium sources. JOURNAL OF APPLIED ANIMAL NUTRITION 2016. [DOI: 10.1017/jan.2016.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SummaryThe importance of selenium as a key component of antioxidant systems in animals is well recognised due to much research about this mineral in many species. Selenium is required as part of the antioxidant enzyme structure and plays a major role in various protective systems in animal physiology, including immunity, cellular stability and DNA protection. The following review is the first in a series of three which details the importance of selenium in animal nutrition, and how the chemically organic form, which is akin to the form of the mineral in natural feed materials, can provide increased benefits in utilisation, storage and metabolism compared to inorganic sources.
Collapse
|
22
|
Anwar F, Singh R, Mushtaq G, Al-Maliki AR, Sabih A, Al-Abbasi FA, Ahmad A, Afzal M, Kazmi I, Khan R. Cancer initiating properties of erythrosine supplemented with sub necrotic dose of diethyl nitrosamine: potential effects on biochemical parameters of liver, Vitamin C and E. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0036-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Katunga LA, Gudimella P, Efird JT, Abernathy S, Mattox TA, Beatty C, Darden TM, Thayne KA, Alwair H, Kypson AP, Virag JA, Anderson EJ. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol Metab 2015; 4:493-506. [PMID: 26042203 PMCID: PMC4443294 DOI: 10.1016/j.molmet.2015.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Lipid peroxides and their reactive aldehyde derivatives (LPPs) have been linked to obesity-related pathologies, but whether they have a causal role has remained unclear. Glutathione peroxidase 4 (GPx4) is a selenoenzyme that selectively neutralizes lipid hydroperoxides, and human gpx4 gene variants have been associated with obesity and cardiovascular disease in epidemiological studies. This study tested the hypothesis that LPPs underlie cardio-metabolic derangements in obesity using a high fat, high sucrose (HFHS) diet in gpx4 haploinsufficient mice (GPx4(+/-)) and in samples of human myocardium. METHODS Wild-type (WT) and GPx4(+/-) mice were fed either a standard chow (CNTL) or HFHS diet for 24 weeks, with metabolic and cardiovascular parameters measured throughout. Biochemical and immuno-histological analysis was performed in heart and liver at termination of study, and mitochondrial function was analyzed in heart. Biochemical analysis was also performed on samples of human atrial myocardium from a cohort of 103 patients undergoing elective heart surgery. RESULTS Following HFHS diet, WT mice displayed moderate increases in 4-hydroxynonenal (HNE)-adducts and carbonyl stress, and a 1.5-fold increase in GPx4 enzyme in both liver and heart, while gpx4 haploinsufficient (GPx4(+/-)) mice had marked carbonyl stress in these organs accompanied by exacerbated glucose intolerance, dyslipidemia, and liver steatosis. Although normotensive, cardiac hypertrophy was evident with obesity, and cardiac fibrosis more pronounced in obese GPx4(+/-) mice. Mitochondrial dysfunction manifesting as decreased fat oxidation capacity and increased reactive oxygen species was also present in obese GPx4(+/-) but not WT hearts, along with up-regulation of pro-inflammatory and pro-fibrotic genes. Patients with diabetes and hyperglycemia exhibited significantly less GPx4 enzyme and greater HNE-adducts in their hearts, compared with age-matched non-diabetic patients. CONCLUSION These findings suggest LPPs are key factors underlying cardio-metabolic derangements that occur with obesity and that GPx4 serves a critical role as an adaptive countermeasure.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- BMI, body mass index
- CNTL, control
- Coll1a1, collagen, type I, alpha
- Coll4a1, collagen, type IV, alpha 1
- EF, ejection fraction
- FS, fractional shortening
- GPx4, glutathione peroxidase 4
- Glutathione peroxidase 4
- HDL, high-density lipoprotein
- HFHS, high fat, high sucrose
- Human heart
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- LPPs, lipid peroxidation end products
- Lipid peroxidation
- Mitochondria
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- Obesity
- PUFA, polyunsaturated fatty acids
- RAGE, receptor for advanced glycation end products
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- TG, triglycerides
- TGF-β1, transforming growth factor beta 1
- TGF-β2, transforming growth factor beta 2
- TNF-α, tumor necrosis factor-α
- WT, wild type
- iNOS, inducible nitric oxide synthase
- β-MHC, β myosin heavy chain
Collapse
Affiliation(s)
- Lalage A. Katunga
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
- Department of Public Health, East Carolina University, Greenville, NC, United States
| | - Preeti Gudimella
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Jimmy T. Efird
- Department of Public Health, East Carolina University, Greenville, NC, United States
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Scott Abernathy
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Taylor A. Mattox
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Cherese Beatty
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Timothy M. Darden
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Kathleen A. Thayne
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Hazaim Alwair
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Alan P. Kypson
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Jitka A. Virag
- Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Ethan J. Anderson
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
24
|
Ferencz Á, Hermesz E. Impact of acute Cd²⁺ exposure on the antioxidant defence systems in the skin and red blood cells of common carp (Cyprinus carpio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6912-6919. [PMID: 25471726 DOI: 10.1007/s11356-014-3923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Cd(2+)-induced oxidative stress and its effects on the expression of stress biomarkers and on macromolecule damage in the skin and blood of common carp were studied. Both tissues play important roles in the defence mechanisms against external hazards, serving as an anatomical barrier and as connecting tissue between the organs. In the skin, the production of peroxynitrite anion and hydrogen peroxide was almost doubled after exposure to 10 mg/L Cd(2+). The accumulation of these oxidant molecules suggests an intensive production of superoxide anion and nitrogen monoxide and the development of oxidative and/or nitrosative stress. Although the metallothioneins and the components of the glutathione redox system were activated in the skin, the accumulation of reactive intermediates led to the enhanced damage of lipid molecules after 24 h of metal exposure. In the blood, the basal levels of metallothionein messenger RNAs (mRNAs) were 2-2.5-fold of that measured in the skin. This high level of metallothionein expression could be the reason that the blood was less affected by an acute Cd(2+) challenge and the metallothionein and glutathione systems were not activated.
Collapse
Affiliation(s)
- Ágnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, P.O. Box 533, 6701, Szeged, Hungary
| | | |
Collapse
|
25
|
Reinke EN, Bera S, Diamond AM. Exposure of chronic myelogenous leukemia cells to imatinib results in the post-transcriptional induction of manganese superoxide dismutase. Leuk Lymphoma 2014; 56:1096-9. [PMID: 25039350 DOI: 10.3109/10428194.2014.944521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The treatment of chronic myelogenous leukemia (CML) with specific tyrosine kinase inhibitors typically results in clinical success, although therapeutic failure frequently occurs. In order to investigate the biological consequences of treating CML cells with such drugs, we previously reported that the antioxidant selenoprotein glutathione peroxidase-1 (GPx-1) was induced by imatinib in both patient samples and cultured cells. Here, we extend these findings to demonstrate that the treatment of CML cell lines, but not non-CML cells, results in an approximately four-fold increase in the levels of another important antioxidant protein, manganese superoxide dismutase (MnSOD), without altering the steady state levels of the corresponding transcript.
Collapse
Affiliation(s)
- Emily N Reinke
- Pathology, University of Illinois at Chicago , Chicago, IL , USA
| | | | | |
Collapse
|
26
|
Wortmann M, Schneider M, Pircher J, Hellfritsch J, Aichler M, Vegi N, Kölle P, Kuhlencordt P, Walch A, Pohl U, Bornkamm GW, Conrad M, Beck H. Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ Res 2013; 113:408-17. [PMID: 23770613 DOI: 10.1161/circresaha.113.279984] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Growing evidence indicates that oxidative stress contributes markedly to endothelial dysfunction. The selenoenzyme glutathione peroxidase 4 (Gpx4) is an intracellular antioxidant enzyme important for the protection of membranes by its unique activity to reduce complex hydroperoxides in membrane bilayers and lipoprotein particles. Yet a role of Gpx4 in endothelial cell function has remained enigmatic. OBJECTIVE To investigate the role of Gpx4 ablation and subsequent lipid peroxidation in the vascular compartment in vivo. METHODS AND RESULTS Endothelium-specific deletion of Gpx4 had no obvious impact on normal vascular homeostasis, nor did it impair tumor-derived angiogenesis in mice maintained on a normal diet. In stark contrast, aortic explants from endothelium-specific Gpx4 knockout mice showed a markedly reduced number of endothelial branches in sprouting assays. To shed light onto this apparent discrepancy between the in vivo and ex vivo results, we depleted mice of a second antioxidant, vitamin E, which is normally absent under ex vivo conditions. Therefore, mice were fed a vitamin E-depleted diet for 6 weeks before endothelial deletion of Gpx4 was induced by 4-hydroxytamoxifen. Surprisingly, ≈80% of the knockout mice died. Histopathological analysis revealed detachment of endothelial cells from the basement membrane and endothelial cell death in multiple organs, which triggered thrombus formation. Thromboembolic events were the likely cause of various clinical pathologies, including heart failure, renal and splenic microinfarctions, and paraplegia. CONCLUSIONS Here, we show for the first time that in the absence of Gpx4, sufficient vitamin E supplementation is crucial for endothelial viability.
Collapse
Affiliation(s)
- Markus Wortmann
- Walter Brendel Centre of Experimental Medicine, Munich Heart Alliance, Munich Cluster for Systems Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brigelius-Flohé R, Kipp AP. Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. Ann N Y Acad Sci 2012; 1259:19-25. [PMID: 22758632 DOI: 10.1111/j.1749-6632.2012.06574.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian glutathione peroxidases (GPxs) are reviewed with emphasis on the role of the gastrointestinal GPx2 in tumorigenesis. GPx2 ranks high in the hierarchy of selenoproteins, corroborating its importance. Colocalization of GPx2 with the Wnt pathway in crypt bases of the intestine and its induction by Wnt signals point to a role in mucosal homeostasis, but GPx2 might also support tumor growth when increased by a dysregulated Wnt pathway. In contrast, the induction of GPx2 by Nrf2 activators and the upregulation of COX2 in cells with a GPx2 knockdown reveal inhibition of inflammation and suggest prevention of inflammation-mediated carcinogenesis. The Janus-faced role of GPx2 has been confirmed in a mouse model of inflammation-associated colon carcinogenesis (AOM/DSS), where GPx2 deletion increased inflammation and consequently tumor development, but decreased tumor size. The model further revealed a GPx2-independent decrease in tumor development by selenium (Se) and detrimental effects of the Nrf2-activator sulforaphane in moderate Se deficiency.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Biochemistry of Micronutrients Department, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
28
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
29
|
Chen W, Zeng Y, Cui J, Chen Q, Du J, Yang L, Hu Y, Song Y, Qian Y. Effects of phospholipid hydroperoxide glutathione peroxidase mRNA expression on meat quality of M. longissimus dorsi in pigs. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1407-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Cloning and characterization of two glutathione peroxidase cDNAs from southern bluefin tuna (Thunnus maccoyii). Comp Biochem Physiol B Biochem Mol Biol 2010; 156:287-97. [DOI: 10.1016/j.cbpb.2010.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/22/2022]
|
31
|
Messaoudi I, Banni M, Saïd L, Saïd K, Kerkeni A. Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat. Chem Biol Interact 2010; 188:94-101. [PMID: 20643113 DOI: 10.1016/j.cbi.2010.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 01/14/2023]
Abstract
To investigate the effect of co-exposure to cadmium (Cd) and selenium (Se) on selenoprotein P (SelP) and phospholipid hydroperoxide glutathione peroxidase (GPx4) gene expression in testis and to evaluate their possible involvement in Cd-induced testicular pathophysiology, male rats received either tap water, Cd or Cd+Se in their drinking water for 5 weeks. Cd exposure caused a down-regulation of SelP and GPx4 gene expression and a significant decrease in plasma and testicular concentrations of Se. These changes were accompanied by decreased plasma testosterone level, sperm count and motility, GSH content, protein-bound sulfhydryl concentration (PSH), enzymatic activities of catalase (CAT) and glutathione peroxidase (GSH-Px) as well as by increased glutathione-S-transferase (GST) activity, lipid peroxidation (as malondialdehyde, MDA) and proteins carbonyls (PC). The decrease of testicular SelP and GPx4 gene expression under Cd influence was significantly restored in Cd+Se group. Co-treatment with Cd and Se also totally reversed the Cd-induced depletion of Se, decrease in plasma testosterone level and partially restored Cd-induced oxidative stress and decrease in sperm count and motility. Taken together, these data suggest that down-regulation of SelP and GPx4 gene expression induces plasma and testicular Se depletion leading, at least in part, to Cd-induced testicular pathophysiology.
Collapse
Affiliation(s)
- Imed Messaoudi
- UR 09/30: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, 5000 Monastir, Tunisia. imed
| | | | | | | | | |
Collapse
|
32
|
Fischer BB, Dayer R, Schwarzenbach Y, Lemaire SD, Behra R, Liedtke A, Eggen RIL. Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2009; 71:569-83. [PMID: 19690965 DOI: 10.1007/s11103-009-9540-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/09/2009] [Indexed: 05/02/2023]
Abstract
When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides.Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stress.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hermesz E, Ferencz A. Identification of two phospholipid hydroperoxide glutathione peroxidase (gpx4) genes in common carp. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:101-6. [PMID: 19345279 DOI: 10.1016/j.cbpc.2009.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 11/12/2022]
Abstract
The monomeric selenoprotein, phospholipid hydroperoxide glutathione peroxidase (GPx4) is an essential member of the antioxidant defense system. This paper describes the identification of two gpx4 genes (gpx4a and gpx4b) from somatic tissues of common carp (Cyprinus carpio). The two sequences exhibited 78% and 79% identity at the DNA and the predicted protein level, respectively. The gpx4a transcript was detected in all examined tissues of unstressed animals, with the highest level in the liver. The gpx4b expression was low relative to that of gpx4a in the liver, heart, muscle and brain, and was virtually undetected in the kidney. However, in the olfactory lobe gpx4b was expressed at a fairly high level, the ratio gpx4a/gpx4b being approximately 2:1. Cold shock and Cd(2+) exposure influenced the gpx4a expression to only a slight extent, whereas gpx4b was greatly down-regulated following Cd(2+) exposure.
Collapse
Affiliation(s)
- Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
34
|
Kulinsky VI, Kolesnichenko LS. The glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Brigelius-Flohé R, Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta Gen Subj 2009; 1790:1555-68. [PMID: 19289149 DOI: 10.1016/j.bbagen.2009.03.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 03/05/2009] [Accepted: 03/08/2009] [Indexed: 01/12/2023]
Abstract
Cancer cells produce high amounts of reactive oxygen species (ROS) and evade apoptosis. Hydroperoxides support proliferation, invasion, migration and angiogenesis, but at higher levels induce apoptosis, thus being pro- and anti-carcinogenic. Accordingly, glutathione peroxidases (GPxs) regulating hydroperoxide levels might have dual roles too. GPx1, clearly an antioxidant enzyme, is down-regulated in many cancer cells. Its main role would be prevention of cancer initiation by ROS-mediated DNA damage. GPx2 is up-regulated in cancer cells. GPx1/GPx2 double knockout mice develop colitis and intestinal cancer. However, GPx2 knockdown cancer cells grow better in vitro and in vivo probably reflecting the physiological role of GPx2 in intestinal mucosa homeostasis. GPx2 counteracts COX-2 expression and PGE(2) production, which explains its potential to inhibit migration and invasion of cultured cancer cells. Overexpression of GPx3 inhibits tumor growth and metastasis. GPx4 is decreased in cancer tissues. GPx4-overexpressing cancer cells have low COX-2 activity and tumors derived therefrom are smaller than from control cells and do not metastasize. Collectively, GPxs prevent cancer initiation by removing hydroperoxides. GPx4 inhibits but GPx2 supports growth of established tumors. Metastasis, but also apoptosis, is inhibited by all GPxs. GPx-mediated regulation of COX/LOX activities may be relevant to early stages of inflammation-mediated carcinogenesis.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| | | |
Collapse
|
36
|
Abstract
Thiol/selenol peroxidases are ubiquitous nonheme peroxidases. They are divided into two major subfamilies: peroxiredoxins (PRXs) and glutathione peroxidases (GPXs). PRXs are present in diverse subcellular compartments and divided into four types: 2-cys PRX, 1-cys PRX, PRX-Q, and type II PRX (PRXII). In mammals, most GPXs are selenoenzymes containing a highly reactive selenocysteine in their active site while yeast and land plants are devoid of selenoproteins but contain nonselenium GPXs. The presence of a chloroplastic 2-cys PRX, a nonselenium GPX, and two selenium-dependent GPXs has been reported in the unicellular green alga Chlamydomonas reinhardtii. The availability of the Chlamydomonas genome sequence offers the opportunity to complete our knowledge on thiol/selenol peroxidases in this organism. In this article, Chlamydomonas PRX and GPX families are presented and compared to their counterparts in Arabidopsis, human, yeast, and Synechocystis sp. A summary of the current knowledge on each family of peroxidases, especially in photosynthetic organisms, phylogenetic analyses, and investigations of the putative subcellular localization of each protein and its relative expression level, on the basis of EST data, are presented. We show that Chlamydomonas PRX and GPX families share some similarities with other photosynthetic organisms but also with human cells. The data are discussed in view of recent results suggesting that these enzymes are important scavengers of reactive oxygen species (ROS) and reactive nitrogen species (RNS) but also play a role in ROS signaling.
Collapse
|
37
|
Ding WQ, Lind SE. Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity. Mol Cancer Ther 2007; 6:1467-74. [PMID: 17431126 DOI: 10.1158/1535-7163.mct-06-0608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Docosahexaenoic acid (DHA; 22:6, n-3) is known to exert cytotoxic effects against various types of tumors via lipid peroxidation. Whereas several enzymes influence the response of cells to oxidative stress, only one enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx-4), directly reduces lipid hydroperoxides in mammalian cells. The present study was designed to examine the involvement of GPx-4 in determining the effects of DHA addition to various human cancer cell lines. Although baseline levels of GPx-4 did not correlate with the relative sensitivity of human cancer cell lines to DHA, DHA reduced the level of protein expression of GPx-4 by at least 50% in all six lines. Knockdown of GPx-4 by small interfering RNA technique in a human ovarian cancer cell line significantly enhanced the cytotoxic effect of DHA in a time- and concentration-dependent manner. This cytotoxic effect of DHA was reversed by pretreatment with vitamin E, suggesting that the enhanced toxicity of GPx-4 knockdown is due to changes in the ability of the cells to handle oxidative stress. Neither baseline superoxide dismutase-1 nor catalase expression correlated with the relative sensitivity of the cells to DHA treatment. These results illustrate that susceptibility to the oxidative stress imposed by DHA, and possibly other therapeutic agents, is due to complex interactions among multiple antioxidant systems. The modulation of GPx-4 levels by DHA administration is of potential importance and may influence the cellular response to other oxidant stresses.
Collapse
Affiliation(s)
- Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
38
|
Fujieda M, Naruse K, Hamauzu T, Miyazaki E, Hayashi Y, Enomoto R, Lee E, Ohta K, Yamaguchi Y, Wakiguchi H, Enza H. Effect of selenium-deficient diet on tubular epithelium in normal rats. Pediatr Nephrol 2007; 22:192-201. [PMID: 17109141 DOI: 10.1007/s00467-006-0266-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/26/2006] [Accepted: 06/30/2006] [Indexed: 11/30/2022]
Abstract
Selenium (Se) deficiency reduces glutathione peroxidase (GPx) activity, resulting in increased oxidative stress. We examined how Se deficiency induces renal injury via oxidative stress over time during the Se-deficient period. Seventy-two male Wistar rats were divided into two groups and fed either a control or Se-deficient diet. Rats were sacrificed on weeks 1, 2, 4, 6, 9, and 12. Blood and urine samples were collected, and the kidneys were removed. Urinalysis was performed, and creatinine clearance (Ccr) was calculated. Expressions of cellular GPx (cGPx) and phospholipid hydroperoxidase GPx (PHGPx) mRNA and GPx activity were measured. Histology was evaluated by light microscopy with immunohistochemistry for 4-hydroxy-2-nonenal (HNE) and vimentin. The Se-deficient diet caused significant decreases in GPx activity and cGPx mRNA expression but no change in PHGPx mRNA, together with significant proteinuria and glucosuria and slight decline in Ccr. The Se-deficient diet induced calcification in the kidney and increased the distribution of HNE and vimentin immunostaining in proximal tubuli, particularly around the outer medulla stripe. However, the histological damage did not progress after 6 weeks of deficiency. Se deficiency induces proteinuria and glucosuria with renal calcification, which may be primarily induced by injury of proximal tubuli via oxidative stress.
Collapse
Affiliation(s)
- Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bao Y, Hurst R, Williamson G. High Performance Liquid Chromatographic Separation of Hydroperoxy-Phospholipids and Their Corresponding Hydroxy-Phospholipid Derivatives. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079808006605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yongping Bao
- a Department of Biochemistry , Institute of Food Research , Norwich Research Park Colney, Norwich, NR4 7UA, UK
| | - Rachel Hurst
- a Department of Biochemistry , Institute of Food Research , Norwich Research Park Colney, Norwich, NR4 7UA, UK
| | - Gary Williamson
- a Department of Biochemistry , Institute of Food Research , Norwich Research Park Colney, Norwich, NR4 7UA, UK
| |
Collapse
|
40
|
|
41
|
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2005; 70:200-14. [PMID: 15807660 DOI: 10.1007/s10541-005-0102-7] [Citation(s) in RCA: 847] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative stress is considered a major contributor to etiology of both "normal" senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.
Collapse
Affiliation(s)
- A Yu Andreyev
- Alumni of Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
42
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
43
|
Sneddon AA, Wu HC, Farquharson A, Grant I, Arthur JR, Rotondo D, Choe SN, Wahle KWJ. Regulation of selenoprotein GPx4 expression and activity in human endothelial cells by fatty acids, cytokines and antioxidants. Atherosclerosis 2004; 171:57-65. [PMID: 14642406 DOI: 10.1016/j.atherosclerosis.2003.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is the only antioxidant enzyme known to directly reduce phospholipid hydroperoxides within membranes and lipoproteins, acting in conjunction with alpha-tocopherol to inhibit lipid peroxidation. Peroxidation of lipids has been implicated in a number of pathophysiological processes, including inflammation and atherogenesis. We investigated the relative positive and negative effects of specific polyunsaturated fatty acids (PUFAs) and inflammatory cytokines on the activity and gene expression of the selenium-dependant redox enzyme GPx4. In human umbilical vein endothelial cells (HUVEC), GPx4 mRNA levels and activity were increased optimally by 114 nM selenium (as sodium selenite). Docosahexaenoic acid (DHA) and conjugated linoleic acid (CLA) further increased mRNA levels whereas arachidonic acid (ARA) had no effect; enzyme activity was decreased by DHA, was unaffected by CLA or was increased by ARA. GPx4 protein levels increased with selenium, ARA and DHA addition but not with CLA. Interleukin-1beta (IL-1beta) increased GPx4 mRNA, protein and activity whereas TNFalpha at 1 ng/ml increased activity while at 3 ng/ml it reduced activity and mRNA. Conversely, alpha-tocopherol reduced mRNA levels without affecting activity. These results indicate that lipids, cytokines and antioxidants modulate GPx4 in a complex manner that in the presence of adequate selenium, may favour protection against potentially proatherogenic processes.
Collapse
Affiliation(s)
- Alan A Sneddon
- Lipid and Redox Regulation Group, Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ufer C, Borchert A, Kuhn H. Functional characterization of cis- and trans-regulatory elements involved in expression of phospholipid hydroperoxide glutathione peroxidase. Nucleic Acids Res 2003; 31:4293-303. [PMID: 12888488 PMCID: PMC169948 DOI: 10.1093/nar/gkg650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (phGPx) is a member of the seleno glutathione peroxidase family that is comprised of five selenoproteins capable of reducing hydroperoxy lipids to the corresponding alcohols. The enzyme has been implicated in antioxidative defense, but its high expression level in testicular tissue suggests a more specific function during sperm maturation. The phGPx is encoded for by a joint sperm nucleus/phGPx gene (sn/phGPx) and can be expressed as a mitochondrial or cytosolic isoform. Although sn/phGPx genes have been cloned from various mammalian species expression regulation of the enzyme has not been studied in detail. We investigated the 5'-flanking region of the murine sn/phGPx gene and observed basic promoter activity in a 200 bp region localized immediately upstream of the translational initiation site of the cytosolic isoform (3'-ATG). DNase protection assays indicated the presence of five distinct protein-binding regions and electrophoretic mobility shift assays and supershift experiments revealed binding of stimulating protein 1 (SP1), nuclear factor Y (NF-Y) and members of the SMAD family. Site-directed mutagenesis of the consensus binding sequences abolished in vitro transcription factor binding. Expression of reporter genes was most effectively impaired when SP1/SP3 and NF-Y binding site-deficient constructs were tested. Chromatin immunoprecipitation suggested the in vivo relevance of these transcription factors. Our data indicate that the basic phGPx promoter constitutes a 200 bp oligonucleotide, which is localized immediately upstream of the 3'-ATG and involves functional SP1/SP3, NF-Y and SMAD binding sites. The corresponding trans-regulatory proteins may contribute to differential expression regulation of the mitochondrial and cytosolic phGPx isoforms.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, Humboldt University Medical School Charité, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | |
Collapse
|
45
|
Kong BW, Kim H, Foster DN. Cloning and expression analysis of chicken phospholipid-hydroperoxide glutathione peroxidase. Anim Biotechnol 2003; 14:19-29. [PMID: 12887177 DOI: 10.1081/abio-120020183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phospholipid-hydroperoxide glutathione peroxidase (GPX4 or PHGPX) is a unique selenium dependent glutathione peroxidase that reduces phospholipid, cholesterol, and cholesteryl ester hydroperoxides. Phospholipid-hydroperoxide glutathione peroxidase has been shown to exist as both a 197 amino acid mitochondrial targeting protein and as a 170 amino acid non-mitochondrial protein. The cDNA encoding the non-mitochondrial chicken GPX4 (cGPX4) has been isolated from an immortalized DF-1 chicken embryonic fibroblast (CEF) cell line cDNA library. The nucleotide sequence of cGPX4 was 802 bp in length with an open reading frame (ORF) that encoded 170 amino acids but lacked the N-terminal domain that encoded the mitochondrial leader sequence (MLS). Chicken non-mitochondrial GPX4 was highly expressed in brain and stromal tissues. Surprisingly, it was found that ovarian stromal tissue cGPX4 expression is regulated quite differently according to the reproductive status of the bird, suggesting that GPX4 may play an important role in reproduction in response to steroid hormones, in addition to its general antioxidant functions.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | | | | |
Collapse
|
46
|
Borchert A, Savaskan NE, Kuhn H. Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Tissue-specific expression pattern and identification of functional cis- and trans-regulatory elements. J Biol Chem 2003; 278:2571-80. [PMID: 12427732 DOI: 10.1074/jbc.m209064200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sperm nucleus glutathione peroxidase (snGPx), which is closely related to the phospholipid hydroperoxide glutathione peroxidase (phGPx), was recently discovered in late spermatids. Both GPx isoforms originate from a joint ph/snGPx gene, but their N-terminal peptides are encoded by alternative first exons. The expression of the two enzymes is differentially regulated in various cells, but little is known about the regulatory mechanisms. To explore the tissue-specific regulation of expression of the two isoenzymes, we first investigated their tissue distribution. Whereas phGPx is expressed at low levels in many organs, snGPx was only detected in testis, kidney, and in the human embryonic kidney cell line HEK293. Subcellular fractionation studies and immunoelectron microscopy revealed a cytosolic localization. To explore the mechanistic reasons for the differential expression pattern, we first tested the activity of the putative phGPx and snGPx promoters. The 5'-flanking region of the joint ph/snGPx gene exhibits strong promoter activity. In contrast, the putative snGPx promoter, which comprises 334 bp of intronic sequences, lacks major promoter activity. However, it strongly suppresses the activity of the ph/snGPx promoter. These data suggest negative regulatory elements in the first intron of the ph/snGPx gene, and DNase protection assays revealed the existence of several protein-binding sites. The corresponding trans-regulatory proteins (SP1, ERG1, GATA1, SREBP1, USF1, and CREBP1) were identified, and in vivo binding of EGR1 and SREBP1 was shown by chromatin immunoprecipitation. These data indicate for the first time somatic expression of the snGPx and provide evidence for the existence of intronic negative cis-regulatory elements in the ph/snGPx gene. Our failure to detect an alternative snGPx promoter suggests that transcription of the ph/snGPx gene may be regulated by a joint basic promoter. The decision, which GPx isoform is expressed in a given cell, appears to be made by alternative splicing of a joint primary transcript.
Collapse
Affiliation(s)
- Astrid Borchert
- Institute of Biochemistry, Humboldt University Medical School Charité, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | |
Collapse
|
47
|
Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 2003; 34:145-69. [PMID: 12521597 DOI: 10.1016/s0891-5849(02)01197-8] [Citation(s) in RCA: 537] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo, Japan
| | | |
Collapse
|
48
|
Witting PK, Pettersson K, Letters J, Stocker R. Anti-atherogenic effect of coenzyme Q10 in apolipoprotein E gene knockout mice. Free Radic Biol Med 2000; 29:295-305. [PMID: 11035258 DOI: 10.1016/s0891-5849(00)00311-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidation of low-density lipoprotein (LDL) lipid is implicated in atherogenesis and certain antioxidants inhibit atherosclerosis. Ubiquinol-10 (CoQ10H2) inhibits LDL lipid peroxidation in vitro although it is not known whether such activity occurs in vivo, and, if so, whether this is anti-atherogenic. We therefore tested the effect of ubiquinone-10 (CoQ10) supplemented at 1% (w/w) on aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet. Hydroperoxides of cholesteryl esters and triacylglycerols (together referred to as LOOH) and their corresponding alcohols were used as the marker for lipoprotein lipid oxidation. Atherosclerosis was assessed by morphometry at the aortic root, proximal and distal arch, and the descending thoracic and abdominal aorta. Compared to controls, CoQ10-treatment increased plasma coenzyme Q, ascorbate, and the CoQ10H2:CoQ10 + CoQ10H2 ratio, decreased plasma alpha-tocopherol (alpha-TOH), and had no effect on cholesterol and cholesterylester alcohols (CE-OH). Plasma from CoQ10-supplemented mice was more resistant to ex vivo lipid peroxidation. CoQ10 treatment increased aortic coenzyme Q and alpha-TOH and decreased the absolute concentration of LOOH, whereas tissue cholesterol, cholesteryl esters, CE-OH, and LOOH expressed per bisallylic hydrogen-containing lipids were not significantly different. CoQ10-treatment significantly decreased lesion size in the aortic root and the ascending and the descending aorta. Together these data show that CoQ10 decreases the absolute concentration of aortic LOOH and atherosclerosis in apoE-/- mice.
Collapse
Affiliation(s)
- P K Witting
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Abstract
Oxysterols are present in human atherosclerotic plaque and are suggested to play an active role in plaque development. Moreover, the oxysterol:cholesterol ratio in plaque is much higher than in normal tissues or plasma. Oxysterols in plaque are derived both non-enzymically, either from the diet and/or from in vivo oxidation, or (e.g. 27-hydroxycholesterol) are formed enzymically during cholesterol catabolism. While undergoing many of the same reactions as cholesterol, such as being esterified by cells and in plasma, certain oxysterols in some animal and in vitro models exhibit far more potent effects than cholesterol per se. In vitro, oxysterols perturb several aspects of cellular cholesterol homeostasis (including cholesterol biosynthesis, esterification, and efflux), impair vascular reactivity and are cytotoxic and/or induce apoptosis. Injection of relatively large doses of oxysterols into animals causes acute angiotoxicity whereas oxysterol-feeding experiments have yielded contrary results as far as their atherogenicity is concerned. There is no direct evidence yet in humans that oxysterols contribute to atherogenesis. However, oxysterol levels are elevated in human low-density lipoprotein (LDL) subfractions that are considered potentially atherogenic and two recent studies have indicated that raised plasma levels of a specific oxysterol (7beta-hydroxycholesterol) may be associated with an increased risk of atherosclerosis. At the present time there are a number of significant and quite widespread problems with current literature which preclude more than a tentative suggestion that oxysterols have a causal role in atherogenesis. Further studies are necessary to definitively determine the role of oxysterols in atherosclerosis, and considering the wide-ranging tissue levels reported in the literature, special emphasis is needed on their accurate analysis, especially in view of the susceptibility of the parent cholesterol to artifactual oxidation.
Collapse
Affiliation(s)
- A J Brown
- Cell Biology Group, Heart Research Institute, Sydney, NSW, Australia. brown&
| | | |
Collapse
|
50
|
de Haan JB, Bladier C, Griffiths P, Kelner M, O'Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 1998; 273:22528-36. [PMID: 9712879 DOI: 10.1074/jbc.273.35.22528] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione peroxidases have been thought to function in cellular antioxidant defense. However, some recent studies on Gpx1 knockout (-/-) mice have failed to show a role for Gpx1 under conditions of oxidative stress such as hyperbaric oxygen and the exposure of eye lenses to high levels of H2O2. These findings have, unexpectedly, raised the issue of the role of Gpx1, especially under conditions of oxidative stress. Here we demonstrate a role for Gpx1 in protection against oxidative stress by showing that Gpx1 (-/-) mice are highly sensitive to the oxidant paraquat. Lethality was already detected within 24 h in mice exposed to paraquat at 10 mg.kg-1 (approximately (1)/(7) the LD50 of wild-type controls). The effects of paraquat were dose-related. In the 30 mg.kg-1-treated group, 100% of mice died within 5 h, whereas the controls showed no evidence of toxicity. We further demonstrate that paraquat transcriptionally up-regulates Gpx1 in normal cells, reinforcing a role for Gpx1 in protection against paraquat toxicity. Finally, we show that cortical neurons from Gpx1 (-/-) mice are more susceptible to H2O2; 30% of neurons from Gpx1 (-/-) mice were killed when exposed to 65 microM H2O2, whereas the wild-type controls were unaffected. These data establish a function for Gpx1 in protection against some oxidative stressors and in protection of neurons against H2O2. Further, they emphasize the need to elucidate the role of Gpx1 in protection against different oxidative stressors and in different disease states and suggest that Gpx1 (-/-) mice may be valuable for studying the role of H2O2 in neurodegenerative disorders.
Collapse
Affiliation(s)
- J B de Haan
- Molecular Genetics and Development Group, Institute of Reproduction and Development, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|