1
|
Singh G, Trujillo JD, McDowell CD, Matias-Ferreyra F, Kafle S, Kwon T, Gaudreault NN, Fitz I, Noll L, Morozov I, Retallick J, Richt JA. Detection and characterization of H5N1 HPAIV in environmental samples from a dairy farm. Virus Genes 2024; 60:517-527. [PMID: 39008139 DOI: 10.1007/s11262-024-02085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 07/16/2024]
Abstract
The recent expansion of HPAIV H5N1 infections in terrestrial mammals in the Americas, most recently including the outbreak in dairy cattle, emphasizes the critical need for better epidemiological monitoring of zoonotic diseases. In this work, we detected, isolated, and characterized the HPAIV H5N1 from environmental swab samples collected from a dairy farm in the state of Kansas, USA. Genomic sequencing of these samples uncovered two distinctive substitutions in the PB2 (E249G) and NS1 (R21Q) genes which are rare and absent in recent 2024 isolates of H5N1 circulating in the mammalian and avian species. Additionally, approximately 1.7% of the sequence reads indicated a PB2 (E627K) substitution, commonly associated with virus adaptation to mammalian hosts. Phylogenetic analyses of the PB2 and NS genes demonstrated more genetic identity between this environmental isolate and the 2024 human isolate (A/Texas/37/2024) of H5N1. Conversely, HA and NA gene analyses revealed a closer relationship between our isolate and those found in other dairy cattle with almost 100% identity, sharing a common phylogenetic subtree. These findings underscore the rapid evolutionary progression of HPAIV H5N1 among dairy cattle and reinforces the need for more epidemiological monitoring which can be done using environmental sampling.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D Trujillo
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D McDowell
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Kansas State Veterinary Diagnostic Laboratory (KSVDL), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Isaac Fitz
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lance Noll
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Kansas State Veterinary Diagnostic Laboratory (KSVDL), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jamie Retallick
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Kansas State Veterinary Diagnostic Laboratory (KSVDL), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology (DMP), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
2
|
Ngo QB, Juffer AH. Theoretical Investigations of a point mutation affecting H5 Hemagglutinin's receptor binding preference. Comput Biol Chem 2024; 113:108189. [PMID: 39216409 DOI: 10.1016/j.compbiolchem.2024.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The avian influenza A H5N1 virus is a subtype of influenza A virus (IAV) that causes a highly infectious and severe respiratory illness in birds and poses significant economic losses in poultry farming. To infect host cell, the virus uses its surface glycoprotein named Hemagglutinin (HA) to recognize and to interact with the host cell receptor containing either α2,6- (SAα2,6 Gal) or α2,3-linked Sialic Acid (SAα2,3 Gal). The H5N1 virus has not yet acquired the capability for efficient human-to-human transmission. However, studies have demonstrated that even a single amino acid substitution in the HA can switch its glycan receptor preference from the avian-type SAα2,3 Gal to the human-type SAα2,6 Gal. The present study aims to explain the underlying mechanism of a mutation (D94N) on the H5 HA that causes the protein to change its glycan receptor-binding preference using molecular dynamics (MD) simulations. Our results reveal that the mutation alters the electrostatic interactions pattern near the HA receptor binding pocket, leading to a reduced stability for the HA-avian-type SAα2,3 Gal complex. On the other hand, the detrimental effect of the mutation D94N is not observed in the HA-human-type SAα2,6 Gal complex due to the glycan's capability to switch its topology.
Collapse
Affiliation(s)
- Quoc Bao Ngo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu 90014, Finland
| | - André H Juffer
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu 90014, Finland.
| |
Collapse
|
3
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
4
|
Cardenas M, Seibert B, Cowan B, Fraiha ALS, Carnaccini S, Gay LC, Faccin FC, Caceres CJ, Anderson TK, Vincent Baker AL, Perez DR, Rajao DS. Amino acid 138 in the HA of a H3N2 subtype influenza A virus increases affinity for the lower respiratory tract and alveolar macrophages in pigs. PLoS Pathog 2024; 20:e1012026. [PMID: 38377132 PMCID: PMC10906893 DOI: 10.1371/journal.ppat.1012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-β. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ana Luiza S. Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
5
|
Melkikh AV. Mutations, sex, and genetic diversity: New arguments for partially directed evolution. Biosystems 2023; 229:104928. [PMID: 37172758 DOI: 10.1016/j.biosystems.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A review of the theories of the existence of sexes, genetic diversity, and the distribution of mutations among organisms shows that all these concepts are not a product of random evolution and cannot be explained within the framework of Darwinism. Most mutations are the result of the genome acting on itself. This is an organized process that is implemented very differently in different species, in different places in the genome. Because of the fact that it is not random, this process must be directed and regulated, albeit with complex and not fully understood laws. This means that an additional reason must be included in order to model such mutations during evolution. The assumption of directionality must not only be explicitly included in evolutionary theory but must also occupy a central place in it. In this study an updated model of partially directed evolution is constructed, which is capable of qualitatively explaining the indicated features of evolution. Experiments are described that can confirm or disprove the proposed model.
Collapse
|
6
|
Liu K, Guo Y, Zheng H, Ji Z, Cai M, Gao R, Zhang P, Liu X, Xu X, Wang X, Liu X. Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. Virol Sin 2023; 38:47-55. [PMID: 36103978 PMCID: PMC10006187 DOI: 10.1016/j.virs.2022.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) circulate globally in poultry and have become the dominant AIV subtype in China in recent years. Previously, we demonstrated that the H9N2 virus (A/chicken/Eastern China/SDKD1/2015) naturally harbors a mammalian-adaptive molecular factor (627K) in the PB2 protein and is weakly pathogenic in mice. Here, we focused on new markers for virulence in mammals. A mouse-adapted H9N2 virus was serially passaged in mice by infecting their lungs. As expected, infected mice showed clinical symptoms and died at passage six. A comparison between the wild-type and mouse-adapted virus sequences identified amino acid substitutions in the hemagglutinin (HA) protein. H9N2 viruses with the T187P + M227L double mutation exhibited an increased affinity to human-type (SAα2,6Gal) receptors and significantly enhanced viral attachment to mouse lung tissues, which contributed to enhancing viral replication and virulence in mice. Additionally, HA with the T187P + M227L mutation enabled H9N2 viral transmission in guinea pigs via direct contact. AIV pathogenicity in mice is a polygenic trait. Our results demonstrated that these HA mutations might be combined with PB2-627K to significantly increase H9N2 virulence in mice, and this enhanced virulence was achieved in other H9N2 AIVs by generating the same combination of mutations. In summary, our study identified novel key elements in the HA protein that are required for H9N2 pathogenicity in mice and provided valuable insights into pandemic preparedness against emerging H9N2 strains.
Collapse
Affiliation(s)
- Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yaqian Guo
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Huafen Zheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhuxing Ji
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Miao Cai
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Key Laboratory of Geriatric Disease Prevention and Control of Jiangsu Province, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiulong Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Souza CK, Kimble JB, Anderson TK, Arendsee ZW, Hufnagel DE, Young KM, Gauger PC, Lewis NS, Davis CT, Thor S, Vincent Baker AL. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans. Viruses 2023; 15:v15020331. [PMID: 36851547 PMCID: PMC9962742 DOI: 10.3390/v15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Human-to-swine transmission of influenza A (H3N2) virus occurs repeatedly and plays a critical role in swine influenza A virus (IAV) evolution and diversity. Human seasonal H3 IAVs were introduced from human-to-swine in the 1990s in the United States and classified as 1990.1 and 1990.4 lineages; the 1990.4 lineage diversified into 1990.4.A-F clades. Additional introductions occurred in the 2010s, establishing the 2010.1 and 2010.2 lineages. Human zoonotic cases with swine IAV, known as variant viruses, have occurred from the 1990.4 and 2010.1 lineages, highlighting a public health concern. If a variant virus is antigenically drifted from current human seasonal vaccine (HuVac) strains, it may be chosen as a candidate virus vaccine (CVV) for pandemic preparedness purposes. We assessed the zoonotic risk of US swine H3N2 strains by performing phylogenetic analyses of recent swine H3 strains to identify the major contemporary circulating genetic clades. Representatives were tested in hemagglutination inhibition assays with ferret post-infection antisera raised against existing CVVs or HuVac viruses. The 1990.1, 1990.4.A, and 1990.4.B.2 clade viruses displayed significant loss in cross-reactivity to CVV and HuVac antisera, and interspecies transmission potential was subsequently investigated in a pig-to-ferret transmission study. Strains from the three lineages were transmitted from pigs to ferrets via respiratory droplets, but there were differential shedding profiles. These data suggest that existing CVVs may offer limited protection against swine H3N2 infection, and that contemporary 1990.4.A viruses represent a specific concern given their widespread circulation among swine in the United States and association with multiple zoonotic cases.
Collapse
Affiliation(s)
- Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - David E. Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Katharine M. Young
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, London NW1 0TU, UK
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sharmi Thor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
- Correspondence:
| |
Collapse
|
8
|
Cui P, Shi J, Wang C, Zhang Y, Xing X, Kong H, Yan C, Zeng X, Liu L, Tian G, Li C, Deng G, Chen H. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect 2022; 11:1693-1704. [PMID: 35699072 PMCID: PMC9246030 DOI: 10.1080/22221751.2022.2088407] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.4.4b hemagglutinin gene have been widely circulating in wild birds and are responsible for the loss of over 70 million domestic poultry in Europe, Africa, Asia, and North America since October 2020. During our routine surveillance, 13 H5N1 viruses were isolated from 26,767 wild bird and poultry samples that were collected between September 2021 and March 2022 in China. To investigate the origin of these Chinese isolates and understand their genetic relationship with the globally circulating H5N1 viruses, we performed a detailed phylogenic analysis of 233 representative H5N1 strains that were isolated from 28 countries. We found that, after they emerged in the Netherlands, the H5N1 viruses encountered complicated gene exchange with different viruses circulating in wild birds and formed 16 genotypes. Genotype one (G1) was predominant, being detected in 22 countries, whereas all other genotypes were only detected in one or two continents. H5N1 viruses of four genotypes (G1, G7, G9, and G10) were detected in China; three of these genotypes have been previously reported in other countries. The H5N1 viruses detected in China replicated in mice, with pathogenicity varying among strains; the G1 virus was highly lethal in mice. Moreover, we found that these viruses were antigenically similar to and well matched with the H5-Re14 vaccine strain currently used in China. Our study reveals the overall picture of H5N1 virus evolution and provides insights for the control of these viruses.
Collapse
Affiliation(s)
- Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Congcong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China.,National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
9
|
Miao X, Feng M, Zhu O, Yang F, Yin Y, Yin Y, Chen S, Qin T, Peng D, Liu X. H5N8 Subtype avian influenza virus isolated from migratory birds emerging in Eastern China possessed a high pathogenicity in mammals. Transbound Emerg Dis 2022; 69:3325-3338. [PMID: 35989421 DOI: 10.1111/tbed.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Novel H5N8 highly pathogenic avian influenza viruses (HPAIVs) bearing the clade 2.3.4.4b HA gene have been widely spread through wild migratory birds since 2020. One H5N8 HPAIV (A/Wild bird/Cixi/Cixi02/2020; here after Cixi02) was isolated from migratory birds in Zhejiang Province, Eastern China in 25 November 2020. However, its pathogenicity in avian and mammal remains unknown. Hemagglutinin gene genetic analysis indicated that Cixi02 virus belonged to the branch II of H5 clade 2.3.4.4b originated from Iraq in May 2020. Cixi02 virus showed a binding affinity to both SA α-2, 3-galactose (Gal) and SA α-2, 6 Gal receptors, good pH stability, thermostability, and replication ability in both avian and mammal cells. The poultry pathogenicity indicated that Cixi02 virus was lethal to chickens. Moreover, the mammalian pathogenicity showed that the 50% mouse lethal dose (MLD50 ) is 2.14 lgEID50 /50 μl, indicating a high pathogenicity in mice. Meanwhile, Cixi02 virus was widely detected in multiple organs, including heart, liver, spleen, lung, kidney, turbinate, and brain after nasal infection. In addition, we found high level gene expressions of TNF-α, IL-12p70, CXCL10, and IFN-α in lungs, IL-8 and IL-1β in brains, and observed severe histopathological change in lungs and brains. Collectedly, this study provided new insights on the pathogenic and zoonotic features of an H5N8 subtype AIV isolated from migratory birds.
Collapse
Affiliation(s)
- Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Mingcan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Ouwen Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
10
|
Abstract
In this article, the evolution of viruses is analyzed in terms of their complexity. It is shown that the evolution of viruses is a partially directed process. The participation of viruses and mobile genetic elements in the evolution of other organisms by integration into the genome is also an a priori directed process. The high variability of genomes (including the genes of antibodies), which differs by orders of magnitude for various viruses and their hosts, is not a random process but is the result of the action of a molecular genetic control system. Herein, a model of partially directed evolution of viruses is proposed. Throughout the life cycle of viruses, there is an interaction of complex biologically important molecules that cannot be explained on the basis of classic laws. The interaction of a virus with a cell is essentially a quantum event, including selective long-range action. Such an interaction can be interpreted as the "remote key-lock" principle. In this article, a model of the interaction of biologically important viral molecules with cellular molecules based on nontrivial quantum interactions is proposed. Experiments to test the model are also proposed.
Collapse
|
11
|
Sun T, Guo Y, Zhao L, Fan M, Huang N, Tian M, Liu Q, Huang J, Liu Z, Zhao Y, Ji Z, Ping J. Evolution of the PB1 gene of human influenza A (H3N2) viruses circulating between 1968 and 2019. Transbound Emerg Dis 2022; 69:1824-1836. [PMID: 34033262 DOI: 10.1111/tbed.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
One avian H3N2 influenza virus, providing its PB1 and HA segments, reassorted with one human H2N2 virus and caused a pandemic outbreak in 1968, killing over 1 million people. After its introduction to humanity, the pandemic H3N2 virus continued adapting to humans and has resulted in epidemic outbreaks every influenza season. To understand the functional roles of the originally avian PB1 gene in the circulating strains of human H3N2 influenza viruses, we analyzed the evolution of the PB1 gene in all human H3N2 isolates from 1968 to 2019. We found several specific residues dramatically changed around 2002-2009 and remained stable through to 2019. Then, we verified the functions of these PB1 mutations in the genetic background of the early pandemic virus, A/Hong Kong/1/1968(HK/68), as well as a recent seasonal strain, A/Jiangsu/34/2016 (JS/16). The PB1 V709I or PB1 V113A/K586R/D619N/V709I induced higher polymerase activity of HK/68 in human cells. And the four mutations acted cooperatively that had an increased replication capacity in vitro and in vivo at an early stage of infection. In contrast, the backward mutant, A113V/R586K/N619D/I709V, reduced polymerase activity in human cells. The PB1 I709V decreased viral replication in vitro, but this mutant only showed less effect on mice infection experiment, which suggested influenza A virus evolved in human host was not always consisted with highly replication efficiency and pathogenicity in other mammalian host. Overall, our results demonstrated that the identified PB1 mutations contributed to the viral evolution of human influenza A (H3N2) viruses.
Collapse
Affiliation(s)
- Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lingcai Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nan Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miao Tian
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Hamidi-Sofiani V, Rakhshi R, Moradi N, Zeynali P, Nakhaie M, Behboudi E. Oncolytic viruses and pancreatic cancer. Cancer Treat Res Commun 2022; 31:100563. [PMID: 35460973 DOI: 10.1016/j.ctarc.2022.100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Today, the pancreatic cancer prognosis is poor and genetic technology is developing to treat various types of cancers. Scientists are actively looking for a new technique to design a therapeutic strategy to treat pancreatic cancer. Several oncolytic viruses are known to be valuable tools for pancreatic cancer treatment. Recent Studies demonstrate their effectiveness and safety in various administration routes such as direct intratumoral, intracutaneous, intravascular, and other routes. METHOD In this study, all studies conducted in the past 20 years have been reviewed. Reputable scientific databases including Irandoc, Scopus, Google Scholar and PubMed, are searched for the keywords of Pancreatic cancer, oncolytic, viruses and treatment and the latest information about them is obtained. RESULTS Engineering the oncolytic viruses' genome and insertion of intended transgenes including cytokines or shRNAs, has caused promising promotions in pancreatic cancer treatment. Some oncolytic viruses inhibit tumors directly and some through activation of immune responses. CONCLUSION This approach showed some signs of success in efficiency like immune system activation in the tumor environment, effective virus targeting in the tumor cells by systemic administration, and enhanced patient survival in comparison with the control group. But of course, until now, using these oncolytic viruses alone has not been effective in elimination of tumors.
Collapse
Affiliation(s)
| | - Reza Rakhshi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Niloufar Moradi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Zeynali
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
13
|
Kim G, Shin HM, Kim HR, Kim Y. Effects of Host and Pathogenicity on Mutation Rates in Avian Influenza A Viruses. Virus Evol 2022; 8:veac013. [PMID: 35295747 PMCID: PMC8922178 DOI: 10.1093/ve/veac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutation is the primary determinant of genetic diversity in influenza viruses. The rate of mutation, measured in an absolute time-scale, is likely to be dependent on the rate of errors in copying RNA sequences per replication and the number of replications per unit time. Conditions for viral replication are probably different among host taxa, potentially generating the host-specificity of the viral mutation rate, and possibly between highly and low pathogenic viruses. This study investigated whether mutation rates per year in avian influenza A viruses depend on host taxa and pathogenicity. We inferred mutation rates from the rates of synonymous substitutions, which are assumed to be neutral and thus equal to mutation rates, at four segments that code internal viral proteins (PB2, PB1, PA, NP). On the phylogeny of all avian viral sequences for each segment, multiple distinct subtrees (clades) were identified that represent viral subpopulations, which are likely to have evolved within particular host taxa. Using simple regression analysis, we found that mutation rates were significantly higher in viruses infecting chickens than domestic ducks, and in those infecting wild shorebirds than wild ducks. Host-dependency of the substitution rate was also confirmed by Bayesian phylogenetic analysis. However, we did not find evidence that the mutation rate is higher in highly pathogenic than in low pathogenic viruses. We discuss these results considering viral replication rate as the major determinant of mutation rate per unit time.
Collapse
Affiliation(s)
- Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Yuseob Kim
- Division of EcoScience and Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Genetic and biological characteristics of the globally circulating H5N8 avian influenza viruses and the protective efficacy offered by the poultry vaccine currently used in China. SCIENCE CHINA-LIFE SCIENCES 2021; 65:795-808. [PMID: 34757542 DOI: 10.1007/s11427-021-2025-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
The H5N8 avian influenza viruses have been widely circulating in wild birds and are responsible for the loss of over 33 million domestic poultry in Europe, Russia, Middle East, and Asia since January 2020. To monitor the invasion and spread of the H5N8 virus in China, we performed active surveillance by analyzing 317 wild bird samples and swab samples collected from 41,172 poultry all over the country. We isolated 22 H5N8 viruses from wild birds and 14 H5N8 viruses from waterfowls. Genetic analysis indicated that the 36 viruses formed two different genotypes: one genotype viruses were widely detected from different wild birds and domestic waterfowls; the other genotype was isolated from a whopper swan. We further revealed the origin and spatiotemporal spread of these two distinct H5N8 virus genotypes in 2020 and 2021. Animal studies indicated that the H5N8 isolates are highly pathogenic to chickens, mildly pathogenic in ducks, but have distinct pathotypes in mice. Moreover, we found that vaccinated poultry in China could be completely protected against H5N8 virus challenge. Given that the H5N8 viruses are likely to continue to spread in wild birds, vaccination of poultry is highly recommended in high-risk countries to prevent H5N8 avian influenza.
Collapse
|
15
|
Nugroho CMH, Silaen OSM, Kurnia RS, Soejoedono RD, Poetri ON, Soebandrio A. Isolation and molecular characterization of the hemagglutinin gene of H9N2 avian influenza viruses from poultry in Java, Indonesia. J Adv Vet Anim Res 2021; 8:423-434. [PMID: 34722740 PMCID: PMC8520164 DOI: 10.5455/javar.2021.h530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Objective: The avian influenza virus (AIV) subtype H9N2 circulating in Indonesia has raised increasing concern about its impact on poultry and its public health risks. In this study, the H9N2 virus from chicken poultry farms in Java was isolated and characterized molecularly. Materials and Methods: Thirty-three pooled samples of chicken brain, cloacal swab, trachea, and oviduct were taken from multiple chickens infected with AIV in five regions of Java, Indonesia. The samples were isolated from specific pathogenic-free embryonated eggs that were 9 days old. Reverse transcription polymerase chain reaction and sequencing were used to identify H9N2 viruses. Results: This study was successful in detecting and characterizing 13 H9N2 isolates. The sequencing analysis of hemagglutinin genes revealed a 96.9%–98.8% similarity to the H9N2 AIV isolated from Vietnam in 2014 (A/muscovy duck/Vietnam/LBM719/2014). According to the phylogenetic analysis, all recent H9N2 viruses were members of the lineage Y280 and clade h9.4.2.5. Nine of the H9N2 isolates studied showed PSKSSR↓GLF motifs at the cleavage site, while four had PSKSSR↓GLF. Notably, all contemporary viruses have leucine (L) at position 216 in the receptor-binding region, indicating that the virus can interact with a human-like receptor. Conclusion: This study described the features of recent H9N2 viruses spreading in Java’s poultry industry. Additionally, H9N2 infection prevention and management must be implemented to avoid the occurrence of virus mutations in the Indonesian poultry industry.
Collapse
Affiliation(s)
| | | | - Ryan Septa Kurnia
- Doctoral Program Biomedical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Retno Damajanti Soejoedono
- Department of Animal Diseases and Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Okti Nadia Poetri
- Department of Animal Diseases and Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Amin Soebandrio
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia.,Department of Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
16
|
Sato K, Hayashi H, Shimotai Y, Yamaya M, Hongo S, Kawakami K, Matsuzaki Y, Nishimura H. TMPRSS2 Activates Hemagglutinin-Esterase Glycoprotein of Influenza C Virus. J Virol 2021; 95:e0129621. [PMID: 34406864 PMCID: PMC8513465 DOI: 10.1128/jvi.01296-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza C virus (ICV) has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein. HE functions similarly to hemagglutinin (HA) and neuraminidase of the influenza A and B viruses (IAV and IBV, respectively). It has a monobasic site, which is cleaved by some host enzymes. The cleavage is essential to activating the virus, but the enzyme or enzymes in the respiratory tract have not been identified. This study investigated whether the host serine proteases, transmembrane protease serine S1 member 2 (TMPRSS2) and human airway trypsin-like protease (HAT), which reportedly cleave HA of IAV/IBV, are involved in HE cleavage. We established TMPRSS2- and HAT-expressing MDCK cells (MDCK-TMPRSS2 and MDCK-HAT). ICV showed multicycle replication with HE cleavage without trypsin in MDCK-TMPRSS2 cells as well as IAV did. The HE cleavage and multicycle replication did not appear in MDCK-HAT cells infected with ICV without trypsin, while HA cleavage and multistep growth of IAV appeared in the cells. Amino acid sequences of the HE cleavage site in 352 ICV strains were completely preserved. Camostat and nafamostat suppressed the growth of ICV and IAV in human nasal surface epithelial (HNE) cells. Therefore, this study revealed that, at least, TMPRSS2 is involved in HE cleavage and suggested that nafamostat could be a candidate for therapeutic drugs for ICV infection. IMPORTANCE Influenza C virus (ICV) is a pathogen that causes acute respiratory illness, mostly in children, but there are no anti-ICV drugs. ICV has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein on the virion surface, which possesses receptor-binding, receptor-destroying, and membrane fusion activities. The HE cleavage is essential for the virus to be activated, but the enzyme or enzymes in the respiratory tract have not been identified. This study revealed that transmembrane protease serine S1 member 2 (TMPRSS2), and not human airway trypsin-like protease (HAT), is involved in HE cleavage. This is a novel study on the host enzymes involved in HE cleavage, and the result suggests that the host enzymes, such as TMPRSS2, may be a target for therapeutic drugs of ICV infection.
Collapse
Affiliation(s)
- Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Sakamoto, Nagasaki, Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate school of Medicine, Sendai, Miyagi, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
18
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
19
|
Yin X, Deng G, Zeng X, Cui P, Hou Y, Liu Y, Fang J, Pan S, Wang D, Chen X, Zhang Y, Wang X, Tian G, Li Y, Chen Y, Liu L, Suzuki Y, Guan Y, Li C, Shi J, Chen H. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathog 2021; 17:e1009561. [PMID: 33905456 PMCID: PMC8104392 DOI: 10.1371/journal.ppat.1009561] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/07/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
The H7N9 avian influenza virus (AIV) that emerged in China have caused five waves of human infection. Further human cases have been successfully prevented since September 2017 through the use of an H7N9 vaccine in poultry. However, the H7N9 AIV has not been eradicated from poultry in China, and its evolution remains largely unexplored. In this study, we isolated 19 H7N9 AIVs during surveillance and diagnosis from February 2018 to December 2019, and genetic analysis showed that these viruses have formed two different genotypes. Animal studies indicated that the H7N9 viruses are highly lethal to chicken, cause mild infection in ducks, but have distinct pathotypes in mice. The viruses bound to avian-type receptors with high affinity, but gradually lost their ability to bind to human-type receptors. Importantly, we found that H7N9 AIVs isolated in 2019 were antigenically different from the H7N9 vaccine strain that was used for H7N9 influenza control in poultry, and that replication of these viruses cannot, therefore, be completely prevented in vaccinated chickens. We further revealed that two amino acid mutations at positions 135 and 160 in the HA protein added two glycosylation sites and facilitated the escape of the H7N9 viruses from the vaccine-induced immunity. Our study provides important insights into H7N9 virus evolution and control.
Collapse
Affiliation(s)
- Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yujie Hou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yanjing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Jingzhen Fang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Shuxin Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Dongxue Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xiaohan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- * E-mail: (JS); (HC)
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- * E-mail: (JS); (HC)
| |
Collapse
|
20
|
Adel A, Mosaad Z, Shalaby AG, Selim K, Samy M, Abdelmagid MA, Hagag NM, Arafa AS, Hassan WM, Shahien MA. Molecular evolution of the hemagglutinin gene and epidemiological insight into low-pathogenic avian influenza H9N2 viruses in Egypt. Res Vet Sci 2021; 136:540-549. [PMID: 33887563 DOI: 10.1016/j.rvsc.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the low pathogenicity of the H9N2 avian influenza viruses, they can induce severe economic losses in various poultry sectors in conjunction with other factors. In Egypt, low-pathogenic avian influenza (LPAI) H9N2 became endemic in 2011 and has undergone continuous genetic evolution since then. The regular monitoring of the evolution of the virus is necessary to control its spread. During 2017-2020, there were 44 positive samples isolated, and these viruses were genetically sequenced to determine the hemagglutinin (HA) gene circulating in Egypt. The molecular analysis revealed at least nine changes in amino acid residues in comparison with the reference Egyptian strain from the original introduction in 2011 (A/qu/Egypt/113413v/2011), with a similarity of 95%-96%. Amino acid residues 180 and 216 are the most important residues in terms of positive selection pressure. Phylogenetically, the new Egyptian H9N2 viruses in 2017-2020 belonged to a new subcluster related to the strains that had been circulating since 2015. Comparative analysis of the HA gene of LPAI H9N2 viruses in Egypt from 2011 to 2020 supports a continuous evolution through the years with persistent markers.
Collapse
Affiliation(s)
- Amany Adel
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt.
| | - Zienab Mosaad
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Azhar G Shalaby
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Karim Selim
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Naglaa M Hagag
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Abdel Satar Arafa
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Wafaa M Hassan
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Momtaz A Shahien
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
21
|
Saeed NM, Rashid PMA, Dyary HO. Genetic characterization of highly pathogenic avian influenza A (H5N8) virus isolated from domestic geese in Iraq, 2018. BMC Vet Res 2021; 17:124. [PMID: 33740981 PMCID: PMC7980536 DOI: 10.1186/s12917-021-02831-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Background Influenza viruses are a continuous threat to avian and mammalian species, causing epidemics and pandemics. After the circulation of H5N1 in 2006, 2015, and 2016 in Iraq, an H5N8 influenza virus emerged in domestic geese in Sulaymaniyah Province, Iraq. This study analyzed the genetic characteristics of the Iraqi H5N8 viruses. Results An HPAI virus subtype H5N8 was identified from domestic backyard geese in the Kurdistan Region, north Iraq. Phylogenic analyses of the hemagglutinin (HA) and neuraminidase (NA) genes indicated that Iraq H5N8 viruses belonged to clade 2.3.4.4 group B and clustered with isolates from Iran, Israel, and Belgium. Genetic analysis of the HA gene indicated molecular markers for avian-type receptors. Characterization of the NA gene showed that the virus had sensitive molecular markers for antiviral drugs. Conclusions This is the first study ever on H5N8 in Iraq, and it is crucial to understand the epidemiology of the viruses in Iraq and the Middle East. The results suggest a possible role of migratory birds in the introduction of HPAI subtype H5N8 into Iraq.
Collapse
Affiliation(s)
- Nahla Muhammad Saeed
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Peshnyar Muhammad Atta Rashid
- Molecular Diagnostic Laboratory, Directorate of Veterinary Services, Sulaymaniyah, Kurdistan Region, Iraq.,Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Kurdistan Region, Iraq
| | - Hiewa Othman Dyary
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq.
| |
Collapse
|
22
|
Zhang H, Klose AM, Miller BL. Label-Free, Multiplex Glycan Microarray Biosensor for Influenza Virus Detection. Bioconjug Chem 2021; 32:533-540. [PMID: 33559468 DOI: 10.1021/acs.bioconjchem.0c00718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Newly emerging influenza viruses adapted from animal species pose significant pandemic threats to public health. An understanding of hemagglutinin (HA) receptor-binding specificity to host receptors is key to studying the adaptation of influenza viruses in humans. This information may be particularly useful for predicting the emergence of a pandemic outbreak. Therefore, high-throughput sensing technologies able to profile HA receptor binding can facilitate studies of influenza virus evolution and adaptation in humans. As a step toward this goal, we have prepared glycan-based receptor analogue microarrays on the Arrayed Imaging Reflectometry (AIR) platform. These arrays demonstrate label-free, multiplex detection and discrimination between human and avian influenza viruses. Microarrays consisting of glycan probes with 2,6 and 2,3 linkages were prepared. After first confirming their ability to capture lectins (carbohydrate-binding proteins) with known specificities, we observed that the arrays were able to discriminate between and quantify human pandemic influenza A/California/07/2009 (H1N1pdm) and avian A/Netherlands/1/2000 (H13N8) influenza viruses, respectively. As the method may be expanded to large numbers of glycans (>100) and virus subtypes (H1-H18), we anticipate it can be applied to systematically evaluate influenza virus adaptation in humans. In turn, this will facilitate global influenza surveillance and serve as a new tool enabling health organizations, governments, research institutes, and laboratories to react quickly in the face of a pandemic outbreak.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Alanna M Klose
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Benjamin L Miller
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
23
|
Wang G, Liu D, Hu J, Gu M, Wang X, He D, Zhang L, Li J, Zheng X, Zeng Z, Liu H, Hu S, Peng D, Jiao X, Liu X. Mutations during the adaptation of H7N9 avian influenza virus to mice lungs enhance human-like sialic acid binding activity and virulence in mice. Vet Microbiol 2021; 254:109000. [PMID: 33515926 DOI: 10.1016/j.vetmic.2021.109000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023]
Abstract
The first avian H7N9 influenza outbreak in spring of 2013 emerged in an unprecedented transmission from infected poultry to humans in the Yangtze delta area, eastern China, posing a dual challenge to public health and poultry industry. However, the mechanism for how avian H7N9 influenza virus adapts to mammalian hosts has not been clearly understood. Here, to identify adaptive changes that confer enhanced virulence of H7N9 virus in mammals, we generated a mouse-adapted H7N9 variant virus (S8) by serial lung-to-lung passages of the wild-type SDL124 virus in mice and compared their phenotype in vivo and in vitro. Sequence analysis showed that the two viruses differed by 27 amino acids distributed among six genes, containing changes in PB2 (E627K, D701N) and HA (Q226L) genes. The 50% mouse lethal dose (MLD50) of S8 reduced about 500 folds, to be moderately pathogenic to mice when compared to that of low pathogenic wild-type SDL124. Moreover, S8 replicated efficiently in mouse lungs and displayed expanded tissue tropism, and induced a greater degree of pulmonary edema and higher level of inflammatory cell infiltration in bronchoalveolar lavage fluids than SDL124 did. Interestingly, the mouse adapted S8 virus obtained strong affinity for human-like (SAα-2,6 Gal) receptor during the adaptation in mice. Correspondingly, compared with SDL124 virus, S8 virus showed higher replication efficiency in mammalian cells, whereas lower replication ability in avian cells. Taken together, these findings suggest that these mutations synergistically elevate the ability of H7N9 virus to disseminate to multiple organs and subsequently enhance the virulence of H7N9 virus in mammalian hosts.
Collapse
Affiliation(s)
- Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Dongchang He
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Eiden S, Dijkman R, Zell R, Fuchs J, Kochs G. Using a mouse-adapted A/HK/01/68 influenza virus to analyse the impact of NS1 evolution in codons 196 and 231 on viral replication and virulence. J Gen Virol 2020; 101:587-598. [PMID: 32416749 DOI: 10.1099/jgv.0.001422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seasonal influenza viruses circulating between 1918 and 2009 harboured two prevalent genetic variations in the NS1 coding region. A glutamic acid (E)-to-lysine (K) exchange at position 196 was reported to diminish the capacity of NS1 to control interferon induction. Furthermore, alterations at position 231 determine a carboxy-terminal extension of seven amino acids from 230 to 237 residues. Sequence analyses of NS1 of the last 90 years suggest that variations at these two positions are functionally linked. To determine the impact of the two positions on viral replication in vivo, we used a mouse-adapted variant of A/Hong Kong/01/68 (maHK68) (H3N2). maHK68 encodes an NS1 of 237 amino acids with lysine at position 196. A panel of recombinant maHK68 viruses was generated encoding NS1 variants that differed at positions 196 and 231. Our analyses showed a clear effect of the K-196-to-E exchange on interferon induction and virus virulence. These effects were further modulated by the loss of the seven-amino-acid extension. We propose that the combination of NS1 E-196 with the short C-terminal variant conferred a fitness advantage that is reflected by increased virulence in vivo. Notably, this particular NS1 constellation was observed for the pandemic 1918 H1N1 virus.
Collapse
Affiliation(s)
- Sebastian Eiden
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79008 Freiburg, Germany
| |
Collapse
|
25
|
Weckworth JK, Davis BW, Roelke-Parker ME, Wilkes RP, Packer C, Eblate E, Schwartz MK, Mills LS. Identifying Candidate Genetic Markers of CDV Cross-Species Pathogenicity in African Lions. Pathogens 2020; 9:E872. [PMID: 33114123 PMCID: PMC7690837 DOI: 10.3390/pathogens9110872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Canine distemper virus (CDV) is a multi-host pathogen with variable clinical outcomes of infection across and within species. We used whole-genome sequencing (WGS) to search for viral markers correlated with clinical distemper in African lions. To identify candidate markers, we first documented single-nucleotide polymorphisms (SNPs) differentiating CDV strains associated with different clinical outcomes in lions in East Africa. We then conducted evolutionary analyses on WGS from all global CDV lineages to identify loci subject to selection. SNPs that both differentiated East African strains and were under selection were mapped to a phylogenetic tree representing global CDV diversity to assess if candidate markers correlated with documented outbreaks of clinical distemper in lions (n = 3). Of 54 SNPs differentiating East African strains, ten were under positive or episodic diversifying selection and 20 occurred in the clinical strain despite strong purifying selection at those loci. Candidate markers were in functional domains of the RNP complex (n = 19), the matrix protein (n = 4), on CDV glycoproteins (n = 5), and on the V protein (n = 1). We found mutations at two loci in common between sequences from three CDV outbreaks of clinical distemper in African lions; one in the signaling lymphocytic activation molecule receptor (SLAM)-binding region of the hemagglutinin protein and another in the catalytic center of phosphodiester bond formation on the large polymerase protein. These results suggest convergent evolution at these sites may have a functional role in clinical distemper outbreaks in African lions and uncover potential novel barriers to pathogenicity in this species.
Collapse
Affiliation(s)
- Julie K. Weckworth
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA;
- United States Department of Agriculture, Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine, College Station, TX 77843, USA;
| | - Melody E. Roelke-Parker
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Rebecca P. Wilkes
- Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA;
| | - Craig Packer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA;
| | - Ernest Eblate
- Tanzania Wildlife Research Institute, Arusha, Tanzania;
| | - Michael K. Schwartz
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA;
- United States Department of Agriculture, Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - L. Scott Mills
- Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
26
|
Genetic variability of avian influenza virus subtype H5N8 in Egypt in 2017 and 2018. Arch Virol 2020; 165:1357-1366. [PMID: 32285202 DOI: 10.1007/s00705-020-04621-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
Since the incursion of avian influenza virus subtype H5N8 in Egypt in late 2016, it has spread rapidly, causing severe losses in poultry production. Multiple introductions of different reassorted strains were observed in 2017. In this study, a genetic characterization of the HA gene was carried out with 31 isolates selected from different governorates and sectors. Fifteen isolates were selected for NA gene sequence analysis. The HA and NA genes were divided into two subgroups (I and II) with positive selection pressure identified at positions 174 and 29, respectively. The HA gene contained two novel mutations in the antigenic sites, A and E. The HA nucleotide sequence identity ranged from 77 to 90% with different vaccine seeds. Full-genome sequence analysis was carried out for eight viruses, representing different governorates and sectors, to identify the predominant reassorted strain in Egypt. All viruses were similar to a reassorted strain of clade 2.3.4.4b that has been identified in Germany, among other countries. Analysis of these viruses revealed mutations specific to Egyptian strains and not the original virus characterized in 2017 (A/duck/Egypt/F446/2017), with a novel antiviral resistance marker, V27A, indicating resistance to amantadine in the M2 protein of two strains. The results indicate increased variability of circulating H5N8 viruses compared to earlier viruses sequenced in 2016 and 2017. The predominant reassorted virus circulating in 2017 and 2018 originated from an early 2017 strain. It is important to continue this surveillance of avian influenza viruses to monitor the evolution of circulating viruses.
Collapse
|
27
|
A Well-Defined H9N2 Avian Influenza Virus Genotype with High Adaption in Mammals was Prevalent in Chinese Poultry Between 2016 to 2019. Viruses 2020; 12:v12040432. [PMID: 32290398 PMCID: PMC7232211 DOI: 10.3390/v12040432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
H9N2 subtype avian influenza virus (AIV) is widely prevalent in poultry, and the virus is becoming adaptive to mammals, which poses pandemic importance. Here, BALB/c mice were employed as a model to evaluate the adaption in mammals of 21 field H9N2 viruses isolated from avian species between 2016 to 2019 in China. The replication capacity of the viruses was evaluated in the lungs of mice. The pathogenicity of the viruses were compared by weight loss and lung lesions from infected mice. The whole genomic sequences of the viruses were further characterized to define the associated phenotypes of the H9N2 viruses in vitro and in vivo. The results showed that most viruses could replicate well and cause lesions in the mouse lungs. The propagation capacity in MDCK cells and damage to respiratory tissues of the infected mice corresponded to relative viral titers in the mouse lungs. Further genome analysis showed that all of the H9N2 viruses belonged to the same genotype, G57, and contained a couple of amino acid substitutions or deletions that have been demonstrated as avian-human markers. Additionally, nine amino acids residues in seven viral proteins were found to be correlated with the replication phenotypes of the H9N2 viruses in mammals. The study demonstrated that a well-defined H9N2 AIV genotype with high adaption in mammals was prevalent in China in recent years. Further investigations on the role of the identified residues and continuous surveillance of newly identified mutations associated with host adaption should be strengthened to prevent any devastating human influenza pandemics.
Collapse
|
28
|
Kwon E, Cho M, Kim H, Son HS. A Study on Host Tropism Determinants of Influenza Virus Using Machine Learning. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191104160927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
The host tropism determinants of influenza virus, which cause changes in
the host range and increase the likelihood of interaction with specific hosts, are critical for
understanding the infection and propagation of the virus in diverse host species.
Methods:
Six types of protein sequences of influenza viral strains isolated from three classes of
hosts (avian, human, and swine) were obtained. Random forest, naïve Bayes classification, and knearest
neighbor algorithms were used for host classification. The Java language was used for
sequence analysis programming and identifying host-specific position markers.
Results:
A machine learning technique was explored to derive the physicochemical properties of
amino acids used in host classification and prediction. HA protein was found to play the most
important role in determining host tropism of the influenza virus, and the random forest method
yielded the highest accuracy in host prediction. Conserved amino acids that exhibited host-specific
differences were also selected and verified, and they were found to be useful position markers for
host classification. Finally, ANOVA analysis and post-hoc testing revealed that the
physicochemical properties of amino acids, comprising protein sequences combined with position
markers, differed significantly among hosts.
Conclusion:
The host tropism determinants and position markers described in this study can be
used in related research to classify, identify, and predict the hosts of influenza viruses that are
currently susceptible or likely to be infected in the future.
Collapse
Affiliation(s)
- Eunmi Kwon
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, Korea
| | - Hyeon S. Son
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
29
|
Bhagwat AR, Le Sage V, Nturibi E, Kulej K, Jones J, Guo M, Tae Kim E, Garcia BA, Weitzman MD, Shroff H, Lakdawala SS. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat Commun 2020; 11:23. [PMID: 31911620 PMCID: PMC6946661 DOI: 10.1038/s41467-019-13838-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
Assembly of infectious influenza A viruses (IAV) is a complex process involving transport from the nucleus to the plasma membrane. Rab11A-containing recycling endosomes have been identified as a platform for intracellular transport of viral RNA (vRNA). Here, using high spatiotemporal resolution light-sheet microscopy (~1.4 volumes/second, 330 nm isotropic resolution), we quantify Rab11A and vRNA movement in live cells during IAV infection and report that IAV infection decreases speed and increases arrest of Rab11A. Unexpectedly, infection with respiratory syncytial virus alters Rab11A motion in a manner opposite to IAV, suggesting that Rab11A is a common host component that is differentially manipulated by respiratory RNA viruses. Using two-color imaging we demonstrate co-transport of Rab11A and IAV vRNA in infected cells and provide direct evidence that vRNA-associated Rab11A have altered transport. The mechanism of altered Rab11A movement is likely related to a decrease in dynein motors bound to Rab11A vesicles during IAV infection.
Collapse
Affiliation(s)
- Amar R Bhagwat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Katarzyna Kulej
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Jennifer Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Eui Tae Kim
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Weitzman
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
30
|
Amino Acid Mutations A286V and T437M in the Nucleoprotein Attenuate H7N9 Viruses in Mice. J Virol 2020; 94:JVI.01530-19. [PMID: 31666373 PMCID: PMC6955278 DOI: 10.1128/jvi.01530-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
The H7N9 influenza viruses that emerged in China in 2013 have caused over 1,500 human infections, with a mortality rate of nearly 40%. The viruses were initially low pathogenic but became highly pathogenic in chickens at the beginning of 2017 and caused severe disease outbreaks in poultry. Several studies suggested that the highly pathogenic H7N9 viruses have increased virulence in mammals; however, the genetic basis of the virulence of H7N9 viruses in mammals is not fully understood. Here, we found that two amino acids, 286A and 437T, in NP are prerequisites for the virulence of H7N9 viruses in mice and the mutations A286V and T437M collectively eliminate the virulence of H7N9 viruses in mice. Our study further demonstrated that the virulence of influenza viruses is a polygenic trait, and the newly identified virulence-related residues in NP may provide new targets for attenuated influenza vaccine and antiviral drug development. The low-pathogenic H7N9 influenza viruses that emerged in 2013 acquired an insertion of four amino acids in their hemagglutinin cleavage site and thereby became highly pathogenic to chickens in 2017. Previous studies indicated that these highly pathogenic H7N9 viruses are virulent in chickens but have distinct pathotypes in mice. A/chicken/Guangdong/SD098/2017 (CK/SD098) is avirulent, with a 50% mouse lethal dose (MLD50) of >7.5 log10 50% egg infectious dose (EID50), whereas A/chicken/Hunan/S1220/2017 (CK/S1220) is virulent in mice, with an MLD50 of 3.2 log10 EID50. In this study, we explored the genetic determinants that contribute to the difference in virulence between these two H7N9 viruses by generating a series of reassortants and mutants in the CK/S1220 virus background and testing their virulence in mice. We found that the reassortant CK/1220-SD098-NP, carrying the nucleoprotein (NP) of CK/SD098, was avirulent in mice, with an MLD50 of >107.5 EID50. The NPs of these two viruses differ by two amino acids, at positions 286 and 437. We further demonstrated that the amino acid mutations A286V and T437M of NP independently slowed the process of NP import to and export from the nucleus and thus jointly impaired the viral life cycle and attenuated the virulence of these H7N9 viruses in mice. Our study identified new virulence determinants in NP and provided novel targets for the development of live attenuated vaccines and antiviral drugs against influenza viruses. IMPORTANCE The H7N9 influenza viruses that emerged in China in 2013 have caused over 1,500 human infections, with a mortality rate of nearly 40%. The viruses were initially low pathogenic but became highly pathogenic in chickens at the beginning of 2017 and caused severe disease outbreaks in poultry. Several studies suggested that the highly pathogenic H7N9 viruses have increased virulence in mammals; however, the genetic basis of the virulence of H7N9 viruses in mammals is not fully understood. Here, we found that two amino acids, 286A and 437T, in NP are prerequisites for the virulence of H7N9 viruses in mice and the mutations A286V and T437M collectively eliminate the virulence of H7N9 viruses in mice. Our study further demonstrated that the virulence of influenza viruses is a polygenic trait, and the newly identified virulence-related residues in NP may provide new targets for attenuated influenza vaccine and antiviral drug development.
Collapse
|
31
|
Jankowski MD, Glaberman SR, Kimball DB, Taylor-McCabe KJ, Fair JM. Sialic acid on avian erythrocytes. Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110336. [PMID: 31476363 DOI: 10.1016/j.cbpb.2019.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/21/2023]
Abstract
Understanding variation in physiological traits across taxa is a central question in evolutionary biology that has wide-ranging implications in biomedicine, disease ecology, and environmental protection. Sialic acid (Sia), and in particular, 5-N-acetylneuraminic acid (Neu5Ac), is chemically bound to galactose and the underlying glycan via α2-3 or α2-6 glycosidic linkage (i.e., Siaα2-3Galactose or Siaα2-6Galactose), conferring two different cell surface structures that affects cell to cell communication and interactions with foreign agents including microparasites and toxins. As an initial step towards understanding variation of Sia across the class Aves, we collected red blood cells (RBCs or erythrocytes) and measured Sia quantity in 76 species and 340 individuals using HPLC-MS/MS and glycosidic linkage type in 24 species and 105 individuals using hemagglutination assay. Although Sia quantity did not, α2-6 glycosidic linkage did exhibit a discernable phylogenetic pattern as evaluated by a phylogenetic signal (λ) value of 0.7. Sia quantity appeared to be higher in after hatch year birds than hatch year birds (P < 0.05); moreover, ~80% of the measured Sia across all individuals or species was expressed by ~20% of the individuals or species. Lastly, as expected, we detected a minimal presence of 5-N-glycolylneuraminic acid in the avian RBCs tested. These data provide novel insights and a large baseline dataset for further study on the variability of Sia in the class Aves which might be useful for understanding Sia dependent processes in birds.
Collapse
Affiliation(s)
- Mark D Jankowski
- Los Alamos National Laboratory, Biosecurity and Public Health, Mailstop M888, Los Alamos, NM 87545, United States of America.
| | - Scott R Glaberman
- University of South Alabama, Department of Biology, Mobile, AL 36688; George Mason University, Department of Environmental Science & Policy, Fairfax, VA 22030.
| | - David B Kimball
- Los Alamos National Laboratory, Materials Recovery and Recycling, Mailstop E511, Los Alamos, NM 87545, United States of America.
| | - Kirsten J Taylor-McCabe
- Los Alamos National Laboratory, National Security and Defense, Mailstop B224, Los Alamos, NM 87545, United States of America.
| | - Jeanne M Fair
- Los Alamos National Laboratory, Biosecurity and Public Health, Mailstop M888, Los Alamos, NM 87545, United States of America.
| |
Collapse
|
32
|
Zhao P, Sun L, Xiong J, Wang C, Chen L, Yang P, Yu H, Yan Q, Cheng Y, Jiang L, Chen Y, Zhao G, Jiang Q, Xiong C. Semiaquatic mammals might be intermediate hosts to spread avian influenza viruses from avian to human. Sci Rep 2019; 9:11641. [PMID: 31406229 PMCID: PMC6690891 DOI: 10.1038/s41598-019-48255-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A viruses (AIVs) can occasionally transmit to mammals and lead to the development of human pandemic. A species of mammal is considered as a mixing vessel in the process of host adaptation. So far, pigs are considered as a plausible intermediate host for the generation of human pandemic strains, and are labelled ‘mixing vessels’. In this study, through the analysis of two professional databases, the Influenza Virus Resource of NCBI and the Global Initiative on Sharing Avian Influenza Data (GISAID), we found that the species of mink (Neovison vison) can be infected by more subtypes of influenza A viruses with considerably higher α-diversity related indices. It suggested that the semiaquatic mammals (riverside mammals), rather than pigs, might be the intermediate host to spread AIVs and serve as a potential mixing vessel for the interspecies transmission among birds, mammals and human. In epidemic areas, minks, possibly some other semiaquatic mammals as well, could be an important sentinel species for influenza surveillance and early warning.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingsha Sun
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiasheng Xiong
- College of Marine Science, Shandong University, Weihai, China
| | - Chuan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Yang
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Hao Yu
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Qingli Yan
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Yan Cheng
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Lufang Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China. .,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
33
|
Xiong J, Zhao P, Yang P, Yan Q, Jiang L. Evolutionary dynamics of the H7N9 avian influenza virus based on large-scale sequence analysis. PLoS One 2019; 14:e0220249. [PMID: 31404069 PMCID: PMC6690514 DOI: 10.1371/journal.pone.0220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Since 2013, epidemics caused by novel H7N9 avian influenza A viruses (AIVs) have become a considerable public health issue. This study investigated the evolution of these viruses at the population level. Compared to H7 and N9 before 2013, there were 18 and 24 substitutions in the majority of novel H7N9 AIVs, respectively. Nine of these in HA and six in NA were rare before 2013, and four of these in HA and two in NA displayed host tropism. S136(128)N and A143(135)V are located on the receptor binding sites of the HA1 subunit and might be important factors in determining the host species of novel H7N9 AIV. On an overall scale, the evolution of H7 and N9, both in terms of time distribution and host species, is under negative selection. However, both in HA and NA, several sites were under positive selection. In both the overall epidemics and the human-derived H7N9 AIVs, eight positive selection sites were identified in HA1, with some located within the known antigen epitopes or the receptor binding site(RBS) domain. This may induce variations in H7N9 AIV with positive selection. It is necessary to strengthen the surveillance of novel H7N9 AIVs, both in human and bird population to determine whether a new virus has emerged through selection pressure and to prevent future epidemics from occurring.
Collapse
Affiliation(s)
- Jiasheng Xiong
- College of Marine Science, Shandong University (Weihai), Weihai, People’s Republic of China
| | - Ping Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People’s Republic of China
| | - Pengfei Yang
- Huai’an Center for Disease Control and Prevention, Huai’an, People’s Republic of China
| | - Qingli Yan
- Huai’an Center for Disease Control and Prevention, Huai’an, People’s Republic of China
| | - Lufang Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
Hassan KE, El-Kady MF, El-Sawah AAA, Luttermann C, Parvin R, Shany S, Beer M, Harder T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound Emerg Dis 2019; 68:21-36. [PMID: 31297991 DOI: 10.1111/tbed.13281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Rokshana Parvin
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| |
Collapse
|
35
|
Samir A, Adel A, Arafa A, Sultan H, Hussein Ahmed HA. Molecular pathogenic and host range determinants of reassortant Egyptian low pathogenic avian influenza H9N2 viruses from backyard chicken. Int J Vet Sci Med 2019; 7:10-19. [PMID: 31620483 PMCID: PMC6776986 DOI: 10.1080/23144599.2019.1637046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/19/2023] Open
Abstract
Since the introduction of H9N2 low pathogenic avian influenza virus in Egypt, it became an endemic disease causing considerable economic losses in different poultry sectors especially in the presence of other secondary bacterial and viral infections. The H9N2 viruses in Egypt are in continuous evolution that needs deep analysis for their evolution pattern based on the genetic constitutions of the pathogenic determinant genes (HA, PB2, PB1, PA, and NS). In this work, samples were collected from the backyard chickens from 3 Egyptian governorates. Five selected viruses were sequenced and analyzed for the hemagglutinin gene which showed genetic relatedness to the Asian G1 lineage group B, similar to the circulating H9N2 viruses in Egypt since 2013. The sequence for PB2, PB1, PA, HA and NS genes of the selected five viruses indicate a natural re-assortment event with recent Eurasian subtypes and similar to Egyptian H9N2 virus isolated from pigeon in Egypt during 2014. The Egyptian viruses of our study possess amino acids signatures including S42, V127, L550, L672 and V504 in the internal genes NS1, PA, and PB2, of respectively of an impact on virus transmission and replication. This work indicates that the H9N2 is in continuous evolution with alarming to the reassortment occurrence.
Collapse
Affiliation(s)
- Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdelsatar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Hesham Sultan
- Avian and Rabbit Diseases Dept., Faculty of Veterinary Medicine, University of Sadat, City Sadat, Minoufiya, Egypt
| | | |
Collapse
|
36
|
Rajao DS, Vincent AL, Perez DR. Adaptation of Human Influenza Viruses to Swine. Front Vet Sci 2019; 5:347. [PMID: 30723723 PMCID: PMC6349779 DOI: 10.3389/fvets.2018.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry.
Collapse
Affiliation(s)
- Daniela S Rajao
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA, United States
| |
Collapse
|
37
|
Gu C, Zeng X, Song Y, Li Y, Liu L, Kawaoka Y, Zhao D, Chen H. Glycosylation and an amino acid insertion in the head of hemagglutinin independently affect the antigenic properties of H5N1 avian influenza viruses. SCIENCE CHINA-LIFE SCIENCES 2018; 62:76-83. [DOI: 10.1007/s11427-018-9439-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
|
38
|
Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1465-1473. [DOI: 10.1007/s11427-018-9420-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
|
39
|
Shi J, Deng G, Ma S, Zeng X, Yin X, Li M, Zhang B, Cui P, Chen Y, Yang H, Wan X, Liu L, Chen P, Jiang Y, Guan Y, Liu J, Gu W, Han S, Song Y, Liang L, Qu Z, Hou Y, Wang X, Bao H, Tian G, Li Y, Jiang L, Li C, Chen H. Rapid Evolution of H7N9 Highly Pathogenic Viruses that Emerged in China in 2017. Cell Host Microbe 2018; 24:558-568.e7. [PMID: 30269969 DOI: 10.1016/j.chom.2018.08.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023]
Abstract
H7N9 low pathogenic influenza viruses emerged in China in 2013 and mutated to highly pathogenic strains in 2017, resulting in human infections and disease in chickens. To control spread, a bivalent H5/H7 inactivated vaccine was introduced in poultry in September 2017. To monitor virus evolution and vaccine efficacy, we collected 53,884 poultry samples across China from February 2017 to January 2018. We isolated 252 H7N9 low pathogenic viruses, 69 H7N9 highly pathogenic viruses, and one H7N2 highly pathogenic virus, of which two low pathogenic and 14 highly pathogenic strains were collected after vaccine introduction. Genetic analysis of highly pathogenic strains revealed nine genotypes, one of which is predominant and widespread and contains strains exhibiting high virulence in mice. Additionally, some H7N9 and H7N2 viruses carrying duck virus genes are lethal in ducks. Thus, although vaccination reduced H7N9 infections, the increased virulence and expanded host range to ducks pose new challenges.
Collapse
Affiliation(s)
- Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Mei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Shuyu Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yangming Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Zhiyuan Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yujie Hou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China.
| |
Collapse
|
40
|
Young SG, Kitchen A, Kayali G, Carrel M. Unlocking pandemic potential: prevalence and spatial patterns of key substitutions in avian influenza H5N1 in Egyptian isolates. BMC Infect Dis 2018; 18:314. [PMID: 29980172 PMCID: PMC6035396 DOI: 10.1186/s12879-018-3222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Avian influenza H5N1 has a high human case fatality rate, but is not yet well-adapted to human hosts. Amino acid substitutions currently circulating in avian populations may enhance viral fitness in, and thus viral adaptation to, human hosts. Substitutions which could increase the risk of a human pandemic (through changes to host specificity, virulence, replication ability, transmissibility, or drug susceptibility) are termed key substitutions (KS). Egypt represents the epicenter of human H5N1 infections, with more confirmed cases than any other country. To date, however, there have not been any spatial analyses of KS in Egypt. Methods Using 925 viral samples of H5N1 from Egypt, we aligned protein sequences and scanned for KS. We geocoded isolates using dasymetric mapping, then carried out geospatial hot spot analyses to identify spatial clusters of high KS detection rates. KS prevalence and spatial clusters were evaluated for all detected KS, as well as when stratified by phenotypic consequence. Results A total of 39 distinct KS were detected in the wild, including 17 not previously reported in Egypt. KS were detected in 874 samples (94.5%). Detection rates varied by viral protein with most KS observed in the surface hemagglutinin (HA) and neuraminidase (NA) proteins, as well as the interior non-structural 1 (NS1) protein. The most frequently detected KS were associated with increased viral binding to mammalian cells and virulence. Samples with high overall detection rates of KS exhibited statistically significant spatial clustering in two governorates in the northwestern Nile delta, Alexandria and Beheira. Conclusions KS provide a possible mechanism by which avian influenza H5N1 could evolve into a pandemic candidate. With numerous KS circulating in Egypt, and non-random spatial clustering of KS detection rates, these findings suggest the need for increased surveillance in these areas.
Collapse
Affiliation(s)
- Sean G Young
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX, USA.,Department of Scientific Research, Human Link, Hazmieh, Lebanon
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
41
|
Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect 2018; 146:1259-1266. [PMID: 29781424 PMCID: PMC9134290 DOI: 10.1017/s0950268818001292] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Almost the full range of 16 haemagglutinin (HA) and nine neuraminidase subtypes of avian influenza viruses (AIVs) has been detected either in waterfowl, land-based poultry or in the environment in Bangladesh. AIV infections in Bangladesh affected a wide range of host species of terrestrial poultry. The highly pathogenic avian influenza (AI) H5N1 and low pathogenic AI H9N2 were found to co-circulate and be well entrenched in the poultry population, which has caused serious damage to the poultry industry since 2007. By reviewing the available scientific literature, the overall situation of AIVs in Bangladesh is discussed. All Bangladeshi (BD) H5N1 and H9N2 AIV sequences available at GenBank were downloaded along with other representative sequences to analyse the genetic diversity among the circulating AIVs in Bangladesh and to compare with the global situation. Three different H5N1 clades, 2.2.2, 2.3.2.1 and 2.3.4.2, have been detected in Bangladesh. Only 2.3.2.1a is still present. The BD LP H9N2 viruses mostly belonged to the H9 G1 lineage but segregated into many branches, and some of these shared internal genes with HP viruses of subtypes H7N3 and H5N1. However, these reassortment events might have taken place before introduction to Bangladesh. Currently, H9N2 viruses continue to evolve their HA cleavage, receptor binding and glycosylation sites. Multiple mutations in the HA gene associated with adaptation to mammalian hosts were also observed. Strict biosecurity at farms and gradual phasing out of live-bird markets could be the key measures to better control AIVs, whereas stamping out is not a practicable option in Bangladesh. Vaccination also could be an additional tool, which however, requires careful planning. Continuous monitoring of AIVs through systematic surveillance and genetic characterisation of the viruses remains a hallmark of AI control.
Collapse
Affiliation(s)
- Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Thomas W. Vahlenkamp
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
42
|
Lin X, Yu S, Guo K, Sun X, Yi H, Jin M. Reassortant H5N1 Avian Influenza Virus Bearing PB2 Gene From a 2009 Pandemic H1N1 Exhibits Increased Pathogenicity in Mice. Front Microbiol 2018; 9:631. [PMID: 29666618 PMCID: PMC5891601 DOI: 10.3389/fmicb.2018.00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Reassortment is a key driving force of the evolution and host adaptation of the influenza virus. A(H1N1)pdm2009 (pdm09), a novel H1N1 influenza viral subtype, caused a pandemic in 2009. The strain was established in pig herds and cocirculated with the highly pathogenic H5N1 avian influenza virus. The coexistence of pdm09 with H5N1 raises concerns that reassortment may cause the development of novel viral strains with unpredictable virulence. Given that the viral polymerase subunit PB2 is a determinant of host range and pathogenicity, and that the substantial amino acid differences in PB2 between pdm09 and H5N1, including positions 590/591 and 271, which are shown to play key roles in enhanced polymerase activity in mammalian host cells, we generated a reassortant virus containing PB2 derived from a pdm09 (A/Liaoning/1/2009, LN/09) to investigate if pdm09-derived PB2 can function in a heterologous avian virus isolate as an adaptive strategy, with H5N1 (A/duck/Hubei/hangmei01/2006, HM/06) as the backbone. We assessed the biological characteristics, including pathogenicity, replication, and polymerase activity, of the reassortant. Compared with HM/06 and LN/09, H5N1 hybrid virus containing PB2 from LN/09 exhibited significantly increased pathogenicity in mice and proliferation activity in mammalian cell lines, as well as markedly enhanced polymerase activity. Our results indicate that the coexistence of H5N1 and pdm09 may pose a great threat to public health through reassortment. Moreover, our results highlight the importance of monitoring the emergence of H5N1 reassortants containing pdm09-derived PB2.
Collapse
Affiliation(s)
- Xian Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shiman Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haiming Yi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
43
|
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.
Collapse
|
44
|
Mutations in the PA Protein of Avian H5N1 Influenza Viruses Affect Polymerase Activity and Mouse Virulence. J Virol 2018; 92:JVI.01557-17. [PMID: 29212927 DOI: 10.1128/jvi.01557-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
To study the influenza virus determinants of pathogenicity, we characterized two highly pathogenic avian H5N1 influenza viruses isolated in Vietnam in 2012 (A/duck/Vietnam/QT1480/2012 [QT1480]) and 2013 (A/duck/Vietnam/QT1728/2013 [QT1728]) and found that the activity of their polymerase complexes differed significantly, even though both viruses were highly pathogenic in mice. Further studies revealed that the PA-S343A/E347D (PA with the S-to-A change at position 343 and the E-to-D change at position 347) mutations reduced viral polymerase activity and mouse virulence when tested in the genetic background of QT1728 virus. In contrast, the PA-343S/347E mutations increased the polymerase activity of QT1480 and the virulence of a low-pathogenic H5N1 influenza virus. The PA-343S residue (which alone increased viral polymerase activity and mouse virulence significantly relative to viral replication complexes encoding PA-343A) is frequently found in H5N1 influenza viruses of several subclades; infection with a virus possessing this amino acid may pose an increased risk to humans.IMPORTANCE H5N1 influenza viruses cause severe infections in humans with a case fatality rate that exceeds 50%. The factors that determine the high virulence of these viruses in humans are not fully understood. Here, we identified two amino acid changes in the viral polymerase PA protein that affect the activity of the viral polymerase complex and virulence in mice. Infection with viruses possessing these amino acid changes may pose an increased risk to humans.
Collapse
|
45
|
Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, Zeng X, Cui P, Chen Y, Yang H, Wan X, Wang X, Liu L, Chen P, Jiang Y, Liu J, Guan Y, Suzuki Y, Li M, Qu Z, Guan L, Zang J, Gu W, Han S, Song Y, Hu Y, Wang Z, Gu L, Yang W, Liang L, Bao H, Tian G, Li Y, Qiao C, Jiang L, Li C, Bu Z, Chen H. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 2017; 27:1409-1421. [PMID: 29151586 PMCID: PMC5717404 DOI: 10.1038/cr.2017.129] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Certain low pathogenic avian influenza viruses can mutate to highly pathogenic viruses when they circulate in domestic poultry, at which point they can cause devastating poultry diseases and severe economic damage. The H7N9 influenza viruses that emerged in 2013 in China had caused severe human infections and deaths. However, these viruses were nonlethal in poultry. It is unknown whether the H7N9 viruses can acquire additional mutations during their circulation in nature and become lethal to poultry and more dangerous for humans. Here, we evaluated the evolution of H7N9 viruses isolated from avian species between 2013 and 2017 in China and found 23 different genotypes, 7 of which were detected only in ducks and were genetically distinct from the other 16 genotypes that evolved from the 2013 H7N9 viruses. Importantly, some H7N9 viruses obtained an insertion of four amino acids in their hemagglutinin (HA) cleavage site and were lethal in chickens. The index strain was not lethal in mice or ferrets, but readily obtained the 627K or 701N mutation in its PB2 segment upon replication in ferrets, causing it to become highly lethal in mice and ferrets and to be transmitted efficiently in ferrets by respiratory droplet. H7N9 viruses bearing the HA insertion and PB2 627K mutation have been detected in humans in China. Our study indicates that the new H7N9 mutants are lethal to chickens and pose an increased threat to human health, and thus highlights the need to control and eradicate the H7N9 viruses to prevent a possible pandemic.
Collapse
Affiliation(s)
- Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunyang Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Mei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhiyuan Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lizheng Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinkai Zang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shuyu Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yangming Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Linlin Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenyu Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
46
|
Yang W, Lambertz RLO, Punyadarsaniya D, Leist SR, Stech J, Schughart K, Herrler G, Wu NH, Meng F. Increased virulence of a PB2/HA mutant of an avian H9N2 influenza strain after three passages in porcine differentiated airway epithelial cells. Vet Microbiol 2017; 211:129-134. [PMID: 29102108 DOI: 10.1016/j.vetmic.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
We analyzed the adaptation of influenza viruses to growth in differentiated airway epithelial cells of a new host by passaging an avian H9N2 virus three times in porcine precision-cut lung slices (PCLS). Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins, and two in the HA protein. In this study, we characterized the PB2 mutation G685R by generating recombinant H9N2 viruses containing the PB2 single mutation alone or in combination with one of the HA mutations (A190V or T212I). When analyzed in porcine cells - a tracheal cell line (NPTr) or PCLS - the PB2-685 mutant did not provide a growth advantage and had no effect on the ciliary activity which is a virulence marker of swine influenza viruses. Pathogenicity for mice was also not increased by the single PB2 mutation. However, both double mutants (HA-190+PB2-685 and HA-212+PB2-685) showed significantly increased virulence in mice. Therefore, the mutations in the HA and PB2 proteins may confer early adaptation of an avian H9N2 virus to a mammalian host. In conclusion, we expect that a broader ensemble of mutations will be required to render an H9N2 virus virulent for pigs.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ruth L O Lambertz
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Darsaniya Punyadarsaniya
- Virology and Immunology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Jürgen Stech
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany; University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
47
|
Ke C, Mok CKP, Zhu W, Zhou H, He J, Guan W, Wu J, Song W, Wang D, Liu J, Lin Q, Chu DKW, Yang L, Zhong N, Yang Z, Shu Y, Peiris JSM. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China. Emerg Infect Dis 2017; 23:1332-1340. [PMID: 28580899 PMCID: PMC5547808 DOI: 10.3201/eid2308.170600] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient’s adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.
Collapse
|
48
|
Seok JH, Kim J, Lee DB, Cho KJ, Lee JH, Bae G, Chung MS, Kim KH. Conformational modulation of influenza virus hemagglutinin: characterization and in vivo efficacy of monomeric form. Sci Rep 2017; 7:7540. [PMID: 28790432 PMCID: PMC5548806 DOI: 10.1038/s41598-017-08021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Mutational changes that mostly occur at the head region of hemagglutinin (HA) lead to the emergence of new epidemic influenza viruses, whereas HA antigens have been modified to generate broadly neutralizing antibodies toward highly conserved epitopes in the HA stem. Interestingly, a recent analysis of serum antibody repertoires showed that broadly neutralizing antibodies bind to HA monomer at a conserved region occluded at the intermonomer interface of HA trimer and confer protection in animal models. We showed previously that the recombinant HA ectodomain from a pandemic strain A/Korea/01/2009 was monomeric in solution and crystal structure. In order to examine the potential antigenicity of a monomeric form, we designed HA monomer that incorporates mutations to destabilize trimer conformations. Starting with the HA trimer from a seasonal strain A/Thailand/CU44/2006, mutations were introduced at the intermonomer interface, Ser199 of HA1 and Gly47, Arg75, Phe88, Val91, and Arg106 of HA2. Two mutants, F88E and V91W, were characterized to form a monomer and their double mutant F88E/V91W monomer was selected as an antigen. Animal studies showed that the HA monomer induced protective immunity in vivo, comparable to the trimer, albeit low antibody titers in sera.
Collapse
Affiliation(s)
- Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Jeongwon Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Dan Bi Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Ki Joon Cho
- Antibody Engineering Team, Mogam Institute, Yongin Kyunggi, 16924, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Garam Bae
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea.
| |
Collapse
|
49
|
Kandeil A, Kayed A, Moatasim Y, Webby RJ, McKenzie PP, Kayali G, Ali MA. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. J Gen Virol 2017; 98:1573-1586. [PMID: 28721841 DOI: 10.1099/jgv.0.000847] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Ahmed Kayed
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela P McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ghazi Kayali
- Human Link, Hazmieh Baabda 1107-2090, Lebanon.,Department of Epidemiology, Human Genetics, and Environmental Sciences University of Texas Health Sciences Center, Houston, Texas, USA
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| |
Collapse
|
50
|
Chen L, Wang C, Luo J, Li M, Liu H, Zhao N, Huang J, Zhu X, Ma G, Yuan G, He H. Amino Acid Substitution K470R in the Nucleoprotein Increases the Virulence of H5N1 Influenza A Virus in Mammals. Front Microbiol 2017; 8:1308. [PMID: 28744280 PMCID: PMC5504190 DOI: 10.3389/fmicb.2017.01308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
H5N1 is a highly pathogenic influenza A virus (IAV) and poses a major threat to the public health. The nucleoprotein (NP) has a multiple functions during the viral life cycle, however, the precise role of NP mutants in viral replication and pathogenicity is not completely understood. Here, we attempted to identify five residues in NP that may contribute to viral replication or pathogenicity. Of these, K227R, K229R, and K470R viruses were successfully rescued by reverse genetic, but the K91R and K198R viruses were not viable. A mini-genome assay demonstrated that the NP mutations K91R and K198R significantly decreased the polymerase activity. Moreover, these two mutations resulted in disrupted cellular localization in mammalian cells. Importantly, mutation at position 470 of NP significantly increased its virulence in vitro and in vivo. These findings demonstrated that the NP protein plays a major role in influenza virulence and pathogenicity, which adds to the knowledge of IAV virulence determinants and may benefit IAV surveillance.
Collapse
Affiliation(s)
- Lin Chen
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Chengmin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Huimin Liu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Jingjing Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Xili Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of ScienceBeijing, China
| | - Guoyao Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|