1
|
Zaman F, Hassan MU, Khattak WA, Ali A, Awad MF, Chen FS. The pivotal role of arbuscular mycorrhizal fungi in enhancing plant biomass and nutrient availability under drought stress conditions: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176960. [PMID: 39447888 DOI: 10.1016/j.scitotenv.2024.176960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Drought is a serious threat to crop productivity and global food security. About 40 % of the worldwide land is considered arid dryland soil because of a lack of rainfall, high solar radiation, and temperature fluctuations. Though rhizobacteria, particularly mycorrhizal fungi (MF), assist plants in coping with drought stress, an intensive quantitative assessment of their effects on plant growth and nutrient availability is still limited. We systematically carried out a global meta-analysis using 122 peer-reviewed publications comprising 3534 observations to investigate the effects of MF on plant biomass (PB) and nutrient availability (nitrogen: N and phosphorus: P) under drought-stress conditions. The results show that the MF inoculation significantly increased mycorrhizal colonization (MC), N and P uptakes, and plant biomass (PB) at a C:N ratio > 15 by 2171.44 %, 23.74 %, 135.61 %, and 220.91 %, respectively. The MF species Claroideoglomus etunicatum and Glomus significantly influenced the MC, N, and PB concentrations by 2541.68 %, 40.35 %, and 110.85 %, respectively. Moreover, the concentrations of MC, N, and PB were considerably affected by the soil texture categories, with the maximum levels of 4940.04 %, 127.05 %, and 84.04 % found in sandy, clay, and clay loam soils, respectively. In addition, soil pH, crop types, soil textural class, and MF species were identified as vital pedologic factors affecting plant growth and nutrient availability during fungal inoculation. Overall, this meta-analysis addresses gaps in understanding the effects of MF inoculation on plant development and nutrient availability under drought stress.
Collapse
Affiliation(s)
- Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Fu-Sheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Valiyambath VK, Thomas TA, George P, Neettiyath Kalathil L, Kaprakkaden A, Subraya KK, Raghavan D, Ravindran P. Characterization and quantification of peptaibol produced by novel Trichoderma spp: Harnessing their potential to mitigate moisture stress through enhanced biochemical and physiological responses in black pepper (Piper nigrum L.). World J Microbiol Biotechnol 2024; 40:330. [PMID: 39358481 DOI: 10.1007/s11274-024-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Trichoderma spp. is primarily applied to manage biotic stresses in plants. Still, they also can mitigate abiotic stresses by the stimulation of antioxidative protective mechanisms and enhanced synthesis of secondary metabolites. The study optimized the conditions to enhance peptaibol production by novel Trichoderma spp, characterized and quantified peptaibol- alamethicin using HPLC and LC MS-MS. The present study investigated these isolates efficacy in enhancing growth and the associated physio-biochemical changes in black pepper plants under moisture stress. Under in vitro conditions, out of 51 isolates studied, six isolates viz., T. asperellum (IISR NAIMCC 0049), T. erinaceum (IISR APT1), T. harzianum (IISR APT2), T. harzianum (IISR KL3), T. lixii (IISR KA15) and T. asperellum (IISR TN3) showed tolerance to low moisture levels (5, 10 and 20%) and higher temperatures (35 and 40 °C). In vivo evaluation on black pepper plants maintained under four different moisture levels (Field capacity [FC]; 75%, 50%, and 25%) showed that the plants inoculated with Trichoderma accumulated greater quantities of secondary metabolites viz., proline, phenols, MDA and soluble proteins at low moisture levels (50% and 25% FC). In the present study, plants inoculated with T. asperellum and T. harzianum showed significantly increased growth compared to uninoculated plants. The shortlisted Trichoderma isolates exhibited differences in peptaibol production and indicated that the peptide might be the key factor for their efficiency as biocontrol agents. The present study also demonstrated that Trichoderma isolates T. harzianum and T. asperellum (IISR APT2 & NAIMCC 0049) enhanced the drought-tolerant capabilities of black pepper by improving plant growth and secondary metabolite production.
Collapse
Affiliation(s)
- Vijayasanthi Kodakkal Valiyambath
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
- Department of Botany, University of Calicut, Malappuram, 673635, Kerala, India
| | - Titty Anna Thomas
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | - Priya George
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | | | - Anees Kaprakkaden
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | | | - Dinesh Raghavan
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | - Praveena Ravindran
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India.
| |
Collapse
|
3
|
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int J Mol Sci 2024; 25:9491. [PMID: 39273439 PMCID: PMC11395649 DOI: 10.3390/ijms25179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.
Collapse
Affiliation(s)
- Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
4
|
Tuong HM, Méndez SG, Vandecasteele M, Willems A, Iancheva A, Ngoc PB, Phat DT, Ha CH, Goormachtig S. A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. PLANTA 2024; 260:79. [PMID: 39182196 DOI: 10.1007/s00425-024-04510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
MAIN CONCLUSION Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ho Manh Tuong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sonia García Méndez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Michiel Vandecasteele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anelia Iancheva
- AgroBioInstitute, Agricultural Academy, 1164, Sofia, Bulgaria
| | - Pham Bich Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Do Tien Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Anwar T, Qureshi H, Akhtar MS, Siddiqi EH, Fatimah H, Zaman W, Alhammad BA, Seleiman MF. Enhancing maize growth and resilience to environmental stress with biochar, gibberellic acid and rhizobacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1396594. [PMID: 39166242 PMCID: PMC11333363 DOI: 10.3389/fpls.2024.1396594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Background Zea mays (maize) is a globally significant cereal crop with diverse applications in food, feed, and industrial products. However, maize cultivation is often challenged by environmental stressors such as heavy metal toxicity and drought stress (DS). Heavy metals like cadmium (Cd) and lead (Pb) can accumulate in soil through industrial activities and improper waste disposal, posing significant threats to plant growth and development. Drought stress further exacerbates these challenges by limiting water availability and affecting physiological processes in plants. This study explores the impact of Cd and Pb toxicity, as well as DS, on maize growth and development, and investigates the potential mitigating effects of various treatments, including gibberellic acid (GA3), biochar (BC), rhizobacteria (RB), and their combinations. Methods The experiment involved maize plants subjected to different stress conditions: cadmium (Cd) at concentrations of 0, 6, and 12 ppm, lead (Pb) at 0 and 400 ppm, and drought stress (DS). Treatments included the application of 10 ppm GA3, 0.75% BC, a combined treatment of 10 ppm GA3 and 0.75% BC, rhizobacteria (RB), and a combined treatment of 0.5% BC and RB. The study measured germination rates, shoot and root lengths, and biochemical parameters such as shoot and root protein, phenolics, and chlorophyll contents under these conditions. Results In the absence of Cd stress (0 Cd), the application of 10 ppm GA3 and 0.75% BC significantly enhanced germination rates by 72% and 76%, respectively, compared to the control, with the combined treatment exhibiting the highest enhancement of 86%. Under Cd stress (6 ppm Cd), GA3 and BC individually improved germination by 54% and 57%, respectively, with the combined treatment showing the largest increase of 63%. Drought stress influenced germination, with notable improvements observed with the application of 0.5% BC (50% increase) and RB (49% increase). Similar trends were observed in shoot and root lengths, where the combined treatment of GA3 and BC resulted in the most significant improvements. The treatments positively influenced shoot and root protein, phenolics, and chlorophyll contents, particularly under stress conditions. Conclusion These findings highlight the potential of combined treatments, such as the application of GA3 and BC or BC with RB, in alleviating the adverse effects of heavy metals (Cd and Pb) and drought stress in maize cultivation. The combined treatments not only improved germination rates but also significantly enhanced shoot and root growth, as well as important biochemical parameters under stress conditions. This suggests that GA3 and BC, alone or in combination with RB, can play a crucial role in enhancing maize resilience to environmental stressors. The study highlights the importance of exploring sustainable agricultural practices to mitigate the impacts of heavy metal toxicity and drought stress. Future research should focus on long-term field trials to validate these findings and further investigate the mechanistic pathways involved in stress mitigation by these amendments, as well as their economic feasibility and environmental impact on a larger scale to ensure their practical applicability in real-world agricultural settings.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, Pakistan
| | | | | | - Hina Fatimah
- Department of Biology, Allama Iqbal Open University, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bushra A. Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj, Riyadh, Saudi Arabia
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
6
|
Al-Huqail AA, Aref NMA, Khan F, Sobhy SE, Hafez EE, Khalifa AM, Saad-Allah KM. Azolla filiculoides extract improved salt tolerance in wheat (Triticum aestivum L.) is associated with prompting osmostasis, antioxidant potential and stress-interrelated genes. Sci Rep 2024; 14:11100. [PMID: 38750032 PMCID: PMC11096334 DOI: 10.1038/s41598-024-61155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.
Collapse
Affiliation(s)
- Asma A Al-Huqail
- Chair of Climate Change, Environmental Development, and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nagwa M A Aref
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shubra 11241, Cairo, Egypt
| | - Faheema Khan
- Chair of Climate Change, Environmental Development, and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sherien E Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El‑Arab, 21934, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El‑Arab, 21934, Egypt
| | - Asmaa M Khalifa
- Botany and Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, 71524, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Beyene BB, Tuji FA. Inoculation of Erythrina brucei with plant-beneficial microbial consortia enhanced its growth and improved soil nitrogen and phosphorous status when applied as green manure. Heliyon 2024; 10:e30484. [PMID: 38737265 PMCID: PMC11088309 DOI: 10.1016/j.heliyon.2024.e30484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Erythrina brucei has been applied as a green manure to improve soil fertility in southern Ethiopia. It has been nodulated by indigenous rhizobia. The objectives of this study were to evaluate the effects of E. brucei inoculation with microbial consortia consisted of Bradyrhizobium shewense, Acinetobacter soli and arbuscular mycorrhizal fungi (AMF)on E.brucei growth, soil nitrogen and phosphorous status after application as a green manure.A field experiment was conducted by inoculating E. Brucei with different microbial consortia. E. brucei inoculated with the microbial consortia were grown for 150 days. Its shoot length was measured at 60, 90, 120 and 150 days after planting. Then, plants were uprooted and mulched as a green manure. The soil nitrogen, available phosphorous and soil organic matter analysis were done. The experimental design was completely randomized block design with eight treatments comprised of three replications. Inoculated treatments did not show a significant (p < 0.05) difference in shoot length in the first 60 days. However, shoot length was increased between 19.1 and 41.3 %, 10.5-43.4 % and 8.7-37.6 %, respectively at 90, 120 and 150 days. The soil organic matter was improved in both inoculated and un-inoculated treatments. The improvements in the soil organic matter of un-inoculated treatments may be due to the decomposition of un-inoculated plants biomass in the soil. The B. shewense inoculation improved the soil nitrogen by 17 %. The soil phosphorous was improved in 57 % of inoculated treatments. The inoculation of E. brucei with microbial consortia enhanced its growth and improved soil fertility when applied as a green manure. Inoculating the green manure legumes with symbiotically effective rhizobia and plant-beneficial microbes can enhance the growth of E. brucei and its nutrient uptake.
Collapse
Affiliation(s)
- Belay Berza Beyene
- DebreMarkos University, College of Natural and Computational Sciences, Department of Biology, Debre Markos, Ethiopia
| | - Fassil Assefa Tuji
- Addis Ababa University, College of Natural and Computational Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Ma Y, Zheng C, Bo Y, Song C, Zhu F. Improving crop salt tolerance through soil legacy effects. FRONTIERS IN PLANT SCIENCE 2024; 15:1396754. [PMID: 38799102 PMCID: PMC11116649 DOI: 10.3389/fpls.2024.1396754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Soil salinization poses a critical problem, adversely affecting plant development and sustainable agriculture. Plants can produce soil legacy effects through interactions with the soil environments. Salt tolerance of plants in saline soils is not only determined by their own stress tolerance but is also closely related to soil legacy effects. Creating positive soil legacy effects for crops, thereby alleviating crop salt stress, presents a new perspective for improving soil conditions and increasing productivity in saline farmlands. Firstly, the formation and role of soil legacy effects in natural ecosystems are summarized. Then, the processes by which plants and soil microbial assistance respond to salt stress are outlined, as well as the potential soil legacy effects they may produce. Using this as a foundation, proposed the application of salt tolerance mechanisms related to soil legacy effects in natural ecosystems to saline farmlands production. One aspect involves leveraging the soil legacy effects created by plants to cope with salt stress, including the direct use of halophytes and salt-tolerant crops and the design of cropping patterns with the specific crop functional groups. Another aspect focuses on the utilization of soil legacy effects created synergistically by soil microorganisms. This includes the inoculation of specific strains, functional microbiota, entire soil which legacy with beneficial microorganisms and tolerant substances, as well as the application of novel technologies such as direct use of rhizosphere secretions or microbial transmission mechanisms. These approaches capitalize on the characteristics of beneficial microorganisms to help crops against salinity. Consequently, we concluded that by the screening suitable salt-tolerant crops, the development rational cropping patterns, and the inoculation of safe functional soils, positive soil legacy effects could be created to enhance crop salt tolerance. It could also improve the practical significance of soil legacy effects in the application of saline farmlands.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zheng
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yukun Bo
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- National Observation and Research Station of Agriculture Green Development, Quzhou, China
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
9
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
10
|
Kar S, Mishra SK, Misra S, Agarwal R, Kumar S, Chauhan PS. Endophytic Alkalotolerant Plant Growth-Promoting Bacteria Render Maize (Zea mays L.) Growth Under Alkaline Stress. Curr Microbiol 2023; 81:43. [PMID: 38117393 DOI: 10.1007/s00284-023-03557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
This study investigates the role of bacterial endophytes from extreme alkaline environments in alleviating alkaline stress and plant development. Stressful environmental factors, such as soil acidity and alkalinity/sodicity, frequently affect plant development. In the present study, alkaline-tolerant endophytic strains were isolated from three plant species Saccharum munja, Calotropis procera, and Chenopodium album, and 15 out of the total of 48 isolates were selected for further examination of their abiotic stress tolerance. Molecular analysis based on 16S rRNA gene sequencing revealed strains from Enterobacter, Acinetobacter, Stenotrophomonas, Bacillus, Lysinibacillus, and Mammaliicoccus genera. Out of 15 isolates based on their quantitative PGP traits and abiotic stress tolerance, 6 were finally selected for greenhouse experiments. Under alkaline conditions, results demonstrated that the strains from the genera Enterobacter, Bacillus, Stenotrophomonas, and Lysinibacillus had beneficial effects on maize growth. These findings suggest that using a combination of bacteria with multiple plant growth-promoting attributes could be a sustainable approach to enhance agricultural yield, even in a challenging alkaline environment. The study concludes that the application of bacterial endophytes from plants growing in extremely alkaline environments might provide other plants with similar stress-tolerance abilities. The outcome of the study provides a basis for future exploration of the mechanisms underlying endophyte-induced stress tolerance.
Collapse
Affiliation(s)
- Srishti Kar
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Renuka Agarwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Susheel Kumar
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
11
|
Gurunathan S, Thangaraj P, Das J, Kim JH. Antibacterial and antibiofilm effects of Pseudomonas aeruginosa derived outer membrane vesicles against Streptococcus mutans. Heliyon 2023; 9:e22606. [PMID: 38125454 PMCID: PMC10730581 DOI: 10.1016/j.heliyon.2023.e22606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious and most urgent global threat to human health. AMR is one of today's biggest difficulties in the health system and has the potential to harm people at any stage of life, making it a severe public health issue. There must be fewer antimicrobial medicines available to treat diseases given the rise in antibiotic-resistant organisms. If no new drugs are created or discovered, it is predicted that there won't be any effective antibiotics accessible by 2050. In most cases, Streptococcus increased antibiotic resistance by forming biofilms, which account for around 80 % of all microbial infections in humans. This highlights the need to look for new strategies to manage diseases that are resistant to antibiotics. Therefore, development alternative, biocompatible and high efficacy new strategies are essential to overcome drug resistance. Recently, bacterial derived extracellular vesicles have been applied to tackle infection and reduce the emergence of drug resistance. Therefore, the objective of the current study was designed to assess the antibacterial and antibiofilm potential of outer membrane vesicles (OMVs) derived from Pseudomonas aeruginosa againstStreptococcus mutans. According to the findings of this investigation, the pure P. aeruginosa outer membrane vesicles (PAOMVs) display a size of 100 nm. S. mutans treated with PAOMVs showed significant antibacterial and antibiofilm activity. The mechanistic studies revealed that PAOMVs induce cell death through excessive generation of reactive oxygen species and imbalance of redox leads to lipid peroxidation, decreased level of antioxidant markers including glutathione, superoxide dismutase and catalase. Further this study confirmed that PAOMVs significantly impairs metabolic activity through inhibiting lactate dehydrogenase activity (LDH), adenosine triphosphate (ATP) production, leakage of proteins and sugars. Interestingly, combination of sub-lethal concentrations of PAOMVs and antibiotics enhances cell death and biofilm formation of S. mutans. Altogether, this work, may serve as an important basis for further evaluation of PAOMVs as novel therapeutic agents against bacterial infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India
| | - Joydeep Das
- Department of Chemistry, Mizoram University, Aizawl, 796 004, Mizoram, India
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
12
|
Sheteiwy MS, El-Sawah AM, Kobae Y, Basit F, Holford P, Yang H, El-Keblawy A, Abdel-Fattah GG, Wang S, Araus JL, Korany SM, Alsherif EA, AbdElgawad H. The effects of microbial fertilizers application on growth, yield and some biochemical changes in the leaves and seeds of guar (Cyamopsis tetragonoloba L.). Food Res Int 2023; 172:113122. [PMID: 37689887 DOI: 10.1016/j.foodres.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Guar (Cyamopsis tetragonoloba L.) is a summer legume that is becoming a crucial industrial crop because of its high gum and protein content. Thus far, the combined effects of arbuscular mycorrhizal fungi (AMF) and Bradyrhizobium on the yield and chemical composition of guar plants are not well studied. Therefore, the current investigation was designed to estimate the individual as well as the combined effects of AMF and Bradyrhizobium on plant growth, yield and nutritional quality of seeds and leaves of guar. AMF and/or Bradyrhizobium inoculation improved chemical composition of guar seeds and its morpho-physiological (plant height, fresh weight, dry weight, and yield production) traits. In addition to increased guar growth and yield production, the inoculation of AMF and/or Bradyrhizobium increased guar leaf and seed minerals, fiber, lipids, crude protein and ash contents. At primary metabolites, there were increases in sugar levels including raffinose stachyose, verbascose and galactomannan. These increases in sugar provided a route for organic acids, amino acids and fatty acids production. Interestingly, there was an increase in essential amino acids and unsaturated fatty acids. At the bioactive secondary metabolite levels, biofertilizers improved phenols and flavonoids levels and anthocyanin and polyamines biosynthesis. In line with these increases, precursors of anthocyanin (phenylalanine, p-coumaric acid, and cinnamic acid) and the levels of polyamines (diaminopropane, putrescine, cadaverine, spermidine, spermine, and agmatine) were increased. Overall, for the first time, our study shed the light on how AMF and Bradyrhizobium improved guar yield and metabolism. Our findings suggested that the combined inoculation of AMF and Bradyrhizobium is an innovative approach to improve guar growth, yield production and yield quality.
Collapse
Affiliation(s)
- Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Yoshihiro Kobae
- Laboratory of Crop Nutrition, Department of Sustainable Agriculture, Rakuno Gakuen University, Hokkaido, Ebetsu 069-8501, Japan
| | - Farwa Basit
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, NSW 2751, Penrith, Australia
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghada G Abdel-Fattah
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000 Linyi, China
| | - José Luis Araus
- Unit of Plant Physiology, Department of Plant Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt; Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
El-Ballat EM, Elsilk SE, Ali HM, Ali HE, Hano C, El-Esawi MA. Metal-Resistant PGPR Strain Azospirillum brasilense EMCC1454 Enhances Growth and Chromium Stress Tolerance of Chickpea ( Cicer arietinum L.) by Modulating Redox Potential, Osmolytes, Antioxidants, and Stress-Related Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112110. [PMID: 37299089 DOI: 10.3390/plants12112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Heavy metal stress, including from chromium, has detrimental effects on crop growth and yields worldwide. Plant growth-promoting rhizobacteria (PGPR) have demonstrated great efficiency in mitigating these adverse effects. The present study investigated the potential of the PGPR strain Azospirillum brasilense EMCC1454 as a useful bio-inoculant for boosting the growth, performance and chromium stress tolerance of chickpea (Cicer arietinum L.) plants exposed to varying levels of chromium stress (0, 130 and 260 µM K2Cr2O7). The results revealed that A. brasilense EMCC1454 could tolerate chromium stress up to 260 µM and exhibited various plant growth-promoting (PGP) activities, including nitrogen fixation, phosphate solubilization, and generation of siderophore, trehalose, exopolysaccharide, ACC deaminase, indole acetic acid, and hydrolytic enzymes. Chromium stress doses induced the formation of PGP substances and antioxidants in A. brasilense EMCC1454. In addition, plant growth experiments showed that chromium stress significantly inhibited the growth, minerals acquisition, leaf relative water content, biosynthesis of photosynthetic pigments, gas exchange traits, and levels of phenolics and flavonoids of chickpea plants. Contrarily, it increased the concentrations of proline, glycine betaine, soluble sugars, proteins, oxidative stress markers, and enzymatic (CAT, APX, SOD, and POD) and non-enzymatic (ascorbic acid and glutathione) antioxidants in plants. On the other hand, A. brasilense EMCC1454 application alleviated oxidative stress markers and significantly boosted the growth traits, gas exchange characteristics, nutrient acquisition, osmolyte formation, and enzymatic and non-enzymatic antioxidants in chromium-stressed plants. Moreover, this bacterial inoculation upregulated the expression of genes related to stress tolerance (CAT, SOD, APX, CHS, DREB2A, CHI, and PAL). Overall, the current study demonstrated the effectiveness of A. brasilense EMCC1454 in enhancing plant growth and mitigating chromium toxicity impacts on chickpea plants grown under chromium stress circumstances by modulating the antioxidant machinery, photosynthesis, osmolyte production, and stress-related gene expression.
Collapse
Affiliation(s)
- Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sobhy E Elsilk
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamada E Ali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| |
Collapse
|
14
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
15
|
Evaluation of inorganic phosphate solubilizing efficiency and multiple plant growth promoting properties of endophytic bacteria isolated from root nodules Erythrina brucei. BMC Microbiol 2022; 22:276. [PMCID: PMC9675159 DOI: 10.1186/s12866-022-02688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background In soils, phosphorous (P) mostly exists in fixed/insoluble form and unavailable for plants use in soil solution, hence it is in scarcity. P is fixed in the form of aluminium, iron and manganese phosphates in acidic soils and calcium phosphate in alkaline soils. Phosphate solubilizing bacteria, the ecological engineers play a pivotal role in the mobilization of fixed forms of P by using different mechanisms. The objectives of this study were to evaluate inorganic phosphate solubilizing efficiency and other multiple plant growth promoting traits of Erythrina brucei root nodule endophytic bacteria and to investigate effects of the selected endophytic bacteria on the growth of wheat plant under phosphorous deficient sand culture at greenhouse conditions. Results Among a total of 304 passenger endophytic bacteria, 119 (39%) exhibited tricalcium phosphate (TCP) solubilization; however, none of them were formed clear halos on solid medium supplemented with aluminum phosphate (Al-P) or iron phosphate (Fe–P). Among 119 isolates, 40% exhibited IAA production. The selected nine potential isolates also exhibited potentials of IAA, HCN, NH3 and/or hydrolytic enzymes production. All the selected isolates were potential solubilizers of the three inorganic phosphates (Al-P, Fe–P and TCP) included in liquid medium. The highest values of solubilized TCP were recorded by isolates AU4 and RG6 (A. soli), 108.96 mg L−1 and 107.48 mg L−1, respectively at sampling day3 and 120.36 mg L−1 and 112.82 mg L−1, respectively at day 6. The highest values of solubilized Al-P and Fe–P were recorded by isolate RG6, 102.14 mg L−1 and 96.07 mg L−1, respectively at sampling days 3 and 6, respectively. The highest IAA, 313.61 µg mL−1 was recorded by isolate DM17 (Bacillus thuringiensis). Inoculation of wheat with AU4, RG6 and RG5 (Acinetobacter soli) increased shoot length by 11, 17.4 and 14.6%, respectively compared to the negative control. Similarly, 76.9, 69.2 and 53.8% increment in shoot dry weight is recorded by inoculation with RG6, AU4 and RG5, respectively. These nine potential endophytic isolates are identified to Gluconobacter cerinus (4), Acinetobacter soli (3), Achromobacter xylosoxidans (1) and Bacillus thuringiensis (1). Conclusion AU4, RG6 and RG5 can be potential bio-inoculants candidates as low cost agricultural inputs in acidic and/or alkaline soils for sustainable crop production. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02688-7.
Collapse
|
16
|
Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon 2022; 8:e11269. [PMID: 36339753 PMCID: PMC9634370 DOI: 10.1016/j.heliyon.2022.e11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plant encounters various biotic and abiotic stresses, that affect agricultural productivity and reduce farmer's income especially under changing global climate. These environmental stresses can advance plant senescence by inducing osmotic stress, nutrient stress, hormonal imbalance, production of oxygen radicals, and ion toxicity, etc. Additionally, these stresses are not limited to plant health but also deteriorate soil health by affecting the microbial diversity of soil. To tackle this global delinquent of agriculture, several methods are suggested to ameliorate the negative effect of different types of stresses, the application of beneficial microorganisms or bioinoculants is one of them. Beneficial microorganisms that are used as bioinoculants not only facilitate plant growth by fulfilling the nutrient requirements but also assist the plant to withstand these stresses. These microorganisms produce certain chemicals such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phytohormones, antioxidants, extracellular polysaccharide (EPS), siderophores, antibiotics, and volatile organic compounds (VOCs), etc. which help the plants to mitigate various stresses. Besides, these microbes also activate plant defence responses. Thus, these bioinoculants can effectively replace chemical inputs to supplement nutrient requirements and mitigation of multiple stresses in plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland
| | - Sandeep Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Balkar Singh
- Department of Botany, Arya PG College, Panipat, Haryana, 132103, India
| | - Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
17
|
Elsayed A, Abdelsattar AM, Heikal YM, El-Esawi MA. Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:24-34. [PMID: 36041365 DOI: 10.1016/j.plaphy.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to scale up the favorable bio-stimulants for enhancing the growth and breeding strategies of Stevia rebaudiana to increase sugar productivity. Inoculation of 45-day-old S. rebaudiana plantlets with Bacillus cereus and Azospirillum brasilense alone or in combination for 30 days allowed comparisons among their effects on enhancement and improvement of plant growth, production of bioactive compounds and expression of steviol glycoside genes. B. cereus SrAM1 isolated from surface-sterilized Stevia rebaudiana leaves was molecularly identified using 16s rRNA and tested for its ability to promote plant growth. Beneficial endophytic B. cereus SrAM1 induced all plant growth-promoting traits, except solubilization of phosphate, therefore it showed high effectiveness in the promotion of growth and production of bioactive compounds. Treatment of plants with B. cereus SrAM1 alone revealed carbohydrates content of 278.99 mg/g, total soluble sugar of 114.17 mg/g, total phenolics content of 34.05 mg gallic acid equivalent (GAE)/g dry weight) and total antioxidants activity of 32.33 mg (A.A)/g dry weight). Thus, plantlets inoculated with B. cereus SrAM1 alone exhibited the greatest responses in physiological and morphological parameters, but plantlets inoculated with B. cereus SrAM1 + A. brasilense showed a maximal upregulation of genes responsible for the biosynthesis of steviol glycosides (Kaurene oxidase, ent-KO; UDP-dependent glycosyl transferases of UGT85C2, UGT74G1, UGT76G1). Taken together, the used bacterial strains, particularly B. cereus SrAM1 could significantly improve the growth of S. rebaudiana via dynamic interactions in plants.
Collapse
Affiliation(s)
- Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
18
|
Becerril-Espinosa A, Hernández-Herrera RM, Meza-Canales ID, Perez-Ramirez R, Rodríguez-Zaragoza FA, Méndez-Morán L, Sánchez-Hernández CV, Palmeros-Suárez PA, Palacios OA, Choix FJ, Juárez-Carrillo E, Lara-González MA, Hurtado-Oliva MÁ, Ocampo-Alvarez H. Habitat-adapted heterologous symbiont Salinispora arenicola promotes growth and alleviates salt stress in tomato crop plants. FRONTIERS IN PLANT SCIENCE 2022; 13:920881. [PMID: 36003821 PMCID: PMC9393590 DOI: 10.3389/fpls.2022.920881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.
Collapse
Affiliation(s)
- Amayaly Becerril-Espinosa
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosalba M. Hernández-Herrera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivan D. Meza-Canales
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto Transdisciplinar de Investigación y Servicios, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rodrigo Perez-Ramirez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabián A. Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lucila Méndez-Morán
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carla V. Sánchez-Hernández
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paola A. Palmeros-Suárez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oskar A. Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Francisco J. Choix
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Eduardo Juárez-Carrillo
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Martha A. Lara-González
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Héctor Ocampo-Alvarez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
19
|
Ali B, Hafeez A, Ahmad S, Javed MA, Sumaira, Afridi MS, Dawoud TM, Almaary KS, Muresan CC, Marc RA, Alkhalifah DHM, Selim S. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:921668. [PMID: 35968151 PMCID: PMC9366557 DOI: 10.3389/fpls.2022.921668] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/30/2022] [Indexed: 07/30/2023]
Abstract
Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saliha Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
20
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Recreating in vitro tripartite mycorrhizal associations through functional bacterial biofilms. Appl Microbiol Biotechnol 2022; 106:4237-4250. [DOI: 10.1007/s00253-022-11996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
|
22
|
Ahmad M, Imtiaz M, Shoib Nawaz M, Mubeen F, Imran A. What Did We Learn From Current Progress in Heat Stress Tolerance in Plants? Can Microbes Be a Solution? FRONTIERS IN PLANT SCIENCE 2022; 13:794782. [PMID: 35677244 PMCID: PMC9168681 DOI: 10.3389/fpls.2022.794782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/21/2022] [Indexed: 05/16/2023]
Abstract
Temperature is a significant parameter in agriculture since it controls seed germination and plant growth. Global warming has resulted in an irregular rise in temperature posing a serious threat to the agricultural production around the world. A slight increase in temperature acts as stress and exert an overall negative impact on different developmental stages including plant phenology, development, cellular activities, gene expression, anatomical features, the functional and structural orientation of leaves, twigs, roots, and shoots. These impacts ultimately decrease the biomass, affect reproductive process, decrease flowering and fruiting and significant yield losses. Plants have inherent mechanisms to cope with different stressors including heat which may vary depending upon the type of plant species, duration and degree of the heat stress. Plants initially adapt avoidance and then tolerance strategies to combat heat stress. The tolerance pathway involves ion transporter, osmoprotectants, antioxidants, heat shock protein which help the plants to survive under heat stress. To develop heat-tolerant plants using above-mentioned strategies requires a lot of time, expertise, and resources. On contrary, plant growth-promoting rhizobacteria (PGPRs) is a cost-effective, time-saving, and user-friendly approach to support and enhance agricultural production under a range of environmental conditions including stresses. PGPR produce and regulate various phytohormones, enzymes, and metabolites that help plant to maintain growth under heat stress. They form biofilm, decrease abscisic acid, stimulate root development, enhance heat shock proteins, deamination of ACC enzyme, and nutrient availability especially nitrogen and phosphorous. Despite extensive work done on plant heat stress tolerance in general, very few comprehensive reviews are available on the subject especially the role of microbes for plant heat tolerance. This article reviews the current studies on the retaliation, adaptation, and tolerance to heat stress at the cellular, organellar, and whole plant levels, explains different approaches, and sheds light on how microbes can help to induce heat stress tolerance in plants.
Collapse
Affiliation(s)
| | - Muhammad Imtiaz
- Microbial Ecology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | | | - Asma Imran
- Microbial Ecology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
23
|
The Interactions between Arbuscular Mycorrhizal Fungi and Trichoderma longibrachiatum Enhance Maize Growth and Modulate Root Metabolome under Increasing Soil Salinity. Microorganisms 2022; 10:microorganisms10051042. [PMID: 35630484 PMCID: PMC9142908 DOI: 10.3390/microorganisms10051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Trichoderma longibrachiatum sp. are free-living filamentous fungi which are common in agro-ecosystems. However, few studies thus far have examined the interaction between Trichoderma longibrachiatum and arbuscular mycorrhizal (AM) fungi in saline soil and their potential for improving plant stress tolerance. Here, single, dual-inoculated (T. longibrachiatum MF, AM fungal community or Glomus sp.), and non-inoculated maize (Zea may L.) were subjected to different salinity levels (0, 75, 150, and 225 mM NaCl) to test the synergistic effects of dual inoculants on maize plants in different salt stress conditions. Plant performance and metabolic profiles were compared to find the molecular mechanisms underlying plant protection against salt stress. The first experiment revealed that dual inoculation of an AM fungal community and T. longibrachiatum MF improved the biomass and K+/Na+ ratio in maize under non-saline conditions, and generally enhanced AM fungal growth in root and soil under all but the 225 mM NaCl conditions. However, MF inoculant did not influence the structure of AM fungal communities in maize roots. In the second experiment, dual inoculation of Glomus sp. and T. longibrachiatum MF increased maize plant biomass, K+/Na+ ratio, and AM fungal growth in root and soil significantly at both 0 and 75 mM NaCl conditions. We identified metabolic compounds differentially accumulated in dual-inoculated maize that may underline their enhanced maize plant tolerance to increasing soil salinity. Our data suggested that the combination of Glomus sp. and T.longibrachiatum leads to interactions, which may play a potential role in alleviating the stress and improve crop productivity in salt-affected soils.
Collapse
|
24
|
Shah C, Mali H, Mesara S, Dhameliya H, Subramanian RB. Combined inoculation of phosphate solubilizing bacteria with mycorrhizae to alleviate the phosphate deficiency in Banana. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Bandyopadhyay P, Yadav BG, Kumar SG, Kumar R, Kogel KH, Kumar S. Piriformospora indica and Azotobacter chroococcum Consortium Facilitates Higher Acquisition of N, P with Improved Carbon Allocation and Enhanced Plant Growth in Oryza sativa. J Fungi (Basel) 2022; 8:jof8050453. [PMID: 35628709 PMCID: PMC9146537 DOI: 10.3390/jof8050453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
The soil microbiome contributes to nutrient acquisition and plant adaptation to numerous biotic and abiotic stresses. Numerous studies have been conducted over the past decade showing that plants take up nutrients better when associated with fungi and additional beneficial bacteria that promote plant growth, but the mechanisms by which the plant host benefits from this tripartite association are not yet fully understood. In this article, we report on a synergistic interaction between rice (Oryza sativa), Piriformospora indica (an endophytic fungus colonizing the rice roots), and Azotobacter chroococcum strain W5, a free-living nitrogen-fixing bacterium. On the basis of mRNA expression analysis and enzymatic activity, we found that co-inoculation of plant roots with the fungus and the rhizobacterium leads to enhanced plant growth and improved nutrient uptake compared to inoculation with either of the two microbes individually. Proteome analysis of O. sativa further revealed that proteins involved in nitrogen and phosphorus metabolism are upregulated and improve nitrogen and phosphate uptake. Our results also show that A. chroococcum supports colonization of rice roots by P. indica, and consequentially, the plants are more resistant to biotic stress upon co-colonization. Our research provides detailed insights into the mechanisms by which microbial partners synergistically promote each other in the interaction while being associated with the host plant.
Collapse
Affiliation(s)
- Prasun Bandyopadhyay
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Srinivasan Ganesh Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Karl-Heinz Kogel
- Institute for Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
- Correspondence:
| |
Collapse
|
26
|
Abstract
Halotolerant plant-growth-promoting rhizobacteria (PGPR) could not only promote plant growth, but also help in counteracting the detrimental effects of salt stress. In the present study, a total of 76 bacteria were isolated from the rhizosphere, non-rhizospheric soil and endophytes of the halophyte Salsola tetrandra, collected from natural saline soils in Algeria. Phylogenetic analysis based on the 16S rDNA sequence of Gram-negative bacteria (n = 51) identified, showed seventeen representative isolates grouped into four genera (Pseudomonas, Acinetobacter, Enterobacter, and Providencia). These bacterial isolates that exhibited different PGPR traits were selected and tested for their ability to tolerate different abiotic stress (NaCl, PEG8000, and pH). The majority of isolates were drought tolerant (60% of PEG8000) and had an optimal growth at high pH values (pH 9 and 11) and some strains tolerated 2 M of NaCl. Strains identified as Enterobacter xiangfangensis BE1, Providencia rettgeri BR5 and Pseudomonas stutzeri MLR6 showed high capacity of adaptation on their PGP traits. The salt-tolerant isolates were finally chosen to promote growth and enhance salt tolerance, separately or combined, of Arabidopsis thaliana (Col-0) exposed or not to 0.1 M NaCl, by following fresh and root weight, primary root elongation and lateral root number. The best bacterial effect was recorded for the MLR6 strain in increasing shoot fresh weight and for BE1 in terms of root fresh weight in the absence of salt stress. At stressed conditions, all growth parameters declined. However, inoculation of Arabidopsis thaliana with the three bacterial strains (MLR6, BE1 and BR5), single or in co-culture, conferred an increase in the shoot weight, primary root length and lateral root number. The use of these strains separately or combined as biofertilizers seems to be a powerful tool in the development of sustainable agriculture in saline soils.
Collapse
|
27
|
Shi B, Qu Y, Li H, Wan M, Zhang J. Pseudomonas simiae augments the tolerance to alkaline bauxite residue in Atriplex canescens by modulating photosynthesis, antioxidant defense enzymes, and compatible osmolytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24370-24380. [PMID: 35141832 DOI: 10.1007/s11356-022-19031-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
In situ revegetation is effective in improving water-stable aggregation, preserving structural stability, and decreasing groundwater pollution to reduce the environmental risks posed by alkaline bauxite residue (ABR). Pseudomonas simiae, a plant growth-promoting rhizobacteria (PGPR), was used to promote Atriplex canescens growth challenged by ABR. The mechanism of P. simiae-induced plant growth promotion and tolerance against ABR stresses has been investigated. P. simiae was shown to alleviate ABR-induced stress in A. canescens by regulating photosynthesis and transpiration, inducing antioxidant defense, causing osmolyte accumulation, and altering plant morphology. Shoot dry weight, root dry weight, and root length of A. canescens were increased by 5.9%, 6.7%, and 11.5%, respectively, after inoculation with P. simiae for 60 days. Thus, it seems that P. simiae systemically regulated physiological processes in A. canescens favoring its growth under ABR treatments.
Collapse
Affiliation(s)
- Ben Shi
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China.
| | - Yang Qu
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Hui Li
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Minghui Wan
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Jiayu Zhang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
28
|
Ducousso-Détrez A, Fontaine J, Lounès-Hadj Sahraoui A, Hijri M. Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms 2022; 10:microorganisms10030609. [PMID: 35336184 PMCID: PMC8950675 DOI: 10.3390/microorganisms10030609] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
In many soils, the bioavailability of Phosphorus (P), an essential macronutrient is a limiting factor for crop production. Among the mechanisms developed to facilitate the absorption of phosphorus, the plant, as a holobiont, can rely on its rhizospheric microbial partners. Therefore, microbial P-solubilizing inoculants are proposed to improve soil P fertility in agriculture. However, a better understanding of the interactions of the soil-plant-microorganism continuum with the phosphorus cycle is needed to propose efficient inoculants. Before proposing further methods of research, we carried out a critical review of the literature in two parts. First, we focused on the diversity of P-chemical forms. After a review of P forms in soils, we describe multiple factors that shape these forms in soil and their turnover. Second, we provide an analysis of P as a driver of microbial community diversity in soil. Even if no rule enabling to explain the changes in the composition of microbial communities according to phosphorus has been shown, this element has been perfectly targeted as linked to the presence/absence and/or abundance of particular bacterial taxa. In conclusion, we point out the need to link soil phosphorus chemistry with soil microbiology in order to understand the variations in the composition of microbial communities as a function of P bioavailability. This knowledge will make it possible to propose advanced microbial-based inoculant engineering for the improvement of bioavailable P for plants in sustainable agriculture.
Collapse
Affiliation(s)
- Amandine Ducousso-Détrez
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, UR4492, SFR Condorcet FR CNRS 3417, 62228 Calais, France; (A.D.-D.); (J.F.); (A.L.-H.S.)
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, QC H1X 2B2, Canada
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, UR4492, SFR Condorcet FR CNRS 3417, 62228 Calais, France; (A.D.-D.); (J.F.); (A.L.-H.S.)
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, UR4492, SFR Condorcet FR CNRS 3417, 62228 Calais, France; (A.D.-D.); (J.F.); (A.L.-H.S.)
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, QC H1X 2B2, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
- Correspondence:
| |
Collapse
|
29
|
Berza Beyene B, Pagano MC, Vaiyapuri R P, Assefa Tuji F. Microbial consortia inoculation of woody legume Erythrina brucei increases nodulation and shoot nitrogen and phosphorus under greenhouse conditions. BIOTECHNOLOGY REPORTS 2022; 33:e00707. [PMID: 35145889 PMCID: PMC8816665 DOI: 10.1016/j.btre.2022.e00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
All the Bradyrhizobium species were effective; but, B. shewense was the most effective. Inoculation of Erythrina brucei with all inoculants increased shoot length and dry weight. E. brucei inoculated with B. shewense +A. soli increased the shoot N by 260%. E. brucei inoculated with B. shewense + Glomus sp.1 increased shoot P by 1200%.
The legume-rhizobium symbiosis provides Nitrogen (N), while Legume-AMF symbiosis improves Phosphorus (P) supply to plants. This research was conducted to evaluate the symbiotic effectiveness of the Bradyrhizobium spp. and consortial inoculation of plant growth promoting bacteria -Bradyrhizobium shewense (AU27) and Acinetobacter soli (AU4), and arbuscular mycorrhizhal fungi Glomus sp.1 (AMF1) and Acaulospora sp.1 (AMF2), on growth, production and shoot N and P content of Erythrina brucei.The bacterial and mycorrhizal species were evaluated for phyto-beneficial properties in the greenhouse as individual as well as consortial inoculation.. All Bradyrhizobium species were effective for symbiotic nitrogen fixation. Consortial inoculations comprising of B. shewense (AU27) + A. soli (AU4) + Glomus sp.1 (AMF1) + Acaulospora sp.1 (AMF2) (T7) increased shoot length and shoot dry weight by 140% and 268%, respectively compared to un-inoculated control. Inoculations that involved B. shewense (AU27) + A. soli (AU4) increased shoot nitrogen by 260%, and 1200% increment of shoot P was recorded with inoculations of B. shewense (AU27) + Glomus sp.1 (AMF1) compared to un-inoculated control. These microbial inputs could be candidates for growth enhancement and shoot nitrogen and phosphorus improvement in Erythrina brucei and also as sustainable and eco-friendly agriculture input.
Collapse
|
30
|
Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. PLANTA 2022; 255:68. [PMID: 35169941 DOI: 10.1007/s00425-022-03845-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/25/2022] [Indexed: 05/04/2023]
Abstract
The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | | | - Ashok Kumar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, India
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Rajesh Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
31
|
Ali B, Wang X, Saleem MH, Azeem MA, Afridi MS, Nadeem M, Ghazal M, Batool T, Qayyum A, Alatawi A, Ali S. Bacillus mycoides PM35 Reinforces Photosynthetic Efficiency, Antioxidant Defense, Expression of Stress-Responsive Genes, and Ameliorates the Effects of Salinity Stress in Maize. Life (Basel) 2022; 12:life12020219. [PMID: 35207506 PMCID: PMC8875943 DOI: 10.3390/life12020219] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
Soil salinity is one of the abiotic constraints that imbalance nutrient acquisition, hampers plant growth, and leads to potential loss in agricultural productivity. Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can alleviate the adverse impacts of salt stress by mediating molecular, biochemical, and physiological status. In the present study, the bacterium Bacillus mycoides PM35 showed resistance up to 3 M NaCl stress and exhibited plant growth-promoting features. Under salinity stress, the halo-tolerant bacterium B. mycoides PM35 showed significant plant growth-promoting traits, such as the production of indole acetic acid, siderophore, ACC deaminase, and exopolysaccharides. Inoculation of B. mycoides PM35 alleviated salt stress in plants and enhanced shoot and root length under salinity stress (0, 300, 600, and 900 mM). The B. mycoides PM35 alleviated salinity stress by enhancing the photosynthetic pigments, carotenoids, radical scavenging capacity, soluble sugars, and protein content in inoculated maize plants compared to non-inoculated plants. In addition, B. mycoides PM35 significantly boosted antioxidant activities, relative water content, flavonoid, phenolic content, and osmolytes while reducing electrolyte leakage, H2O2, and MDA in maize compared to control plants. Genes conferring abiotic stress tolerance (CzcD, sfp, and srfAA genes) were amplified in B. mycoides PM35. Moreover, all reactions are accompanied by the upregulation of stress-related genes (APX and SOD). Our study reveals that B. mycoides PM35 is capable of promoting plant growth and increasing agricultural productivity.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (M.A.A.); (M.N.); (T.B.); (A.Q.)
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
- Correspondence: (X.W.); (S.A.)
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Muhammad Atif Azeem
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (M.A.A.); (M.N.); (T.B.); (A.Q.)
| | | | - Mehwish Nadeem
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (M.A.A.); (M.N.); (T.B.); (A.Q.)
| | - Mehreen Ghazal
- Department of Botany, Bacha Khan University, Charsadda 24420, Pakistan;
| | - Tayyaba Batool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (M.A.A.); (M.N.); (T.B.); (A.Q.)
| | - Ayesha Qayyum
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (M.A.A.); (M.N.); (T.B.); (A.Q.)
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia;
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (X.W.); (S.A.)
| |
Collapse
|
32
|
Screening saikosaponin d (SSd)-producing endophytic fungi from Bupleurum scorzonerifolium Willd. World J Microbiol Biotechnol 2022; 38:242. [PMID: 36280622 PMCID: PMC9592640 DOI: 10.1007/s11274-022-03434-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
Abstract
Saikosaponin d (SSd) is an important bioactive compound of traditional Chinese medicinal plant Bupleurum scorzonerifolium Willd. and exhibits many effects, such as anti-tumor, anti-inflammation and immunomodulatory. Since endophytic fungi possess the natural capacity to produce the similar secondary metabolite to that of their host plants, they are promising as alternative sources of plant bioactive natural products. In this study, in order to search for SSd-producing strains, endophytes were isolated from B. scorzonerifolium and were authenticated by the ITS sequence and the translation elongation factor-1alpha gene (TEF-1α) sequence analysis. The profile of metabolites present in the crude exacts was carried out by ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC/Q-TOF-MS) analysis. The results showed that two strains, CHS2 and CHS3 from B. scorzonerifolium could produce SSd by UPLC/Q-TOF-MS analysis, and the amount of SSd produced by strain CHS2 and CHS3 were about 2.17 and 2.40 µg/mL, respectively. CHS2 and CHS3 showed a close phylogenetic relationship to Fusarium oxysporum and Fusarium acuminatum, respectively. According to our concern, no endophytic fungi capable of producing SSd from B. scorzonerifolium have been found before. Our clear intention was to isolate and identify these endophytic fungi that produce important active secondary metabolites, and then study the strains that produce this compound on a large scale through fermentation or even genetic study, to provide a feasible and more convenient way for the production of SSd.
Collapse
|
33
|
Raut JK, Baral K, Adhikari MK, Jha PK. Interaction of Mycorrhizal Fungi with Rhizospheric Microbes and Their Mode of Action. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Mahmood MZ, Bibi S, Shahzad M, Fakhar A, Rafique M, Qayyum A. Mechanisms of microbes to combat salinity in soil by producing secondary metabolites. ARABIAN JOURNAL OF GEOSCIENCES 2021. [DOI: 10.1007/s12517-021-09371-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Egamberdieva D, Alimov J, Shurigin V, Alaylar B, Wirth S, Bellingrath-Kimura SD. Diversity and Plant Growth-Promoting Ability of Endophytic, Halotolerant Bacteria Associated with Tetragonia tetragonioides (Pall.) Kuntze. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010049. [PMID: 35009054 PMCID: PMC8747539 DOI: 10.3390/plants11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The diversity of salt-tolerant cultivable endophytic bacteria associated with the halophyte New Zealand spinach (Tetragonia tetragonioides (Pall.) Kuntze) was studied, and their plant beneficial properties were evaluated. The bacteria isolated from leaves and roots belonged to Agrobacterium, Stenotrophomonas, Bacillus, Brevibacterium, Pseudomonas, Streptomyces, Pseudarthrobacter, Raoultella, Curtobacterium, and Pantoea. Isolates exhibited plant growth-promoting traits, including the production of a phytohormone (indole 3-acetic-acid), cell wall degrading enzymes, and hydrogen cyanide production. Furthermore, antifungal activity against the plant pathogenic fungi Fusarium solani, F. oxysporum, and Verticillium dahliae was detected. Ten out of twenty bacterial isolates were able to synthesize ACC deaminase, which plays a vital role in decreasing ethylene levels in plants. Regardless of the origin of isolated bacteria, root or leaf tissue, they stimulated plant root and shoot growth under 200 mM NaCl conditions. Our study suggests that halophytes such as New Zealand spinach are a promising source for isolating halotolerant plant-beneficial bacteria, which can be considered as potentially efficient biofertilizers in the bioremediation of salt-affected soils.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Muncheberg, Germany; (S.W.); (S.D.B.-K.)
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan; (J.A.); (V.S.)
| | - Jakhongir Alimov
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan; (J.A.); (V.S.)
| | - Vyacheslav Shurigin
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan; (J.A.); (V.S.)
| | - Burak Alaylar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Agri Ibrahim Cecen University, Agri 04100, Turkey;
| | - Stephan Wirth
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Muncheberg, Germany; (S.W.); (S.D.B.-K.)
| | - Sonoko Dorothea Bellingrath-Kimura
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Muncheberg, Germany; (S.W.); (S.D.B.-K.)
- Faculty of Life Science, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
36
|
Inoculum Sources Modulate Mycorrhizal Inoculation Effect on Tamarix articulata Development and Its Associated Rhizosphere Microbiota. PLANTS 2021; 10:plants10122716. [PMID: 34961190 PMCID: PMC8707033 DOI: 10.3390/plants10122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: Soil degradation is an increasingly important problem in many parts of the world, particularly in arid and semiarid areas. Arbuscular mycorrhizal fungi (AMF) isolated from arid soils are recognized to be better adapted to these edaphoclimatic conditions than exogenous ones. Nevertheless, little is known about the importance of AMF inoculum sources on Tamarix articulata development in natural saline soils. Therefore, the current study aims at investigating the efficiency of two AMF-mixed inoculums on T. articulata growth, with consideration of its rhizosphere microbiota. (2) Methods: indigenous inoculum made of strains originating from saline soils and a commercial one were used to inoculate T. articulata in four saline soils with different salinity levels under microcosm conditions with evaluation of rhizosphere microbial biomasses. (3) Results: Our findings showed that indigenous inoculum outperforms the commercial one by 80% for the mycorrhizal rate and 40% for plant biomasses, which are correlated with increasing shoot phosphorus content. Soil microbial biomasses increased significantly with indigenous mycorrhizal inoculum in the most saline soil with 46% for AMF, 25% for saprotrophic fungi and 15% for bacterial biomasses. (4) Conclusion: Present results open the way towards the preferential use of mycorrhizal inoculum, based on native AMF, to perform revegetation and to restore the saline soil microbiota.
Collapse
|
37
|
El-Shahir AA, El-Tayeh NA, Ali OM, Abdel Latef AAH, Loutfy N. The Effect of Endophytic Talaromyces pinophilus on Growth, Absorption and Accumulation of Heavy Metals of Triticum aestivum Grown on Sandy Soil Amended by Sewage Sludge. PLANTS (BASEL, SWITZERLAND) 2021; 10:2659. [PMID: 34961130 PMCID: PMC8704920 DOI: 10.3390/plants10122659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 05/24/2023]
Abstract
Sewage sludge improves agricultural soil and plant growth, but there are risks associated with its use, including high heavy metal content. In this study, experiments were carried out to investigate the role of endophytic Talaromyces pinophilus MW695526 on the growth of Triticum aestivum cultivated in soil amended with sewage sludge and its phytoremediation ability. T. pinophilus could produce gibberellic acid (GA) and stimulate T. aestivum to accumulate GA. The results showed that inoculation with T. pinophilus boosted plant growth criteria, photosynthetic pigments, osmolytes (soluble proteins, soluble sugars and total amino acids), enzymatic antioxidants (catalase, superoxide dismutase and peroxidase), K, Ca and Mg. On the other hand, it reduced Na, Na/K ratio, Cd, Ni, Cu and Zn in the growth media as well as in the shoot and root of T. aestivum. The results suggest that endophytic T. pinophilus can work as a barrier to reduce the absorption of heavy metals in T. aestivum cultivated in soil amended with sewage sludge.
Collapse
Affiliation(s)
- Amany A. El-Shahir
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Noha A. El-Tayeh
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Arafat Abdel Hamed Abdel Latef
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Naglaa Loutfy
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| |
Collapse
|
38
|
Effect of Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Olasupo IO, Liang Q, Zhang C, Islam MS, Li Y, Yu X, He C. Agronomic Biofortification of Cayenne Pepper Cultivars with Plant Growth-Promoting Rhizobacteria and Chili Residue in a Chinese Solar Greenhouse. Microorganisms 2021; 9:microorganisms9112398. [PMID: 34835523 PMCID: PMC8623771 DOI: 10.3390/microorganisms9112398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.
Collapse
Affiliation(s)
- Ibraheem Olamide Olasupo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.L.); (C.Z.); (M.S.I.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.L.); (C.Z.); (M.S.I.)
| | - Md Shariful Islam
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.L.); (C.Z.); (M.S.I.)
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
| | - Xianchang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
| | - Chaoxing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
- Correspondence:
| |
Collapse
|
40
|
Outamamat E, Bourhia M, Dounas H, Salamatullah AM, Alzahrani A, Alyahya HK, Albadr NA, Al Feddy MN, Mnasri B, Ouahmane L. Application of Native or Exotic Arbuscular Mycorrhizal Fungi Complexes and Monospecific Isolates from Saline Semi-Arid Mediterranean Ecosystems Improved Phoenix dactylifera's Growth and Mitigated Salt Stress Negative Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:2501. [PMID: 34834866 PMCID: PMC8624251 DOI: 10.3390/plants10112501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 01/24/2023]
Abstract
The date, the palm tree (Phoenix dactylifera L.) is an important component of arid and semi-arid Mediterranean ecosystems, particularly in Morocco where it plays a considerable socio-economic and ecological role. This species is largely affected by desertification, global warming, and anthropic pressure. Salinity is a very worrying problem that negatively affects the growth and the physiological and biochemical activities of the date palm. In these arid zones, the main challenge is to develop new environmentally friendly technologies that improve crop tolerance to abiotic restraints including salinity. In this sense, Arbuscular mycorrhizal fungi (AMF) have received much attention due to their capability in promoting plant growth and tolerance to abiotic and biotic stresses. It is thus fitting that the current research work was undertaken to evaluate and compare the effects of native AMF on the development of the growth and tolerance of date palm to salt stress along with testing their role as biofertilizers. To achieve this goal, two complexes and two monospecific isolates of native and non-native AMF were used to inoculate date palm seedlings under saline stress (0 g·L-1 Na Cl, 10 g·L-1, and 20 g·L-1 Na Cl). The obtained results showed that salinity drastically affected the physiological parameters and growth of date palm seedlings, whilst the application of selected AMF significantly improved growth parameters and promoted the activities of antioxidant enzymes as a protective strategy. Inoculation with non-native AMF complex and monospecific isolates showed higher responses for all analyzed parameters when compared with the native complex and isolate. It therefore becomes necessary to glamorize the fungal communities associated with date palm for their use in the inoculation of Phoenix dactylifera L. seedlings.
Collapse
Affiliation(s)
- Elmostapha Outamamat
- Labeled Research Unit-CNRST N°4, Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco; (E.O.); (M.B.); (H.D.)
| | - Mohammed Bourhia
- Labeled Research Unit-CNRST N°4, Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco; (E.O.); (M.B.); (H.D.)
| | - Hanane Dounas
- Labeled Research Unit-CNRST N°4, Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco; (E.O.); (M.B.); (H.D.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (A.A.); (H.K.A.); (N.A.A.)
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (A.A.); (H.K.A.); (N.A.A.)
| | - Heba Khalil Alyahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (A.A.); (H.K.A.); (N.A.A.)
| | - Nawal A. Albadr
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (A.A.); (H.K.A.); (N.A.A.)
| | - Mohamed Najib Al Feddy
- Plant Protection Unit, Laboratory of Phyto-Bacteriology, National Institute of Agronomic Research, Marrakesh 40000, Morocco;
| | - Bacem Mnasri
- Centre of Biotechnology of Borj-Cédria, Hammam-Lif 2050, Tunisia;
| | - Lahcen Ouahmane
- Labeled Research Unit-CNRST N°4, Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco; (E.O.); (M.B.); (H.D.)
| |
Collapse
|
41
|
Shurigin V, Alaylar B, Davranov K, Wirth S, Bellingrath-Kimura SD, Egamberdieva D. Diversity and biological activity of culturable endophytic bacteria associated with marigold ( Calendula officinalis L.). AIMS Microbiol 2021; 7:336-353. [PMID: 34708176 PMCID: PMC8500798 DOI: 10.3934/microbiol.2021021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (Calendula officinalis L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas, and Beijerinckia. Among the bacterial strains, P. kilonensis FRT12, and P. rhizosphaerae FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, F. culmorum, F. solani and R. solani. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (C. officinalis L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.
Collapse
Affiliation(s)
- Vyacheslav Shurigin
- Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, 100174, Tashkent, Uzbekistan.,Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Burak Alaylar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Agri Ibrahim Cecen University, 04100, Agri, Turkey
| | - Kakhramon Davranov
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Stephan Wirth
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Sonoko Dorothea Bellingrath-Kimura
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany.,Faculty of Life Science, Humboldt University of Berlin, 14195, Berlin, Germany
| | - Dilfuza Egamberdieva
- Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, 100174, Tashkent, Uzbekistan.,Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
42
|
de Freitas Nunes Oliveira A, Saboya de Sousa LI, Silva da Costa VA, de Andrade JVT, Lucena Lima LA, de Sales PAF, da Silva DF, de Araujo Pereira AP, Maciel Melo VM. Long-term effects of grazing on the biological, chemical, and physical soil properties of the Caatinga biome. Microbiol Res 2021; 253:126893. [PMID: 34678684 DOI: 10.1016/j.micres.2021.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023]
Abstract
Soil degradation is a global issue that affects both plant productivity and human life. Intensive grazing practices can accelerate this process, mainly due to rapid removal of biomass from the soil surface. However, the long-term effects of grazing on biological, chemical, and physical properties remain poorly understood, particularly in tropical drylands, such as the Caatinga biome. Our aim was to evaluate the soil properties and combine both culture-dependent and -independent analyses to assess metabolic activity and bacterial community structure. We collected samples (0-20 cm) of three different types of soil in the Caatinga biome: secondary Caatinga forest (NC), grazing exclusion (GE), and degraded areas by overgrazing (OG). We sought to investigate how grazing affects soil properties to determine the effectiveness of grazing exclusion in the restoration of soil fertility/functions. Redundancy analysis demonstrated NC were positively correlated with organic carbon (λ = 0.18, p = 0.0012) and total nitrogen (λ = 0.16, p = 0.0011), while OG was correlated with harmful soil parameters such as Na+ (λ = 0.08, p = 0.0400), electric conductivity (λ = 0.13, p = 0.0060) and exchangeable acidity (λ = 0.11, p = 0.0030). In addition, GE showed lower aluminum content and saturation, reducing these harmful parameters by 48 % and 34 %, respectively. Also, GE showed the highest values for the β-glucosidase (63.62 mg ρ-nitrophenol kg-1 h-1) and arylsulfatase (5.8 mg ρ-nitrophenol kg-1 h-1) activities. Changes in bacterial community structure were significant (p = 0.0096), with a higher difference comparing GE and OG (p = 0.0135). The GE area showed 20 % more phosphate solubilizers than OG, but there were no differences for siderophores production. All isolates were halotolerant and had at least 60 % nitrogen fixers. Our findings indicate that while soil recovery is slow, with grazing-exclusion areas presenting 18 years of implantation, it seems to improve in subsequent years. Finally, our results provide evidence that microbe-based technologies can mitigate soil degradation in the Caatinga biome.
Collapse
Affiliation(s)
| | - Lara Isensee Saboya de Sousa
- Microbial Ecology and Biotechnology Laboratory, Biology Department, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Vanessa Ariane Silva da Costa
- Microbial Ecology and Biotechnology Laboratory, Biology Department, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | | | - Lara Andrade Lucena Lima
- Microbial Ecology and Biotechnology Laboratory, Biology Department, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Pedro Amaral Fontes de Sales
- Microbial Ecology and Biotechnology Laboratory, Biology Department, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Danilo Ferreira da Silva
- Soil Microbiology Laboratory, Soil Science Department, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Vânia Maria Maciel Melo
- Microbial Ecology and Biotechnology Laboratory, Biology Department, Federal University of Ceará, Fortaleza, Ceara, Brazil.
| |
Collapse
|
43
|
Sharma A, Singh RK, Singh P, Vaishnav A, Guo DJ, Verma KK, Li DP, Song XP, Malviya MK, Khan N, Lakshmanan P, Li YR. Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. Microorganisms 2021; 9:microorganisms9112203. [PMID: 34835329 PMCID: PMC8623439 DOI: 10.3390/microorganisms9112203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Soil salinity causes severe environmental stress that affects agriculture production and food security throughout the world. Salt-tolerant plant-growth-promoting rhizobacteria (PGPR) and nitric oxide (NO), a distinctive signaling molecule, can synergistically assist in the alleviation of abiotic stresses and plant growth promotion, but the mechanism by which this happens is still not well known. In the present study, in a potential salt-tolerant rhizobacteria strain, ASN-1, growth up to 15% NaCl concentration was achieved with sugarcane rhizosphere soil. Based on 16S-rRNA gene sequencing analysis, the strain ASN-1 was identified as a Bacillus xiamenensis. Strain ASN-1 exhibits multiple plant-growth-promoting attributes, such as the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, HCN, ammonia, and exopolysaccharides as well as solubilized phosphate solubilization. Biofilm formation showed that NO enhanced the biofilm and root colonization capacity of the PGPR strain ASN-1 with host plants, evidenced by scanning electron microscopy. The greenhouse study showed that, among the different treatments, the combined application of PGPR and sodium nitroprusside (SNP) as an NO donor significantly (p ≤ 0.05) enhanced sugarcane plant growth by maintaining the relative water content, electrolyte leakage, gas exchange parameters, osmolytes, and Na+/K+ ratio. Furthermore, PGPR and SNP fertilization reduced the salinity-induced oxidative stress in plants by modulating the antioxidant enzyme activities and stress-related gene expression. Thus, it is believed that the acquisition of advanced information about the synergistic effect of salt-tolerant PGPR and NO fertilization will reduce the use of harmful chemicals and aid in eco-friendly sustainable agricultural production under salt stress conditions.
Collapse
Affiliation(s)
- Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, U.P., India;
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical, Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical, Agro-Bioresources, Guangxi University, Nanning 530005, China
- Correspondence:
| |
Collapse
|
44
|
Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. SUSTAINABILITY 2021. [DOI: 10.3390/su131910986] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Environmental stress is a major challenge for sustainable food production as it reduces yield by generating reactive oxygen species (ROS) which pose a threat to cell organelles and biomolecules such as proteins, DNA, enzymes, and others, leading to apoptosis. Plant growth-promoting rhizobacteria (PGPR) offers an eco-friendly and green alternative to synthetic agrochemicals and conventional agricultural practices in accomplishing sustainable agriculture by boosting growth and stress tolerance in plants. PGPR inhabit the rhizosphere of soil and exhibit positive interaction with plant roots. These organisms render multifaceted benefits to plants by several mechanisms such as the release of phytohormones, nitrogen fixation, solubilization of mineral phosphates, siderophore production for iron sequestration, protection against various pathogens, and stress. PGPR has the potential to curb the adverse effects of various stresses such as salinity, drought, heavy metals, floods, and other stresses on plants by inducing the production of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. Genetically engineered PGPR strains play significant roles to alleviate the abiotic stress to improve crop productivity. Thus, the present review will focus on the impact of PGPR on stress resistance, plant growth promotion, and induction of antioxidant systems in plants.
Collapse
|
45
|
In Silico Study of the RSH ( RelA/ SpoT Homologs) Gene Family and Expression Analysis in Response to PGPR Bacteria and Salinity in Brassica napus. Int J Mol Sci 2021; 22:ijms221910666. [PMID: 34639007 PMCID: PMC8509286 DOI: 10.3390/ijms221910666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Among several mechanisms involved in the plant stress response, synthesis of guanosine tetra and pentaphosphates (alarmones), homologous to the bacterial stringent response, is of crucial importance. Plant alarmones affect, among others, photosynthetic activity, metabolite accumulation, and nutrient remobilization, and thus regulate plant growth and development. The plant RSH (RelA/SpoT homolog) genes, that encode synthetases and/or hydrolases of alarmones, have been characterized in a limited number of plant species, e.g., Arabidopsis thaliana, Oryza sativa, and Ipomoea nil. Here, we used dry-to-wet laboratory research approaches to characterize RSH family genes in the polyploid plant Brassica napus. There are 12 RSH genes in the genome of rapeseed that belong to four types of RSH genes: 6 RSH1, 2 RSH2, 3 RSH3, and 1 CRSH. BnRSH genes contain 13-24 introns in RSH1, 2-6 introns in RSH2, 1-6 introns in RSH3, and 2-3 introns in the CRSH genes. In the promoter regions of the RSH genes, we showed the presence of regulatory elements of the response to light, plant hormones, plant development, and abiotic and biotic stresses. The wet-lab analysis showed that expression of BnRSH genes is generally not significantly affected by salt stress, but that the presence of PGPR bacteria, mostly of Serratia sp., increased the expression of BnRSH significantly. The obtained results show that BnRSH genes are differently affected by biotic and abiotic factors, which indicates their different functions in plants.
Collapse
|
46
|
Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi J Biol Sci 2021; 28:5442-5450. [PMID: 34588854 PMCID: PMC8459153 DOI: 10.1016/j.sjbs.2021.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
The fungus Fusarium oxysporum f. sp. lycopersici (FOL) is known to cause vascular wilt on tomato almost over the world. Inoculation of FOL reduced plant growth and increased wilt of tomato. The following study examined the possible role of arbuscular mycorrhizal fungi (AMF) consortium comprising of Rhizophagus intraradices, Funneliformis mosseae and Claroideoglomus etunicatum against FOL in tomato and explored in an inducing plant systemic defense. AMF inoculation reduced the wilt disease within vascular tissue and in vivo production of fusaric acid was observed which may be responsible in reduced wilting. FOL had an antagonistic effect on AMF colonization, reduced the number of spores, arbuscules and vesicles. AMF also inhibited the damage induced by Fusarium wilt through increasing chlorophyll contents along with the activity of phosphate metabolising enzymes (acid and alkaline phosphatases). Moreover, tomato plants with mycorrhizal inoculation showed an increase in the level of antioxidant enzymes including glutathione reductase, catalase, and etc. with an ultimate influence on the elimination of reactive oxygen species. Moreover, rise in phosphatase along with antioxidant enzymatic systems and enhanced photosynthetic performance contributed to induced resistance against FOL in tomato.
Collapse
|
47
|
Abbaspour H, Pour FSN, Abdel-Wahhab MA. Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1765-1778. [PMID: 34539115 PMCID: PMC8405761 DOI: 10.1007/s12298-021-01043-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 05/03/2023]
Abstract
Mycorrhizal symbiosis is generally considered effective in ameliorating plant tolerance to abiotic stress by altering gene expression, and evaluation of genes involved in ion homeostasis and nutrient uptake. This study aimed to use arbuscular mycorrhizal fungus (AMF) to alleviate salinity stress and analyse relevant gene expression in pistachio plants under No/NaCl stress in greenhouse conditions. Arbuscular mycorrhizal symbiosis was used to study the physiological responses, ion distribution and relevant gene expression in pistachio plants under salinity stress. After four months of symbiosis, mycorrhizal root colonization showed a significant reduction in all tested parameters under salt stress treatment compared to non-saline treatment. Salinity affected the morphological traits, and decreased the nutrient content including N, P, Mg and Fe as well as K/Na and Ca/Na ratios, relative water content (RWC), membrane stability index (MSI), and increased the concentration of K, Ca and Na nutrient, glycine betaine, ROS and MDA. Inoculation of seedlings with AMF mitigated the negative effects of salinity on plant growth as indicated by increasing the root colonization, morphological traits, glycine betaine, RWC and MSI. Specifically, under salinity stress, shoot and root dry weight, P and Fe nutrient content, K/Na and Ca/Na ratio of AMF plants were increased by 53.2, 48.6, 71.6, 60.2, 87.5, and 80.1% respectively, in contrast to those of the NMF plants. The contents of Na, O2•- and MDA in AMF plants were significantly decreased by 66.8, 36.8, and 23.1%, respectively at 250 mM NaCl. Moreover, salinity markedly increased SOS1, CCX2 and SKOR genes expression and the inoculation with AMF modulated these genes expression; however, NRT2.4, PHO1 and PIP2.4 gene expressions were increased by salinity and AMF. It could be concluded that inoculation of AMF with Rhizophagus irregularis conferred a larger endurance towards soil salinity in pistachio plants and stimulate the nutrient uptake and ionic homeostasis maintenance, superior RWC and osmoprotection, toxic ion partitioning, maintaining membrane integrity and the ion-relevant genes expression.
Collapse
Affiliation(s)
- Hossein Abbaspour
- Biology Department, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh S. N. Pour
- Biology Department, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | |
Collapse
|
48
|
Alleviation of Salt Stress in Wheat Seedlings via Multifunctional Bacillus aryabhattai PM34: An In-Vitro Study. SUSTAINABILITY 2021. [DOI: 10.3390/su13148030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant growth-promoting rhizobacteria play a substantial role in plant growth and development under biotic and abiotic stress conditions. However, understanding about the functional role of rhizobacterial strains for wheat growth under salt stress remains largely unknown. Here we investigated the antagonistic bacterial strain Bacillus aryabhattai PM34 inhabiting ACC deaminase and exopolysaccharide producing ability to ameliorate salinity stress in wheat seedlings under in vitro conditions. The strain PM34 was isolated from the potato rhizosphere and screened for different PGP traits comprising nitrogen fixation, potassium, zinc solubilization, indole acetic acid, siderophore, and ammonia production, along with various extracellular enzyme activities. The strain PM34 showed significant tolerance towards both abiotic stresses including salt stress (NaCl 2 M), heavy metal (nickel, 100 ppm, and cadmium, 300 ppm), heat stress (60 °C), and biotic stress through mycelial inhibition of Rhizoctonia solani (43%) and Fusarium solani (41%). The PCR detection of ituC, nifH, and acds genes coding for iturin, nitrogenase, and ACC deaminase enzyme indicated the potential of strain PM34 for plant growth promotion and stress tolerance. In the in vitro experiment, NaCl (2 M) decreased the wheat growth while the inoculation of strain PM34 enhanced the germination% (48%), root length (76%), shoot length (75%), fresh biomass (79%), and dry biomass (87%) over to un-inoculated control under 2M NaCl level. The results of experiments depicted the ability of antagonistic bacterial strain Bacillus aryabhattai PM34 to augment salt stress tolerance when inoculated to wheat plants under saline environment.
Collapse
|
49
|
Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021; 9:microorganisms9071491. [PMID: 34361927 PMCID: PMC8307984 DOI: 10.3390/microorganisms9071491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Collapse
|
50
|
Kaur J, Sharma J. Orchid Root Associated Bacteria: Linchpins or Accessories? FRONTIERS IN PLANT SCIENCE 2021; 12:661966. [PMID: 34249034 PMCID: PMC8264303 DOI: 10.3389/fpls.2021.661966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
Besides the plant-fungus symbiosis in arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) plants, many endorhizal and rhizosphere bacteria (Root Associated Bacteria, or RAB) also enhance plant fitness, diversity, and coexistence among plants via bi- or tripartite interactions with plant hosts and mycorrhizal fungi. Assuming that bacterial associations are just as important for the obligate mycorrhizal plant family Orchidaceae, surprisingly little is known about the RAB associated with orchids. Herein, we first present the current, underwhelming state of RAB research including their interactions with fungi and the influence of holobionts on plant fitness. We then delineate the need for novel investigations specifically in orchid RAB ecology, and sketch out questions and hypotheses which, when addressed, will advance plant-microbial ecology. We specifically discuss the potential effects of beneficial RAB on orchids as: (1) Plant Growth Promoting Rhizobacteria (PGPR), (2) Mycorrhization Helper Bacteria (MHB), and (3) constituents of an orchid holobiont. We further posit that a hologenomic view should be considered as a framework for addressing co-evolution of the plant host, their obligate Orchid Mycorrhizal Fungi (OMF), and orchid RAB. We conclude by discussing implications of the suggested research for conservation of orchids, their microbial partners, and their collective habitats.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | |
Collapse
|